1 |
/* |
2 |
* BrowserDag.c |
3 |
* by Kirk Abbott and Ben Allan |
4 |
* Created: 1/94 |
5 |
* Version: $Revision: 1.15 $ |
6 |
* Version control file: $RCSfile: BrowserDag.c,v $ |
7 |
* Date last modified: $Date: 2003/08/23 18:43:04 $ |
8 |
* Last modified by: $Author: ballan $ |
9 |
* |
10 |
* This file is part of the ASCEND Tcl/Tk interface |
11 |
* |
12 |
* Copyright 1997, Carnegie Mellon University |
13 |
* |
14 |
* The ASCEND Tcl/Tk interface is free software; you can redistribute |
15 |
* it and/or modify it under the terms of the GNU General Public License as |
16 |
* published by the Free Software Foundation; either version 2 of the |
17 |
* License, or (at your option) any later version. |
18 |
* |
19 |
* The ASCEND Tcl/Tk interface is distributed in hope that it will be |
20 |
* useful, but WITHOUT ANY WARRANTY; without even the implied warranty of |
21 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
22 |
* General Public License for more details. |
23 |
* |
24 |
* You should have received a copy of the GNU General Public License |
25 |
* along with the program; if not, write to the Free Software Foundation, |
26 |
* Inc., 675 Mass Ave, Cambridge, MA 02139 USA. Check the file named |
27 |
* COPYING. COPYING is found in ../compiler. |
28 |
*/ |
29 |
|
30 |
|
31 |
#include "tcl.h" |
32 |
#include "tk.h" |
33 |
#include "utilities/ascConfig.h" |
34 |
#include "utilities/ascMalloc.h" |
35 |
#include "general/list.h" |
36 |
#include "compiler/instance_enum.h" |
37 |
#include "solver/var.h" |
38 |
#include "solver/rel.h" |
39 |
#include "solver/slv_client.h" |
40 |
#include "interface/BrowserQuery.h" |
41 |
#include "interface/BrowserDag.h" |
42 |
|
43 |
#ifndef lint |
44 |
static CONST char BrowserDagID[] = "$Id: BrowserDag.c,v 1.15 2003/08/23 18:43:04 ballan Exp $"; |
45 |
#endif |
46 |
|
47 |
|
48 |
/* OLD */ |
49 |
/* |
50 |
* |
51 |
* This is the original version of the code. |
52 |
* It may be going away soon. |
53 |
* |
54 |
*/ |
55 |
static Tcl_Interp *local_interp = NULL; |
56 |
static struct InstanceName global_name; |
57 |
|
58 |
int BrowWriteName_ToInterp(Tcl_Interp *interp, |
59 |
CONST struct InstanceName *rec) |
60 |
{ |
61 |
char tmp[256]; |
62 |
switch(InstanceNameType(*rec)) { |
63 |
case IntArrayIndex: |
64 |
sprintf(tmp,"[%ld]",InstanceIntIndex(*rec)); |
65 |
Tcl_AppendResult(interp,tmp,(char *)NULL); |
66 |
break; |
67 |
case StrArrayIndex: |
68 |
sprintf(tmp,"'%s'",InstanceStrIndex(*rec)); |
69 |
Tcl_AppendResult(interp,tmp,(char *)NULL); |
70 |
break; |
71 |
case StrName: |
72 |
Tcl_AppendResult(interp,InstanceNameStr(*rec),(char *)NULL); |
73 |
break; |
74 |
} |
75 |
return TCL_OK; |
76 |
} |
77 |
|
78 |
|
79 |
void BrowSpecialVisitTree(struct Instance *inst) |
80 |
{ |
81 |
unsigned long nch,c; |
82 |
struct InstanceName childname; |
83 |
struct Instance *child; |
84 |
if (inst) { |
85 |
nch = NumberChildren(inst); |
86 |
switch(InstanceKind(inst)) { |
87 |
case ARRAY_ENUM_INST: |
88 |
case ARRAY_INT_INST: |
89 |
if (BrowIsAtomicArray(inst)||(BrowIsRelation(inst))) { |
90 |
break; |
91 |
} |
92 |
/* fall through */ |
93 |
case MODEL_INST: |
94 |
Tcl_AppendResult(local_interp,"{",(char *)NULL); /* write name */ |
95 |
(void)BrowWriteName_ToInterp(local_interp,&global_name); |
96 |
if (nch) { |
97 |
Tcl_AppendResult(local_interp," {",(char *)NULL); |
98 |
for (c=1;c<=nch;c++) { |
99 |
child = InstanceChild(inst,c); |
100 |
if (child) { |
101 |
if (!BrowIsAtomicArray(child) && !BrowIsRelation(child)) { |
102 |
childname = ChildName(inst,c); |
103 |
(void)BrowWriteName_ToInterp(local_interp,&childname); |
104 |
} |
105 |
Tcl_AppendResult(local_interp," ",(char *)NULL); |
106 |
} |
107 |
} |
108 |
Tcl_AppendResult(local_interp,"}} ",(char *)NULL); |
109 |
} |
110 |
break; |
111 |
default: |
112 |
break; |
113 |
} |
114 |
for(c=1;c<=nch;c++) { |
115 |
if (child = InstanceChild(inst,c)) { |
116 |
global_name = ChildName(inst,c); |
117 |
BrowSpecialVisitTree(child); |
118 |
} else { |
119 |
FPRINTF(stderr,"Null instance in tree ???\n"); |
120 |
} |
121 |
} |
122 |
} |
123 |
} |
124 |
|
125 |
|
126 |
int Asc_BrowTreeListCmd(ClientData cdata, Tcl_Interp *interp, |
127 |
int argc, CONST84 char *argv[]) |
128 |
{ |
129 |
struct Instance *i; |
130 |
struct gl_list_t *list; |
131 |
if ( argc != 3 ) { |
132 |
Tcl_SetResult(interp, |
133 |
"wrong # args: Usage __brow_tree_list ?current?search name", |
134 |
TCL_STATIC); |
135 |
return TCL_ERROR; |
136 |
} |
137 |
if (strncmp(argv[1],"current",3)==0) { |
138 |
i = g_curinst; |
139 |
} else { |
140 |
i = g_search_inst; |
141 |
} |
142 |
if (!i) { |
143 |
Tcl_SetResult(interp, "requested instance is NULL", TCL_STATIC); |
144 |
return TCL_ERROR; |
145 |
} |
146 |
local_interp = interp; |
147 |
SetInstanceNameStrPtr(global_name,argv[2]); |
148 |
SetInstanceNameType(global_name,StrName); |
149 |
BrowSpecialVisitTree(i); |
150 |
local_interp = NULL; |
151 |
return TCL_OK; |
152 |
} |
153 |
|
154 |
|
155 |
/* NEW */ |
156 |
/* |
157 |
* BrowTree Commands. |
158 |
* This is the new version of the code. It kicks out |
159 |
* copy numbers. It may replace the original verion |
160 |
* of the code. |
161 |
*/ |
162 |
|
163 |
#define AVG_PARENTS 2 |
164 |
#define AVG_CHILDREN 4 |
165 |
#define AVG_RELATIONS 15 |
166 |
#define AVG_GROWTH 2 |
167 |
#define PART_THRESHOLD 1000 |
168 |
|
169 |
/* |
170 |
* Global Data. |
171 |
* g_dagdata is the main structure. It is static permanent |
172 |
* structure to facilitate, multiple queries of the data. |
173 |
* It must firt be prepared, and then later shutdown to |
174 |
* free whatever memory is associated with it. |
175 |
*/ |
176 |
|
177 |
enum DagVisitSequence { |
178 |
v_df_bu = 0, /* depth first bottom up */ |
179 |
v_df_td, /* depth first top down */ |
180 |
v_bf_bu, /* breadth first bottom up */ |
181 |
v_bf_td /* breadth first top down */ |
182 |
}; |
183 |
|
184 |
enum PartitionMethod { |
185 |
p_clusterup = 0, /* bottom up clustering */ |
186 |
p_clusterdown, /* top down clustering */ |
187 |
p_bisection, /* as the name says */ |
188 |
p_kwaypart /* k-way partitioning */ |
189 |
}; |
190 |
|
191 |
|
192 |
struct DagData { |
193 |
struct gl_list_t *instances; |
194 |
struct gl_list_t *models; |
195 |
struct gl_list_t *relations; |
196 |
struct gl_list_t *counts; |
197 |
struct gl_list_t *partitions; |
198 |
struct gl_list_t *tears; |
199 |
unsigned long threshold; |
200 |
unsigned long last_used_index; /* index of last partition seen */ |
201 |
enum DagVisitSequence visit; |
202 |
enum PartitionMethod p_method; |
203 |
int initialized; |
204 |
}; |
205 |
|
206 |
static struct DagData g_dagdata_reset = { |
207 |
NULL, /* instances */ |
208 |
NULL, /* models */ |
209 |
NULL, /* relations */ |
210 |
NULL, /* counts */ |
211 |
NULL, /* partitions */ |
212 |
NULL, /* tears */ |
213 |
0, /* threshold */ |
214 |
1, /* index */ |
215 |
v_df_bu, /* this is the default visit sequence */ |
216 |
p_clusterup, /* default partitioning */ |
217 |
0 /* intialized */ |
218 |
}; |
219 |
|
220 |
static struct DagData g_dagdata; |
221 |
|
222 |
struct SlvModel { |
223 |
struct Instance *instance; |
224 |
unsigned long index; |
225 |
unsigned long level; |
226 |
unsigned long local; |
227 |
unsigned long subtree; |
228 |
unsigned long partition; |
229 |
struct gl_list_t *parents; /* a list of parents */ |
230 |
struct gl_list_t *children; |
231 |
struct gl_list_t *relations; /* a list of lists of relations */ |
232 |
}; |
233 |
|
234 |
static struct SlvModel *CreateSlvModel(void) |
235 |
{ |
236 |
struct SlvModel *result; |
237 |
|
238 |
result = (struct SlvModel *)ascmalloc(sizeof(struct SlvModel)); |
239 |
result->instance = NULL; |
240 |
result->index = 0; |
241 |
result->level = 0; |
242 |
result->local = 0; |
243 |
result->subtree = 0; |
244 |
result->partition = 1; /* the default partition */ |
245 |
result->parents = gl_create(AVG_PARENTS); |
246 |
result->children = gl_create(AVG_CHILDREN); |
247 |
result->relations = gl_create(AVG_GROWTH); |
248 |
return result; |
249 |
} |
250 |
|
251 |
static |
252 |
void DestroySlvModel(struct SlvModel *model) |
253 |
{ |
254 |
unsigned long len,c; |
255 |
struct gl_list_t *tmp; |
256 |
|
257 |
if (!model) { |
258 |
return; |
259 |
} |
260 |
if (model->parents) { |
261 |
gl_destroy(model->parents); |
262 |
} |
263 |
if (model->children) { |
264 |
