| 1 |
DOUBLE PRECISION FUNCTION D1MACH (IDUM) |
| 2 |
INTEGER IDUM |
| 3 |
C |
| 4 |
C*********************************************************************** |
| 5 |
C |
| 6 |
C SDASSL routines |
| 7 |
C by Linda Petzold, Andreas Kroener, Wolfgang Marquardt |
| 8 |
C Created: 15/03/83 |
| 9 |
C Version: 1.1 Rev: 1989/12/11 |
| 10 |
C Date last modified: 1994/09/02 |
| 11 |
C |
| 12 |
C This file is part of the SDASSL differential/algebraic system solver. |
| 13 |
C |
| 14 |
C Copyright (C) 1983, 1989, 1994 Linda Petzold, Andreas Kroener, |
| 15 |
C Wolfgang Marquardt |
| 16 |
C |
| 17 |
C The SDASSL differential/algebraic system solver is free software; |
| 18 |
C you can redistribute it and/or modify it under the terms of the GNU |
| 19 |
C General Public License as published by the Free Software Foundation; |
| 20 |
C either version 2 of the License, or (at your option) any later version. |
| 21 |
C |
| 22 |
C The SDASSL system solver is distributed in hope that it will be |
| 23 |
C useful, but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 24 |
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 25 |
C General Public License for more details. |
| 26 |
C |
| 27 |
C You should have received a copy of the GNU General Public License along |
| 28 |
C with the program; if not, write to the Free Software Foundation, Inc., |
| 29 |
C 675 Mass Ave, Cambridge, MA 02139 USA. Check the file named COPYING. |
| 30 |
C |
| 31 |
C*********************************************************************** |
| 32 |
C |
| 33 |
C----------------------------------------------------------------------- |
| 34 |
C THIS ROUTINE COMPUTES THE UNIT ROUNDOFF OF THE MACHINE IN DOUBLE |
| 35 |
C PRECISION. THIS IS DEFINED AS THE SMALLEST POSITIVE MACHINE NUMBER |
| 36 |
C U SUCH THAT 1.0D0 + U .NE. 1.0D0 (IN DOUBLE PRECISION). |
| 37 |
C----------------------------------------------------------------------- |
| 38 |
DOUBLE PRECISION U, COMP |
| 39 |
U = 1.0D0 |
| 40 |
10 U = U*0.5D0 |
| 41 |
COMP = 1.0D0 + U |
| 42 |
IF (COMP .NE. 1.0D0) GO TO 10 |
| 43 |
D1MACH = U*2.0D0 |
| 44 |
RETURN |
| 45 |
C----------------------- END OF FUNCTION D1MACH ------------------------ |
| 46 |
END |
| 47 |
SUBROUTINE DAXPY(N,DA,DX,INCX,DY,INCY) |
| 48 |
C |
| 49 |
C CONSTANT TIMES A VECTOR PLUS A VECTOR. |
| 50 |
C USES UNROLLED LOOPS FOR INCREMENTS EQUAL TO ONE. |
| 51 |
C JACK DONGARRA, LINPACK, 3/11/78. |
| 52 |
C |
| 53 |
DOUBLE PRECISION DX(1),DY(1),DA |
| 54 |
INTEGER I,INCX,INCY,IX,IY,M,MP1,N |
| 55 |
C |
| 56 |
IF(N.LE.0)RETURN |
| 57 |
IF (DA .EQ. 0.0D0) RETURN |
| 58 |
IF(INCX.EQ.1.AND.INCY.EQ.1)GO TO 20 |
| 59 |
C |
| 60 |
C CODE FOR UNEQUAL INCREMENTS OR EQUAL INCREMENTS |
| 61 |
C NOT EQUAL TO 1 |
| 62 |
C |
| 63 |
IX = 1 |
| 64 |
IY = 1 |
| 65 |
IF(INCX.LT.0)IX = (-N+1)*INCX + 1 |
| 66 |
IF(INCY.LT.0)IY = (-N+1)*INCY + 1 |
| 67 |
DO 10 I = 1,N |
| 68 |
DY(IY) = DY(IY) + DA*DX(IX) |
| 69 |
IX = IX + INCX |
| 70 |
IY = IY + INCY |
| 71 |
10 CONTINUE |
| 72 |
RETURN |
| 73 |
C |
| 74 |
C CODE FOR BOTH INCREMENTS EQUAL TO 1 |
| 75 |
C |
| 76 |
C |
| 77 |
C CLEAN-UP LOOP |
| 78 |
C |
| 79 |
20 M = MOD(N,4) |
| 80 |
IF( M .EQ. 0 ) GO TO 40 |
| 81 |
DO 30 I = 1,M |
| 82 |
DY(I) = DY(I) + DA*DX(I) |
| 83 |
30 CONTINUE |
| 84 |
IF( N .LT. 4 ) RETURN |
| 85 |
40 MP1 = M + 1 |
| 86 |
DO 50 I = MP1,N,4 |
| 87 |
DY(I) = DY(I) + DA*DX(I) |
| 88 |
DY(I + 1) = DY(I + 1) + DA*DX(I + 1) |
| 89 |
DY(I + 2) = DY(I + 2) + DA*DX(I + 2) |
| 90 |
DY(I + 3) = DY(I + 3) + DA*DX(I + 3) |
| 91 |
50 CONTINUE |
| 92 |
RETURN |
| 93 |
END |
| 94 |
SUBROUTINE DDAINI(X,Y,YPRIME,NEQ, |
| 95 |
* RES,JAC,H,WT,IDID,RPAR,IPAR, |
| 96 |
* PHI,DELTA,E,WM,IWM, |
| 97 |
* HMIN,UROUND,NONNEG,PTN) |
| 98 |
C |
| 99 |
C***BEGIN PROLOGUE DDAINI |
| 100 |
C***REFER TO DDASSL |
| 101 |
C***ROUTINES CALLED DDANRM,DDAJAC,DDASLV |
| 102 |
C***COMMON BLOCKS DDA001 |
| 103 |
C***DATE WRITTEN 830315 (YYMMDD) |
| 104 |
C***REVISION DATE 830315 (YYMMDD) |
| 105 |
C***END PROLOGUE DDAINI |
| 106 |
C |
| 107 |
C------------------------------------------------------- |
| 108 |
C ddaini takes one step of size h or smaller |
| 109 |
C with the backward euler method, to |
| 110 |
C find yprime at the initial time x. a modified |
| 111 |
C damped newton iteration is used to |
| 112 |
C solve the corrector iteration. |
| 113 |
C |
| 114 |
C the initial guess yprime is used in the |
| 115 |
C prediction, and in forming the iteration |
| 116 |
C matrix, but is not involved in the |
| 117 |
C error test. this may have trouble |
| 118 |
C converging if the initial guess is no |
| 119 |
C good, or if g(xy,yprime) depends |
| 120 |
C nonlinearly on yprime. |
| 121 |
C |
| 122 |
C the parameters represent: |
| 123 |
C x -- independent variable |
| 124 |
C y -- solution vector at x |
| 125 |
C yprime -- derivative of solution vector |
| 126 |
C neq -- number of equations |
| 127 |
C h -- stepsize. imder may use a stepsize |
| 128 |
C smaller than h. |
| 129 |
C wt -- vector of weights for error |
| 130 |
C criterion |
| 131 |
C idid -- completion code with the following meanings |
| 132 |
C idid= 1 -- yprime was found successfully |
| 133 |
C idid=-12 -- ddaini failed to find yprime |
| 134 |
C rpar,ipar -- real and integer parameter arrays |
| 135 |
C that are not altered by ddaini |
| 136 |
C phi -- work space for ddaini |
| 137 |
C delta,e -- work space for ddaini |
| 138 |
C wm,iwm -- real and integer arrays storing |
| 139 |
C matrix information |
| 140 |
C |
| 141 |
C----------------------------------------------------------------- |
| 142 |
C |
| 143 |
C C_1 R. KOE EINBAU VON PTN (EXT, PARAMETERKLAMMERN DDAINI,DDAJAC) |
| 144 |
C |
| 145 |
C |
| 146 |
IMPLICIT DOUBLE PRECISION(A-H,O-Z) |
| 147 |
LOGICAL CONVGD |
| 148 |
DIMENSION Y(1),YPRIME(1),WT(1) |
| 149 |
DIMENSION PHI(NEQ,1),DELTA(1),E(1) |
| 150 |
DIMENSION WM(1),IWM(1) |
| 151 |
DIMENSION RPAR(1),IPAR(1) |
| 152 |
EXTERNAL RES,JAC,PTN |
| 153 |
COMMON/DDA001/NPD,NTEMP, |
| 154 |
* LML,LMU,LMXORD,LMTYPE, |
| 155 |
* LNST,LNRE,LNJE,LETF,LCTF,LIPVT |
| 156 |
|
| 157 |
DATA MAXIT/10/,MJAC/5/ |
| 158 |
DATA DAMP/0.75D0/ |
| 159 |
|
| 160 |
C |
| 161 |
C |
| 162 |
C--------------------------------------------------- |
| 163 |
C block 1. |
| 164 |
C initializations. |
| 165 |
C--------------------------------------------------- |
| 166 |
C |
| 167 |
IDID=1 |
| 168 |
NEF=0 |
| 169 |
NCF=0 |
| 170 |
NSF=0 |
| 171 |
YNORM=DDANRM(NEQ,Y,WT,RPAR,IPAR) |
| 172 |
C |
| 173 |
C save y and yprime in phi |
| 174 |
DO 100 I=1,NEQ |
| 175 |
PHI(I,1)=Y(I) |
| 176 |
100 PHI(I,2)=YPRIME(I) |
| 177 |
|
| 178 |
C |
| 179 |
C |
| 180 |
C---------------------------------------------------- |
| 181 |
C block 2. |
| 182 |
C do one backward euler step. |
| 183 |
C---------------------------------------------------- |
| 184 |
C |
| 185 |
C set up for start of corrector iteration |
| 186 |
200 CJ=1.0D0/H |
| 187 |
XNEW=X+H |
| 188 |
C |
| 189 |
C predict solution and derivative |
| 190 |
|
| 191 |
DO 250 I=1,NEQ |
| 192 |
250 Y(I)=Y(I)+H*YPRIME(I) |
| 193 |
C |
| 194 |
JCALC=-1 |
| 195 |
M=0 |
| 196 |
CONVGD=.TRUE. |
| 197 |
C |
| 198 |
C |
| 199 |
C corrector loop. |
| 200 |
300 IWM(LNRE)=IWM(LNRE)+1 |
| 201 |
IRES=0 |
| 202 |
|
| 203 |
CALL RES(XNEW,Y,YPRIME,DELTA,IRES,RPAR,IPAR) |
| 204 |
IF (IRES.LT.0) GO TO 430 |
| 205 |
C |
| 206 |
C |
| 207 |
C evaluate the iteration matrix |
| 208 |
IF (JCALC.NE.-1) GO TO 310 |
| 209 |
IWM(LNJE)=IWM(LNJE)+1 |
| 210 |
JCALC=0 |
| 211 |
CALL DDAJAC(NEQ,XNEW,Y,YPRIME,DELTA,CJ,H, |
| 212 |
* IER,WT,E,WM,IWM,RES,IRES, |
| 213 |
* UROUND,JAC,RPAR,IPAR,PTN) |
| 214 |
|
| 215 |
S=1000000.D0 |
| 216 |
IF (IRES.LT.0) GO TO 430 |
| 217 |
IF (IER.NE.0) GO TO 430 |
| 218 |
NSF=0 |
| 219 |
|
| 220 |
C |
| 221 |
C |
| 222 |
C |
| 223 |
C multiply residual by damping factor |
| 224 |
310 CONTINUE |
| 225 |
DO 320 I=1,NEQ |
| 226 |
320 DELTA(I)=DELTA(I)*DAMP |
| 227 |
|
| 228 |
C |
| 229 |
C compute a new iterate (back substitution) |
| 230 |
C store the correction in delta |
| 231 |
|
| 232 |
CALL DDASLV(NEQ,DELTA,WM,IWM) |
| 233 |
|
| 234 |
C |
| 235 |
C update y and yprime |
| 236 |
|
| 237 |
DO 330 I=1,NEQ |
| 238 |
Y(I)=Y(I)-DELTA(I) |
| 239 |
330 YPRIME(I)=YPRIME(I)-CJ*DELTA(I) |
| 240 |
|
| 241 |
C |
| 242 |
C test for convergence of the iteration. |
| 243 |
|
| 244 |
DELNRM=DDANRM(NEQ,DELTA,WT,RPAR,IPAR) |
| 245 |
IF (DELNRM.LE.100.D0*UROUND*YNORM) |
| 246 |
* GO TO 400 |
| 247 |
|
| 248 |
IF (M.GT.0) GO TO 340 |
| 249 |
OLDNRM=DELNRM |
| 250 |
GO TO 350 |
| 251 |
|
| 252 |
340 RATE=(DELNRM/OLDNRM)**(1.0D0/DFLOAT(M)) |
| 253 |
IF (RATE.GT.0.90D0) GO TO 430 |
| 254 |
S=RATE/(1.0D0-RATE) |
| 255 |
|
| 256 |
350 IF (S*DELNRM .LE. 0.33D0) GO TO 400 |
| 257 |
C |
| 258 |
C |
| 259 |
C the corrector has not yet converged. update |
| 260 |
C m and and test whether the maximum |
| 261 |
C number of iterations have been tried. |
| 262 |
C every mjac iterations, get a new |
| 263 |
C iteration matrix. |
| 264 |
|
| 265 |
M=M+1 |
| 266 |
IF (M.GE.MAXIT) GO TO 430 |
| 267 |
|
| 268 |
IF ((M/MJAC)*MJAC.EQ.M) JCALC=-1 |
| 269 |
|
| 270 |
GO TO 300 |
| 271 |
|
| 272 |
C |
| 273 |
C |
| 274 |
C the iteration has converged. |
| 275 |
C check nonnegativity constraints |
| 276 |
400 IF (NONNEG.EQ.0) GO TO 450 |
| 277 |
DO 410 I=1,NEQ |
| 278 |
410 DELTA(I)=DMIN1(Y(I),0.0D0) |
| 279 |
|
| 280 |
DELNRM=DDANRM(NEQ,DELTA,WT,RPAR,IPAR) |
| 281 |
IF (DELNRM.GT.0.33D0) GO TO 430 |
| 282 |
|
| 283 |
DO 420 I=1,NEQ |
| 284 |
Y(I)=Y(I)-DELTA(I) |
| 285 |
420 YPRIME(I)=YPRIME(I)-CJ*DELTA(I) |
| 286 |
GO TO 450 |
| 287 |
C |
| 288 |
C |
| 289 |
C exits from corrector loop. |
| 290 |
430 CONVGD=.FALSE. |
| 291 |
450 IF (.NOT.CONVGD) GO TO 600 |
| 292 |
C |
| 293 |
C |
| 294 |
C |
| 295 |
C----------------------------------------------------- |
| 296 |
C block 3. |
| 297 |
C the corrector iteration converged. |
| 298 |
C do error test. |
| 299 |
C----------------------------------------------------- |
| 300 |
C |
| 301 |
|
| 302 |
DO 510 I=1,NEQ |
| 303 |
510 E(I)=Y(I)-PHI(I,1) |
| 304 |
|
| 305 |
ERR=DDANRM(NEQ,E,WT,RPAR,IPAR) |
| 306 |
|
| 307 |
IF (ERR.LE.1.0D0) RETURN |
| 308 |
|
| 309 |
C |
| 310 |
C |
| 311 |
C |
| 312 |
C-------------------------------------------------------- |
| 313 |
C block 4. |
| 314 |
C the backward euler step failed. restore y |
| 315 |
C and yprime to their original values. |
| 316 |
C reduce stepsize and try again, if |
| 317 |
C possible. |
| 318 |
C--------------------------------------------------------- |
| 319 |
C |
| 320 |
|
| 321 |
600 CONTINUE |
| 322 |
DO 610 I=1,NEQ |
| 323 |
Y(I)=PHI(I,1) |
| 324 |
610 YPRIME(I)=PHI(I,2) |
| 325 |
|
| 326 |
IF (CONVGD) GO TO 640 |
| 327 |
IF (IER.EQ.0) GO TO 620 |
| 328 |
NSF=NSF+1 |
| 329 |
H=H*0.25D0 |
| 330 |
IF (NSF.LT.3.AND.DABS(H).GE.HMIN) GO TO 690 |
| 331 |
IDID=-12 |
| 332 |
RETURN |
| 333 |
620 IF (IRES.GT.-2) GO TO 630 |
| 334 |
IDID=-12 |
| 335 |
RETURN |
| 336 |
630 NCF=NCF+1 |
| 337 |
H=H*0.25D0 |
| 338 |
IF (NCF.LT.10.AND.DABS(H).GE.HMIN) GO TO 690 |
| 339 |
IDID=-12 |
| 340 |
RETURN |
| 341 |
|
| 342 |
640 NEF=NEF+1 |
| 343 |
R=0.90D0/(2.0D0*ERR+0.0001D0) |
| 344 |
R=DMAX1(0.1D0,DMIN1(0.5D0,R)) |
| 345 |
H=H*R |
| 346 |
IF (DABS(H).GE.HMIN.AND.NEF.LT.10) GO TO 690 |
| 347 |
IDID=-12 |
| 348 |
RETURN |
| 349 |
690 GO TO 200 |
| 350 |
|
| 351 |
C-------------end of subroutine ddaini---------------------- |
| 352 |
END |
| 353 |
SUBROUTINE DDAJAC(NEQ,X,Y,YPRIME,DELTA,CJ,H, |
| 354 |
* IER,WT,E,WM,IWM,RES,IRES,UROUND,JAC,RPAR,IPAR,PTN) |
| 355 |
C |
| 356 |
C***BEGIN PROLOGUE DDAJAC |
| 357 |
C***REFER TO DDASSL |
| 358 |
C***ROUTINES CALLED DGEFA,DGBFA |
| 359 |
C***COMMON BLOCKS DDA001 |
| 360 |
C***DATE WRITTEN 830315 (YYMMDD) |
| 361 |