if (gl_length(model->children)==0) { |
265 |
DoSlvModel_BreakPoint(); |
266 |
} |
267 |
gl_destroy(model->children); |
268 |
} |
269 |
if (model->relations) { |
270 |
len = gl_length(model->relations); |
271 |
for (c=1;c<=len;c++) { |
272 |
tmp = (struct gl_list_t *)gl_fetch(model->relations,c); |
273 |
gl_destroy(tmp); |
274 |
} |
275 |
gl_destroy(model->relations); |
276 |
} |
277 |
ascfree((char *)model); |
278 |
return; |
279 |
} |
280 |
|
281 |
static |
282 |
void DestroyModelList(struct gl_list_t *models) |
283 |
{ |
284 |
unsigned long len,c; |
285 |
struct SlvModel *model; |
286 |
|
287 |
if (!models) { |
288 |
return; |
289 |
} |
290 |
len = gl_length(models); |
291 |
for (c=1;c<=len;c++) { |
292 |
model = (struct SlvModel *)gl_fetch(models,c); |
293 |
DestroySlvModel(model); |
294 |
} |
295 |
gl_destroy(models); |
296 |
} |
297 |
|
298 |
static |
299 |
void ResetDagData(void) |
300 |
{ |
301 |
g_dagdata = g_dagdata_reset; /* structure assignment */ |
302 |
} |
303 |
|
304 |
static |
305 |
void DestroyDagData(void) |
306 |
{ |
307 |
unsigned long len,c; |
308 |
struct SlvModel *model; |
309 |
|
310 |
if (g_dagdata.instances) { |
311 |
gl_destroy(g_dagdata.instances); |
312 |
g_dagdata.instances = NULL; |
313 |
} |
314 |
|
315 |
if (g_dagdata.models) { |
316 |
DestroyModelList(g_dagdata.models); |
317 |
g_dagdata.models = NULL; |
318 |
} |
319 |
|
320 |
if (g_dagdata.relations) { |
321 |
gl_destroy(g_dagdata.relations); |
322 |
g_dagdata.relations = NULL; |
323 |
} |
324 |
|
325 |
if (g_dagdata.counts) { |
326 |
gl_destroy(g_dagdata.counts); |
327 |
} |
328 |
ResetDagData(); |
329 |
} |
330 |
|
331 |
|
332 |
/* |
333 |
* This code is here for debugging purposes only. |
334 |
*/ |
335 |
int DoSlvModel_BreakPoint(void) |
336 |
{ |
337 |
return 1; |
338 |
} |
339 |
|
340 |
/* |
341 |
********************************************************************* |
342 |
* CountRelations |
343 |
* |
344 |
* The next few functions are concerned with the counting of relations. |
345 |
* Some of these functions run of the original instance structure, |
346 |
* whilst others work off the SolverModel. |
347 |
********************************************************************* |
348 |
*/ |
349 |
|
350 |
/* |
351 |
* Given an instance, which is assumed to be able to respond to |
352 |
* a NumberChildren query, this function will count the number of |
353 |
* relations associated with instance. It is recursive as, a given |
354 |
* model instance has ownership of relations in a number of ways. |
355 |
* 1) a REL_INST may be a direct child of the model. |
356 |
* 2) the REL_INST may be a child of an array, (or multiply dimensioned |
357 |
* array, which is the child of the model. |
358 |
* |
359 |
* CountLocalRelations__ is used by CountLocalRelations, which returns |
360 |
* a list of counts foreach model in an instance list. |
361 |
*/ |
362 |
static |
363 |
void CountLocalRelations__(struct Instance *inst, unsigned long *count) |
364 |
{ |
365 |
struct Instance *child; |
366 |
unsigned long nch,c; |
367 |
|
368 |
if (!inst) { |
369 |
return; |
370 |
} |
371 |
nch = NumberChildren(inst); |
372 |
for (c=1;c<=nch;c++) { |
373 |
child = InstanceChild(inst,c); |
374 |
if (!child) { |
375 |
continue; |
376 |
} |
377 |
switch (InstanceKind(child)) { |
378 |
case REL_INST: |
379 |
(*count)++; |
380 |
break; |
381 |
case ARRAY_ENUM_INST: |
382 |
case ARRAY_INT_INST: |
383 |
if (BrowIsRelation(child)) { /* an array of relations */ |
384 |
CountLocalRelations__(child,count); |
385 |
} |
386 |
break; |
387 |
default: |
388 |
break; |
389 |
} |
390 |
} |
391 |
} |
392 |
|
393 |
|
394 |
/* |
395 |
* Creates and returns a list of relation counts for each |
396 |
* instance on the given list. Uses the primitive CountLocalRelations__ |
397 |
*/ |
398 |
static |
399 |
struct gl_list_t *CountLocalRelations(struct gl_list_t *inst_list) |
400 |
{ |
401 |
struct gl_list_t *list; |
402 |
struct Instance *inst; |
403 |
unsigned long len,c; |
404 |
unsigned long count; |
405 |
unsigned long total = 0; /* KAA_DEBUG */ |
406 |
|
407 |
len = gl_length(inst_list); |
408 |
list = gl_create(len); |
409 |
for (c=1;c<=len;c++) { |
410 |
count = 0; |
411 |
inst = (struct Instance *)gl_fetch(inst_list,c); |
412 |
CountLocalRelations__(inst,&count); |
413 |
gl_append_ptr(list,(char *)count); /* assumes pointer == unsigned long */ |
414 |
total += count; |
415 |
} |
416 |
FPRINTF(stderr,"Found %lu relations\n",total); |
417 |
return list; |
418 |
} |
419 |
|
420 |
/* |
421 |
* This function is very similar to CountLocalRelations, but |
422 |
* appends each relation found to the given rellist. It has |
423 |
* been made a separate function for efficiency, HOWEVER |
424 |
* they perhaps be rationalized; any one who simply wants a |
425 |
* count simply builds the list and then queries the length. |
426 |
* I WILL CLEAN THIS UP LATER. |
427 |
*/ |
428 |
static |
429 |
void CollectLocalRelations(struct Instance *inst, |
430 |
struct gl_list_t *rellist) |
431 |
{ |
432 |
struct Instance *child; |
433 |
unsigned long nch,c; |
434 |
|
435 |
if (!inst) { |
436 |
return; |
437 |
} |
438 |
nch = NumberChildren(inst); |
439 |
for (c=1;c<=nch;c++) { |
440 |
child = InstanceChild(inst,c); |
441 |
if (!child) { |
442 |
continue; |
443 |
} |
444 |
switch (InstanceKind(child)) { |
445 |
case REL_INST: |
446 |
gl_append_ptr(rellist,(char *)child); |
447 |
break; |
448 |
case ARRAY_ENUM_INST: |
449 |
case ARRAY_INT_INST: |
450 |
if (BrowIsRelation(child)) { /* an array of relations */ |
451 |
CollectLocalRelations(child,rellist); |
452 |
} |
453 |
break; |
454 |
default: |
455 |
break; |
456 |
} |
457 |
} |
458 |
} |
459 |
|
460 |
|
461 |
/* |
462 |
* These functions are tot be used when the model tree has already been |
463 |
* built, and the local relations have been filled in. |
464 |
*/ |
465 |
|
466 |
static |
467 |
unsigned long CountRelnsInList_Fast(struct gl_list_t *models, |
468 |
unsigned long start, |
469 |
unsigned long end) |
470 |
{ |
471 |
struct SlvModel *model; |
472 |
unsigned long c; |
473 |
unsigned long total = 0L; |
474 |
|
475 |
for (c=start;c<=end;c++) { |
476 |
model = (struct SlvModel *)gl_fetch(models,c); |
477 |
total += model->local; |
478 |
} |
479 |
return total; |
480 |
} |
481 |
|
482 |
|
483 |
|
484 |
/* |
485 |
********************************************************************* |
486 |
* Auxiliary Functions |
487 |
* |
488 |
* The next few functions are auxiliary functions that may be applied |
489 |
* to a tree/list of solver models. These include |
490 |
* 1) Labelling levels in the tree. |
491 |
* 2) Counting aliased variables. |
492 |
* 3) RemovingAliasing using different heuristics. |
493 |
* 4) Tree Reorienting routines. |
494 |
********************************************************************* |
495 |
*/ |
496 |
static |
497 |
void LabelLevels(struct SlvModel *root, int *level) |
498 |
{ |
499 |
struct SlvModel *modchild; |
500 |
unsigned long nch,c; |
501 |
|
502 |
if (!root) { |
503 |
return; |
504 |
} |
505 |
nch = gl_length(root->children); |
506 |
if (nch) { |
507 |
(*level)++; |
508 |
for (c=1;c<=nch;c++) { |
509 |
modchild = (struct SlvModel *)gl_fetch(root->children,c); |
510 |
LabelLevels(modchild,level); |
511 |
} |
512 |
(*level)--; |
513 |
} else { |
514 |
root->level = MAX(root->level,*level); |
515 |
} |
516 |
} |
517 |
|
518 |
/* |
519 |
* This function returns : |
520 |
* 1 if p1 has *less* children than p2 |
521 |
* -1 if p2 has *more* children than p1 |
522 |
* 0 if equal. |
523 |
*/ |
524 |
int ReorientCriteria_1(void *p1, void *p2) |
525 |
{ |
526 |
struct SlvModel *child1 = (struct SlvModel *)p1; |
527 |
struct SlvModel *child2 = (struct SlvModel *)p2; |
528 |
|
529 |
if (gl_length(child1->children) < gl_length(child2->children)) { |
530 |
return 1; |
531 |
} else if (gl_length(child1->children) > gl_length(child2->children)) { |
532 |
return -1; |
533 |
} else { |
534 |
return 0; |
535 |
} |
536 |
} |
537 |
|
538 |
/* |
539 |
* This function attempts to reorient a SlvModel tree, such |
540 |
* that nodes with more children appear before nodes with less |
541 |
* children. |
542 |
* |
543 |
* NOTE: After calling this function, anyone with references to |
544 |
* models in the tree *will* still have valid references. |
545 |
* However the indexing, whether bottom up or top down or breadth first |
546 |
* rather than depth first will be messed up. The tree then will need |
547 |
* to be reindexed. |
548 |
*/ |
549 |
static |
550 |
void ReorientTree(struct SlvModel *root) |
551 |
{ |
552 |
struct SlvModel *child; |
553 |
unsigned long len,c; |
554 |
|
555 |
if (!root) { |
556 |
return; |
557 |
} |
558 |
gl_sort(root->children,(CmpFunc)ReorientCriteria_1); |
559 |
len = gl_length(root->children); |
560 |
for (c=1;c<=len;c++) { |
561 |
child = (struct SlvModel *)gl_fetch(root->children,c); |
562 |
ReorientTree(child); |
563 |
} |
564 |
} |
565 |
|
566 |
/* |
567 |
* This fuction should be called before any of the Indexing functions are |
568 |
* called. Otherwise, later code will die. The reason is simple: |
569 |
* the indexing code depends upon unique labeling; we use the label of 0, |
570 |
* to find out if a node has been visited or not. If the labeling gets |
571 |
* messed up (in particular if we end up with a label greater than |
572 |
* the length of the original list, then the PostFixup code will choke. |
573 |
*/ |
574 |
static |
575 |
void ResetModelTree(struct gl_list_t *models) |
576 |
{ |
577 |
struct SlvModel *model; |
578 |
unsigned long len,c; |
579 |
|
580 |
len = gl_length(models); |
581 |
for (c=1;c<=len;c++) { |
582 |
model = (struct SlvModel *)gl_fetch(models,c); |
583 |
model->index = 0; |
584 |
} |
585 |
} |
586 |
|
587 |
/* |
588 |
* This function does a Depth First Bottom up indexing of the model tree. |
589 |
* Because we may have aliasing in the tree, we need to see if a node has |
590 |
* been visited before we index it. This function thus assumes that all |
591 |
* the indexes in the tree have been reset to 0. A nonzero index means |
592 |
* that the node has already been visited, so that we dont reindex it. |
593 |
*/ |
594 |
static |
595 |
void IndexTreeDF_BottomUp(struct SlvModel *model, unsigned long *index) |
596 |
{ |
597 |
struct SlvModel *child; |
598 |
unsigned long nch,c; |
599 |
|
600 |
if (!model) { |
601 |
return; |
602 |
} |
603 |
nch = gl_length(model->children); |
604 |
for (c=1;c<=nch;c++) { |
605 |
child = (struct SlvModel *)gl_fetch(model->children,c); |
606 |
IndexTreeDF_BottomUp(child,index); |
607 |
} |
608 |
if (!model->index) { /* do the visitation check */ |
609 |
model->index = (*index)++; /* index the node */ |
610 |
} |
611 |
} |
612 |
|
613 |
/* |
614 |
* This function does a Depth First Top Down indexing |
615 |
* of the model tree. See the comments regarding aliasing |
616 |
* for IndexTreeDF_BottomUp. |
617 |
*/ |
618 |
static |
619 |
void IndexTreeDF_TopDown(struct SlvModel *model, unsigned long *index) |
620 |
{ |
621 |
struct SlvModel *child; |
622 |
unsigned long nch,c; |
623 |
|
624 |
if (!model) { |
625 |
return; |
626 |
} |
627 |
nch = gl_length(model->children); |
628 |
if (!model->index) { /* do the visitation check */ |
629 |
model->index = (*index)++; |
630 |
} |
631 |
for (c=1;c<=nch;c++) { |
632 |
child = (struct SlvModel *)gl_fetch(model->children,c); |
633 |
IndexTreeDF_TopDown(child,index); |
634 |
} |
635 |
} |
636 |
|
637 |
static |
638 |
void IndexTree(struct SlvModel *model, enum DagVisitSequence visit) |
639 |
{ |
640 |
unsigned long index = 1; |
641 |
switch (visit) { |
642 |
case v_df_bu: |
643 |
case v_bf_bu: |
644 |
IndexTreeDF_BottomUp(model,&index); |
645 |
break; |
646 |
case v_df_td: |
647 |
case v_bf_td: |
648 |
IndexTreeDF_TopDown(model,&index); |
649 |
break; |
650 |
default: |
651 |
FPRINTF(stderr,"Unknown visit sequence\n"); |
652 |
return; |
653 |
} |
654 |
} |
655 |
|
656 |
static |
657 |
void PostIndexingFixup(struct SlvModel *root, |
658 |
struct gl_list_t *models) |
659 |
{ |
660 |
struct SlvModel *child; |
661 |
unsigned long nch,c; |
662 |
|
663 |
if (!root) { |
664 |
return; |
665 |
} |
666 |
nch = gl_length(root->children); |
667 |
for (c=1;c<=nch;c++) { |
668 |
child = (struct SlvModel *)gl_fetch(root->children,c); |
669 |
/* |
670 |
assert((child->index >=1) && (child->index <= gl_length(models))); |
671 |
*/ |
672 |
if ((child->index < 1) || (child->index > gl_length(models))) { |
673 |
FPRINTF(stderr,"Corrupted data in PostIndexingFixup at %lu\n",c); |
674 |
continue; |
675 |
} |
676 |
gl_store(models,child->index,(char *)child); |
677 |
PostIndexingFixup(child,models); |
678 |
} |
679 |
} |
680 |
|
681 |
/* |
682 |
********************************************************************* |
683 |
* Partitioning Routines |
684 |
* |
685 |
* Partitions are simply a list of relations. By storing the start |
686 |
* and end models, which maintain the relation information we have |
687 |
* enough information to define a partition. |
688 |
|
689 |
* This code uses a list of Solver Models and attempts to create |
690 |
* partitions of relations. A number of different partitioning |
691 |
* algorithms may be used. |
692 |
* |
693 |
* 1) PartitionBU_1 -- by doing a special ordering of the model nodes |
694 |
* we simply run accumulator over the number of local relations. |
695 |
* We mark of partitions as we pass some threshold value. This |
696 |
* is essentially a stack of models. We continue pushing models |
697 |
* onto the stack on the threshold has been reached, then we |
698 |
* pop the entire thing off the stack and label it as being in |
699 |
* the same partition. |
700 |
* |
701 |
* 2) PartitionTD_1 -- the same algorithm as PartitionBU_1 but we |
702 |
* collect the partitions by working from the end of the list |
703 |
* provided. |
704 |
* |
705 |
********************************************************************* |
706 |
*/ |
707 |
|
708 |
struct Partition { |
709 |
unsigned long start; |
710 |
unsigned long end; |
711 |
unsigned long count; |
712 |
unsigned long index; |
713 |
struct Partition *left; /* Used in the bisect partition */ |
714 |
struct Partition *right; |
715 |
}; |
716 |
|
717 |
struct Partition *CreatePartition(unsigned long start, |
718 |
unsigned long end) |
719 |
{ |
720 |
struct Partition *result; |
721 |
|
722 |
result = (struct Partition *)ascmalloc(sizeof(struct Partition)); |
723 |
assert(result); |
724 |
result->start = start; |
725 |
result->end = end; |
726 |
result->count = 0L; |
727 |
result->index = 0L; |
728 |
result->left = NULL; |
729 |
result->right = NULL; |
730 |
return result; |
731 |
} |
732 |
|
733 |
/* |
734 |
* start and end refer to the start and end indexes of the sublist |
735 |
* of models on the main model list. All models on the list |
736 |
* between and including start and end will be processed. |
737 |
*/ |
738 |
struct gl_list_t *PartitionBU_1(struct gl_list_t *models, |
739 |
unsigned long threshold, |
740 |
unsigned long start, |
741 |
unsigned long end) |
742 |
|
743 |
{ |
744 |
struct SlvModel *model; |
745 |
struct gl_list_t *partitionlist; |
746 |
struct Partition *p; |
747 |
long len; |
748 |
unsigned long c; |
749 |
unsigned long accum, partition; |
750 |
|
751 |
accum = 0; |
752 |
partition = 1; |
753 |
len = end - start + 1; /* just to get an estimate */ |
754 |
|
755 |
/* |
756 |
* Create the partiton list; then create and add the first |
757 |
* partition to the this list. The initial partition is the |
758 |
* size of the entire problem. Successive partitions shrink. |
759 |
*/ |
760 |
partitionlist = gl_create((unsigned long)(len*0.1 + 1)); |
761 |
p = CreatePartition(start,end); |
762 |
gl_append_ptr(partitionlist,(char *)p); |
763 |
|
764 |
for (c=start;c<=end;c++) { |
765 |
model = (struct SlvModel *)gl_fetch(models,c); |
766 |
accum += model->local; |
767 |
model->partition = partition; |
768 |
if (accum >= threshold) { |
769 |
p->count = accum; |
770 |
p->end = c; /* finish up the previous partition */ |
771 |
/* |
772 |
* Set up for next partition. Make sure that we are not |
773 |
* at the end of the list of models. |
774 |
*/ |
775 |
if (c!=end) { |
776 |
p = CreatePartition(c+1,end); /* start the next partition */ |
777 |
gl_append_ptr(partitionlist,(char *)p); |
778 |
partition++; |
779 |
accum = 0; |
780 |
} |
781 |
} |
782 |
} |
783 |
FPRINTF(stderr,"%lu partitions were found\n", |
784 |
gl_length(partitionlist)); |
785 |
return partitionlist; |
786 |
} |
787 |
|
788 |
struct gl_list_t *PartitionTD_1(struct gl_list_t *models, |
789 |
unsigned long threshold, |
790 |
unsigned long start, |
791 |
unsigned long end) |
792 |
{ |
793 |
struct SlvModel *model; |
794 |
struct gl_list_t *partitionlist; |