C***REVISION DATE 830315 (YYMMDD) |
| 362 |
C***END PROLOGUE DDAJAC |
| 363 |
C----------------------------------------------------------------------- |
| 364 |
C this routine computes the iteration matrix |
| 365 |
C pd=dg/dy+cj*dg/dyprime (where g(x,y,yprime)=0). |
| 366 |
C here pd is computed by the user-supplied |
| 367 |
C routine jac if iwm(mtype) is 1 or 4, and |
| 368 |
C it is computed by numerical finite differencing |
| 369 |
C if iwm(mtype)is 2 or 5 |
| 370 |
C the parameters have the following meanings. |
| 371 |
C y = array containing predicted values |
| 372 |
C yprime = array containing predicted derivatives |
| 373 |
C delta = residual evaluated at (x,y,yprime) |
| 374 |
C_2 (used only if iwm(mtype)=2 or 5) |
| 375 |
C (used only if iwm(itype)=2 or 3) |
| 376 |
C cj = scalar parameter defining iteration matrix |
| 377 |
C h = current stepsize in integration |
| 378 |
C ier = variable which is .ne. 0 |
| 379 |
C if iteration matrix is singular or could not be |
| 380 |
C decomposed for another reason, |
| 381 |
C and 0 otherwise. |
| 382 |
C wt = vector of weights for computing norms |
| 383 |
C e = work space (temporary) of length neq |
| 384 |
C wm = real work space for matrices. on |
| 385 |
C output it contains the lu decomposition |
| 386 |
C of the iteration matrix. |
| 387 |
C iwm = integer work space containing |
| 388 |
C matrix information |
| 389 |
C res = name of the external user-supplied routine |
| 390 |
C to evaluate the residual function g(x,y,yprime) |
| 391 |
C ires = flag which is equal to zero if no illegal values |
| 392 |
C in res, and less than zero otherwise. (if ires |
| 393 |
C is less than zero, the matrix was not completed) |
| 394 |
C in this case (if ires .lt. 0), then ier = 0. |
| 395 |
C uround = the unit roundoff error of the machine being used. |
| 396 |
C jac = name of the external user-supplied routine |
| 397 |
C to evaluate the iteration matrix (this routine |
| 398 |
C is only used if iwm(mtype) is 1 or 4) |
| 399 |
C-----------------------------------------------------------------------C |
| 400 |
C |
| 401 |
C C_2 R.KOENIGSDORFF 18.9.86 BER. D. NUM. ABLEITUNG FUER SPARSE MATRIX |
| 402 |
C C_3 " " " " " " EINBAU VON PTN IN PARAMETERKLAMMER UND EXT |
| 403 |
C C_5 " " " 26.9.86 ERWEITERUNG COMMON/DDA001/ |
| 404 |
C C_6 " " " 20.10.86 EINBAU VON DDALDJ UND MA30BD |
| 405 |
C C_9 " " " 12.01.87 AENDERUNG DER SKELETT-MATRIX FUER PIVOT |
| 406 |
C C_10 " " " 16.05.87 ZURUECK ZU MA30AD BEI FEHLER IN MA30BD |
| 407 |
C |
| 408 |
IMPLICIT DOUBLE PRECISION(A-H,O-Z) |
| 409 |
EXTERNAL RES,JAC,PTN |
| 410 |
DIMENSION Y(1),YPRIME(1),DELTA(1),WT(1),E(1) |
| 411 |
DIMENSION WM(1),IWM(1),RPAR(1),IPAR(1) |
| 412 |
C_5 |
| 413 |
COMMON/DDA001/NPD,NTEMP, |
| 414 |
* LML,LMU,LMXORD,LMTYPE, |
| 415 |
* LNST,LNRE,LNJE,LETF,LCTF,LIPVT, |
| 416 |
* KWKN,KJAC,KLUD,KIPTR,KLENB,KICNB,KLENR,KLENRL, |
| 417 |
* KIPA,KIQA,KICN,JIRN,KLENC,JIFIRST,JLASTR,JNEXTR,JLASTC,JNEXTC, |
| 418 |
* JIPC,IDISP(2),LENOFF(1),JACSIZ,LUDSIZ,PT1,NCG,KICNG,KICGP,LIRN |
| 419 |
C_5 END |
| 420 |
COMMON/MA30FD/ IRNCP, ICNCP, IRANK, MINIRN, MINICN |
| 421 |
C |
| 422 |
IER = 0 |
| 423 |
C_10 |
| 424 |
IFMA30=0 |
| 425 |
C_10 |
| 426 |
NPDM1=NPD-1 |
| 427 |
MTYPE=IWM(LMTYPE) |
| 428 |
GO TO (100,200,300),MTYPE |
| 429 |
C |
| 430 |
C |
| 431 |
C dense user-supplied matrix |
| 432 |
100 LENPD=NEQ*NEQ |
| 433 |
DO 110 I=1,LENPD |
| 434 |
110 WM(NPDM1+I)=0.0D0 |
| 435 |
CALL JAC(X,Y,YPRIME,WM(NPD),CJ,RPAR,IPAR) |
| 436 |
GO TO 230 |
| 437 |
C |
| 438 |
C |
| 439 |
C dense finite-difference-generated matrix |
| 440 |
200 IRES=0 |
| 441 |
NROW=NPDM1 |
| 442 |
SQUR = DSQRT(UROUND) |
| 443 |
DO 210 I=1,NEQ |
| 444 |
DEL=SQUR*DMAX1(DABS(Y(I)),DABS(H*YPRIME(I)), |
| 445 |
* DABS(WT(I))) |
| 446 |
DEL=DSIGN(DEL,H*YPRIME(I)) |
| 447 |
DEL=(Y(I)+DEL)-Y(I) |
| 448 |
YSAVE=Y(I) |
| 449 |
YPSAVE=YPRIME(I) |
| 450 |
Y(I)=Y(I)+DEL |
| 451 |
YPRIME(I)=YPRIME(I)+CJ*DEL |
| 452 |
CALL RES(X,Y,YPRIME,E,IRES,RPAR,IPAR) |
| 453 |
IF (IRES .LT. 0) RETURN |
| 454 |
DELINV=1.0D0/DEL |
| 455 |
DO 220 L=1,NEQ |
| 456 |
220 WM(NROW+L)=(E(L)-DELTA(L))*DELINV |
| 457 |
NROW=NROW+NEQ |
| 458 |
Y(I)=YSAVE |
| 459 |
YPRIME(I)=YPSAVE |
| 460 |
210 CONTINUE |
| 461 |
C |
| 462 |
C |
| 463 |
C do dense-matrix lu decomposition on pd |
| 464 |
230 CALL DGEFA(WM(NPD),NEQ,NEQ,IWM(LIPVT),IER) |
| 465 |
RETURN |
| 466 |
C |
| 467 |
C |
| 468 |
C_2 dummy section for iwm(mtype)=3 |
| 469 |
C sparse finite-difference-generated matrix |
| 470 |
300 IF (IWM(LNJE) .GT. 1) GO TO 310 |
| 471 |
CALL PTN(IWM(KLENB),NEQ,IWM(KICNB),JACSIZ,NIRN,RPAR,IPAR) |
| 472 |
IF (JACSIZ.LT.NIRN) STOP 'DASSL: JACSIZ.LT.NIRN' |
| 473 |
NEQ1=NEQ+1 |
| 474 |
NEQ2=2*NEQ |
| 475 |
CALL DDASCO(IWM(KICNB),IWM(KLENB),NEQ,NEQ,IWM(KICNG), |
| 476 |
* IWM(KICGP),NCG,IWM(KLENR),NEQ2,NEQ1,NIRN) |
| 477 |
C |
| 478 |
310 KLUDP=KLUD+NEQ |
| 479 |
CALL DDADIF (NEQ,X,Y,YPRIME,DELTA,CJ,H,WT,E,WM(KJAC),WM(KLUD), |
| 480 |
* WM(KWKN),WM(KLUDP),NCG,IWM(KIPTR),IWM(KLENB),IWM(KICNG), |
| 481 |
* IWM(KICGP),IWM(KICNB),RES,IRES,UROUND,RPAR,IPAR) |
| 482 |
IF (IRES .LT. 0) RETURN |
| 483 |
IF (IWM(LNJE).GT.1) GO TO 340 |
| 484 |
350 CALL DDALDS(WM(KJAC),IWM(KLENB),IWM(KICNB),NIRN,WM(KLUD), |
| 485 |
* IWM(KICN),LUDSIZ,IWM(KLENR),IDISP,IWM(KIPA),IWM(KIQA), |
| 486 |
* NEQ, NEQ) |
| 487 |
C_9 * NEQ, 0) |
| 488 |
U=PT1 |
| 489 |
CALL MA30AD(NEQ,IWM(KICN),WM(KLUD),LUDSIZ,IWM(KLENR), |
| 490 |
* IWM(KLENRL),IDISP,IWM(KIPA),IWM(KIQA),IWM(JIRN),LIRN, |
| 491 |
* IWM(KLENC),IWM(JIFIRST),IWM(JLASTR),IWM(JNEXTR),IWM(JLASTC), |
| 492 |
* IWM(JNEXTC),IWM(KIPTR),IWM(JIPC),U,IFLAG) |
| 493 |
IF (IFLAG.NE.0) THEN |
| 494 |
WRITE(*,*) ' DASSL, DDAJAC: MA30AD, IFLAG.NE.0, IFLAG =', |
| 495 |
* IFLAG |
| 496 |
IER = - 1 |
| 497 |
ENDIF |
| 498 |
IF (IER .NE. 0) RETURN |
| 499 |
C |
| 500 |
C |
| 501 |
C do sparse-matrix lu decomposition on pd |
| 502 |
C_6 |
| 503 |
340 CALL DDALDJ(WM(KJAC),IWM(KICNB),NIRN,IWM(KLENB),WM(KLUD), |
| 504 |
* IWM(KICN),LUDSIZ,IWM(KLENR),IWM(KIPA),IWM(KIQA),IDISP, |
| 505 |
* WM(KWKN),IWM(KIPTR),NEQ) |
| 506 |
CALL MA30BD(NEQ,IWM(KICN),WM(KLUD),LUDSIZ,IWM(KLENR), |
| 507 |
* IWM(KLENRL),IDISP,IWM(KIPA),IWM(KIQA),WM(KWKN), |
| 508 |
* IWM(KIPTR),IFLAG) |
| 509 |
IF (IFLAG.NE.0) WRITE(*,*) ' DASSL, DDAJAC: MA30BD, IFLAG.NE.0' |
| 510 |
IF (IFLAG.GT.0) WRITE(*,*) ' Pivot I is very small, I =',IFLAG |
| 511 |
IF (IFLAG.LT.0) WRITE(*,*) ' Unexpected singularity at stage I |
| 512 |
* of the decomposition, I =',IFLAG |
| 513 |
C_6 |
| 514 |
C_10 |
| 515 |
IF (IFLAG.NE.0 .AND. IFMA30.EQ.0) THEN |
| 516 |
IFMA30=1 |
| 517 |
GOTO 350 |
| 518 |
ELSE IF (IFLAG .NE. 0) THEN |
| 519 |
IER = -2 |
| 520 |
ENDIF |
| 521 |
C_10 |
| 522 |
RETURN |
| 523 |
C------end of subroutine ddajac------ |
| 524 |
END |
| 525 |
DOUBLE PRECISION FUNCTION DDANRM(NEQ,V,WT,RPAR,IPAR) |
| 526 |
C |
| 527 |
C***BEGIN PROLOGUE DDANRM |
| 528 |
C***REFER TO DDASSL |
| 529 |
C***ROUTINES CALLED (NONE) |
| 530 |
C***DATE WRITTEN 830315 (YYMMDD) |
| 531 |
C***REVISION DATE 830315 (YYMMDD) |
| 532 |
C***END PROLOGUE DDANRM |
| 533 |
C----------------------------------------------------------------------- |
| 534 |
C this function routine computes the weighted |
| 535 |
C root-mean-square norm of the vector of length |
| 536 |
C neq contained in the array v,with weights |
| 537 |
C contained in the array wt of length neq. |
| 538 |
C ddanrm=sqrt((1/neq)*sum(v(i)/wt(i))**2) |
| 539 |
C----------------------------------------------------------------------- |
| 540 |
C |
| 541 |
IMPLICIT DOUBLE PRECISION(A-H,O-Z) |
| 542 |
DIMENSION V(NEQ),WT(NEQ) |
| 543 |
DIMENSION RPAR(1),IPAR(1) |
| 544 |
DDANRM = 0.0D0 |
| 545 |
VMAX = 0.0D0 |
| 546 |
DO 10 I = 1,NEQ |
| 547 |
10 IF(DABS(V(I)/WT(I)) .GT. VMAX) VMAX = DABS(V(I)/WT(I)) |
| 548 |
IF(VMAX .LE. 0.0D0) GO TO 30 |
| 549 |
SUM = 0.0D0 |
| 550 |
DO 20 I = 1,NEQ |
| 551 |
20 SUM = SUM + ((V(I)/WT(I))/VMAX)**2 |
| 552 |
DDANRM = VMAX*DSQRT(SUM/DFLOAT(NEQ)) |
| 553 |
30 CONTINUE |
| 554 |
RETURN |
| 555 |
C------end of function ddanrm------ |
| 556 |
END |
| 557 |
SUBROUTINE DDASLV(NEQ,DELTA,WM,IWM) |
| 558 |
C |
| 559 |
C***BEGIN PROLOGUE DDASLV |
| 560 |
C***REFER TO DDASSL |
| 561 |
C***ROUTINES CALLED DGESL,DGBSL |
| 562 |
C***COMMON BLOCKS DDA001 |
| 563 |
C***DATE WRITTEN 830315 (YYMMDD) |
| 564 |
C***REVISION DATE 830315 (YYMMDD) |
| 565 |
C***END PROLOGUE DDASLV |
| 566 |
C----------------------------------------------------------------------- |
| 567 |
C this routine manages the solution of the linear |
| 568 |
C system arising in the newton iteration. |
| 569 |
C matrices and real temporary storage and |
| 570 |
C real information are stored in the array wm. |
| 571 |
C integer matrix information is stored in |
| 572 |
C the array iwm. |
| 573 |
C for a dense matrix, the linpack routine |
| 574 |
C dgesl is called. |
| 575 |
C for a banded matrix,the linpack routine |
| 576 |
C dgbsl is called |
| 577 |
C----------------------------------------------------------------------- |
| 578 |
C |
| 579 |
C C_4 R.KOENIGSDORFF 24.9.86 MA30CD EINGEBAUT |
| 580 |
C C_5 " " " " 26.9.86 ERWEITERUNG COMMON/DDA001/ |
| 581 |
C |
| 582 |
C |
| 583 |
IMPLICIT DOUBLE PRECISION(A-H,O-Z) |
| 584 |
DIMENSION DELTA(1),WM(1),IWM(1) |
| 585 |
C_5 |
| 586 |
COMMON/DDA001/NPD,NTEMP,LML,LMU, |
| 587 |
* LMXORD,LMTYPE, |
| 588 |
* LNST,LNRE,LNJE,LETF,LCTF,LIPVT, |
| 589 |
* KWKN,KJAC,KLUD,KIPTR,KLENB,KICNB,KLENR,KLENRL, |
| 590 |
* KIPA,KIQA,KICN,JIRN,KLENC,JIFIRST,JLASTR,JNEXTR,JLASTC,JNEXTC, |
| 591 |
* JIPC,IDISP(2),LENOFF(1),JACSIZ,LUDSIZ,PT1,NCG,KICNG,KICGP,LIRN |
| 592 |
C_5 END |
| 593 |
C |
| 594 |
MTYPE=IWM(LMTYPE) |
| 595 |
GO TO(100,100,300),MTYPE |
| 596 |
C |
| 597 |
C dense matrix |
| 598 |
100 CALL DGESL(WM(NPD),NEQ,NEQ,IWM(LIPVT),DELTA,0) |
| 599 |
RETURN |
| 600 |
C |
| 601 |
C_4 sparse matrix |
| 602 |
300 CALL MA30CD (NEQ,IWM(KICN),WM(KLUD),LUDSIZ,IWM(KLENR),IWM(KLENRL), |
| 603 |
* LENOFF,IDISP,IWM(KIPA),IWM(KIQA),DELTA,WM(KWKN),2) |
| 604 |
RETURN |
| 605 |
C------end of subroutine ddaslv------ |
| 606 |
END |
| 607 |
SUBROUTINE DDALDJ(B,ICNB,JACLEN,LENB,A,ICN,LUDLEN,LENR |
| 608 |
1,IP,IQ,IDISP,W,IW,N) |
| 609 |
DOUBLE PRECISION B(JACLEN), A(LUDLEN), W(N), ZERO |
| 610 |
INTEGER DBLK, IW(N), IDISP(2) |
| 611 |
INTEGER ICNB(JACLEN), LENB(N), ICN(LUDLEN), LENR(N) |
| 612 |
1, IP(N),IQ(N) |
| 613 |
DATA ZERO /0.D0/ |
| 614 |
C |
| 615 |
C RELOAD TRANSPOSED NEWTON MATRIX, PARTITIONED (NALGB,NEQ-NALGB) |
| 616 |
C |
| 617 |
C T |
| 618 |
C ( J(1,1) J(1,2) ) |
| 619 |
C ( J(2,1) J(2,2) ) |
| 620 |
C |
| 621 |
C FOR DECOMPOSITION BY MA30B USING OLD PIVOTAL SEQUENCE |
| 622 |
C |
| 623 |
C IDISP IS THE POSITION IN A/ICN OF THE FIRST ELEMENT |
| 624 |
LTF=1 |
| 625 |
DBLK=IDISP(1) |
| 626 |
IW(1)=1 |
| 627 |
DO 10 I=1,N |
| 628 |
IF(I.LT.N)IW(I+1)=IW(I)+LENB(I) |
| 629 |
10 W(I)=ZERO |
| 630 |
C EACH PASS THROUGH THIS MAIN LOOP PUTS ROW I OF THE PERMUTED FORM |
| 631 |
C (ROW IOLD IN THE ORIGINAL MATRIX) INTO THE RIGHT PLACE IN A |
| 632 |
DO 60 I=1,N |
| 633 |
C LOAD ROW IOLD OF B TRANSPOSED INTO VECTOR W. |
| 634 |
IOLD=IABS(IP(I)+0) |
| 635 |
J1=IW(IOLD) |
| 636 |
J2=J1+LENB(IOLD)-1 |
| 637 |
IF(J1.GT.J2)GO TO 30 |
| 638 |
DO 20 JJ=J1,J2 |
| 639 |
J=ICNB(JJ) |
| 640 |
W(J)=B(JJ) |
| 641 |
20 CONTINUE |
| 642 |
30 IF (LENR(I).EQ.0) GO TO 60 |
| 643 |
C UNLOAD ROW IOLD (ROW I IN PERMUTED FORM) |
| 644 |
C FROM W INTO APPROPRIATE PART OF A. |
| 645 |
J1=DBLK |
| 646 |
J2=J1+LENR(I)-1 |
| 647 |
DO 50 JJ=J1,J2 |
| 648 |
K=ICN(JJ) |
| 649 |
J=IQ(K) |
| 650 |
A(JJ)=W(J) |
| 651 |
50 W(J)=ZERO |
| 652 |
DBLK=J2+1 |
| 653 |
60 CONTINUE |
| 654 |
RETURN |
| 655 |
END |
| 656 |
SUBROUTINE DDALDS(B,LENB,ICNB,JACLEN,A,ICN,LUDLEN,LENR,IDX |
| 657 |
1,IP,IQ,N,IMPLI) |
| 658 |
DOUBLE PRECISION B(JACLEN), A(LUDLEN), ZERO, ONE |
| 659 |
INTEGER LENB(N), ICNB(JACLEN), ICN(LUDLEN), LENR(N), |
| 660 |
1 IP(N), IQ(N) |
| 661 |
INTEGER IDX(2) |
| 662 |
DATA ZERO, ONE /0.D0, 1.D0/ |
| 663 |
C |
| 664 |
C LOADS SKELETON NEWTON MATRIX (PARTITIONED IF NALGB .GT. 0) |
| 665 |
C |
| 666 |
C T |
| 667 |
C ( I 0 ) |
| 668 |
C ( 0 I ) |
| 669 |
C |
| 670 |
C FOR DECOMPOSITION BY MA30A TO CHOOSE PIVOTAL SEQUENCE |
| 671 |
C |
| 672 |
K2=0 |
| 673 |
J2=0 |
| 674 |
DO 5 I=1,N |
| 675 |
J1=J2+1 |
| 676 |
J2=J2+LENB(I) |
| 677 |
LR=LENB(I) |
| 678 |
IF(I.LE.IMPLI) GO TO 3 |
| 679 |
LR=LR+1 |
| 680 |
IF(J1.GT.J2)GO TO 3 |
| 681 |
DO 2 J=J1,J2 |
| 682 |
IF(ICNB(J).EQ.I)LR=LR-1 |
| 683 |
2 CONTINUE |
| 684 |
3 LENR(I)=LR |
| 685 |
IP(I)=I |
| 686 |
IQ(I)=I |
| 687 |
5 K2=K2+LR |
| 688 |
K1=LUDLEN+1-K2 |
| 689 |
IDX(1)=1 |
| 690 |
IDX(2)=K1 |
| 691 |
J2=0 |
| 692 |
DO 200 I=1,N |
| 693 |
JM=LENR(I) |
| 694 |
J1=J2+1 |
| 695 |
J2=J2+LENB(I) |
| 696 |
IF(I.GT.IMPLI)GO TO 8 |
| 697 |
IF(J1.GT.J2)GO TO 20 |
| 698 |
DO 6 J=J1,J2 |
| 699 |
IC=ICNB(J) |
| 700 |
A(K1)=ZERO |
| 701 |
IF(IC.LE.IMPLI)A(K1)=B(J) |
| 702 |
ICN(K1)=IC |
| 703 |
6 K1=K1+1 |
| 704 |
GO TO 20 |
| 705 |
8 IF(J1.GT.J2)GO TO 15 |
| 706 |
J0=0 |
| 707 |
DO 10 J=J1,J2 |
| 708 |
IC=ICNB(J) |
| 709 |
IF(IC.LE.IMPLI)GO TO 63 |
| 710 |
IF(IC-I)63,62,61 |
| 711 |
61 IF(J0.GT.0)GO TO 63 |
| 712 |
J0=1 |
| 713 |
A(K1)=ONE |
| 714 |
ICN(K1)=I |
| 715 |
K1=K1+1 |
| 716 |
GO TO 63 |
| 717 |
62 A(K1)=ONE |
| 718 |
J0=1 |
| 719 |
GO TO 64 |
| 720 |
63 A(K1)=ZERO |
| 721 |
64 ICN(K1)=IC |
| 722 |
K1=K1+1 |
| 723 |
10 CONTINUE |
| 724 |
IF(J0.NE.0)GO TO 20 |
| 725 |
15 A(K1)=ONE |
| 726 |
ICN(K1)=I |
| 727 |
K1=K1+1 |
| 728 |
20 CONTINUE |
| 729 |
200 CONTINUE |
| 730 |
RETURN |
| 731 |
END |
| 732 |
SUBROUTINE DDASCO(IR,IP,M,N,IC,IPC,NC,IW,MPN,NP1,JACSIZ) |
| 733 |
C |
| 734 |
C GROUPS COLUMNS OF SPARSE JACOBIAN MATRIX FOR FINITE |
| 735 |
C DIFFERENCE EVALUATION |
| 736 |
C |
| 737 |
C M IS NUMBER OF ROWS |
| 738 |
C N IS NUMBER OF COLUMNS |
| 739 |
C IR CONTAINS ROW NUMBERS OF NON-ZEROS. |
| 740 |
C IP CONTAINS NUMBERS OF NONZEROS IN EACH COLUMN. |
| 741 |
C IC IS SET TO COLUMN NUMBERS WITHIN GROUPS |
| 742 |
C AND MUST HAVE N ENTRIES. |
| 743 |
C IPC IS SET TO POINT TO FIRST ENTRY OF IC FOR EACH |
| 744 |
C GROUP, AND MAY NEED N+1 ENTRIES. |
| 745 |
C NC IS SET TO (NUMBER OF GROUPS+1). |
| 746 |
Change |
| 747 |
C INTEGER*2 IR(JACSIZ),IP(N),IC(N),IPC(NP1) |
| 748 |
INTEGER IR(JACSIZ),IP(N),IC(N),IPC(NP1) |
| 749 |
Change |
| 750 |
C IW IS WORKSPACE, IT NEEDS (M+N) ENTRIES |
| 751 |
INTEGER IW(MPN) |
| 752 |
NC=1 |
| 753 |
ICC=1 |
| 754 |
NM=N+M |
| 755 |
DO 1 J=1,NM |
| 756 |
1 IW(J)=0 |
| 757 |
10 IPC(NC)=ICC |
| 758 |
DO 2 J=1,M |
| 759 |
2 IW(J)=0 |
| 760 |
KCOL=1 |
| 761 |
JST=1 |
| 762 |
50 JND=JST+IP(KCOL)-1 |
| 763 |
K=KCOL+M |
| 764 |
IF(IW(K).NE.0)GO TO 20 |
| 765 |
IF(JND.LT.JST)GO TO 30 |
| 766 |
DO 3 J=JST,JND |
| 767 |
K=IR(J) |
| 768 |
IF(IW(K).NE.0)GO TO 40 |
| 769 |
3 CONTINUE |
| 770 |
C ACCEPT COLUMN |
| 771 |
DO 4 J=JST,JND |
| 772 |
K=IR(J) |
| 773 |
4 IW(K)=1 |
| 774 |
30 IC(ICC)=KCOL |
| 775 |
ICC=ICC+1 |
| 776 |
K=KCOL+M |
| 777 |
IW(K)=1 |
| 778 |
C REJECT COLUMN |
| 779 |
40 CONTINUE |
| 780 |
C COLUMN ALREADY USED |
| 781 |
20 KCOL=KCOL+1 |
| 782 |
JST=JND+1 |
| 783 |
IF(KCOL.LE.N)GO TO 50 |
| 784 |
IF(ICC.EQ.IPC(NC))GO TO 60 |
| 785 |
NC=NC+1 |
| 786 |
GO TO 10 |
| 787 |
60 RETURN |
| 788 |
END |
| 789 |
SUBROUTINE DDADIF(NEQ,X,Y,YPRIME,DELTA,CJ,H,WT,E,B,DELY,YSAVE, |
| 790 |
* YPSAVE,NCG,IPTR,LENB,ICNG,ICGP,ICNB,RES,IRES,UROUND,RPAR,IPAR) |
| 791 |
IMPLICIT DOUBLE PRECISION(A-H,O-Z) |
| 792 |
EXTERNAL RES |
| 793 |
DIMENSION Y(1),YPRIME(1),DELTA(1),WT(1),E(1),YSAVE(1),YPSAVE(1) |
| 794 |
DIMENSION IPTR(1),LENB(1),ICNG(1),ICGP(1),ICNB(1) |
| 795 |
DIMENSION B(1),DELY(1),RPAR(1),IPAR(1) |
| 796 |
C |
| 797 |
C R.KOENIGSDORFF 24.10.86 |
| 798 |
C |
| 799 |
IRES=0 |
| 800 |
SQUR=DSQRT(UROUND) |
| 801 |
IPTR(1)=1 |
| 802 |
N1=NEQ-1 |
| 803 |
DO 5 I=1,N1 |
| 804 |
IPTR(I+1)=IPTR(I)+LENB(I) |
| 805 |
5 CONTINUE |
| 806 |
DO 10 KK=2,NCG |
| 807 |
JST=ICGP(KK-1) |
| 808 |
JND=ICGP(KK)-1 |
| 809 |
DO 20 K=JST,JND |
| 810 |
J=ICNG(K) |
| 811 |
DELY(J)=SQUR*DMAX1(DABS(Y(J)),DABS(H*YPRIME(J)),DABS(WT(J))) |
| 812 |
DELY(J)=DSIGN(DELY(J),H*YPRIME(J)) |
| 813 |
DELY(J)=(Y(J)+DELY(J))-Y(J) |
| 814 |
YSAVE(J)=Y(J) |
| 815 |
YPSAVE(J)=YPRIME(J) |
| 816 |
Y(J)=Y(J)+DELY(J) |
| 817 |
YPRIME(J)=YPRIME(J)+CJ*DELY(J) |
| 818 |
20 CONTINUE |
| 819 |
CALL RES(X,Y,YPRIME,E,IRES,RPAR,IPAR) |
| 820 |
IF (IRES .LT. 0) RETURN |
| 821 |
DO 30 K=JST,JND |
| 822 |
J=ICNG(K) |
| 823 |
IST=IPTR(J) |
| 824 |
IND=IST+LENB(J)-1 |
| 825 |
DO 40 II=IST,IND |
| 826 |
I=ICNB(II) |
| 827 |
DELINV=1.0D0/DELY(J) |
| 828 |
B(II)=(E(I)-DELTA(I))*DELINV |
| 829 |
40 CONTINUE |
| 830 |
Y(J)=YSAVE(J) |
| 831 |
YPRIME(J)=YPSAVE(J) |
| 832 |
30 CONTINUE |
| 833 |
10 CONTINUE |
| 834 |
RETURN |
| 835 |
END |
| 836 |
SUBROUTINE DDASSL (RES,NEQ,T,Y,YPRIME,TOUT, |
| 837 |
* INFO,RTOL,ATOL,IDID, |
| 838 |
* RWORK,LRW,IWORK,LIW,RPAR,IPAR, |
| 839 |
* JAC,PTN,ICHAN) |
| 840 |
C |
| 841 |
C***BEGIN PROLOGUE DDASSL |
| 842 |
C |
| 843 |
C : |
| 844 |
C : |
| 845 |
C : |
| 846 |
C : |
| 847 |
C |
| 848 |
CC***ROUTINES CALLED DDASTP,DDAINI,DDANRM,DDAWTS,DDATRP,XERRWV,D1MACH |
| 849 |
C***COMMON BLOCKS DDA001 |
| 850 |
C***END PROLOGUE DDASSL |
| 851 |
C |
| 852 |
C |
| 853 |
C C_2 " " " 17.9.86 SPARSE OPTION:MTYPE,LENPD,LENRW,LENIW |
| 854 |
C C_3 " " " " " " EINBAU VON PTN IN PARAMETERKLAMM. U.EXT |
| 855 |
C C_5 " " " 26.9.86 ERWEITERUNG VON COMMON/DDA001/ |
| 856 |
C C_8 R,KOENIGSDORFF 12.01.87 EINBAU VON COMMON/JACV1/ |
| 857 |
C C_10 A.K. 14.07.87 JACOBIDIMENSION. MIT LENJVD+LENJVS |
| 858 |
C C_11 A.K. 19.11.87 fuer ICHAN=1 Neustart ohne Patterbest. |
| 859 |
C C_12 A.K. 26.05.89 Adressrechng. ueberprueft, KWKN=1 da |
| 860 |
C Restlaenge von RWORK uebergeben wird. |
| 861 |
C |
| 862 |
C |
| 863 |
IMPLICIT DOUBLE PRECISION(A-H,O-Z) |
| 864 |
LOGICAL DONE |
| 865 |
EXTERNAL RES,JAC,PTN |
| 866 |
DIMENSION Y(1),YPRIME(1) |
| 867 |
DIMENSION INFO(15) |
| 868 |
DIMENSION RWORK(1),IWORK(1) |
| 869 |
DIMENSION RTOL(1),ATOL(1) |
| 870 |
DIMENSION RPAR(1),IPAR(1) |
| 871 |
C_5 |
| 872 |
COMMON/DDA001/NPD,NTEMP, |
| 873 |
* LML,LMU,LMXORD,LMTYPE, |
| 874 |
* LNST,LNRE,LNJE,LETF,LCTF,LIPVT, |
| 875 |
* KWKN,KJAC,KLUD,KIPTR,KLENB,KICNB,KLENR,KLENRL, |
| 876 |
* KIPA,KIQA,KICN,JIRN,KLENC,JIFIRST,JLASTR,JNEXTR,JLASTC,JNEXTC, |
| 877 |
* JIPC,IDISPX(2),LENOFF(1),JACSIZ,LUDSIZ,PT1,NCG,KICNG,KICGP,LIRN |
| 878 |
C_5 END |
| 879 |
C_8 |
| 880 |
C |
| 881 |
COMMON /ANVE / LENAVX,LENAVU,LENAVP,LENB |
| 882 |
C |
| 883 |
COMMON / JACV / LENFX,LENBX,LENRX,LENBU |
| 884 |
C COMMON / JACV1 / LENJVG,LENJVD,LENJVS,LENJAD,LENJAS,LENJMD,LENJMS |
| 885 |
C_8 END |
| 886 |
DATA LTSTOP,LHMAX,LH,LTN, |
| 887 |
* LCJ,LCJOLD,LHOLD,LS,LROUND, |
| 888 |
* LALPHA,LBETA,LGAMMA, |
| 889 |
* LPSI,LSIGMA,LDELTA |
| 890 |
* /1,2,3,4, |
| 891 |
* 5,6,7,8,9, |
| 892 |
* 11,17,23, |
| 893 |
* 29,35,41/ |
| 894 |
IF(INFO(1).NE.0)GO TO 100 |
| 895 |
C |
| 896 |
C----------------------------------------------------------------------- |
| 897 |
C this block is executed for the initial call only. |
| 898 |
C it contains checking of inputs and initializations. |
| 899 |
C----------------------------------------------------------------------- |
| 900 |
C |
| 901 |
C first check info array to make sure all elements of info |
| 902 |
C are either zero or one. |
| 903 |
DO 10 I=2,11 |
| 904 |
IF(INFO(I).NE.0.AND.INFO(I).NE.1)GO TO 701 |
| 905 |
10 CONTINUE |
| 906 |
C |
| 907 |
IF(NEQ.LE.0)GO TO 702 |
| 908 |
C |
| 909 |
C set pointers into iwork |
| 910 |
LML=1 |
| 911 |
LMU=2 |
| 912 |
LMXORD=3 |
| 913 |
LMTYPE=4 |
| 914 |
LJCALC=5 |
| 915 |
LPHASE=6 |
| 916 |
LK=7 |
| 917 |
LKOLD=8 |
| 918 |
LNS=9 |
| 919 |
LNSTL=10 |
| 920 |
LNST=11 |
| 921 |
LNRE=12 |
| 922 |
LNJE=13 |
| 923 |
LETF=14 |
| 924 |
LCTF=15 |
| 925 |
LIPVT=21 |
| 926 |
LIWM=1 |
| 927 |
C |
| 928 |
C check and compute maximum order |
| 929 |
MXORD=5 |
| 930 |
IF(INFO(9).EQ.0)GO TO 20 |
| 931 |
MXORD=IWORK(LMXORD) |
| 932 |
IF(MXORD.LT.1.OR.MXORD.GT.5)GO TO 703 |
| 933 |
20 IWORK(LMXORD)=MXORD |
| 934 |
C |
| 935 |
C compute mtype,lenpd,lenrw.check ml and mu. |
| 936 |
IF(INFO(6).NE.0)GO TO 40 |
| 937 |
LENPD=NEQ**2 |
| 938 |
LENRW=40+(IWORK(LMXORD)+4)*NEQ+LENPD |
| 939 |
LENIW=20+NEQ |
| 940 |
IF(INFO(5).NE.0)GO TO 30 |
| 941 |
IWORK(LMTYPE)=2 |
| 942 |
GO TO 60 |
| 943 |
30 IWORK(LMTYPE)=1 |
| 944 |
GO TO 60 |
| 945 |
C_2 SPARSE CASE |
| 946 |
40 IWORK(LMTYPE)=3 |
| 947 |
NII2=1 |
| 948 |
C_10> |
| 949 |
NJAC=LENFX + LENBX + LENB |
| 950 |
C_ak160689 NLUD=2*(LENFX + LENBX + LENB) |
| 951 |
NLUD=3*(LENFX + LENBX + LENB) |
| 952 |
C_10< |
| 953 |
MLUD=NLUD |
| 954 |
LENPD=NEQ+NJAC+NLUD |
| 955 |
LENRW=40+(IWORK(LMXORD)+4)*NEQ+LENPD |
| 956 |
LENIW=20+NEQ*(2+13/NII2)+(NJAC+NLUD+MLUD)/NII2 |
| 957 |
C |
| 958 |
C check lengths of rwork and iwork |
| 959 |
C_2 60 LENIW=20+NEQ |
| 960 |
60 IF(LRW.LT.LENRW)GO TO 704 |
| 961 |
IF(LIW.LT.LENIW)GO TO 705 |
| 962 |
C |
| 963 |
C check to see that tout is different from t |
| 964 |
IF(TOUT .EQ. T)GO TO 719 |
| 965 |
C |
| 966 |
C check hmax |
| 967 |
IF(INFO(7).EQ.0)GO TO 70 |
| 968 |
HMAX=RWORK(LHMAX) |
| 969 |
IF(HMAX.LE.0.0D0)GO TO 710 |
| 970 |
70 CONTINUE |
| 971 |
C |
| 972 |
C initialize counters |
| 973 |
IWORK(LNST)=0 |
| 974 |
IWORK(LNRE)=0 |
| 975 |
C_11> |
| 976 |
IF (ICHAN .EQ. 1) THEN |
| 977 |
IWORK(LNJE)=1 |
| 978 |
ELSE |
| 979 |
IWORK(LNJE)=0 |
| 980 |
ENDIF |
| 981 |
C_11< |
| 982 |
IWORK(LNSTL)=0 |
| 983 |
IDID=1 |
| 984 |
GO TO 200 |
| 985 |
C |
| 986 |
C----------------------------------------------------------------------- |
| 987 |
C this block is for continuation calls |
| 988 |
C only. here we check info(1),and if the |
| 989 |
C last step was interrupted we check whether |
| 990 |
C appropriate action was taken. |
| 991 |
C----------------------------------------------------------------------- |
| 992 |
C |
| 993 |
100 CONTINUE |
| 994 |
IF(INFO(1).EQ.1)GO TO 110 |
| 995 |
IF(INFO(1).NE.-1)GO TO 701 |
| 996 |
C if we are here, the last step was interrupted |
| 997 |
C by an error condition from ddastp,and |
| 998 |
C appropriate action was not taken. this |
| 999 |
C is a fatal error. |
| 1000 |
CALL XERRWV( |
| 1001 |
*49HDASSL-- THE LAST STEP TERMINATED WITH A NEGATIVE, |
| 1002 |
*49,201,0,0,0,0,0,0.0D0,0.0D0) |
| 1003 |
CALL XERRWV( |
| 1004 |
*47HDASSL-- VALUE (=I1) OF IDID AND NO APPROPRIATE, |
| 1005 |
*47,202,0,1,IDID,0,0,0.0D0,0.0D0) |
| 1006 |
CALL XERRWV( |
| 1007 |
*41HDASSL-- ACTION WAS TAKEN. RUN TERMINATED, |
| 1008 |
*41,203,1,0,0,0,0,0.0D0,0.0D0) |
| 1009 |
RETURN |
| 1010 |
110 CONTINUE |
| 1011 |
IWORK(LNSTL)=IWORK(LNST) |
| 1012 |
C |
| 1013 |
C----------------------------------------------------------------------- |
| 1014 |
C this block is executed on all calls. |
| 1015 |
C the error tolerance parameters are |
| 1016 |
C checked, and the work array pointers |
| 1017 |
C are set. |
| 1018 |
C----------------------------------------------------------------------- |
| 1019 |
C |
| 1020 |
200 CONTINUE |
| 1021 |
C check rtol,atol |
| 1022 |
NZFLG=0 |
| 1023 |
RTOLI=RTOL(1) |
| 1024 |
ATOLI=ATOL(1) |
| 1025 |
DO 210 I=1,NEQ |
| 1026 |
IF(INFO(2).EQ.1)RTOLI=RTOL(I) |
| 1027 |
IF(INFO(2).EQ.1)ATOLI=ATOL(I) |
| 1028 |
IF(RTOLI.GT.0.0D0.OR.ATOLI.GT.0.0D0)NZFLG=1 |
| 1029 |
IF(RTOLI.LT.0.0D0)GO TO 706 |
| 1030 |
IF(ATOLI.LT.0.0D0)GO TO 707 |
| 1031 |
210 CONTINUE |
| 1032 |
IF(NZFLG.EQ.0)GO TO 708 |
| 1033 |
C |
| 1034 |
C set up rwork storage.iwork storage is fixed |
| 1035 |
C in data statement. |
| 1036 |
LE=LDELTA+NEQ |