795 |
struct Partition *p; |
796 |
long len; |
797 |
unsigned long c; |
798 |
unsigned long accum, partition; |
799 |
|
800 |
accum = 0; |
801 |
partition = 1; |
802 |
len = end - start + 1; /* just to get an estimate */ |
803 |
|
804 |
/* |
805 |
* Create the partiton list; then create and add the first |
806 |
* partition to the this list. The initial partition is the |
807 |
* size of the entire problem. Successive partitions shrink. |
808 |
*/ |
809 |
partitionlist = gl_create((unsigned long)(len*0.1 + 1)); |
810 |
p = CreatePartition(start,end); |
811 |
gl_append_ptr(partitionlist,(char *)p); |
812 |
|
813 |
for (c=end;c>=start;c--) { |
814 |
model = (struct SlvModel *)gl_fetch(models,c); |
815 |
accum += model->local; |
816 |
model->partition = partition; |
817 |
if (accum >= threshold) { |
818 |
p->count = accum; |
819 |
p->start = c; /* finish up the previous partition */ |
820 |
/* |
821 |
* Set up for next partition. Make sure that we are not |
822 |
* at the top of the list of models. |
823 |
*/ |
824 |
if (c!=start) { |
825 |
p = CreatePartition(start,c-1); /* start the next partition */ |
826 |
gl_append_ptr(partitionlist,(char *)p); |
827 |
partition++; |
828 |
accum = 0; |
829 |
} |
830 |
} |
831 |
} |
832 |
FPRINTF(stderr,"%lu partitions were found\n", |
833 |
gl_length(partitionlist)); |
834 |
return partitionlist; |
835 |
} |
836 |
|
837 |
struct gl_list_t *Partition_1(struct gl_list_t *models, |
838 |
unsigned long threshold, |
839 |
enum PartitionMethod p_method, |
840 |
unsigned long start, unsigned long end) |
841 |
{ |
842 |
struct gl_list_t *partitionlist = NULL; |
843 |
|
844 |
switch (p_method) { |
845 |
case p_clusterdown: |
846 |
partitionlist = PartitionTD_1(models,threshold,start,end); |
847 |
break; |
848 |
case p_clusterup: |
849 |
default: |
850 |
partitionlist = PartitionBU_1(models,threshold,start,end); |
851 |
break; |
852 |
} |
853 |
return partitionlist; |
854 |
} |
855 |
|
856 |
|
857 |
/* |
858 |
********************************************************************* |
859 |
* BisectPartition |
860 |
* |
861 |
* This code performs a bisection of the model list using the local |
862 |
* local relation counts as the criteria. It essentially |
863 |
* accumulates the count until a cutoff is reached. This forms the |
864 |
* 'left' partition. The rest of the models and their respective |
865 |
* relations form the 'right' partition. |
866 |
* |
867 |
* We then do a bottom up visitation of the partition tree (LRV) |
868 |
* to label it and simultaneously collect the partitions into a |
869 |
* partitionlist. Once this is done all the other partition code is |
870 |
* then applicable. |
871 |
********************************************************************* |
872 |
*/ |
873 |
static |
874 |
void BisectPartition(struct Partition *root, |
875 |
struct gl_list_t *models, |
876 |
unsigned long cutoff) |
877 |
{ |
878 |
struct SlvModel *model; |
879 |
struct Partition *left, *right; |
880 |
unsigned long c,accum = 0; |
881 |
unsigned long threshold; |
882 |
|
883 |
if (!root) { |
884 |
return; |
885 |
} |
886 |
if (root->start==root->end) { |
887 |
return; |
888 |
} |
889 |
threshold = (root->count / 2); |
890 |
if (threshold < cutoff) { |
891 |
return; |
892 |
} |
893 |
|
894 |
for (c=root->start;c<=root->end;c++) { |
895 |
model = (struct SlvModel *)gl_fetch(models,c); |
896 |
accum += model->local; |
897 |
if (accum >= threshold) { |
898 |
root->left = CreatePartition(root->start,c); |
899 |
root->left->count = accum; |
900 |
root->right = CreatePartition(c+1,root->end); |
901 |
root->right->count = MAX(0,(root->count - accum)); |
902 |
BisectPartition(root->left,models,cutoff); /* visit left */ |
903 |
BisectPartition(root->right,models,cutoff); /* visit right */ |
904 |
break; |
905 |
} |
906 |
} |
907 |
} |
908 |
|
909 |
static |
910 |
void LabelPartitions_2(struct Partition *root, |
911 |
struct gl_list_t *partitionlist) |
912 |
{ |
913 |
if (root) { /* LRV -- i.e. postorder */ |
914 |
LabelPartitions_2(root->left,partitionlist); |
915 |
LabelPartitions_2(root->right,partitionlist); |
916 |
gl_append_ptr(partitionlist,(char *)root); |
917 |
root->index = gl_length(partitionlist); |
918 |
} |
919 |
} |
920 |
|
921 |
/* |
922 |
* The partition list for a bisection partition contains |
923 |
* partition of different granularity. It is the leaf partitions |
924 |
* that matter, and these leaves contain the information necessary |
925 |
* to label their models. We do that here. |
926 |
* NOTE: We could possibly be smarter about labelling of models. |
927 |
* so that we dont have to scan the entire model list. I need to |
928 |
* think about this some more. This could almost surely be done |
929 |
* while we are doing the BisectPartition. |
930 |
*/ |
931 |
static |
932 |
int IsLeafPartition(struct Partition *part) |
933 |
{ |
934 |
if ((part->left==NULL) && (part->right==NULL)) { |
935 |
return 1; |
936 |
} else { |
937 |
return 0; |
938 |
} |
939 |
} |
940 |
|
941 |
static |
942 |
void LabelLeafPartitions(struct gl_list_t *partitionlist, |
943 |
struct gl_list_t *models) |
944 |
{ |
945 |
struct Partition *part; |
946 |
struct SlvModel *model; |
947 |
unsigned long len,c,cc; |
948 |
unsigned long partition,start,end; |
949 |
|
950 |
len = gl_length(partitionlist); |
951 |
for (c=1;c<=len;c++) { |
952 |
part = (struct Partition *)gl_fetch(partitionlist,c); |
953 |
if (IsLeafPartition(part)) {/* label the models in the leaves */ |
954 |
partition = part->index; |
955 |
start = part->start; |
956 |
end = part->end; |
957 |
for (cc=start;cc<=end;cc++) { |
958 |
model = (struct SlvModel *)gl_fetch(models,cc); |
959 |
model->partition = partition; |
960 |
} |
961 |
} |
962 |
} |
963 |
} |
964 |
|
965 |
static |
966 |
struct gl_list_t *Partition_2(struct gl_list_t *models, |
967 |
unsigned long cutoff) |
968 |
{ |
969 |
struct Partition *root; |
970 |
struct gl_list_t *partitionlist = NULL; |
971 |
unsigned long len,c; |
972 |
|
973 |
len = gl_length(models); |
974 |
if (!len) { |
975 |
partitionlist = gl_create(1L); |
976 |
return partitionlist; |
977 |
} |
978 |
/* |
979 |
* the length of the partitionlist should be a log function |
980 |
*/ |
981 |
partitionlist = gl_create((0.05*len) + 1); |
982 |
root = CreatePartition(1,len); |
983 |
root->count = CountRelnsInList_Fast(models,1,len); |
984 |
BisectPartition(root,models,cutoff); |
985 |
LabelPartitions_2(root,partitionlist); |
986 |
LabelLeafPartitions(partitionlist,models); |
987 |
FPRINTF(stderr,"\t%lu partitions were found by bisection\n", |
988 |
gl_length(partitionlist)); |
989 |
return partitionlist; |
990 |
} |
991 |
|
992 |
/* |
993 |
* These functions will mark the relations in a list as |
994 |
* being in the given partition. This could be made smarter, |
995 |
* possibly by the use of a master relations list. We also |
996 |
* mark the relation as not being torn. |
997 |
*/ |
998 |
static |
999 |
void MarkRelationList(struct gl_list_t *relations, |
1000 |
unsigned long partition) |
1001 |
{ |
1002 |
struct Instance *relinst; |
1003 |
struct rel_relation *rel; |
1004 |
unsigned long len,c; |
1005 |
|
1006 |
len = gl_length(relations); |
1007 |
if (!len) { |
1008 |
return; |
1009 |
} |
1010 |
|
1011 |
for (c=1;c<=len;c++) { /* Put some sanity checking here FIX */ |
1012 |
relinst = (struct Instance *)gl_fetch(relations,c); |
1013 |
rel = (struct rel_relation *)GetInterfacePtr(relinst); |
1014 |
rel_set_flagbit(rel,REL_PARTITION,(int)partition); |
1015 |
rel_set_flagbit(rel,REL_COUPLING,rel_interfacial(rel)); |
1016 |
/* rel->partition = (int)partition;*/ /* FIX FIX FIX dont deference */ |
1017 |
/* rel->coupling = rel_interfacial(rel);*/ /* FIX FIX */ |
1018 |
} |
1019 |
} |
1020 |
|
1021 |
|
1022 |
static |
1023 |
void MarkRelnPartitions(struct gl_list_t *models) |
1024 |
{ |
1025 |
struct SlvModel *model; |
1026 |
struct gl_list_t *tmp; |
1027 |
unsigned long len,c,cc; |
1028 |
unsigned long nrelsets, partition; |
1029 |
|
1030 |
len = gl_length(models); |
1031 |
if (!len) { |
1032 |
return; |
1033 |
} |
1034 |
for (c=1;c<=len;c++) { |
1035 |
model = (struct SlvModel *)gl_fetch(models,c); |
1036 |
nrelsets = gl_length(model->relations); |
1037 |
for (cc=1;cc<=nrelsets;cc++) { |
1038 |
tmp = (struct gl_list_t *)gl_fetch(model->relations,cc); |
1039 |
MarkRelationList(tmp,model->partition); |
1040 |