| 1037 |
LWT=LE+NEQ |
| 1038 |
LPHI=LWT+NEQ |
| 1039 |
LPD=LPHI+(IWORK(LMXORD)+1)*NEQ |
| 1040 |
LWM=LPD |
| 1041 |
C_7 |
| 1042 |
IF (IWORK(LMTYPE).EQ.3) THEN |
| 1043 |
LENOFF(1)=-1 |
| 1044 |
PT1=0.1D0 |
| 1045 |
JACSIZ=NJAC |
| 1046 |
C_12 KWKN=LWM |
| 1047 |
KWKN=1 |
| 1048 |
KJAC=KWKN+NEQ |
| 1049 |
KLUD=KJAC+JACSIZ |
| 1050 |
KIPTR=LIPVT |
| 1051 |
KLENB=KIPTR+NEQ |
| 1052 |
MYY=(NEQ-1)/NII2+1 |
| 1053 |
KICNB=KLENB+MYY |
| 1054 |
KICNG=KICNB+(JACSIZ-1)/NII2+1 |
| 1055 |
KICGP=KICNG+MYY |
| 1056 |
KLENR=KICGP+MYY+1 |
| 1057 |
KLENRL=MYY+KLENR |
| 1058 |
KIPA=KLENRL+MYY |
| 1059 |
KIQA=KIPA+MYY |
| 1060 |
KICN=KIQA+MYY |
| 1061 |
JIPC=LIW+1-NEQ |
| 1062 |
KLENC=JIPC-MYY |
| 1063 |
JIFIRST=KLENC-MYY |
| 1064 |
JLASTR=JIFIRST-MYY |
| 1065 |
JNEXTR=JLASTR-MYY |
| 1066 |
JLASTC=JNEXTR-MYY |
| 1067 |
JNEXTC=JLASTC-MYY |
| 1068 |
C remaning length on IWORK: KSIZ |
| 1069 |
KSIZ=JNEXTC-KICN |
| 1070 |
KSIZN=(JACSIZ+1+2*NEQ)/NII2 |
| 1071 |
KSIZM=KSIZN |
| 1072 |
IF(KSIZ.LT.2*KSIZN) KSIZM=KSIZ/2 |
| 1073 |
KSIZM=(KSIZM+KSIZ)/3 |
| 1074 |
C remaning length on RWORK: LIAN |
| 1075 |
LIAN=(LRW-KLUD-LWM+1)/NII2 |
| 1076 |
C_12 LIAN=(LRW-KLUD+1)/NII2 |
| 1077 |
LUDSIZ=MIN0(KSIZ-KSIZM,LIAN) |
| 1078 |
LIRN=MIN0(KSIZ-LUDSIZ,LIAN) |
| 1079 |
JIRN=KICN+LUDSIZ |
| 1080 |
LUDSIZ=LUDSIZ*NII2 |
| 1081 |
LIRN=LIRN*NII2 |
| 1082 |
ENDIF |
| 1083 |
C_7 END |
| 1084 |
NPD=1 |
| 1085 |
NTEMP=NPD+LENPD |
| 1086 |
IF(INFO(1).EQ.1)GO TO 400 |
| 1087 |
C |
| 1088 |
C----------------------------------------------------------------------- |
| 1089 |
C this block is executed on the initial call |
| 1090 |
C only. set the initial step size, and |
| 1091 |
C the error weight vector, and phi. |
| 1092 |
C compute initial yprime, if necessary. |
| 1093 |
C----------------------------------------------------------------------- |
| 1094 |
C |
| 1095 |
300 CONTINUE |
| 1096 |
TN=T |
| 1097 |
IDID=1 |
| 1098 |
C |
| 1099 |
C set error weight vector wt |
| 1100 |
CALL DDAWTS(NEQ,INFO(2),RTOL,ATOL,Y,RWORK(LWT),RPAR,IPAR) |
| 1101 |
DO 305 I = 1,NEQ |
| 1102 |
IF(RWORK(LWT+I-1).LE.0.0D0) GO TO 713 |
| 1103 |
305 CONTINUE |
| 1104 |
C |
| 1105 |
C compute unit roundoff and hmin |
| 1106 |
UROUND = D1MACH(4) |
| 1107 |
RWORK(LROUND) = UROUND |
| 1108 |
HMIN = 4.0D0*UROUND*DMAX1(DABS(T),DABS(TOUT)) |
| 1109 |
C |
| 1110 |
C check initial interval to see that it is long enough |
| 1111 |
TDIST = DABS(TOUT - T) |
| 1112 |
IF(TDIST .LT. HMIN) GO TO 714 |
| 1113 |
C |
| 1114 |
C check ho, if this was input |
| 1115 |
IF (INFO(8) .EQ. 0) GO TO 310 |
| 1116 |
HO = RWORK(LH) |
| 1117 |
IF ((TOUT - T)*HO .LT. 0.0D0) GO TO 711 |
| 1118 |
IF (HO .EQ. 0.0D0) GO TO 712 |
| 1119 |
GO TO 320 |
| 1120 |
310 CONTINUE |
| 1121 |
C |
| 1122 |
C compute initial stepsize, to be used by either |
| 1123 |
C ddastp or ddaini, depending on info(11) |
| 1124 |
HO = 0.001D0*TDIST |
| 1125 |
YPNORM = DDANRM(NEQ,YPRIME,RWORK(LWT),RPAR,IPAR) |
| 1126 |
IF (YPNORM .GT. 0.5D0/HO) HO = 0.5D0/YPNORM |
| 1127 |
HO = DSIGN(HO,TOUT-T) |
| 1128 |
C adjust ho if necessary to meet hmax bound |
| 1129 |
320 IF (INFO(7) .EQ. 0) GO TO 330 |
| 1130 |
RH = DABS(HO)/HMAX |
| 1131 |
IF (RH .GT. 1.0D0) HO = HO/RH |
| 1132 |
C compute tstop, if applicable |
| 1133 |
330 IF (INFO(4) .EQ. 0) GO TO 340 |
| 1134 |
TSTOP = RWORK(LTSTOP) |
| 1135 |
IF ((TSTOP - T)*HO .LT. 0.0D0) GO TO 715 |
| 1136 |
IF ((T + HO - TSTOP)*HO .GT. 0.0D0) HO = TSTOP - T |
| 1137 |
IF ((TSTOP - TOUT)*HO .LT. 0.0D0) GO TO 709 |
| 1138 |
C |
| 1139 |
C compute initial derivative, if applicable |
| 1140 |
340 IF (INFO(11) .EQ. 0) GO TO 350 |
| 1141 |
C_020490ak |
| 1142 |
C test : rwork(lphi) is the first address of (iwrok(maxord)+1)*neq elements |
| 1143 |
C on rwork to hold the Nordsieck vector later on. Now 4*neq elements are |
| 1144 |
C used to store old and intermediate values of Y and YPRIME during |
| 1145 |
C determination of consistent intial conditions. |
| 1146 |
if (iwork(lmxord) .lt. 3) then |
| 1147 |
write(6,*) 'Array PHI is too small for DDAINI' |
| 1148 |
write(6,*) 'maximum order should be greater than 3' |
| 1149 |
stop '****DDASSL just before call to DDANINI *****' |
| 1150 |
endif |
| 1151 |
C_020490ak |
| 1152 |
CALL DDAINI(T,Y,YPRIME,NEQ, |
| 1153 |
* RES,JAC,HO,RWORK(LWT),IDID,RPAR,IPAR, |
| 1154 |
* RWORK(LPHI),RWORK(LDELTA),RWORK(LE), |
| 1155 |
* RWORK(LWM),IWORK(LIWM),HMIN,RWORK(LROUND),INFO(10),PTN) |
| 1156 |
IF (IDID .LT. 0) GO TO 390 |
| 1157 |
C |
| 1158 |
C load h with ho. store h in rwork(lh) |
| 1159 |
350 H = HO |
| 1160 |
RWORK(LH) = H |
| 1161 |
C |
| 1162 |
C load y and h*yprime into phi(*,1) and phi(*,2) |
| 1163 |
360 ITEMP = LPHI + NEQ |
| 1164 |
DO 370 I = 1,NEQ |
| 1165 |
RWORK(LPHI + I - 1) = Y(I) |
| 1166 |
370 RWORK(ITEMP + I - 1) = H*YPRIME(I) |
| 1167 |
C |
| 1168 |
390 GO TO 500 |
| 1169 |
C |
| 1170 |
C------------------------------------------------------- |
| 1171 |
C this block is for continuation calls only. its |
| 1172 |
C purpose is to check stop conditions before |
| 1173 |
C taking a step. |
| 1174 |
C adjust h if necessary to meet hmax bound |
| 1175 |
C------------------------------------------------------- |
| 1176 |
C |
| 1177 |
400 CONTINUE |
| 1178 |
DONE = .FALSE. |
| 1179 |
TN=RWORK(LTN) |
| 1180 |
H=RWORK(LH) |
| 1181 |
IF(INFO(7) .EQ. 0) GO TO 410 |
| 1182 |
RH = DABS(H)/HMAX |
| 1183 |
IF(RH .GT. 1.0D0) H = H/RH |
| 1184 |
410 CONTINUE |
| 1185 |
IF(T .EQ. TOUT) GO TO 719 |
| 1186 |
IF((T - TOUT)*H .GT. 0.0D0) GO TO 711 |
| 1187 |
IF(INFO(4) .EQ. 1) GO TO 430 |
| 1188 |
IF(INFO(3) .EQ. 1) GO TO 420 |
| 1189 |
IF((TN-TOUT)*H.LT.0.0D0)GO TO 490 |
| 1190 |
CALL DDATRP(TN,TOUT,Y,YPRIME,NEQ,IWORK(LKOLD), |
| 1191 |
* RWORK(LPHI),RWORK(LPSI)) |
| 1192 |
T=TOUT |
| 1193 |
IDID = 3 |
| 1194 |
DONE = .TRUE. |
| 1195 |
GO TO 490 |
| 1196 |
420 IF((TN-T)*H .LE. 0.0D0) GO TO 490 |
| 1197 |
IF((TN - TOUT)*H .GT. 0.0D0) GO TO 425 |
| 1198 |
CALL DDATRP(TN,TN,Y,YPRIME,NEQ,IWORK(LKOLD), |
| 1199 |
* RWORK(LPHI),RWORK(LPSI)) |
| 1200 |
T = TN |
| 1201 |
IDID = 1 |
| 1202 |
DONE = .TRUE. |
| 1203 |
GO TO 490 |
| 1204 |
425 CONTINUE |
| 1205 |
CALL DDATRP(TN,TOUT,Y,YPRIME,NEQ,IWORK(LKOLD), |
| 1206 |
* RWORK(LPHI),RWORK(LPSI)) |
| 1207 |
T = TOUT |
| 1208 |
IDID = 3 |
| 1209 |
DONE = .TRUE. |
| 1210 |
GO TO 490 |
| 1211 |
430 IF(INFO(3) .EQ. 1) GO TO 440 |
| 1212 |
TSTOP=RWORK(LTSTOP) |
| 1213 |
IF((TN-TSTOP)*H.GT.0.0D0) GO TO 715 |
| 1214 |
IF((TSTOP-TOUT)*H.LT.0.0D0)GO TO 709 |
| 1215 |
IF((TN-TOUT)*H.LT.0.0D0)GO TO 450 |
| 1216 |
CALL DDATRP(TN,TOUT,Y,YPRIME,NEQ,IWORK(LKOLD), |
| 1217 |
* RWORK(LPHI),RWORK(LPSI)) |
| 1218 |
T=TOUT |
| 1219 |
IDID = 3 |
| 1220 |
DONE = .TRUE. |
| 1221 |
GO TO 490 |
| 1222 |
440 TSTOP = RWORK(LTSTOP) |
| 1223 |
IF((TN-TSTOP)*H .GT. 0.0D0) GO TO 715 |
| 1224 |
IF((TSTOP-TOUT)*H .LT. 0.0D0) GO TO 709 |
| 1225 |
IF((TN-T)*H .LE. 0.0D0) GO TO 450 |
| 1226 |
IF((TN - TOUT)*H .GT. 0.0D0) GO TO 445 |
| 1227 |
CALL DDATRP(TN,TN,Y,YPRIME,NEQ,IWORK(LKOLD), |
| 1228 |
* RWORK(LPHI),RWORK(LPSI)) |
| 1229 |
T = TN |
| 1230 |
IDID = 1 |
| 1231 |
DONE = .TRUE. |
| 1232 |
GO TO 490 |
| 1233 |
445 CONTINUE |
| 1234 |
CALL DDATRP(TN,TOUT,Y,YPRIME,NEQ,IWORK(LKOLD), |
| 1235 |
* RWORK(LPHI),RWORK(LPSI)) |
| 1236 |
T = TOUT |
| 1237 |
IDID = 3 |
| 1238 |
DONE = .TRUE. |
| 1239 |
GO TO 490 |
| 1240 |
450 CONTINUE |
| 1241 |
C check whether we are with in roundoff of tstop |
| 1242 |
IF(DABS(TN-TSTOP).GT.100.0D0*UROUND* |
| 1243 |
* (DABS(TN)+DABS(H)))GO TO 460 |
| 1244 |
IDID=2 |
| 1245 |
T=TSTOP |
| 1246 |
DONE = .TRUE. |
| 1247 |
GO TO 490 |
| 1248 |
460 TNEXT=TN+H*(1.0D0+4.0D0*UROUND) |
| 1249 |
IF((TNEXT-TSTOP)*H.LE.0.0D0)GO TO 490 |
| 1250 |
H=(TSTOP-TN)*(1.0D0-4.0D0*UROUND) |
| 1251 |
RWORK(LH)=H |
| 1252 |
C |
| 1253 |
490 IF (DONE) GO TO 590 |
| 1254 |
C |
| 1255 |
C------------------------------------------------------- |
| 1256 |
C the next block contains the call to the |
| 1257 |
C one-step integrator ddastp. |
| 1258 |
C this is a looping point for the integration |
| 1259 |
C steps. |
| 1260 |
C check for too many steps. |
| 1261 |
C update wt. |
| 1262 |
C check for too much accuracy requested. |
| 1263 |
C compute minimum stepsize. |
| 1264 |
C------------------------------------------------------- |
| 1265 |
C |
| 1266 |
500 CONTINUE |
| 1267 |
C check for failure to compute initial yprime |
| 1268 |
IF (IDID .EQ. -12) GO TO 527 |
| 1269 |
C |
| 1270 |
C check for too many steps |
| 1271 |
IF((IWORK(LNST)-IWORK(LNSTL)).LT.500) |
| 1272 |
* GO TO 510 |
| 1273 |
IDID=-1 |
| 1274 |
GO TO 527 |
| 1275 |
C |
| 1276 |
C update wt |
| 1277 |
510 CALL DDAWTS(NEQ,INFO(2),RTOL,ATOL,RWORK(LPHI), |
| 1278 |
* RWORK(LWT),RPAR,IPAR) |
| 1279 |
DO 520 I=1,NEQ |
| 1280 |
IF(RWORK(I+LWT-1).GT.0.0D0)GO TO 520 |
| 1281 |
IDID=-3 |
| 1282 |
GO TO 527 |
| 1283 |
520 CONTINUE |
| 1284 |
C |
| 1285 |
C test for too much accuracy requested. |
| 1286 |
R=DDANRM(NEQ,RWORK(LPHI),RWORK(LWT),RPAR,IPAR)* |
| 1287 |
* 100.0D0*UROUND |
| 1288 |
IF(R.LE.1.0D0)GO TO 525 |
| 1289 |
C multiply rtol and atol by r and return |
| 1290 |
IF(INFO(2).EQ.1)GO TO 523 |
| 1291 |
RTOL(1)=R*RTOL(1) |
| 1292 |
ATOL(1)=R*ATOL(1) |
| 1293 |
IDID=-2 |
| 1294 |
GO TO 527 |
| 1295 |
523 DO 524 I=1,NEQ |
| 1296 |
RTOL(I)=R*RTOL(I) |
| 1297 |
524 ATOL(I)=R*ATOL(I) |
| 1298 |
IDID=-2 |
| 1299 |
GO TO 527 |
| 1300 |
525 CONTINUE |
| 1301 |
C |
| 1302 |
C compute minimum stepsize |
| 1303 |
HMIN=4.0D0*UROUND*DMAX1(DABS(TN),DABS(TOUT)) |
| 1304 |
C |
| 1305 |
CALL DDASTP(TN,Y,YPRIME,NEQ, |
| 1306 |
* RES,JAC,H,RWORK(LWT),INFO(1),IDID,RPAR,IPAR, |
| 1307 |
* RWORK(LPHI),RWORK(LDELTA),RWORK(LE), |
| 1308 |
* RWORK(LWM),IWORK(LIWM), |
| 1309 |
* RWORK(LALPHA),RWORK(LBETA),RWORK(LGAMMA), |
| 1310 |
* RWORK(LPSI),RWORK(LSIGMA), |
| 1311 |
* RWORK(LCJ),RWORK(LCJOLD),RWORK(LHOLD), |
| 1312 |
* RWORK(LS),HMIN,RWORK(LROUND), |
| 1313 |
* IWORK(LPHASE),IWORK(LJCALC),IWORK(LK), |
| 1314 |
* IWORK(LKOLD),IWORK(LNS),INFO(10),PTN) |
| 1315 |
527 IF(IDID.LT.0)GO TO 600 |
| 1316 |
C |
| 1317 |
C------------------------------------------------------ |
| 1318 |
C this block handles the case of a successful |
| 1319 |
C return from ddastp (idid=1) test for |
| 1320 |
C stop conditions. |
| 1321 |
C-------------------------------------------------------- |
| 1322 |
C |
| 1323 |
IF(INFO(4).NE.0)GO TO 540 |
| 1324 |
IF(INFO(3).NE.0)GO TO 530 |
| 1325 |
IF((TN-TOUT)*H.LT.0.0D0)GO TO 500 |
| 1326 |
CALL DDATRP(TN,TOUT,Y,YPRIME,NEQ, |
| 1327 |
* IWORK(LKOLD),RWORK(LPHI),RWORK(LPSI)) |
| 1328 |
IDID=3 |
| 1329 |
T=TOUT |
| 1330 |
GO TO 580 |
| 1331 |
530 IF((TN-TOUT)*H.GE.0.0D0)GO TO 535 |
| 1332 |
T=TN |
| 1333 |
IDID=1 |
| 1334 |
GO TO 580 |
| 1335 |
535 CALL DDATRP(TN,TOUT,Y,YPRIME,NEQ, |
| 1336 |
* IWORK(LKOLD),RWORK(LPHI),RWORK(LPSI)) |
| 1337 |
IDID=3 |
| 1338 |
T=TOUT |
| 1339 |
GO TO 580 |
| 1340 |
540 IF(INFO(3).NE.0)GO TO 550 |
| 1341 |
IF((TN-TOUT)*H.LT.0.0D0)GO TO 542 |
| 1342 |
CALL DDATRP(TN,TOUT,Y,YPRIME,NEQ, |
| 1343 |
* IWORK(LKOLD),RWORK(LPHI),RWORK(LPSI)) |
| 1344 |
T=TOUT |
| 1345 |
IDID=3 |
| 1346 |
GO TO 580 |
| 1347 |
542 IF(DABS(TN-TSTOP).LE.100.0D0*UROUND* |
| 1348 |
* (DABS(TN)+DABS(H)))GO TO 545 |
| 1349 |
TNEXT=TN+H*(1.0D0+4.0D0*UROUND) |
| 1350 |
IF((TNEXT-TSTOP)*H.LE.0.0D0)GO TO 500 |
| 1351 |
H=(TSTOP-TN)*(1.0D0-4.0D0*UROUND) |
| 1352 |
GO TO 500 |
| 1353 |
545 IDID=2 |
| 1354 |
T=TSTOP |
| 1355 |
GO TO 580 |
| 1356 |
550 IF((TN-TOUT)*H.GE.0.0D0)GO TO 555 |
| 1357 |
IF(DABS(TN-TSTOP).LE.100.0D0*UROUND*(DABS(TN)+DABS(H)))GO TO 552 |
| 1358 |
T=TN |
| 1359 |
IDID=1 |
| 1360 |
GO TO 580 |
| 1361 |
552 IDID=2 |
| 1362 |
T=TSTOP |
| 1363 |
GO TO 580 |
| 1364 |
555 CALL DDATRP(TN,TOUT,Y,YPRIME,NEQ, |
| 1365 |
* IWORK(LKOLD),RWORK(LPHI),RWORK(LPSI)) |
| 1366 |
T=TOUT |
| 1367 |
IDID=3 |
| 1368 |
580 CONTINUE |
| 1369 |
C |
| 1370 |
C-------------------------------------------------------- |
| 1371 |
C all successful returns from ddassl are made from |
| 1372 |
C this block. |
| 1373 |
C-------------------------------------------------------- |
| 1374 |
C |
| 1375 |
590 CONTINUE |
| 1376 |
RWORK(LTN)=TN |
| 1377 |
RWORK(LH)=H |
| 1378 |
RETURN |
| 1379 |
C |
| 1380 |
C----------------------------------------------------------------------- |
| 1381 |
C this block handles all unsuccessful |
| 1382 |
C returns other than for illegal input. |
| 1383 |
C----------------------------------------------------------------------- |
| 1384 |
C |
| 1385 |
600 CONTINUE |
| 1386 |
ITEMP=-IDID |
| 1387 |
GO TO (610,620,630,690,690,640,650,660,670,675, |
| 1388 |
* 680,685), ITEMP |
| 1389 |
C |
| 1390 |
C the maximum number of steps was taken before |
| 1391 |
C reaching tout |
| 1392 |
610 CALL XERRWV( |
| 1393 |
*38HDASSL-- AT CURRENT T (=R1) 500 STEPS, |
| 1394 |
*38,610,0,0,0,0,1,TN,0.0D0) |
| 1395 |
CALL XERRWV(48HDASSL-- TAKEN ON THIS CALL BEFORE REACHING TOUT, |
| 1396 |
*48,611,0,0,0,0,0,0.0D0,0.0D0) |
| 1397 |
GO TO 690 |
| 1398 |
C |
| 1399 |
C too much accuracy for machine precision |
| 1400 |
620 CALL XERRWV( |
| 1401 |
*47HDASSL-- AT T (=R1) TOO MUCH ACCURACY REQUESTED, |
| 1402 |
*47,620,0,0,0,0,1,TN,0.0D0) |
| 1403 |
CALL XERRWV( |
| 1404 |
*48HDASSL-- FOR PRECISION OF MACHINE. RTOL AND ATOL, |
| 1405 |
*48,621,0,0,0,0,0,0.0D0,0.0D0) |
| 1406 |
CALL XERRWV( |
| 1407 |
*45HDASSL-- WERE INCREASED TO APPROPRIATE VALUES, |
| 1408 |
*45,622,0,0,0,0,0,0.0D0,0.0D0) |
| 1409 |
C |
| 1410 |
GO TO 690 |
| 1411 |
C wt(i) .le. 0.0d0 for some i (not at start of problem) |
| 1412 |
630 CALL XERRWV( |
| 1413 |
*38HDASSL-- AT T (=R1) SOME ELEMENT OF WT, |
| 1414 |
*38,630,0,0,0,0,1,TN,0.0D0) |
| 1415 |
CALL XERRWV(28HDASSL-- HAS BECOME .LE. 0.0, |
| 1416 |
*28,631,0,0,0,0,0,0.0D0,0.0D0) |
| 1417 |
GO TO 690 |
| 1418 |
C |
| 1419 |
C error test failed repeatedly or with h=hmin |
| 1420 |
640 CALL XERRWV( |
| 1421 |
*44HDASSL-- AT T (=R1) AND STEPSIZE H (=R2) THE, |
| 1422 |
*44,640,0,0,0,0,2,TN,H) |
| 1423 |
CALL XERRWV( |
| 1424 |
*57HDASSL-- ERROR TEST FAILED REPEATEDLY OR WITH ABS(H)=HMIN, |
| 1425 |
*57,641,0,0,0,0,0,0.0D0,0.0D0) |
| 1426 |
GO TO 690 |
| 1427 |
C |
| 1428 |
C corrector convergence failed repeatedly or with h=hmin |
| 1429 |
650 CALL XERRWV( |
| 1430 |
*44HDASSL-- AT T (=R1) AND STEPSIZE H (=R2) THE, |
| 1431 |
*44,650,0,0,0,0,2,TN,H) |
| 1432 |
CALL XERRWV( |
| 1433 |
*48HDASSL-- CORRECTOR FAILED TO CONVERGE REPEATEDLY, |
| 1434 |
*48,651,0,0,0,0,0,0.0D0,0.0D0) |
| 1435 |
CALL XERRWV( |
| 1436 |
*28HDASSL-- OR WITH ABS(H)=HMIN, |
| 1437 |
*28,652,0,0,0,0,0,0.0D0,0.0D0) |
| 1438 |
GO TO 690 |
| 1439 |
C |
| 1440 |
C the iteration matrix is singular |
| 1441 |
660 CALL XERRWV( |
| 1442 |
*44HDASSL-- AT T (=R1) AND STEPSIZE H (=R2) THE, |
| 1443 |
*44,660,0,0,0,0,2,TN,H) |
| 1444 |
CALL XERRWV( |
| 1445 |
*37HDASSL-- ITERATION MATRIX IS SINGULAR, |
| 1446 |
*37,661,0,0,0,0,0,0.0D0,0.0D0) |
| 1447 |
GO TO 690 |
| 1448 |
C |
| 1449 |
C corrector failure preceeded by error test failures. |
| 1450 |
670 CALL XERRWV( |
| 1451 |
*44HDASSL-- AT T (=R1) AND STEPSIZE H (=R2) THE, |
| 1452 |
*44,670,0,0,0,0,2,TN,H) |
| 1453 |
CALL XERRWV( |
| 1454 |
*49HDASSL-- CORRECTOR COULD NOT CONVERGE. ALSO, THE, |
| 1455 |
*49,671,0,0,0,0,0,0.0D0,0.0D0) |
| 1456 |
CALL XERRWV( |
| 1457 |
*38HDASSL-- ERROR TEST FAILED REPEATEDLY., |
| 1458 |
*38,672,0,0,0,0,0,0.0D0,0.0D0) |
| 1459 |
GO TO 690 |
| 1460 |
C |
| 1461 |
C corrector failure because ires = -1 |
| 1462 |
675 CALL XERRWV( |
| 1463 |
*44HDASSL-- AT T (=R1) AND STEPSIZE H (=R2) THE, |
| 1464 |
*44,675,0,0,0,0,2,TN,H) |
| 1465 |
CALL XERRWV( |
| 1466 |
*45HDASSL-- CORRECTOR COULD NOT CONVERGE BECAUSE, |
| 1467 |
*455,676,0,0,0,0,0,0.0D0,0.0D0) |
| 1468 |
CALL XERRWV( |
| 1469 |
*36HDASSL-- IRES WAS EQUAL TO MINUS ONE, |
| 1470 |
*36,677,0,0,0,0,0,0.0D0,0.0D0) |
| 1471 |
GO TO 690 |
| 1472 |
C |
| 1473 |
C failure because ires = -2 |
| 1474 |
680 CALL XERRWV( |
| 1475 |
*40HDASSL-- AT T (=R1) AND STEPSIZE H (=R2), |
| 1476 |
*40,680,0,0,0,0,2,TN,H) |
| 1477 |
CALL XERRWV( |
| 1478 |
*36HDASSL-- IRES WAS EQUAL TO MINUS TWO, |
| 1479 |
*36,681,0,0,0,0,0,0.0D0,0.0D0) |
| 1480 |
GO TO 690 |
| 1481 |
C |
| 1482 |
C failed to compute initial yprime |
| 1483 |
685 CALL XERRWV( |
| 1484 |
*44HDASSL-- AT T (=R1) AND STEPSIZE H (=R2) THE, |
| 1485 |
*44,685,0,0,0,0,2,TN,HO) |
| 1486 |
CALL XERRWV( |
| 1487 |
*45HDASSL-- INITIAL YPRIME COULD NOT BE COMPUTED, |
| 1488 |
*45,686,0,0,0,0,0,0.0D0,0.0D0) |
| 1489 |
GO TO 690 |
| 1490 |
690 CONTINUE |
| 1491 |
INFO(1)=-1 |
| 1492 |
T=TN |
| 1493 |
RWORK(LTN)=TN |
| 1494 |
RWORK(LH)=H |
| 1495 |
RETURN |
| 1496 |
C----------------------------------------------------------------------- |
| 1497 |
C this block handles all error returns due |
| 1498 |
C to illegal input, as detected before calling |
| 1499 |
C ddastp. first the error message routine is |
| 1500 |
C called. if this happens twice in |
| 1501 |
C succession, execution is terminated |
| 1502 |
C |
| 1503 |
C----------------------------------------------------------------------- |
| 1504 |
701 CALL XERRWV( |
| 1505 |
*55HDASSL-- SOME ELEMENT OF INFO VECTOR IS NOT ZERO OR ONE, |
| 1506 |
*55,1,0,0,0,0,0,0.0D0,0.0D0) |
| 1507 |
GO TO 750 |
| 1508 |
702 CALL XERRWV(25HDASSL-- NEQ (=I1) .LE. 0, |
| 1509 |
*25,2,0,1,NEQ,0,0,0.0D0,0.0D0) |
| 1510 |
GO TO 750 |
| 1511 |
703 CALL XERRWV(34HDASSL-- MAXORD (=I1) NOT IN RANGE, |
| 1512 |
*34,3,0,1,MXORD,0,0,0.0D0,0.0D0) |
| 1513 |
GO TO 750 |
| 1514 |
704 CALL XERRWV( |
| 1515 |
*60HDASSL-- RWORK LENGTH NEEDED, LENRW (=I1), EXCEEDS LRW (=I2), |
| 1516 |
*60,4,0,2,LENRW,LRW,0,0.0D0,0.0D0) |
| 1517 |
GO TO 750 |
| 1518 |
705 CALL XERRWV( |
| 1519 |
*60HDASSL-- IWORK LENGTH NEEDED, LENIW (=I1), EXCEEDS LIW (=I2), |
| 1520 |
*60,5,0,2,LENIW,LIW,0,0.0D0,0.0D0) |
| 1521 |
GO TO 750 |
| 1522 |
706 CALL XERRWV( |
| 1523 |
*39HDASSL-- SOME ELEMENT OF RTOL IS .LT. 0, |
| 1524 |
*39,6,0,0,0,0,0,0.0D0,0.0D0) |
| 1525 |
GO TO 750 |
| 1526 |
707 CALL XERRWV( |
| 1527 |
*39HDASSL-- SOME ELEMENT OF ATOL IS .LT. 0, |
| 1528 |
*39,7,0,0,0,0,0,0.0D0,0.0D0) |
| 1529 |
GO TO 750 |
| 1530 |
708 CALL XERRWV( |
| 1531 |
*47HDASSL-- ALL ELEMENTS OF RTOL AND ATOL ARE ZERO, |
| 1532 |
*47,8,0,0,0,0,0,0.0D0,0.0D0) |
| 1533 |
GO TO 750 |
| 1534 |
709 CALL XERRWV( |
| 1535 |
*54HDASSL-- INFO(4) = 1 AND TSTOP (=R1) BEHIND TOUT (=R2), |
| 1536 |
*54,9,0,0,0,0,2,TSTOP,TOUT) |
| 1537 |
GO TO 750 |
| 1538 |
710 CALL XERRWV(28HDASSL-- HMAX (=R1) .LT. 0.0, |
| 1539 |
*28,10,0,0,0,0,1,HMAX,0.0D0) |
| 1540 |
GO TO 750 |
| 1541 |
711 CALL XERRWV(34HDASSL-- TOUT (=R1) BEHIND T (=R2), |
| 1542 |
*34,11,0,0,0,0,2,TOUT,T) |
| 1543 |
GO TO 750 |
| 1544 |
712 CALL XERRWV(29HDASSL-- INFO(8)=1 AND H0=0.0, |
| 1545 |
*29,12,0,0,0,0,0,0.0D0,0.0D0) |
| 1546 |
GO TO 750 |
| 1547 |
713 CALL XERRWV(39HDASSL-- SOME ELEMENT OF WT IS .LE. 0.0, |
| 1548 |
*39,13,0,0,0,0,0,0.0D0,0.0D0) |
| 1549 |
GO TO 750 |
| 1550 |
714 CALL XERRWV( |
| 1551 |
*61HDASSL-- TOUT (=R1) TOO CLOSE TO T (=R2) TO START INTEGRATION, |
| 1552 |
*61,14,0,0,0,0,2,TOUT,T) |
| 1553 |
GO TO 750 |
| 1554 |
715 CALL XERRWV( |
| 1555 |
*49HDASSL-- INFO(4)=1 AND TSTOP (=R1) BEHIND T (=R2), |
| 1556 |
*49,15,0,0,0,0,2,TSTOP,T) |
| 1557 |
GO TO 750 |
| 1558 |
719 CALL XERRWV( |
| 1559 |
*39HDASSL-- TOUT (=R1) IS EQUAL TO T (=R2), |
| 1560 |
*39,19,0,0,0,0,2,TOUT,T) |
| 1561 |
GO TO 750 |
| 1562 |
750 IF(INFO(1).EQ.-1) GO TO 760 |
| 1563 |
INFO(1)=-1 |
| 1564 |
IDID=-33 |
| 1565 |
RETURN |
| 1566 |
760 CALL XERRWV( |
| 1567 |
*46HDASSL-- REPEATED OCCURRENCES OF ILLEGAL INPUT, |
| 1568 |
*46,801,0,0,0,0,0,0.0D0,0.0D0) |
| 1569 |
770 CALL XERRWV( |
| 1570 |
*47HDASSL-- RUN TERMINATED. APPARENT INFINITE LOOP, |
| 1571 |
*47,802,1,0,0,0,0,0.0D0,0.0D0) |
| 1572 |
RETURN |
| 1573 |
C-----------end of subroutine ddassl------------------------------------- |
| 1574 |
END |
| 1575 |
SUBROUTINE DDASTP(X,Y,YPRIME,NEQ, |
| 1576 |
* RES,JAC,H,WT,JSTART,IDID,RPAR,IPAR, |
| 1577 |
* PHI,DELTA,E,WM,IWM, |
| 1578 |
* ALPHA,BETA,GAMMA,PSI,SIGMA, |
| 1579 |
* CJ,CJOLD,HOLD,S,HMIN,UROUND, |
| 1580 |
* IPHASE,JCALC,K,KOLD,NS,NONNEG,PTN) |
| 1581 |
C |
| 1582 |
C***BEGIN PROLOGUE DDASTP |
| 1583 |
C***REFER TO DDASSL |
| 1584 |
C***ROUTINES CALLED DDANRM,DDAJAC,DDASLV,DDATRP |
| 1585 |
C***COMMON BLOCKS DDA001 |
| 1586 |
C***DATE WRITTEN 830315 (YYMMDD) |
| 1587 |
C***REVISION DATE 830315 (YYMMDD) |
| 1588 |
C***END PROLOGUE DDASTP |
| 1589 |
C |
| 1590 |
C |
| 1591 |
C----------------------------------------------------------------------- |
| 1592 |
C dastep solves a system of differential/ |
| 1593 |
C algebraic equations of the form |
| 1594 |
C g(x,y,yprime) = 0, for one step (normally |
| 1595 |
C from x to x+h). |
| 1596 |
C |
| 1597 |
C the methods used are modified divided |
| 1598 |
C difference,fixed leading coefficient |
| 1599 |
C forms of backward differentiation |
| 1600 |
C formulas. the code adjusts the stepsize |
| 1601 |
C and order to control the local error per |
| 1602 |
C step. |
| 1603 |
C |
| 1604 |
C |
| 1605 |
C the parameters represent |
| 1606 |
C x -- independent variable |
| 1607 |
C y -- solution vector at x |
| 1608 |
C yprime -- derivative of solution vector |
| 1609 |
C after successful step |
| 1610 |
C neq -- number of equations to be integrated |
| 1611 |
C res -- external user-supplied subroutine |
| 1612 |
C to evaluate the residual. the call is |
| 1613 |
C call res(x,y,yprime,delta,ires,rpar,ipar) |
| 1614 |
C x,y,yprime are input. delta is output. |
| 1615 |
C on input, ires=0. res should alter ires only |
| 1616 |
C if it encounters an illegal value of y or a |
| 1617 |
C stop condition. set ires=-1 if an input value |
| 1618 |
C of y is illegal, and dastep will try to solve |
| 1619 |
C the problem without getting ires = -1. if |
| 1620 |
C ires=-2, dastep returns control to the calling |
| 1621 |
C program with idid = -11. |
| 1622 |
C jac -- external user-supplied routine to evaluate |
| 1623 |
C the iteration matrix (this is optional) |
| 1624 |
C the call is of the form |
| 1625 |
C call jac(x,y,yprime,pd,cj,rpar,ipar) |
| 1626 |
C pd is the matrix of partial derivatives, |
| 1627 |
C pd=dg/dy+cj*dg/dyprime |
| 1628 |
C h -- appropriate step size for next step. |
| 1629 |
C normally determined by the code |
| 1630 |
C wt -- vector of weights for error criterion. |
| 1631 |
C jstart -- integer variable set 0 for |
| 1632 |
C first step, 1 otherwise. |
| 1633 |
C idid -- completion code with the following meanings% |
| 1634 |
C idid= 1 -- the step was completed successfully |
| 1635 |
C idid=-6 -- the error test failed repeatedly |
| 1636 |
C idid=-7 -- the corrector could not converge |
| 1637 |
C idid=-8 -- the iteration matrix is singular |
| 1638 |
C idid=-9 -- the corrector could not converge. |
| 1639 |
C there were repeated error test |
| 1640 |
C failures on this step. |
| 1641 |
C idid=-10-- the corrector could not converge |
| 1642 |
C because ires was equal to minus one |
| 1643 |
C idid=-11-- ires equal to -2 was encountered, |
| 1644 |
C and control is being returned to |
| 1645 |
C the calling program |
| 1646 |
C rpar,ipar -- real and integer parameter arrays that |
| 1647 |
C are used for communication between the |
| 1648 |
C calling program and external user routines |
| 1649 |
C they are not altered by dastep |
| 1650 |
C phi -- array of divided differences used by |
| 1651 |
C dastep. the length is neq*(k+1),where |
| 1652 |
C k is the maximum order |
| 1653 |
C delta,e -- work vectors for dastep of length neq |