} |
1041 |
} |
1042 |
} |
1043 |
|
1044 |
|
1045 |
/* |
1046 |
********************************************************************* |
1047 |
* Coupling Relations |
1048 |
* |
1049 |
* rel_interfacial is an expensive query, so we cache the |
1050 |
* info here. We accept a relation if its signature is less |
1051 |
* than the filter. e.g, if the filter is 1, and the relation |
1052 |
* has a signature of 100, it would be ignored. |
1053 |
********************************************************************* |
1054 |
*/ |
1055 |
static |
1056 |
void MarkCouplingRelations(struct rel_relation **rp, int nrels, |
1057 |
int filter) |
1058 |
{ |
1059 |
struct rel_relation *rel; |
1060 |
int signature; |
1061 |
int i; |
1062 |
|
1063 |
for (i=0;i<nrels;i++) { |
1064 |
rel = rp[i]; |
1065 |
signature = rel_interfacial(rel); |
1066 |
if (signature <= filter) { |
1067 |
rel_set_flagbit(rel,REL_COUPLING,1); |
1068 |
} else { |
1069 |
rel_set_flagbit(rel,REL_COUPLING,0); |
1070 |
} |
1071 |
} |
1072 |
} |
1073 |
|
1074 |
int WriteCouplingRelnsToInterp(Tcl_Interp *interp, |
1075 |
struct rel_relation **rp,int nrels, |
1076 |
int filter) |
1077 |
{ |
1078 |
struct rel_relation *rel; |
1079 |
int i; |
1080 |
char tmp[64]; |
1081 |
|
1082 |
if (!rp) { |
1083 |
Tcl_SetResult(interp, "No relation list given", TCL_STATIC); |
1084 |
return TCL_ERROR; |
1085 |
} |
1086 |
MarkCouplingRelations(rp,nrels,filter); /* mark them first */ |
1087 |
for (i=0;i<nrels;i++) { |
1088 |
rel = rp[i]; |
1089 |
if (rel_coupling(rel)) { |
1090 |
sprintf(tmp,"%d",rel_mindex(rel)); |
1091 |
Tcl_AppendResult(interp," ",tmp," ",(char *)NULL); |
1092 |
} |
1093 |
} |
1094 |
return 0; |
1095 |
} |
1096 |
|
1097 |
|
1098 |
static |
1099 |
void WritePartitions(struct gl_list_t *partitionlist) |
1100 |
{ |
1101 |
struct Partition *part; |
1102 |
unsigned long len,c; |
1103 |
|
1104 |
len = gl_length(partitionlist); |
1105 |
for (c=1;c<=len;c++) { |
1106 |
part = (struct Partition *)gl_fetch(partitionlist,c); |
1107 |
FPRINTF(stderr,"Partition %3lu: %4lu -> %4lu: size = %lu", |
1108 |
part->index, part->start, part->end, part->count); |
1109 |
if (IsLeafPartition(part)) { |
1110 |
FPRINTF(stderr," *** \n"); |
1111 |
} else { |
1112 |
FPRINTF(stderr,"\n"); |
1113 |
} |
1114 |
} |
1115 |
} |
1116 |
|
1117 |
|
1118 |
/* |
1119 |
********************************************************************* |
1120 |
* Tearing Routines |
1121 |
* |
1122 |
* This code implements the labelling of the variables that need to be |
1123 |
* torn. The algorithm is simple: for any given variable, find out how |
1124 |
* many partitions that it exists in. If this count is more than 1, |
1125 |
* it is a candidate variable to be torn. |
1126 |
********************************************************************* |
1127 |
*/ |
1128 |
|
1129 |
/* |
1130 |
* KAA_DEBUG. fetching the struct rel_relation *from a rel_instance NEEDS |
1131 |
* a function and/or macro. |
1132 |
*/ |
1133 |
|
1134 |
/* |
1135 |
* Determine the socalled home partition of the variable. This will |
1136 |
* be the partition of the first relation that it is incident upon. |
1137 |
* The first relation that is not in the home partition means that |
1138 |
* the variable is a tear. Return TRUE if the variable is a tear; |
1139 |
* false otherwise. The possibility of using some heuristics, such |
1140 |
* as working from the end of the relations list back towards the |
1141 |
* front exists, and may be investigated in a late iteration. |
1142 |
* |
1143 |
*/ |
1144 |
|
1145 |
/* |
1146 |
* The var_index is for debugging purposes only. |
1147 |
*/ |
1148 |
static |
1149 |
int IsTearVariable_1(struct Instance *var, int var_sindex) |
1150 |
{ |
1151 |
struct Instance *compiler_reln; |
1152 |
struct rel_relation *rel; |
1153 |
unsigned long nrels, i; |
1154 |
int homepartition; |
1155 |
int tear = 0; |
1156 |
|
1157 |
nrels = RelationsCount(var); |
1158 |
if (nrels <= 1) { /* a singleton var -- never a tear */ |
1159 |
return 0; |
1160 |
} |
1161 |
|
1162 |
compiler_reln = RelationsForAtom(var,1); |
1163 |
rel = (struct rel_relation *)GetInterfacePtr(compiler_reln); /* FIX */ |
1164 |
assert(rel); |
1165 |
homepartition = rel_partition(rel); |
1166 |
|
1167 |
for (i=2;i<=nrels;i++) { |
1168 |
compiler_reln = RelationsForAtom(var,i); |
1169 |
rel = (struct rel_relation *)GetInterfacePtr(compiler_reln); /* FIX */ |
1170 |
if (rel_partition(rel)!=homepartition) { /* we have a tear */ |
1171 |
tear = 1; |
1172 |
return 1; |
1173 |
} |
1174 |
} |
1175 |
|
1176 |
return 0; /* if we are here then it is not a tear */ |
1177 |
} |
1178 |
|
1179 |
static |
1180 |
struct gl_list_t *MarkTearVariables(struct var_variable **vp, int nvars) |
1181 |
{ |
1182 |
struct Instance *var; |
1183 |
struct gl_list_t *tears; |
1184 |
int j; |
1185 |
|
1186 |
if (nvars==0) { |
1187 |
tears = gl_create(1L); |
1188 |
return tears; |
1189 |
} else { |
1190 |
tears = gl_create((unsigned long)(0.05*nvars + 1)); /* FINE TUNE */ |
1191 |
} |
1192 |
|
1193 |
for (j=0;j<nvars;j++) { |
1194 |
if (var_incident(vp[j])) { |
1195 |
var = var_instance(vp[j]); |
1196 |
if (IsTearVariable_1(var,var_sindex(vp[j]))) { |
1197 |
gl_append_ptr(tears,var); |
1198 |
} |
1199 |
} |
1200 |
} |
1201 |
return tears; |
1202 |
} |
1203 |
|
1204 |
|
1205 |
/* |
1206 |
* This function assumes that a REAL_ATOM_INST is synonymous with |
1207 |
* a var !! FIX . KIRKBROKEN |
1208 |
*/ |
1209 |
static |
1210 |
void WriteTearVarsToInterp(Tcl_Interp *interp,struct gl_list_t *tears) |
1211 |
{ |
1212 |
struct Instance *var; |
1213 |
char tmp[64]; |
1214 |
unsigned long len,c; |
1215 |
int index; |
1216 |
|
1217 |
len = gl_length(tears); |
1218 |
for (c=1;c<=len;c++) { |
1219 |
var = (struct Instance *)gl_fetch(tears,c); |
1220 |
index = var_sindex(var); /* FIX */ |
1221 |
sprintf(tmp,"%d ",index); |
1222 |
Tcl_AppendResult(interp,tmp,(char *)NULL); |
1223 |
} |
1224 |
} |
1225 |
|
1226 |
/* |
1227 |
* This is some debugging code. It may cleaned up or better |
1228 |
* yet removed. |
1229 |
*/ |
1230 |
static |
1231 |
void WriteModelData(struct gl_list_t *models) |
1232 |
{ |
1233 |
FILE *fp; |
1234 |
struct SlvModel *model; |
1235 |
unsigned long len,c; |
1236 |
|
1237 |
fp = fopen("modeldata.tmp","w"); |
1238 |
if (!fp) { |
1239 |
return; |
1240 |
} |
1241 |
len = gl_length(models); |
1242 |
for (c=1;c<=len;c++) { |
1243 |
model = (struct SlvModel *)gl_fetch(models,c); |
1244 |
if (!model) { |
1245 |
FPRINTF(stderr,"Corrupted model data found !!\n"); |
1246 |
} |
1247 |
FPRINTF(fp,"%4lu. index %4lu: nrels %4lu: partition %4lu\n", |
1248 |
c, model->index, model->local, model->partition); |
1249 |
} |
1250 |
fclose(fp); |
1251 |
} |
1252 |
|
1253 |
|
1254 |
/* |
1255 |
* Write the model-relation file to a file. This should be |
1256 |
* really be written to the interpreter, and then handled |
1257 |
* from the command line level but I am feeling lazy. |
1258 |
* This code is as ugly as it is, because I am keeping a list |
1259 |
* of list of relation instances associated which each slvmodel, |
1260 |
* in the event that I *really* start to play clustering games. |
1261 |
* In this case collapsing nodes will be moving around lists |
1262 |
* rather than the individual relations which could be a big |
1263 |
* win. In the mean time..... |
1264 |
* |
1265 |
* The format of the file is: |
1266 |
* n_models n_relations |
1267 |
* model_ndx rel_ndx |
1268 |
* model_ndx rel_ndx |
1269 |
* [ .... ] |
1270 |
*/ |
1271 |
static |
1272 |
int WriteModelRelnsToFile(FILE *fp, |
1273 |
struct gl_list_t *models, |
1274 |
int n_relations) |
1275 |
{ |
1276 |
unsigned long len1,len2,len3; |
1277 |
unsigned long i,j,k; |
1278 |
struct SlvModel *model; |
1279 |
struct Instance *relinst; |
1280 |
struct gl_list_t *list; |
1281 |
struct rel_relation *rel; |
1282 |
|
1283 |
len1 = gl_length(models); |
1284 |
FPRINTF(fp,"%d %d\n",(int)len1,n_relations); |
1285 |
|
1286 |
for (i=1;i<=len1;i++) { |
1287 |
model = (struct SlvModel *)gl_fetch(models,i); |
1288 |
len2 = gl_length(model->relations); |
1289 |
for (j=1;j<=len2;j++) { |
1290 |
list = (struct gl_list_t *)gl_fetch(model->relations,j); |
1291 |
len3 = gl_length(list); |
1292 |
for (k=1;k<=len3;k++) { |
1293 |
relinst = (struct Instance *)gl_fetch(list,k); |
1294 |
rel = (struct rel_relation *)GetInterfacePtr(relinst); |
1295 |
FPRINTF(fp,"%d %d\n",(int)model->index,rel_mindex(rel)); |
1296 |
} |
1297 |
} |
1298 |
} |
1299 |
} |
1300 |
|
1301 |
|
1302 |
/* |
1303 |
********************************************************************* |
1304 |
* Dag Creation Routines |
1305 |
* |
1306 |
* This function builds a dag of solver models based on the list |
1307 |
* of model and array instances given. It also builds a list of relations |
1308 |
* for each solver model and appends it. The linking of the models |
1309 |
* is done elsewhere. This routine assumes that the instance list is |
1310 |
* unique i.e, a dag or a tree with no aliases. If this is not the |
1311 |
* case then the relations count will not be correct, but otherwise |
1312 |
* the code will work fine. |
1313 |
* |
1314 |
* NOTE: We could be more efficient here by using arrays of SlvModelsf |
1315 |
* rather than mallocing a node for each. That will be left for another |
1316 |
* iteration of the code. |
1317 |
********************************************************************* |
1318 |
*/ |
1319 |
struct gl_list_t *Build_SlvModels(struct gl_list_t *inst_list) |
1320 |
{ |
1321 |
struct Instance *inst; |
1322 |
struct gl_list_t *newlist, *tmp; |
1323 |
struct SlvModel *model; |
1324 |
unsigned long len,c; |
1325 |
unsigned long total = 0; |
1326 |
|
1327 |
assert(inst_list); |
1328 |
len = gl_length(inst_list); |
1329 |
newlist = gl_create(len); |
1330 |
|
1331 |
for (c=1;c<=len;c++) { |
1332 |
inst = (struct Instance *)gl_fetch(inst_list,c); |
1333 |
model = CreateSlvModel(); /* create a node */ |
1334 |
model->index = c; |
1335 |
model->instance = inst; |
1336 |
tmp = gl_create(AVG_RELATIONS); |
1337 |
CollectLocalRelations(inst,tmp); |
1338 |
model->local = gl_length(tmp); /* set up local count */ |
1339 |
total += model->local; /* debugging totalizer */ |
1340 |
gl_append_ptr(model->relations,(char *)tmp); |
1341 |
gl_append_ptr(newlist,(char *)model); /* add node to list */ |
1342 |
} |
1343 |
FPRINTF(stderr,"Found %lu relations in Build_SlvModels\n",total); |
1344 |
return newlist; |
1345 |
} |
1346 |
|
1347 |
|
1348 |
/* |
1349 |
* This function attempts to wire up the list of solver models |
1350 |
* based on the original list of models. The code here is based |
1351 |
* on the wire up code that may be found in instance.c. The only |
1352 |
* trick here is that we need to remove aliasing. A model may have |
1353 |
* more than 1 parent, (i.e. it has an alias). |
1354 |
* We build a replica of the instance tree. Removal of aliasing |
1355 |
* is done somewhere else. |
1356 |
*/ |
1357 |
|
1358 |
static |
1359 |
void LinkSlvModels(struct gl_list_t *inst_list, |
1360 |
struct gl_list_t *newlist) |
1361 |
{ |
1362 |
struct Instance *inst, *child; |
1363 |
struct SlvModel *model, *modchild; |
1364 |
unsigned long len,c,cc; |
1365 |
unsigned long nch, copynum, index; |
1366 |
|
1367 |
len = gl_length(inst_list); |
1368 |
for (c=1;c<=len;c++) { |
1369 |
inst = (struct Instance *)gl_fetch(inst_list,c); |
1370 |
model = (struct SlvModel *)gl_fetch(newlist,c); |
1371 |
nch = NumberChildren(inst); |
1372 |
for (cc=1;cc<=nch;cc++) { |
1373 |
child = InstanceChild(inst,cc); |
1374 |
index = GetTmpNum(child); |
1375 |
if (index==0) { /* we did not label these */ |
1376 |
continue; |
1377 |
} |
1378 |
/* |
1379 |
* Link parents and children. |
1380 |
*/ |
1381 |
modchild = (struct SlvModel *)gl_fetch(newlist,index); |
1382 |
gl_append_ptr(modchild->parents,(char *)model); |
1383 |
gl_append_ptr(model->children,(char *)modchild); /* add child */ |
1384 |
} |
1385 |
} |
1386 |
} |
1387 |
|
1388 |
static |
1389 |
struct gl_list_t *BuildDag(struct gl_list_t *inst_list) |
1390 |
{ |
1391 |
struct gl_list_t *models; |
1392 |
|
1393 |
models = Build_SlvModels(inst_list); |
1394 |
LinkSlvModels(inst_list,models); |
1395 |
return models; |
1396 |
} |
1397 |
|
1398 |
/* |
1399 |
********************************************************************* |
1400 |
* BuildInstanceList |
1401 |
* |
1402 |
* These functions visit the instance tree from the given instance |
1403 |
* and collect all instances that are models or arrays of models. |
1404 |
* We first visit the tree to count the data and to index the nodes, |
1405 |
* by setting their copynums. We then make a second appending the data |
1406 |
* to a list which is then returned. |
1407 |
********************************************************************* |
1408 |
*/ |
1409 |
extern void ResetNodes(struct Instance *); /* see compiler/instance.c */ |
1410 |
|
1411 |
struct CountNodeData { |
1412 |
unsigned long count; |
1413 |
}; |
1414 |
|
1415 |
static |
1416 |
void CountModelNodes(struct Instance *inst,void *data) |
1417 |
{ |
1418 |
struct CountNodeData *tmp = (struct CountNodeData *)data; |
1419 |
unsigned long count; |
1420 |
|
1421 |
if (!inst) { |
1422 |
return; |
1423 |
} |
1424 |
count = tmp->count; |
1425 |
switch (InstanceKind(inst)) { |
1426 |
case MODEL_INST: |
1427 |
count++; |
1428 |
SetTmpNum(inst,count); |
1429 |
break; |
1430 |
case ARRAY_ENUM_INST: |
1431 |
case ARRAY_INT_INST: |
1432 |
if (!BrowIsAtomicArray(inst) && !BrowIsRelation(inst)) { |
1433 |
count++; |
1434 |
SetTmpNum(inst,count); |
1435 |
} |
1436 |
break; |
1437 |
default: |
1438 |
break; |
1439 |
} |
1440 |
tmp->count = count; /* update the count */ |
1441 |
} |
1442 |
|
1443 |
static |
1444 |
void CollectModelNodes(struct Instance *inst,void *data) |
1445 |
{ |
1446 |
struct gl_list_t *list = (struct gl_list_t *)data; |
1447 |
|
1448 |
if (!inst) { |
1449 |
return; |
1450 |
} |
1451 |
if (GetTmpNum(inst)) { |
1452 |
gl_append_ptr(list,inst); |
1453 |
} |
1454 |
} |
1455 |
|
1456 |
static |
1457 |
struct gl_list_t *BuildInstanceList(struct Instance *inst, |
1458 |
enum DagVisitSequence visit) |
1459 |
{ |
1460 |
struct gl_list_t *list; |
1461 |
struct CountNodeData data; |
1462 |
|
1463 |
if (!inst) { |
1464 |
list = gl_create(1); |
1465 |
return list; |
1466 |
} |
1467 |
|
1468 |
switch (visit) { |
1469 |
case v_df_td: |
1470 |
ZeroTmpNums(inst,0); |
1471 |
data.count = 0; |
1472 |
VisitInstanceTreeTwo(inst,CountModelNodes, |
1473 |
0,0,(void *)&data); |
1474 |
list = gl_create(data.count); |
1475 |
VisitInstanceTreeTwo(inst,CollectModelNodes, |
1476 |
0,0,(void *)list); |
1477 |
break; |
1478 |
default: |
1479 |
FPRINTF(stderr,"This visitation sequence is not yet supported\n"); |
1480 |
/* fall through */ |
1481 |
case v_df_bu: |
1482 |
ZeroTmpNums(inst,1); |
1483 |
data.count = 0; |
1484 |
VisitInstanceTreeTwo(inst,CountModelNodes, |
1485 |
1,0,(void *)&data); |
1486 |
list = gl_create(data.count); |
1487 |
VisitInstanceTreeTwo(inst,CollectModelNodes, |
1488 |
1,0,(void *)list); |
1489 |
break; |
1490 |
} |
1491 |
|
1492 |
g_dagdata.visit = visit; |
1493 |
return list; |
1494 |
} |
1495 |
|
1496 |
|
1497 |
/* |
1498 |
********************************************************************* |
1499 |
* Exported Functions |
1500 |
* |
1501 |
* These functions are the entry points to the code in this file. |
1502 |
* The supported functions at this moment are: |
1503 |
* 0) PrepareDag |
1504 |
* 1) WriteDagToInterp |
1505 |
* 2) WriteRelnCountToInterp |
1506 |
* 3) WriteTearsToInterp |
1507 |
* 4) ShutDownDag |
1508 |
********************************************************************* |
1509 |
*/ |
1510 |
|
1511 |
|
1512 |
|
1513 |
/* |
1514 |
* We dont want to write out information for leaf model nodes; |
1515 |
* i.e, a model that has only atoms, or relations or arrays of |
1516 |
* atoms, or arrays of relations. So we start running down the |
1517 |
* child list until we find something useful, then stop. |
1518 |
* We prepare the formatting information, and then do the |
1519 |
* processing from start to nch. |
1520 |
*/ |
1521 |
static |
1522 |
void WriteInstNodeToInterp(Tcl_Interp *interp,struct Instance *inst) |
1523 |
{ |
1524 |
struct Instance *child; |
1525 |
char tmp[64]; |
1526 |
unsigned long index,nch,c; |
1527 |
unsigned long start = 0; |
1528 |
|
1529 |
nch = NumberChildren(inst); |
1530 |
for (c=1;c<=nch;c++) { |
1531 |
child = InstanceChild(inst,c); |
1532 |
index = GetTmpNum(child); |
1533 |
if (index) { |
1534 |
start = c; |
1535 |
break; |
1536 |
} |
1537 |
} |
1538 |
if (!start) { |
1539 |
return; /* => this was a leaf node */ |
1540 |
} |
1541 |
|
1542 |
sprintf(tmp,"%lu",GetTmpNum(inst)); |
1543 |