| 1654 |
C wm,iwm -- real and integer arrays storing |
| 1655 |
C matrix information such as the matrix |
| 1656 |
C of partial derivatives,permutation |
| 1657 |
C vector,and various other information. |
| 1658 |
C |
| 1659 |
C the other parameters are information |
| 1660 |
C which is needed internally by dastep to |
| 1661 |
C continue from step to step. |
| 1662 |
C |
| 1663 |
C----------------------------------------------------------------------- |
| 1664 |
C_1 R.KOE EINBAU VON PTN IN PARAMETERKAMMERN DDASTP,DDAJAC U.EXT |
| 1665 |
C |
| 1666 |
C |
| 1667 |
IMPLICIT DOUBLE PRECISION(A-H,O-Z) |
| 1668 |
LOGICAL CONVGD |
| 1669 |
DIMENSION Y(1),YPRIME(1),WT(1) |
| 1670 |
DIMENSION PHI(NEQ,1),DELTA(1),E(1) |
| 1671 |
DIMENSION WM(1),IWM(1) |
| 1672 |
DIMENSION PSI(1),ALPHA(1),BETA(1),GAMMA(1),SIGMA(1) |
| 1673 |
DIMENSION RPAR(1),IPAR(1) |
| 1674 |
EXTERNAL RES,JAC,PTN |
| 1675 |
COMMON/DDA001/NPD,NTEMP, |
| 1676 |
* LML,LMU,LMXORD,LMTYPE, |
| 1677 |
* LNST,LNRE,LNJE,LETF,LCTF,LIPVT |
| 1678 |
DATA MAXIT/4/ |
| 1679 |
DATA XRATE/0.25D0/ |
| 1680 |
C |
| 1681 |
C |
| 1682 |
C |
| 1683 |
C |
| 1684 |
C |
| 1685 |
C----------------------------------------------------------------------- |
| 1686 |
C block 1. |
| 1687 |
C initialize. on the first call,set |
| 1688 |
C the order to 1 and initialize |
| 1689 |
C other variables. |
| 1690 |
C----------------------------------------------------------------------- |
| 1691 |
C |
| 1692 |
C initializations for all calls |
| 1693 |
IDID=1 |
| 1694 |
XOLD=X |
| 1695 |
NCF=0 |
| 1696 |
NSF=0 |
| 1697 |
NEF=0 |
| 1698 |
IF(JSTART .NE. 0) GO TO 120 |
| 1699 |
C |
| 1700 |
C if this is the first step,perform |
| 1701 |
C other initializations |
| 1702 |
C AUCH BEI CONTINUATION CALLS!!!!! |
| 1703 |
IWM(LETF) = 0 |
| 1704 |
IWM(LCTF) = 0 |
| 1705 |
K=1 |
| 1706 |
KOLD=0 |
| 1707 |
HOLD=0.0D0 |
| 1708 |
JSTART=1 |
| 1709 |
PSI(1)=H |
| 1710 |
CJOLD = 1.0D0/H |
| 1711 |
CJ = CJOLD |
| 1712 |
S = 100.D0 |
| 1713 |
JCALC = -1 |
| 1714 |
DELNRM=1.0D0 |
| 1715 |
IPHASE = 0 |
| 1716 |
NS=0 |
| 1717 |
120 CONTINUE |
| 1718 |
C |
| 1719 |
C |
| 1720 |
C |
| 1721 |
C |
| 1722 |
C |
| 1723 |
C |
| 1724 |
C----------------------------------------------------------------------- |
| 1725 |
C block 2 |
| 1726 |
C compute coefficients of formulas for |
| 1727 |
C this step. |
| 1728 |
C----------------------------------------------------------------------- |
| 1729 |
200 CONTINUE |
| 1730 |
KP1=K+1 |
| 1731 |
KP2=K+2 |
| 1732 |
KM1=K-1 |
| 1733 |
XOLD=X |
| 1734 |
IF(H.NE.HOLD.OR.K .NE. KOLD) NS = 0 |
| 1735 |
NS=MIN0(NS+1,KOLD+2) |
| 1736 |
NSP1=NS+1 |
| 1737 |
IF(KP1 .LT. NS)GO TO 230 |
| 1738 |
C |
| 1739 |
BETA(1)=1.0D0 |
| 1740 |
ALPHA(1)=1.0D0 |
| 1741 |
TEMP1=H |
| 1742 |
GAMMA(1)=0.0D0 |
| 1743 |
SIGMA(1)=1.0D0 |
| 1744 |
DO 210 I=2,KP1 |
| 1745 |
TEMP2=PSI(I-1) |
| 1746 |
PSI(I-1)=TEMP1 |
| 1747 |
BETA(I)=BETA(I-1)*PSI(I-1)/TEMP2 |
| 1748 |
TEMP1=TEMP2+H |
| 1749 |
ALPHA(I)=H/TEMP1 |
| 1750 |
SIGMA(I)=DFLOAT(I-1)*SIGMA(I-1)*ALPHA(I) |
| 1751 |
GAMMA(I)=GAMMA(I-1)+ALPHA(I-1)/H |
| 1752 |
210 CONTINUE |
| 1753 |
PSI(KP1)=TEMP1 |
| 1754 |
230 CONTINUE |
| 1755 |
C |
| 1756 |
C compute alphas, alpha0 |
| 1757 |
ALPHAS = 0.0D0 |
| 1758 |
ALPHA0 = 0.0D0 |
| 1759 |
DO 240 I = 1,K |
| 1760 |
ALPHAS = ALPHAS - 1.0D0/DFLOAT(I) |
| 1761 |
ALPHA0 = ALPHA0 - ALPHA(I) |
| 1762 |
240 CONTINUE |
| 1763 |
C |
| 1764 |
C compute leading coefficient cj |
| 1765 |
CJLAST = CJ |
| 1766 |
CJ = -ALPHAS/H |
| 1767 |
C |
| 1768 |
C compute variable stepsize error coefficient ck |
| 1769 |
CK = DABS(ALPHA(KP1) + ALPHAS - ALPHA0) |
| 1770 |
CK = DMAX1(CK,ALPHA(KP1)) |
| 1771 |
C |
| 1772 |
C decide whether new jacobian is needed |
| 1773 |
TEMP1 = (1.0D0 - XRATE)/(1.0D0 + XRATE) |
| 1774 |
TEMP2 = 1.0D0/TEMP1 |
| 1775 |
IF (CJ/CJOLD .LT. TEMP1 .OR. CJ/CJOLD .GT. TEMP2) JCALC = -1 |
| 1776 |
IF (CJ .NE. CJLAST) S = 100.D0 |
| 1777 |
C |
| 1778 |
C change phi to phi star |
| 1779 |
IF(KP1 .LT. NSP1) GO TO 280 |
| 1780 |
DO 270 J=NSP1,KP1 |
| 1781 |
DO 260 I=1,NEQ |
| 1782 |
260 PHI(I,J)=BETA(J)*PHI(I,J) |
| 1783 |
270 CONTINUE |
| 1784 |
280 CONTINUE |
| 1785 |
C |
| 1786 |
C update time |
| 1787 |
X=X+H |
| 1788 |
C |
| 1789 |
C |
| 1790 |
C |
| 1791 |
C |
| 1792 |
C |
| 1793 |
C----------------------------------------------------------------------- |
| 1794 |
C block 3 |
| 1795 |
C predict the solution and derivative, |
| 1796 |
C and solve the corrector equation |
| 1797 |
C----------------------------------------------------------------------- |
| 1798 |
C |
| 1799 |
C first,predict the solution and derivative |
| 1800 |
300 CONTINUE |
| 1801 |
DO 310 I=1,NEQ |
| 1802 |
Y(I)=PHI(I,1) |
| 1803 |
310 YPRIME(I)=0.0D0 |
| 1804 |
DO 330 J=2,KP1 |
| 1805 |
DO 320 I=1,NEQ |
| 1806 |
Y(I)=Y(I)+PHI(I,J) |
| 1807 |
320 YPRIME(I)=YPRIME(I)+GAMMA(J)*PHI(I,J) |
| 1808 |
330 CONTINUE |
| 1809 |
PNORM = DDANRM (NEQ,Y,WT,RPAR,IPAR) |
| 1810 |
C |
| 1811 |
C |
| 1812 |
C |
| 1813 |
C solve the corrector equation using a |
| 1814 |
C modified newton scheme. |
| 1815 |
CONVGD= .TRUE. |
| 1816 |
M=0 |
| 1817 |
IWM(LNRE)=IWM(LNRE)+1 |
| 1818 |
IRES = 0 |
| 1819 |
CALL RES(X,Y,YPRIME,DELTA,IRES,RPAR,IPAR) |
| 1820 |
IF (IRES .LT. 0) GO TO 380 |
| 1821 |
C |
| 1822 |
C |
| 1823 |
C if indicated,reevaluate the |
| 1824 |
C iteration matrix pd = dg/dy + cj*dg/dyprime |
| 1825 |
C (where g(x,y,yprime)=0). set |
| 1826 |
C jcalc to 0 as an indicator that |
| 1827 |
C this has been done. |
| 1828 |
IF(JCALC .NE. -1)GO TO 340 |
| 1829 |
IWM(LNJE)=IWM(LNJE)+1 |
| 1830 |
JCALC=0 |
| 1831 |
CALL DDAJAC(NEQ,X,Y,YPRIME,DELTA,CJ,H, |
| 1832 |
* IER,WT,E,WM,IWM,RES,IRES,UROUND,JAC,RPAR,IPAR,PTN) |
| 1833 |
CJOLD=CJ |
| 1834 |
S = 100.D0 |
| 1835 |
IF (IRES .LT. 0) GO TO 380 |
| 1836 |
IF(IER .NE. 0)GO TO 380 |
| 1837 |
NSF=0 |
| 1838 |
C |
| 1839 |
C |
| 1840 |
C initialize the error accumulation vector e. |
| 1841 |
340 CONTINUE |
| 1842 |
DO 345 I=1,NEQ |
| 1843 |
345 E(I)=0.0D0 |
| 1844 |
C |
| 1845 |
S = 100.E0 |
| 1846 |
C |
| 1847 |
C |
| 1848 |
C corrector loop. |
| 1849 |
350 CONTINUE |
| 1850 |
C |
| 1851 |
C multiply residual by temp1 to accelerate convergence |
| 1852 |
TEMP1 = 2.0D0/(1.0D0 + CJ/CJOLD) |
| 1853 |
DO 355 I = 1,NEQ |
| 1854 |
355 DELTA(I) = DELTA(I) * TEMP1 |
| 1855 |
C |
| 1856 |
C compute a new iterate (back-substitution). |
| 1857 |
C store the correction in delta. |
| 1858 |
CALL DDASLV(NEQ,DELTA,WM,IWM) |
| 1859 |
C |
| 1860 |
C update y,e,and yprime |
| 1861 |
DO 360 I=1,NEQ |
| 1862 |
Y(I)=Y(I)-DELTA(I) |
| 1863 |
E(I)=E(I)-DELTA(I) |
| 1864 |
360 YPRIME(I)=YPRIME(I)-CJ*DELTA(I) |
| 1865 |
C |
| 1866 |
C test for convergence of the iteration |
| 1867 |
DELNRM=DDANRM(NEQ,DELTA,WT,RPAR,IPAR) |
| 1868 |
IF (DELNRM .LE. 100.D0*UROUND*PNORM) GO TO 375 |
| 1869 |
IF (M .GT. 0) GO TO 365 |
| 1870 |
OLDNRM = DELNRM |
| 1871 |
GO TO 367 |
| 1872 |
365 RATE = (DELNRM/OLDNRM)**(1.0D0/DFLOAT(M)) |
| 1873 |
IF (RATE .GT. 0.90D0) GO TO 370 |
| 1874 |
S = RATE/(1.0D0 - RATE) |
| 1875 |
367 IF (S*DELNRM .LE. 0.33D0) GO TO 375 |
| 1876 |
C |
| 1877 |
C the corrector has not yet converged. |
| 1878 |
C update m and test whether the |
| 1879 |
C maximum number of iterations have |
| 1880 |
C been tried. |
| 1881 |
M=M+1 |
| 1882 |
IF(M.GE.MAXIT)GO TO 370 |
| 1883 |
C |
| 1884 |
C evaluate the residual |
| 1885 |
C and go back to do another iteration |
| 1886 |
IWM(LNRE)=IWM(LNRE)+1 |
| 1887 |
IRES = 0 |
| 1888 |
CALL RES(X,Y,YPRIME,DELTA,IRES, |
| 1889 |
* RPAR,IPAR) |
| 1890 |
IF (IRES .LT. 0) GO TO 380 |
| 1891 |
GO TO 350 |
| 1892 |
C |
| 1893 |
C |
| 1894 |
C the corrector failed to converge in maxit |
| 1895 |
C iterations. if the iteration matrix |
| 1896 |
C is not current,re-do the step with |
| 1897 |
C a new iteration matrix. |
| 1898 |
370 CONTINUE |
| 1899 |
IF(JCALC.EQ.0)GO TO 380 |
| 1900 |
JCALC=-1 |
| 1901 |
GO TO 300 |
| 1902 |
C |
| 1903 |
C |
| 1904 |
C the iteration has converged. if nonnegativity of solution is |
| 1905 |
C required, set the solution nonnegative, if the perturbation |
| 1906 |
C to do it is small enough. if the change is too large, then |
| 1907 |
C consider the corrector iteration to have failed. |
| 1908 |
375 IF(NONNEG .EQ. 0) GO TO 390 |
| 1909 |
DO 377 I = 1,NEQ |
| 1910 |
377 DELTA(I) = DMIN1(Y(I),0.0D0) |
| 1911 |
DELNRM = DDANRM(NEQ,DELTA,WT,RPAR,IPAR) |
| 1912 |
IF(DELNRM .GT. 0.33D0) GO TO 380 |
| 1913 |
DO 378 I = 1,NEQ |
| 1914 |
378 E(I) = E(I) - DELTA(I) |
| 1915 |
GO TO 390 |
| 1916 |
C |
| 1917 |
C |
| 1918 |
C exits from block 3 |
| 1919 |
C no convergence with current iteration |
| 1920 |
C matrix,or singular iteration matrix |
| 1921 |
380 CONVGD= .FALSE. |
| 1922 |
390 JCALC = 1 |
| 1923 |
IF(.NOT.CONVGD)GO TO 600 |
| 1924 |
C |
| 1925 |
C |
| 1926 |
C |
| 1927 |
C |
| 1928 |
C |
| 1929 |
C----------------------------------------------------------------------- |
| 1930 |
C block 4 |
| 1931 |
C estimate the errors at orders k,k-1,k-2 |
| 1932 |
C as if constant stepsize was used. estimate |
| 1933 |
C the local error at order k and test |
| 1934 |
C whether the current step is successful. |
| 1935 |
C----------------------------------------------------------------------- |
| 1936 |
C |
| 1937 |
C estimate errors at orders k,k-1,k-2 |
| 1938 |
ENORM = DDANRM(NEQ,E,WT,RPAR,IPAR) |
| 1939 |
ERK = SIGMA(K+1)*ENORM |
| 1940 |
TERK = FLOAT(K+1)*ERK |
| 1941 |
EST = ERK |
| 1942 |
KNEW=K |
| 1943 |
IF(K .EQ. 1)GO TO 430 |
| 1944 |
DO 405 I = 1,NEQ |
| 1945 |
405 DELTA(I) = PHI(I,KP1) + E(I) |
| 1946 |
ERKM1=SIGMA(K)*DDANRM(NEQ,DELTA,WT,RPAR,IPAR) |
| 1947 |
TERKM1 = FLOAT(K)*ERKM1 |
| 1948 |
IF(K .GT. 2)GO TO 410 |
| 1949 |
IF(TERKM1 .LE. 0.5*TERK)GO TO 420 |
| 1950 |
GO TO 430 |
| 1951 |
410 CONTINUE |
| 1952 |
DO 415 I = 1,NEQ |
| 1953 |
415 DELTA(I) = PHI(I,K) + DELTA(I) |
| 1954 |
ERKM2=SIGMA(K-1)*DDANRM(NEQ,DELTA,WT,RPAR,IPAR) |
| 1955 |
TERKM2 = FLOAT(K-1)*ERKM2 |
| 1956 |
IF(DMAX1(TERKM1,TERKM2).GT.TERK)GO TO 430 |
| 1957 |
C lower the order |
| 1958 |
420 CONTINUE |
| 1959 |
KNEW=K-1 |
| 1960 |
EST = ERKM1 |
| 1961 |
C |
| 1962 |
C |
| 1963 |
C calculate the local error for the current step |
| 1964 |
C to see if the step was successful |
| 1965 |
430 CONTINUE |
| 1966 |
ERR = CK * ENORM |
| 1967 |
IF(ERR .GT. 1.0D0)GO TO 600 |
| 1968 |
C |
| 1969 |
C |
| 1970 |
C |
| 1971 |
C |
| 1972 |
C |
| 1973 |
C----------------------------------------------------------------------- |
| 1974 |
C block 5 |
| 1975 |
C the step is successful. determine |
| 1976 |
C the best order and stepsize for |
| 1977 |
C the next step. update the differences |
| 1978 |
C for the next step. |
| 1979 |
C----------------------------------------------------------------------- |
| 1980 |
IDID=1 |
| 1981 |
IWM(LNST)=IWM(LNST)+1 |
| 1982 |
KDIFF=K-KOLD |
| 1983 |
KOLD=K |
| 1984 |
HOLD=H |
| 1985 |
C |
| 1986 |
C |
| 1987 |
C estimate the error at order k+1 unless% |
| 1988 |
C already decided to lower order, or |
| 1989 |
C already using maximum order, or |
| 1990 |
C stepsize not constant, or |
| 1991 |
C order raised in previous step |
| 1992 |
IF(KNEW.EQ.KM1.OR.K.EQ.IWM(LMXORD))IPHASE=1 |
| 1993 |
IF(IPHASE .EQ. 0)GO TO 545 |
| 1994 |
IF(KNEW.EQ.KM1)GO TO 540 |
| 1995 |
IF(K.EQ.IWM(LMXORD)) GO TO 550 |
| 1996 |
IF(KP1.GE.NS.OR.KDIFF.EQ.1)GO TO 550 |
| 1997 |
DO 510 I=1,NEQ |
| 1998 |
510 DELTA(I)=E(I)-PHI(I,KP2) |
| 1999 |
ERKP1 = (1.0D0/DFLOAT(K+2))*DDANRM(NEQ,DELTA,WT,RPAR,IPAR) |
| 2000 |
TERKP1 = FLOAT(K+2)*ERKP1 |
| 2001 |
IF(K.GT.1)GO TO 520 |
| 2002 |
IF(TERKP1.GE.0.5D0*TERK)GO TO 550 |
| 2003 |
GO TO 530 |
| 2004 |
520 IF(TERKM1.LE.DMIN1(TERK,TERKP1))GO TO 540 |
| 2005 |
IF(TERKP1.GE.TERK.OR.K.EQ.IWM(LMXORD))GO TO 550 |
| 2006 |
C |