Tcl_AppendResult(interp," {",tmp," ",(char *)NULL); |
1544 |
for (c=start;c<=nch;c++) { |
1545 |
child = InstanceChild(inst,c); |
1546 |
index = GetTmpNum(child); |
1547 |
if (index) { |
1548 |
sprintf(tmp,"%lu",GetTmpNum(child)); |
1549 |
Tcl_AppendResult(interp,tmp," ",(char *)NULL); |
1550 |
} |
1551 |
} |
1552 |
Tcl_AppendResult(interp,"} ",(char *)NULL); |
1553 |
} |
1554 |
|
1555 |
static |
1556 |
void WriteInstListToInterp(Tcl_Interp *interp, struct gl_list_t *list) |
1557 |
{ |
1558 |
struct Instance *tmp_inst; |
1559 |
unsigned long len,c; |
1560 |
|
1561 |
len = gl_length(list); |
1562 |
for (c=1;c<=len;c++) { |
1563 |
tmp_inst = (struct Instance *)gl_fetch(list,c); |
1564 |
WriteInstNodeToInterp(interp,tmp_inst); |
1565 |
} |
1566 |
} |
1567 |
|
1568 |
int Asc_DagWriteInstDagCmd(ClientData cdata, Tcl_Interp *interp, |
1569 |
int argc, CONST84 char *argv[]) |
1570 |
{ |
1571 |
struct Instance *i; |
1572 |
struct gl_list_t *list; |
1573 |
if ( argc < 2 ) { |
1574 |
Tcl_SetResult(interp, |
1575 |
"wrong # args: Usage __dag_write_instdag ?current?search", |
1576 |
TCL_STATIC); |
1577 |
return TCL_ERROR; |
1578 |
} |
1579 |
if (strncmp(argv[1],"current",3)==0) { |
1580 |
i = g_curinst; |
1581 |
} else { |
1582 |
i = g_search_inst; |
1583 |
} |
1584 |
if (!i) { |
1585 |
Tcl_SetResult(interp, "requested instance is NULL", TCL_STATIC); |
1586 |
return TCL_ERROR; |
1587 |
} |
1588 |
list = g_dagdata.instances; |
1589 |
if (!list) { |
1590 |
Tcl_SetResult(interp, "dag data has not been prepared", TCL_STATIC); |
1591 |
return TCL_ERROR; |
1592 |
} |
1593 |
WriteInstListToInterp(interp,list); |
1594 |
return TCL_OK; |
1595 |
} |
1596 |
|
1597 |
|
1598 |
/* |
1599 |
********************************************************************* |
1600 |
* WriteModel Dag |
1601 |
* |
1602 |
* These functions accept a list of models, and write out the |
1603 |
* connectivity information requied to reconstruct the dag associated |
1604 |
* with the list of models. It is very similar to the above functions |
1605 |
* but runs off a model list rather than an instance list. Once the |
1606 |
* model list has been built it should be much faster than the instance |
1607 |
* version as there is much less stuff to skip over. |
1608 |
********************************************************************* |
1609 |
*/ |
1610 |
static |
1611 |
void WriteModelNodeToInterp(Tcl_Interp *interp,struct SlvModel *model) |
1612 |
{ |
1613 |
struct SlvModel *child; |
1614 |
char tmp[64]; |
1615 |
unsigned long nch,c; |
1616 |
|
1617 |
nch = gl_length(model->children); |
1618 |
if (!nch) { |
1619 |
return; |
1620 |
} |
1621 |
|
1622 |
sprintf(tmp,"%lu",model->index); |
1623 |
Tcl_AppendResult(interp," {",tmp," ",(char *)NULL); |
1624 |
for (c=1;c<=nch;c++) { |
1625 |
child = (struct SlvModel *)gl_fetch(model->children,c); |
1626 |
sprintf(tmp,"%lu",child->index); |
1627 |
Tcl_AppendResult(interp,tmp," ",(char *)NULL); |
1628 |
} |
1629 |
Tcl_AppendResult(interp,"} ",(char *)NULL); |
1630 |
} |
1631 |
|
1632 |
static |
1633 |
void WriteModelDagToInterp(Tcl_Interp *interp, struct gl_list_t *list) |
1634 |
{ |
1635 |
struct SlvModel *model; |
1636 |
unsigned long len,c; |
1637 |
|
1638 |
len = gl_length(list); |
1639 |
for (c=1;c<=len;c++) { |
1640 |
model = (struct SlvModel *)gl_fetch(list,c); |
1641 |
WriteModelNodeToInterp(interp,model); |
1642 |
} |
1643 |
} |
1644 |
|
1645 |
int Asc_DagWriteModelDagCmd(ClientData cdata, Tcl_Interp *interp, |
1646 |
int argc, CONST84 char *argv[]) |
1647 |
{ |
1648 |
struct Instance *i; |
1649 |
struct gl_list_t *list; |
1650 |
struct gl_list_t *models; |
1651 |
|
1652 |
if ( argc < 2 ) { |
1653 |
Tcl_SetResult(interp, |
1654 |
"wrong # args : Usage __dag_write_modeldag ?current?search", |
1655 |
TCL_STATIC); |
1656 |
return TCL_ERROR; |
1657 |
} |
1658 |
if (strncmp(argv[1],"current",3)==0) { |
1659 |
i = g_curinst; |
1660 |
} else { |
1661 |
i = g_search_inst; |
1662 |
} |
1663 |
if (!i) { |
1664 |
Tcl_SetResult(interp, "requested instance is NULL", TCL_STATIC); |
1665 |
return TCL_ERROR; |
1666 |
} |
1667 |
list = g_dagdata.instances; |
1668 |
if (!list) { |
1669 |
Tcl_SetResult(interp, "dag data has not been prepared", TCL_STATIC); |
1670 |
return TCL_ERROR; |
1671 |
} |
1672 |
models = g_dagdata.models; |
1673 |
if (!models) { |
1674 |
Tcl_SetResult(interp, "model data has not been prepared", TCL_STATIC); |
1675 |
return TCL_ERROR; |
1676 |
} |
1677 |
|
1678 |
WriteModelDagToInterp(interp,models); |
1679 |
return TCL_OK; |
1680 |
} |
1681 |
|
1682 |
|
1683 |
/* |
1684 |
* In v_*_td visitation of the tree, the root model will the |
1685 |
* first model on the list. In a v_*_bu visitation, it will be |
1686 |
* the last. |
1687 |
*/ |
1688 |
static |
1689 |
struct SlvModel *GetDagRoot(struct gl_list_t *models, |
1690 |
enum DagVisitSequence visit) |
1691 |
{ |
1692 |
struct SlvModel *root; |
1693 |
unsigned long len; |
1694 |
|
1695 |
len = gl_length(models); |
1696 |
assert(len); |
1697 |
switch (visit) { /* root is first on the list */ |
1698 |
case v_df_td: |
1699 |
case v_bf_td: |
1700 |
root = (struct SlvModel *)gl_fetch(models,1); |
1701 |
break; |
1702 |
case v_df_bu: |
1703 |
case v_bf_bu: |
1704 |
root = (struct SlvModel *)gl_fetch(models,len); |
1705 |
break; |
1706 |
default: |
1707 |
FPRINTF(stderr,"Unknown visitation sequence\n"); |
1708 |
root = NULL; |
1709 |
break; |
1710 |
} |
1711 |
return root; |
1712 |
} |
1713 |
|
1714 |
|
1715 |
int DagPartition(Tcl_Interp *interp,unsigned long threshold, |
1716 |
int method) |
1717 |
{ |
1718 |
struct SlvModel *root; |
1719 |
struct gl_list_t *list; |
1720 |
struct gl_list_t *models; |
1721 |
struct gl_list_t *partitionlist; |
1722 |
struct gl_list_t *tears; |
1723 |
slv_system_t sys; |
1724 |
struct var_variable **vp; |
1725 |
unsigned long len; |
1726 |
|
1727 |
/* |
1728 |
* Check all of our data. If stuff checks out ok, update |
1729 |
* the g_dagdata structure. |
1730 |
*/ |
1731 |
list = g_dagdata.instances; |
1732 |
if (!list) { |
1733 |
Tcl_SetResult(interp, "dag data not prepared", TCL_STATIC); |
1734 |
return TCL_ERROR; |
1735 |
} |
1736 |
|
1737 |
models = g_dagdata.models; |
1738 |
if (!models) { |
1739 |
Tcl_SetResult(interp, "dag model not prepared", TCL_STATIC); |
1740 |
return TCL_ERROR; |
1741 |
} |
1742 |
|
1743 |
sys = g_solvsys_cur; /* this might be made more general */ |
1744 |
if (!sys) { |
1745 |
Tcl_SetResult(interp, "solve system does not exist", TCL_STATIC); |
1746 |
return TCL_ERROR; |
1747 |
} |
1748 |
|
1749 |
if (threshold < 100) { |
1750 |
g_dagdata.threshold = 100; |
1751 |
} else { |
1752 |
g_dagdata.threshold = threshold; |
1753 |
} |
1754 |
|
1755 |
switch (method) { |
1756 |
case 1: |
1757 |
/* |
1758 |
* Pre process |
1759 |
*/ |
1760 |
len = gl_length(list); |
1761 |
root = GetDagRoot(models,g_dagdata.visit); |
1762 |
assert(root); |
1763 |
ReorientTree(root); |
1764 |
ResetModelTree(models); |
1765 |
IndexTree(root,g_dagdata.visit); |
1766 |
PostIndexingFixup(root,models); |
1767 |
/* |
1768 |
* Do the partitioning. This also labels each model as to which |
1769 |
* partition that it sits in. |
1770 |
*/ |
1771 |
partitionlist = Partition_1(models, g_dagdata.threshold, |
1772 |
p_clusterup, 1,len); |
1773 |
/* |
1774 |
* Post process. |
1775 |
*/ |
1776 |
MarkRelnPartitions(models); |
1777 |
tears = MarkTearVariables(slv_get_master_var_list(sys), |
1778 |
slv_get_num_master_vars(sys)); |
1779 |
break; |
1780 |
case 2: |
1781 |
/* |
1782 |
* Pre process |
1783 |
*/ |
1784 |
len = gl_length(list); |
1785 |
root = GetDagRoot(models,g_dagdata.visit); |
1786 |
assert(root); |
1787 |
ReorientTree(root); |
1788 |
ResetModelTree(models); |
1789 |
IndexTree(root,g_dagdata.visit); |
1790 |
PostIndexingFixup(root,models); |
1791 |
/* |
1792 |
* Do the partitioning. This also labels each model as to which |
1793 |
* partition that it sits in. |
1794 |
*/ |
1795 |
partitionlist = Partition_2(models,threshold); |
1796 |
/* |
1797 |
* Post process. |
1798 |
*/ |
1799 |
MarkRelnPartitions(models); |
1800 |
tears = MarkTearVariables(slv_get_master_var_list(sys), |
1801 |
slv_get_num_master_vars(sys)); |
1802 |
break; |
1803 |
default: |
1804 |
Tcl_SetResult(interp, "this method not yet supported", TCL_STATIC); |
1805 |
return TCL_ERROR; |
1806 |
} |
1807 |
|
1808 |
/* |
1809 |
* Do some data reporting, and set up for the next call. |