| 2007 |
C raise order |
| 2008 |
530 K=KP1 |
| 2009 |
EST = ERKP1 |
| 2010 |
GO TO 550 |
| 2011 |
C |
| 2012 |
C lower order |
| 2013 |
540 K=KM1 |
| 2014 |
EST = ERKM1 |
| 2015 |
GO TO 550 |
| 2016 |
C |
| 2017 |
C if iphase = 0, increase order by one and multiply stepsize by |
| 2018 |
C factor two |
| 2019 |
545 K = KP1 |
| 2020 |
HNEW = H*2.0D0 |
| 2021 |
H = HNEW |
| 2022 |
GO TO 575 |
| 2023 |
C |
| 2024 |
C |
| 2025 |
C determine the appropriate stepsize for |
| 2026 |
C the next step. |
| 2027 |
550 HNEW=H |
| 2028 |
TEMP2=K+1 |
| 2029 |
R=(2.0D0*EST+0.0001D0)**(-1.0D0/TEMP2) |
| 2030 |
IF(R .LT. 2.0D0) GO TO 555 |
| 2031 |
HNEW = 2.0D0*H |
| 2032 |
GO TO 560 |
| 2033 |
555 IF(R .GT. 1.0D0) GO TO 560 |
| 2034 |
R = DMAX1(0.5D0,DMIN1(0.9D0,R)) |
| 2035 |
HNEW = H*R |
| 2036 |
560 H=HNEW |
| 2037 |
C |
| 2038 |
C |
| 2039 |
C update differences for next step |
| 2040 |
575 CONTINUE |
| 2041 |
IF(KOLD.EQ.IWM(LMXORD))GO TO 585 |
| 2042 |
DO 580 I=1,NEQ |
| 2043 |
580 PHI(I,KP2)=E(I) |
| 2044 |
585 CONTINUE |
| 2045 |
DO 590 I=1,NEQ |
| 2046 |
590 PHI(I,KP1)=PHI(I,KP1)+E(I) |
| 2047 |
DO 595 J1=2,KP1 |
| 2048 |
J=KP1-J1+1 |
| 2049 |
DO 595 I=1,NEQ |
| 2050 |
595 PHI(I,J)=PHI(I,J)+PHI(I,J+1) |
| 2051 |
RETURN |
| 2052 |
C |
| 2053 |
C |
| 2054 |
C |
| 2055 |
C |
| 2056 |
C |
| 2057 |
C----------------------------------------------------------------------- |
| 2058 |
C block 6 |
| 2059 |
C the step is unsuccessful. restore x,psi,phi |
| 2060 |
C determine appropriate stepsize for |
| 2061 |
C continuing the integration, or exit with |
| 2062 |
C an error flag if there have been many |
| 2063 |
C failures. |
| 2064 |
C----------------------------------------------------------------------- |
| 2065 |
600 IPHASE = 1 |
| 2066 |
C |
| 2067 |
C restore x,phi,psi |
| 2068 |
X=XOLD |
| 2069 |
IF(KP1.LT.NSP1)GO TO 630 |
| 2070 |
DO 620 J=NSP1,KP1 |
| 2071 |
TEMP1=1.0D0/BETA(J) |
| 2072 |
DO 610 I=1,NEQ |
| 2073 |
610 PHI(I,J)=TEMP1*PHI(I,J) |
| 2074 |
620 CONTINUE |
| 2075 |
630 CONTINUE |
| 2076 |
DO 640 I=2,KP1 |
| 2077 |
640 PSI(I-1)=PSI(I)-H |
| 2078 |
C |
| 2079 |
C |
| 2080 |
C test whether failure is due to corrector iteration |
| 2081 |
C or error test |
| 2082 |
IF(CONVGD)GO TO 660 |
| 2083 |
IWM(LCTF)=IWM(LCTF)+1 |
| 2084 |
C |
| 2085 |
C |
| 2086 |
C the newton iteration failed to converge with |
| 2087 |
C a current iteration matrix. determine the cause |
| 2088 |
C of the failure and take appropriate action. |
| 2089 |
IF(IER.EQ.0)GO TO 650 |
| 2090 |
C |
| 2091 |
C the iteration matrix is singular. reduce |
| 2092 |
C the stepsize by a factor of 4. if |
| 2093 |
C this happens three times in a row on |
| 2094 |
C the same step, return with an error flag |
| 2095 |
NSF=NSF+1 |
| 2096 |
R = 0.25D0 |
| 2097 |
H=H*R |
| 2098 |
IF (NSF .LT. 3 .AND. DABS(H) .GE. HMIN) GO TO 690 |
| 2099 |
IDID=-8 |
| 2100 |
GO TO 675 |
| 2101 |
C |
| 2102 |
C |
| 2103 |
C the newton iteration failed to converge for a reason |
| 2104 |
C other than a singular iteration matrix. if ires = -2, then |
| 2105 |
C return. otherwise, reduce the stepsize and try again, unless |
| 2106 |
C too many failures have occured. |
| 2107 |
650 CONTINUE |
| 2108 |
IF (IRES .GT. -2) GO TO 655 |
| 2109 |
IDID = -11 |
| 2110 |
GO TO 675 |
| 2111 |
655 NCF = NCF + 1 |
| 2112 |
R = 0.25D0 |
| 2113 |
H = H*R |
| 2114 |
IF (NCF .LT. 10 .AND. DABS(H) .GE. HMIN) GO TO 690 |
| 2115 |
IDID = -7 |
| 2116 |
IF (IRES .LT. 0) IDID = -10 |
| 2117 |
IF (NEF .GE. 3) IDID = -9 |
| 2118 |
GO TO 675 |
| 2119 |
C |
| 2120 |
C |
| 2121 |
C the newton scheme converged,and the cause |
| 2122 |
C of the failure was the error estimate |
| 2123 |
C exceeding the tolerance. |
| 2124 |
660 NEF=NEF+1 |
| 2125 |
IWM(LETF)=IWM(LETF)+1 |
| 2126 |
IF (NEF .GT. 1) GO TO 665 |
| 2127 |
C |
| 2128 |
C on first error test failure, keep current order or lower |
| 2129 |
C order by one. compute new stepsize based on differences |
| 2130 |
C of the solution. |
| 2131 |
K = KNEW |
| 2132 |
TEMP2 = K + 1 |
| 2133 |
R = 0.90D0*(2.0D0*EST+0.0001D0)**(-1.0D0/TEMP2) |
| 2134 |
R = DMAX1(0.25D0,DMIN1(0.9D0,R)) |
| 2135 |
H = H*R |
| 2136 |
IF (DABS(H) .GE. HMIN) GO TO 690 |
| 2137 |
IDID = -6 |
| 2138 |
GO TO 675 |
| 2139 |
C |
| 2140 |
C on second error test failure, use the current order or |
| 2141 |
C decrease order by one. reduce the stepsize by a factor of |
| 2142 |
C one quarter. |
| 2143 |
665 IF (NEF .GT. 2) GO TO 670 |
| 2144 |
K = KNEW |
| 2145 |
H = 0.25D0*H |
| 2146 |
IF (DABS(H) .GE. HMIN) GO TO 690 |
| 2147 |
IDID = -6 |
| 2148 |
GO TO 675 |
| 2149 |
C |
| 2150 |
C on third and subsequent error test failures, set the order to |
| 2151 |
C one and reduce the stepsize by a factor of one quarter |
| 2152 |
670 K = 1 |
| 2153 |
H = 0.25D0*H |
| 2154 |
IF (DABS(H) .GE. HMIN) GO TO 690 |
| 2155 |
IDID = -6 |
| 2156 |
GO TO 675 |
| 2157 |
C |
| 2158 |
C |
| 2159 |
C |
| 2160 |
C |
| 2161 |
C for all crashes, restore y to its last value, |
| 2162 |
C interpolate to find yprime at last x, and return |
| 2163 |
675 CONTINUE |
| 2164 |
CALL DDATRP(X,X,Y,YPRIME,NEQ,K,PHI,PSI) |
| 2165 |
RETURN |
| 2166 |
C |
| 2167 |
C |
| 2168 |
C go back and try this step again |
| 2169 |
690 GO TO 200 |
| 2170 |
C |
| 2171 |
C------end of subroutine dastep------ |
| 2172 |
END |
| 2173 |
SUBROUTINE DDATRP(X,XOUT,YOUT,YPOUT,NEQ,KOLD,PHI,PSI) |
| 2174 |
C |
| 2175 |
C***BEGIN PROLOGUE DDATRP |
| 2176 |
C***REFER TO DDASSL |
| 2177 |
C***ROUTINES CALLED (NONE) |
| 2178 |
C***DATE WRITTEN 830315 (YYMMDD) |
| 2179 |
C***REVISION DATE 830315 (YYMMDD) |
| 2180 |
C***END PROLOGUE DDATRP |
| 2181 |
C |
| 2182 |
C----------------------------------------------------------------------- |
| 2183 |
C the methods in subroutine dastep use polynomials |
| 2184 |
C to approximate the solution. ddatrp approximates the |
| 2185 |
C solution and its derivative at time xout by evaluating |
| 2186 |
C one of these polynomials,and its derivative,there. |
| 2187 |
C information defining this polynomial is passed from |
| 2188 |
C dastep, so ddatrp cannot be used alone. |
| 2189 |
C |
| 2190 |
C the parameters are% |
| 2191 |
C x the current time in the integration. |
| 2192 |
C xout the time at which the solution is desired |
| 2193 |
C yout the interpolated approximation to y at xout |
| 2194 |
C (this is output) |
| 2195 |
C ypout the interpolated approximation to yprime at xout |
| 2196 |
C (this is output) |
| 2197 |
C neq number of equations |
| 2198 |
C kold order used on last successful step |
| 2199 |
C phi array of scaled divided differences of y |
| 2200 |
C psi array of past stepsize history |
| 2201 |
C----------------------------------------------------------------------- |
| 2202 |
C |
| 2203 |
IMPLICIT DOUBLE PRECISION(A-H,O-Z) |
| 2204 |
DIMENSION YOUT(1),YPOUT(1) |
| 2205 |
DIMENSION PHI(NEQ,1),PSI(1) |
| 2206 |
KOLDP1=KOLD+1 |
| 2207 |
TEMP1=XOUT-X |
| 2208 |
DO 10 I=1,NEQ |
| 2209 |
YOUT(I)=PHI(I,1) |
| 2210 |
10 YPOUT(I)=0.0D0 |
| 2211 |
C=1.0D0 |
| 2212 |
D=0.0D0 |
| 2213 |
GAMMA=TEMP1/PSI(1) |
| 2214 |
DO 30 J=2,KOLDP1 |
| 2215 |
D=D*GAMMA+C/PSI(J-1) |
| 2216 |
C=C*GAMMA |
| 2217 |
GAMMA=(TEMP1+PSI(J-1))/PSI(J) |
| 2218 |
DO 20 I=1,NEQ |
| 2219 |
YOUT(I)=YOUT(I)+C*PHI(I,J) |
| 2220 |
20 YPOUT(I)=YPOUT(I)+D*PHI(I,J) |
| 2221 |
30 CONTINUE |
| 2222 |
RETURN |
| 2223 |
C |
| 2224 |
C------end of subroutine ddatrp------ |
| 2225 |
END |
| 2226 |
SUBROUTINE DDAWTS(NEQ,IWT,RTOL,ATOL,Y,WT,RPAR,IPAR) |
| 2227 |
C |
| 2228 |
C***BEGIN PROLOGUE DDAWTS |
| 2229 |
C***REFER TO DDASSL |
| 2230 |
C***ROUTINES CALLED (NONE) |
| 2231 |
C***DATE WRITTEN 830315 (YYMMDD) |
| 2232 |
C***REVISION DATE 830315 (YYMMDD) |
| 2233 |
C***END PROLOGUE DDAWTS |
| 2234 |
C----------------------------------------------------------------------- |
| 2235 |
C this subroutine sets the error weight vector |
| 2236 |
C wt according to wt(i)=rtol(i)*abs(y(i))+atol(i), |
| 2237 |
C i=1,-,n. |
| 2238 |
C rtol and atol are scalars if iwt = 0, |
| 2239 |
C and vectors if iwt = 1. |
| 2240 |
C----------------------------------------------------------------------- |
| 2241 |
C |
| 2242 |
IMPLICIT DOUBLE PRECISION(A-H,O-Z) |
| 2243 |
DIMENSION RTOL(1),ATOL(1),Y(1),WT(1) |
| 2244 |
DIMENSION RPAR(1),IPAR(1) |
| 2245 |
RTOLI=RTOL(1) |
| 2246 |
ATOLI=ATOL(1) |
| 2247 |
DO 20 I=1,NEQ |
| 2248 |
IF (IWT .EQ.0) GO TO 10 |
| 2249 |
RTOLI=RTOL(I) |
| 2250 |
ATOLI=ATOL(I) |
| 2251 |
10 WT(I)=RTOLI*DABS(Y(I))+ATOLI |
| 2252 |
20 CONTINUE |
| 2253 |
RETURN |
| 2254 |
C-----------end of subroutine ddawts------------------------------------- |
| 2255 |
END |
| 2256 |
DOUBLE PRECISION FUNCTION DDOT(N,DX,INCX,DY,INCY) |
| 2257 |
C |
| 2258 |
C FORMS THE DOT PRODUCT OF TWO VECTORS. |
| 2259 |
C USES UNROLLED LOOPS FOR INCREMENTS EQUAL TO ONE. |
| 2260 |
C JACK DONGARRA, LINPACK, 3/11/78. |
| 2261 |
C |
| 2262 |
DOUBLE PRECISION DX(1),DY(1),DTEMP |
| 2263 |
INTEGER I,INCX,INCY,IX,IY,M,MP1,N |
| 2264 |
C |
| 2265 |
DDOT = 0.0D0 |
| 2266 |
DTEMP = 0.0D0 |
| 2267 |
IF(N.LE.0)RETURN |
| 2268 |
IF(INCX.EQ.1.AND.INCY.EQ.1)GO TO 20 |
| 2269 |
C |
| 2270 |
C CODE FOR UNEQUAL INCREMENTS OR EQUAL INCREMENTS |
| 2271 |
C NOT EQUAL TO 1 |
| 2272 |
C |
| 2273 |
IX = 1 |
| 2274 |
IY = 1 |
| 2275 |
IF(INCX.LT.0)IX = (-N+1)*INCX + 1 |
| 2276 |
IF(INCY.LT.0)IY = (-N+1)*INCY + 1 |
| 2277 |
DO 10 I = 1,N |
| 2278 |
DTEMP = DTEMP + DX(IX)*DY(IY) |
| 2279 |
IX = IX + INCX |
| 2280 |
IY = IY + INCY |
| 2281 |
10 CONTINUE |
| 2282 |
DDOT = DTEMP |
| 2283 |
RETURN |
| 2284 |
C |
| 2285 |
C CODE FOR BOTH INCREMENTS EQUAL TO 1 |
| 2286 |
C |
| 2287 |
C |
| 2288 |
C CLEAN-UP LOOP |
| 2289 |
C |
| 2290 |
20 M = MOD(N,5) |
| 2291 |
IF( M .EQ. 0 ) GO TO 40 |
| 2292 |
DO 30 I = 1,M |
| 2293 |
DTEMP = DTEMP + DX(I)*DY(I) |
| 2294 |
30 CONTINUE |
| 2295 |
IF( N .LT. 5 ) GO TO 60 |
| 2296 |
40 MP1 = M + 1 |
| 2297 |
DO 50 I = MP1,N,5 |
| 2298 |
DTEMP = DTEMP + DX(I)*DY(I) + DX(I + 1)*DY(I + 1) + |
| 2299 |
* DX(I + 2)*DY(I + 2) + DX(I + 3)*DY(I + 3) + DX(I + 4)*DY(I + 4) |
| 2300 |
50 CONTINUE |
| 2301 |
60 DDOT = DTEMP |
| 2302 |
RETURN |
| 2303 |
END |
| 2304 |
SUBROUTINE DGBSL(ABD,LDA,N,ML,MU,IPVT,B,JOB) |
| 2305 |
INTEGER LDA,N,ML,MU,IPVT(1),JOB |
| 2306 |
DOUBLE PRECISION ABD(LDA,1),B(1) |
| 2307 |
C |
| 2308 |
C DGBSL SOLVES THE DOUBLE PRECISION BAND SYSTEM |
| 2309 |
C A * X = B OR TRANS(A) * X = B |
| 2310 |
C USING THE FACTORS COMPUTED BY DGBCO OR DGBFA. |
| 2311 |
C |
| 2312 |
C ON ENTRY |
| 2313 |
C |
| 2314 |
C ABD DOUBLE PRECISION(LDA, N) |
| 2315 |
C THE OUTPUT FROM DGBCO OR DGBFA. |
| 2316 |
C |
| 2317 |
C LDA INTEGER |
| 2318 |
C THE LEADING DIMENSION OF THE ARRAY ABD . |
| 2319 |
C |
| 2320 |
C N INTEGER |
| 2321 |
C THE ORDER OF THE ORIGINAL MATRIX. |
| 2322 |
C |
| 2323 |
C ML INTEGER |
| 2324 |
C NUMBER OF DIAGONALS BELOW THE MAIN DIAGONAL. |
| 2325 |
C |
| 2326 |
C MU INTEGER |
| 2327 |
C NUMBER OF DIAGONALS ABOVE THE MAIN DIAGONAL. |
| 2328 |
C |
| 2329 |
C IPVT INTEGER(N) |
| 2330 |
C THE PIVOT VECTOR FROM DGBCO OR DGBFA. |
| 2331 |
C |
| 2332 |
C B DOUBLE PRECISION(N) |
| 2333 |
C THE RIGHT HAND SIDE VECTOR. |
| 2334 |
C |
| 2335 |
C JOB INTEGER |
| 2336 |
C = 0 TO SOLVE A*X = B , |
| 2337 |
C = NONZERO TO SOLVE TRANS(A)*X = B , WHERE |
| 2338 |
C TRANS(A) IS THE TRANSPOSE. |
| 2339 |
C |
| 2340 |
C ON RETURN |
| 2341 |
C |
| 2342 |
C B THE SOLUTION VECTOR X . |
| 2343 |
C |
| 2344 |
C ERROR CONDITION |
| 2345 |
C |
| 2346 |
C A DIVISION BY ZERO WILL OCCUR IF THE INPUT FACTOR CONTAINS A |
| 2347 |
C ZERO ON THE DIAGONAL. TECHNICALLY THIS INDICATES SINGULARITY |
| 2348 |
C BUT IT IS OFTEN CAUSED BY IMPROPER ARGUMENTS OR IMPROPER |
| 2349 |
C SETTING OF LDA . IT WILL NOT OCCUR IF THE SUBROUTINES ARE |
| 2350 |