1810 |
*/ |
1811 |
WritePartitions(partitionlist); |
1812 |
WriteTearVarsToInterp(interp,tears); |
1813 |
WriteModelData(models); |
1814 |
if (g_dagdata.tears) { |
1815 |
gl_destroy(g_dagdata.tears); |
1816 |
g_dagdata.tears = tears; |
1817 |
} |
1818 |
if (g_dagdata.partitions) { |
1819 |
gl_free_and_destroy(g_dagdata.partitions); /* destroy the data */ |
1820 |
g_dagdata.partitions = partitionlist; |
1821 |
} |
1822 |
|
1823 |
return 0; |
1824 |
} |
1825 |
|
1826 |
/* |
1827 |
* This is the sole entry point for all the partitioning algorithms. |
1828 |
* method controls which partitioning algorithm will be used. |
1829 |
* threshold means different things for different algorithms, but |
1830 |
* in general means the cutoff size for clusters. |
1831 |
*/ |
1832 |
int Asc_DagPartitionCmd(ClientData cdata, Tcl_Interp *interp, |
1833 |
int argc, CONST84 char *argv[]) |
1834 |
{ |
1835 |
unsigned long threshold; |
1836 |
int method; |
1837 |
int result; |
1838 |
|
1839 |
if ( argc != 3 ) { |
1840 |
Tcl_SetResult(interp, |
1841 |
"wrong # args : Usage __dag_partition method threshold", |
1842 |
TCL_STATIC); |
1843 |
return TCL_ERROR; |
1844 |
} |
1845 |
method = atoi(argv[1]); |
1846 |
threshold = atol(argv[2]); |
1847 |
result = DagPartition(interp,threshold,method); |
1848 |
if (result) { |
1849 |
return TCL_ERROR; |
1850 |
} |
1851 |
} |
1852 |
|
1853 |
|
1854 |
/* |
1855 |
* THIS IS INCOMPLETE |
1856 |
* I need to fiqure out a way to avoid calling ParentsName |
1857 |
* for every model in the graph, as ParentsName requires a |
1858 |
* linear search. In fact it is perhaps much easier to do |
1859 |
* this off the instance list, rather than off the model list. |
1860 |
* THIS IS INCOMPLETE. |
1861 |
*/ |
1862 |
|
1863 |
static |
1864 |
void DagWriteNamesToInterp(Tcl_Interp *interp,struct gl_list_t *models) |
1865 |
{ |
1866 |
struct SlvModel *model; |
1867 |
unsigned long len,c; |
1868 |
|
1869 |
return; |
1870 |
} |
1871 |
|
1872 |
/* THIS IS INCOMPLETE */ |
1873 |
int DagWriteNamesCmd(ClientData cdata, Tcl_Interp *interp, |
1874 |
int argc, CONST84 char *argv[]) |
1875 |
{ |
1876 |
if ( argc != 1 ) { |
1877 |
Tcl_SetResult(interp, "wrong # args : Usage __dag_writenames", TCL_STATIC); |
1878 |
return TCL_ERROR; |
1879 |
} |
1880 |
if (g_dagdata.models==NULL) { |
1881 |
Tcl_SetResult(interp, "model dag data not prepared", TCL_STATIC); |
1882 |
return TCL_ERROR; |
1883 |
} |
1884 |
DagWriteNamesToInterp(interp,g_dagdata.models); |
1885 |
return TCL_OK; |
1886 |
} |
1887 |
|
1888 |
|
1889 |
int Asc_DagCouplingRelnsCmd(ClientData cdata, Tcl_Interp *interp, |
1890 |
int argc, CONST84 char *argv[]) |
1891 |
{ |
1892 |
slv_system_t sys; |
1893 |
int result; |
1894 |
int filter; |
1895 |
|
1896 |
if ( argc != 3 ) { |
1897 |
Tcl_SetResult(interp, |
1898 |
"wrong # args:" |
1899 |
" Usage __dag_coupling_relns ?current?search filter", |
1900 |
TCL_STATIC); |
1901 |
return TCL_ERROR; |
1902 |
} |
1903 |
sys = g_solvsys_cur; /* this might be made more general */ |
1904 |
if (!sys) { |
1905 |
Tcl_SetResult(interp, "solve system does not exist", TCL_STATIC); |
1906 |
return TCL_ERROR; |
1907 |
} |
1908 |
filter = atoi(argv[2]); |
1909 |
result = WriteCouplingRelnsToInterp(interp,slv_get_master_rel_list(sys), |
1910 |
slv_get_num_master_rels(sys), |
1911 |
filter); |
1912 |
if (result) { |
1913 |
return TCL_ERROR; |
1914 |
} |
1915 |
return TCL_OK; |
1916 |
} |
1917 |
|
1918 |
|
1919 |
int Asc_DagModelRelnsCmd(ClientData cdata, Tcl_Interp *interp, |
1920 |
int argc, CONST84 char *argv[]) |
1921 |
{ |
1922 |
FILE *fp = NULL; |
1923 |
slv_system_t sys; |
1924 |
char *file; |
1925 |
|
1926 |
if ( argc != 3 ) { |
1927 |
Tcl_SetResult(interp, |
1928 |
"wrong # args: Usage __dag_model_relns ?current?search file", |
1929 |
TCL_STATIC); |
1930 |
return TCL_ERROR; |
1931 |
} |
1932 |
if (!g_dagdata.models) { |
1933 |
Tcl_SetResult(interp, "model data has not been prepared", TCL_STATIC); |
1934 |
return TCL_ERROR; |
1935 |
} |
1936 |
sys = g_solvsys_cur; /* this might be made more general */ |
1937 |
if (!sys) { |
1938 |
Tcl_SetResult(interp, "solve system does not exist", TCL_STATIC); |
1939 |
return TCL_ERROR; |
1940 |
} |
1941 |
|
1942 |
fp = fopen(argv[2],"w"); |
1943 |
if (!fp) { |
1944 |
Tcl_SetResult(interp, "unable to open file", TCL_STATIC); |
1945 |
return TCL_ERROR; |
1946 |
} |
1947 |
WriteModelRelnsToFile(fp,g_dagdata.models, |
1948 |
slv_get_num_master_rels(sys)); |
1949 |
if (fp) { |
1950 |
fclose(fp); |
1951 |
} |
1952 |
return TCL_OK; |
1953 |
} |
1954 |
|
1955 |
|
1956 |
void DagWriteLocalRelns(Tcl_Interp *interp, struct gl_list_t *list) |
1957 |
{ |
1958 |
char tmp[64]; |
1959 |
unsigned long len,c; |
1960 |
unsigned long local; |
1961 |
|
1962 |
len = gl_length(list); |
1963 |
for (c=1;c<=len;c++) { |
1964 |
local = (unsigned long)gl_fetch(list,c); |
1965 |
sprintf(tmp,"%lu",local); |
1966 |
Tcl_AppendResult(interp,tmp," ",(char *)NULL); |
1967 |
} |
1968 |
} |
1969 |
|
1970 |
int Asc_DagCountRelnsCmd(ClientData cdata, Tcl_Interp *interp, |
1971 |
int argc, CONST84 char *argv[]) |
1972 |
{ |
1973 |
struct gl_list_t *list; |
1974 |
|
1975 |
if ( argc < 2 ) { |
1976 |
Tcl_SetResult(interp, |
1977 |
"wrong # args : Usage __dag_countrelns ?current?search", |
1978 |
TCL_STATIC); |
1979 |
return TCL_ERROR; |
1980 |
} |
1981 |
if (g_dagdata.instances==NULL) { |
1982 |
Tcl_SetResult(interp, "dag data not prepared", TCL_STATIC); |
1983 |
return TCL_ERROR; |
1984 |
} |
1985 |
list = CountLocalRelations(g_dagdata.instances); |
1986 |
DagWriteLocalRelns(interp,list); |
1987 |
gl_destroy(list); /* we could possibly save it; but... */ |
1988 |
return TCL_OK; |
1989 |
} |
1990 |
|
1991 |
|
1992 |
/* |
1993 |
* This function assumes that the instance list has been built |
1994 |
* already and safely cached away in the g_dagdata structure. |
1995 |
* It will build the dag model list and also stash it away. |
1996 |
* It will not destroy an existing model list. It will also |
1997 |
* use whatever vistitation sequence that the instance list was |
1998 |
* built from. |
1999 |
*/ |
2000 |
int Asc_DagBuildDagCmd(ClientData cdata, Tcl_Interp *interp, |
2001 |
int argc, CONST84 char *argv[]) |
2002 |
{ |
2003 |
struct Instance *i; |
2004 |
struct gl_list_t *list; |
2005 |
struct gl_list_t *models; |
2006 |
|
2007 |
if ( argc < 2 ) { |
2008 |
Tcl_SetResult(interp, |
2009 |
"wrong # args : Usage __dag_build_modeldag ?current?search", |
2010 |
TCL_STATIC); |
2011 |
return TCL_ERROR; |
2012 |
} |
2013 |
if (strncmp(argv[1],"current",3)==0) { |
2014 |
i = g_curinst; |
2015 |
} else { |
2016 |
i = g_search_inst; |
2017 |
} |
2018 |
if (!i) { |
2019 |
Tcl_SetResult(interp, "requested instance is NULL", TCL_STATIC); |
2020 |
return TCL_ERROR; |
2021 |
} |
2022 |
list = g_dagdata.instances; |
2023 |
if (!list) { |
2024 |
Tcl_SetResult(interp, "dag data has not been prepared", TCL_STATIC); |
2025 |
return TCL_ERROR; |
2026 |
} |
2027 |
|
2028 |
models = g_dagdata.models; |
2029 |
if (!models) { /* Need to build the model list */ |
2030 |
models = BuildDag(list); |
2031 |
g_dagdata.models = models; |
2032 |
} |
2033 |
return TCL_OK; |
2034 |
} |
2035 |
|
2036 |
int Asc_DagPrepareCmd(ClientData cdata, Tcl_Interp *interp, |
2037 |
int argc, CONST84 char *argv[]) |
2038 |
{ |
2039 |
struct Instance *i; |
2040 |
enum DagVisitSequence visitseq; |
2041 |
if ( argc != 3 ) { |
2042 |
Tcl_AppendResult(interp,"wrong # args : ", |
2043 |
"Usage __dag_prepare ?current?search? ", |
2044 |
"visit_sequence",(char *)NULL); |
2045 |
return TCL_ERROR; |
2046 |
} |
2047 |
|
2048 |
if (strncmp(argv[1],"current",3)==0) { |
2049 |
i = g_curinst; |
2050 |
} else { |
2051 |
i = g_search_inst; |
2052 |
} |
2053 |
if (!i) { |
2054 |
Tcl_SetResult(interp, "requested instance is NULL", TCL_STATIC); |
2055 |
return TCL_ERROR; |
2056 |
} |
2057 |
visitseq = (enum DagVisitSequence)atoi(argv[2]); |
2058 |
ResetDagData(); |
2059 |
g_dagdata.instances = BuildInstanceList(i,visitseq); |
2060 |
g_dagdata.visit = visitseq; |
2061 |
return TCL_OK; |
2062 |
} |
2063 |
|
2064 |
/* |
2065 |
* Registered as __dag_shutdown |
2066 |
*/ |
2067 |
int Asc_DagShutdownCmd(ClientData cdata, Tcl_Interp *interp, |
2068 |
int argc, CONST84 char *argv[]) |
2069 |
{ |
2070 |
DestroyDagData(); /* Write Function */ |
2071 |
ResetDagData(); |
2072 |
return TCL_OK; |
2073 |
} |
2074 |
|