C CALLED CORRECTLY AND IF DGBCO HAS SET RCOND .GT. 0.0 |
| 2351 |
C OR DGBFA HAS SET INFO .EQ. 0 . |
| 2352 |
C |
| 2353 |
C TO COMPUTE INVERSE(A) * C WHERE C IS A MATRIX |
| 2354 |
C WITH P COLUMNS |
| 2355 |
C CALL DGBCO(ABD,LDA,N,ML,MU,IPVT,RCOND,Z) |
| 2356 |
C IF (RCOND IS TOO SMALL) GO TO ... |
| 2357 |
C DO 10 J = 1, P |
| 2358 |
C CALL DGBSL(ABD,LDA,N,ML,MU,IPVT,C(1,J),0) |
| 2359 |
C 10 CONTINUE |
| 2360 |
C |
| 2361 |
C LINPACK. THIS VERSION DATED 08/14/78 . |
| 2362 |
C CLEVE MOLER, UNIVERSITY OF NEW MEXICO, ARGONNE NATIONAL LAB. |
| 2363 |
C |
| 2364 |
C SUBROUTINES AND FUNCTIONS |
| 2365 |
C |
| 2366 |
C BLAS DAXPY,DDOT |
| 2367 |
C FORTRAN MIN0 |
| 2368 |
C |
| 2369 |
C INTERNAL VARIABLES |
| 2370 |
C |
| 2371 |
DOUBLE PRECISION DDOT,T |
| 2372 |
INTEGER K,KB,L,LA,LB,LM,M,NM1 |
| 2373 |
C |
| 2374 |
M = MU + ML + 1 |
| 2375 |
NM1 = N - 1 |
| 2376 |
IF (JOB .NE. 0) GO TO 50 |
| 2377 |
C |
| 2378 |
C JOB = 0 , SOLVE A * X = B |
| 2379 |
C FIRST SOLVE L*Y = B |
| 2380 |
C |
| 2381 |
IF (ML .EQ. 0) GO TO 30 |
| 2382 |
IF (NM1 .LT. 1) GO TO 30 |
| 2383 |
DO 20 K = 1, NM1 |
| 2384 |
LM = MIN0(ML,N-K) |
| 2385 |
L = IPVT(K) |
| 2386 |
T = B(L) |
| 2387 |
IF (L .EQ. K) GO TO 10 |
| 2388 |
B(L) = B(K) |
| 2389 |
B(K) = T |
| 2390 |
10 CONTINUE |
| 2391 |
CALL DAXPY(LM,T,ABD(M+1,K),1,B(K+1),1) |
| 2392 |
20 CONTINUE |
| 2393 |
30 CONTINUE |
| 2394 |
C |
| 2395 |
C NOW SOLVE U*X = Y |
| 2396 |
C |
| 2397 |
DO 40 KB = 1, N |
| 2398 |
K = N + 1 - KB |
| 2399 |
B(K) = B(K)/ABD(M,K) |
| 2400 |
LM = MIN0(K,M) - 1 |
| 2401 |
LA = M - LM |
| 2402 |
LB = K - LM |
| 2403 |
T = -B(K) |
| 2404 |
CALL DAXPY(LM,T,ABD(LA,K),1,B(LB),1) |
| 2405 |
40 CONTINUE |
| 2406 |
GO TO 100 |
| 2407 |
50 CONTINUE |
| 2408 |
C |
| 2409 |
C JOB = NONZERO, SOLVE TRANS(A) * X = B |
| 2410 |
C FIRST SOLVE TRANS(U)*Y = B |
| 2411 |
C |
| 2412 |
DO 60 K = 1, N |
| 2413 |
LM = MIN0(K,M) - 1 |
| 2414 |
LA = M - LM |
| 2415 |
LB = K - LM |
| 2416 |
T = DDOT(LM,ABD(LA,K),1,B(LB),1) |
| 2417 |
B(K) = (B(K) - T)/ABD(M,K) |
| 2418 |
60 CONTINUE |
| 2419 |
C |
| 2420 |
C NOW SOLVE TRANS(L)*X = Y |
| 2421 |
C |
| 2422 |
IF (ML .EQ. 0) GO TO 90 |
| 2423 |
IF (NM1 .LT. 1) GO TO 90 |
| 2424 |
DO 80 KB = 1, NM1 |
| 2425 |
K = N - KB |
| 2426 |
LM = MIN0(ML,N-K) |
| 2427 |
B(K) = B(K) + DDOT(LM,ABD(M+1,K),1,B(K+1),1) |
| 2428 |
L = IPVT(K) |
| 2429 |
IF (L .EQ. K) GO TO 70 |
| 2430 |
T = B(L) |
| 2431 |
B(L) = B(K) |
| 2432 |
B(K) = T |
| 2433 |
70 CONTINUE |
| 2434 |
80 CONTINUE |
| 2435 |
90 CONTINUE |
| 2436 |
100 CONTINUE |
| 2437 |
RETURN |
| 2438 |
END |
| 2439 |
SUBROUTINE DGEFA(A,LDA,N,IPVT,INFO) |
| 2440 |
INTEGER LDA,N,IPVT(1),INFO |
| 2441 |
DOUBLE PRECISION A(LDA,1) |
| 2442 |
C |
| 2443 |
C DGEFA FACTORS A DOUBLE PRECISION MATRIX BY GAUSSIAN ELIMINATION. |
| 2444 |
C |
| 2445 |
C DGEFA IS USUALLY CALLED BY DGECO, BUT IT CAN BE CALLED |
| 2446 |
C DIRECTLY WITH A SAVING IN TIME IF RCOND IS NOT NEEDED. |
| 2447 |
C (TIME FOR DGECO) = (1 + 9/N)*(TIME FOR DGEFA) . |
| 2448 |
C |
| 2449 |
C ON ENTRY |
| 2450 |
C |
| 2451 |
C A DOUBLE PRECISION(LDA, N) |
| 2452 |
C THE MATRIX TO BE FACTORED. |
| 2453 |
C |
| 2454 |
C LDA INTEGER |
| 2455 |
C THE LEADING DIMENSION OF THE ARRAY A . |
| 2456 |
C |
| 2457 |
C N INTEGER |
| 2458 |
C THE ORDER OF THE MATRIX A . |
| 2459 |
C |
| 2460 |
C ON RETURN |
| 2461 |
C |
| 2462 |
C A AN UPPER TRIANGULAR MATRIX AND THE MULTIPLIERS |
| 2463 |
C WHICH WERE USED TO OBTAIN IT. |
| 2464 |
C THE FACTORIZATION CAN BE WRITTEN A = L*U WHERE |
| 2465 |
C L IS A PRODUCT OF PERMUTATION AND UNIT LOWER |
| 2466 |
C TRIANGULAR MATRICES AND U IS UPPER TRIANGULAR. |
| 2467 |
C |
| 2468 |
C IPVT INTEGER(N) |
| 2469 |
C AN INTEGER VECTOR OF PIVOT INDICES. |
| 2470 |
C |
| 2471 |
C INFO INTEGER |
| 2472 |
C = 0 NORMAL VALUE. |
| 2473 |
C = K IF U(K,K) .EQ. 0.0 . THIS IS NOT AN ERROR |
| 2474 |
C CONDITION FOR THIS SUBROUTINE, BUT IT DOES |
| 2475 |
C INDICATE THAT DGESL OR DGEDI WILL DIVIDE BY ZERO |
| 2476 |
C IF CALLED. USE RCOND IN DGECO FOR A RELIABLE |
| 2477 |
C INDICATION OF SINGULARITY. |
| 2478 |
C |
| 2479 |
C LINPACK. THIS VERSION DATED 08/14/78 . |
| 2480 |
C CLEVE MOLER, UNIVERSITY OF NEW MEXICO, ARGONNE NATIONAL LAB. |
| 2481 |
C |
| 2482 |
C SUBROUTINES AND FUNCTIONS |
| 2483 |
C |
| 2484 |
C BLAS DAXPY,DSCAL,IDAMAX |
| 2485 |
C |
| 2486 |
C INTERNAL VARIABLES |
| 2487 |
C |
| 2488 |
DOUBLE PRECISION T |
| 2489 |
INTEGER IDAMAX,J,K,KP1,L,NM1 |
| 2490 |
C |
| 2491 |
C |
| 2492 |
C GAUSSIAN ELIMINATION WITH PARTIAL PIVOTING |
| 2493 |
C |
| 2494 |
INFO = 0 |
| 2495 |
NM1 = N - 1 |
| 2496 |
IF (NM1 .LT. 1) GO TO 70 |
| 2497 |
DO 60 K = 1, NM1 |
| 2498 |
KP1 = K + 1 |
| 2499 |
C |
| 2500 |
C FIND L = PIVOT INDEX |
| 2501 |
C |
| 2502 |
L = IDAMAX(N-K+1,A(K,K),1) + K - 1 |
| 2503 |
IPVT(K) = L |
| 2504 |
C |
| 2505 |
C ZERO PIVOT IMPLIES THIS COLUMN ALREADY TRIANGULARIZED |
| 2506 |
C |
| 2507 |
IF (A(L,K) .EQ. 0.0D0) GO TO 40 |
| 2508 |
C |
| 2509 |
C INTERCHANGE IF NECESSARY |
| 2510 |
C |
| 2511 |
IF (L .EQ. K) GO TO 10 |
| 2512 |
T = A(L,K) |
| 2513 |
A(L,K) = A(K,K) |
| 2514 |
A(K,K) = T |
| 2515 |
10 CONTINUE |
| 2516 |
C |
| 2517 |
C COMPUTE MULTIPLIERS |
| 2518 |
C |
| 2519 |
T = -1.0D0/A(K,K) |
| 2520 |
CALL DSCAL(N-K,T,A(K+1,K),1) |
| 2521 |
C |
| 2522 |
C ROW ELIMINATION WITH COLUMN INDEXING |
| 2523 |
C |
| 2524 |
DO 30 J = KP1, N |
| 2525 |
T = A(L,J) |
| 2526 |
IF (L .EQ. K) GO TO 20 |
| 2527 |
A(L,J) = A(K,J) |
| 2528 |
A(K,J) = T |
| 2529 |
20 CONTINUE |
| 2530 |
CALL DAXPY(N-K,T,A(K+1,K),1,A(K+1,J),1) |
| 2531 |
30 CONTINUE |
| 2532 |
GO TO 50 |
| 2533 |
40 CONTINUE |
| 2534 |
INFO = K |
| 2535 |
50 CONTINUE |
| 2536 |
60 CONTINUE |
| 2537 |
70 CONTINUE |
| 2538 |
IPVT(N) = N |
| 2539 |
IF (A(N,N) .EQ. 0.0D0) INFO = N |
| 2540 |
RETURN |
| 2541 |
END |
| 2542 |
SUBROUTINE DGESL(A,LDA,N,IPVT,B,JOB) |
| 2543 |
INTEGER LDA,N,IPVT(1),JOB |
| 2544 |
DOUBLE PRECISION A(LDA,1),B(1) |
| 2545 |
C |
| 2546 |
C DGESL SOLVES THE DOUBLE PRECISION SYSTEM |
| 2547 |
C A * X = B OR TRANS(A) * X = B |
| 2548 |
C USING THE FACTORS COMPUTED BY DGECO OR DGEFA. |
| 2549 |
C |
| 2550 |
C ON ENTRY |
| 2551 |
C |
| 2552 |
C A DOUBLE PRECISION(LDA, N) |
| 2553 |
C THE OUTPUT FROM DGECO OR DGEFA. |
| 2554 |
C |
| 2555 |
C LDA INTEGER |
| 2556 |
C THE LEADING DIMENSION OF THE ARRAY A . |
| 2557 |
C |
| 2558 |
C N INTEGER |
| 2559 |
C THE ORDER OF THE MATRIX A . |
| 2560 |
C |
| 2561 |
C IPVT INTEGER(N) |
| 2562 |
C THE PIVOT VECTOR FROM DGECO OR DGEFA. |
| 2563 |
C |
| 2564 |
C B DOUBLE PRECISION(N) |
| 2565 |
C THE RIGHT HAND SIDE VECTOR. |
| 2566 |
C |
| 2567 |
C JOB INTEGER |
| 2568 |
C = 0 TO SOLVE A*X = B , |
| 2569 |
C = NONZERO TO SOLVE TRANS(A)*X = B WHERE |
| 2570 |
C TRANS(A) IS THE TRANSPOSE. |
| 2571 |
C |
| 2572 |
C ON RETURN |
| 2573 |
C |
| 2574 |
C B THE SOLUTION VECTOR X . |
| 2575 |
C |
| 2576 |
C ERROR CONDITION |
| 2577 |
C |
| 2578 |
C A DIVISION BY ZERO WILL OCCUR IF THE INPUT FACTOR CONTAINS A |
| 2579 |
C ZERO ON THE DIAGONAL. TECHNICALLY THIS INDICATES SINGULARITY |
| 2580 |
C BUT IT IS OFTEN CAUSED BY IMPROPER ARGUMENTS OR IMPROPER |
| 2581 |
C SETTING OF LDA . IT WILL NOT OCCUR IF THE SUBROUTINES ARE |
| 2582 |
C CALLED CORRECTLY AND IF DGECO HAS SET RCOND .GT. 0.0 |
| 2583 |
C OR DGEFA HAS SET INFO .EQ. 0 . |
| 2584 |
C |
| 2585 |
C TO COMPUTE INVERSE(A) * C WHERE C IS A MATRIX |
| 2586 |
C WITH P COLUMNS |
| 2587 |
C CALL DGECO(A,LDA,N,IPVT,RCOND,Z) |
| 2588 |
C IF (RCOND IS TOO SMALL) GO TO ... |
| 2589 |
C DO 10 J = 1, P |
| 2590 |
C CALL DGESL(A,LDA,N,IPVT,C(1,J),0) |
| 2591 |
C 10 CONTINUE |
| 2592 |
C |
| 2593 |
C LINPACK. THIS VERSION DATED 08/14/78 . |
| 2594 |
C CLEVE MOLER, UNIVERSITY OF NEW MEXICO, ARGONNE NATIONAL LAB. |
| 2595 |
C |
| 2596 |
C SUBROUTINES AND FUNCTIONS |
| 2597 |
C |
| 2598 |
C BLAS DAXPY,DDOT |
| 2599 |
C |
| 2600 |
C INTERNAL VARIABLES |
| 2601 |
C |
| 2602 |
DOUBLE PRECISION DDOT,T |
| 2603 |
INTEGER K,KB,L,NM1 |
| 2604 |
C |
| 2605 |
NM1 = N - 1 |
| 2606 |
IF (JOB .NE. 0) GO TO 50 |
| 2607 |
C |
| 2608 |
C JOB = 0 , SOLVE A * X = B |
| 2609 |
C FIRST SOLVE L*Y = B |
| 2610 |
C |
| 2611 |
IF (NM1 .LT. 1) GO TO 30 |
| 2612 |
DO 20 K = 1, NM1 |
| 2613 |
L = IPVT(K) |
| 2614 |
T = B(L) |
| 2615 |
IF (L .EQ. K) GO TO 10 |
| 2616 |
B(L) = B(K) |
| 2617 |
B(K) = T |
| 2618 |
10 CONTINUE |
| 2619 |
CALL DAXPY(N-K,T,A(K+1,K),1,B(K+1),1) |
| 2620 |
20 CONTINUE |
| 2621 |
30 CONTINUE |
| 2622 |
C |
| 2623 |
C NOW SOLVE U*X = Y |
| 2624 |
C |
| 2625 |
DO 40 KB = 1, N |
| 2626 |
K = N + 1 - KB |
| 2627 |
B(K) = B(K)/A(K,K) |
| 2628 |
T = -B(K) |
| 2629 |
CALL DAXPY(K-1,T,A(1,K),1,B(1),1) |
| 2630 |
40 CONTINUE |
| 2631 |
GO TO 100 |
| 2632 |
50 CONTINUE |
| 2633 |
C |
| 2634 |
C JOB = NONZERO, SOLVE TRANS(A) * X = B |
| 2635 |
C FIRST SOLVE TRANS(U)*Y = B |
| 2636 |
C |
| 2637 |
DO 60 K = 1, N |
| 2638 |
T = DDOT(K-1,A(1,K),1,B(1),1) |
| 2639 |
B(K) = (B(K) - T)/A(K,K) |
| 2640 |
60 CONTINUE |
| 2641 |
C |
| 2642 |
C NOW SOLVE TRANS(L)*X = Y |
| 2643 |
C |
| 2644 |
IF (NM1 .LT. 1) GO TO 90 |
| 2645 |
DO 80 KB = 1, NM1 |
| 2646 |
K = N - KB |
| 2647 |
B(K) = B(K) + DDOT(N-K,A(K+1,K),1,B(K+1),1) |
| 2648 |
L = IPVT(K) |
| 2649 |
IF (L .EQ. K) GO TO 70 |
| 2650 |
T = B(L) |
| 2651 |
B(L) = B(K) |
| 2652 |
B(K) = T |
| 2653 |
70 CONTINUE |
| 2654 |
80 CONTINUE |
| 2655 |
90 CONTINUE |
| 2656 |
100 CONTINUE |
| 2657 |
RETURN |
| 2658 |
END |
| 2659 |
SUBROUTINE DSCAL(N,DA,DX,INCX) |
| 2660 |
C |
| 2661 |
C SCALES A VECTOR BY A CONSTANT. |
| 2662 |
C USES UNROLLED LOOPS FOR INCREMENT EQUAL TO ONE. |
| 2663 |
C JACK DONGARRA, LINPACK, 3/11/78. |
| 2664 |
C |
| 2665 |
DOUBLE PRECISION DA,DX(1) |
| 2666 |
INTEGER I,INCX,M,MP1,N,NINCX |
| 2667 |
C |
| 2668 |
IF(N.LE.0)RETURN |
| 2669 |
IF(INCX.EQ.1)GO TO 20 |
| 2670 |
C |
| 2671 |
C CODE FOR INCREMENT NOT EQUAL TO 1 |
| 2672 |
C |
| 2673 |
NINCX = N*INCX |
| 2674 |
DO 10 I = 1,NINCX,INCX |
| 2675 |
DX(I) = DA*DX(I) |
| 2676 |
10 CONTINUE |
| 2677 |
RETURN |
| 2678 |
C |
| 2679 |
C CODE FOR INCREMENT EQUAL TO 1 |
| 2680 |
C |
| 2681 |
C |
| 2682 |
C CLEAN-UP LOOP |
| 2683 |
C |
| 2684 |
20 M = MOD(N,5) |
| 2685 |
IF( M .EQ. 0 ) GO TO 40 |
| 2686 |
DO 30 I = 1,M |
| 2687 |
DX(I) = DA*DX(I) |
| 2688 |
30 CONTINUE |
| 2689 |
IF( N .LT. 5 ) RETURN |
| 2690 |
40 MP1 = M + 1 |
| 2691 |
DO 50 I = MP1,N,5 |
| 2692 |
DX(I) = DA*DX(I) |
| 2693 |
DX(I + 1) = DA*DX(I + 1) |
| 2694 |
DX(I + 2) = DA*DX(I + 2) |
| 2695 |
DX(I + 3) = DA*DX(I + 3) |
| 2696 |
DX(I + 4) = DA*DX(I + 4) |
| 2697 |
50 CONTINUE |
| 2698 |
RETURN |
| 2699 |
END |
| 2700 |
INTEGER FUNCTION IDAMAX(N,DX,INCX) |
| 2701 |
C |
| 2702 |
C FINDS THE INDEX OF ELEMENT HAVING MAX. ABSOLUTE VALUE. |
| 2703 |
C JACK DONGARRA, LINPACK, 3/11/78. |
| 2704 |
C |
| 2705 |
DOUBLE PRECISION DX(1),DMAX |
| 2706 |
INTEGER I,INCX,IX,N |
| 2707 |
C |
| 2708 |
IDAMAX = 0 |
| 2709 |
IF( N .LT. 1 ) RETURN |
| 2710 |
IDAMAX = 1 |
| 2711 |
IF(N.EQ.1)RETURN |
| 2712 |
IF(INCX.EQ.1)GO TO 20 |
| 2713 |
C |
| 2714 |
C CODE FOR INCREMENT NOT EQUAL TO 1 |
| 2715 |
C |
| 2716 |
IX = 1 |
| 2717 |
DMAX = DABS(DX(1)) |
| 2718 |
IX = IX + INCX |
| 2719 |
DO 10 I = 2,N |
| 2720 |
IF(DABS(DX(IX)).LE.DMAX) GO TO 5 |
| 2721 |
IDAMAX = I |
| 2722 |
DMAX = DABS(DX(IX)) |
| 2723 |
5 IX = IX + INCX |
| 2724 |
10 CONTINUE |
| 2725 |
RETURN |
| 2726 |
C |
| 2727 |
C CODE FOR INCREMENT EQUAL TO 1 |
| 2728 |
C |
| 2729 |
20 DMAX = DABS(DX(1)) |
| 2730 |
DO 30 I = 2,N |
| 2731 |
IF(DABS(DX(I)).LE.DMAX) GO TO 30 |
| 2732 |
IDAMAX = I |
| 2733 |
DMAX = DABS(DX(I)) |
| 2734 |
30 CONTINUE |
| 2735 |
RETURN |
| 2736 |
END |
| 2737 |
SUBROUTINE MA30AD(NN, ICN, A, LICN, LENR, LENRL, IDISP, IP, IQ, |
| 2738 |
* IRN, LIRN, LENC, IFIRST, LASTR, NEXTR, LASTC, NEXTC, IPTR, IPC, 0000000 |
| 2739 |
* U, IFLAG) 0000000 |
| 2740 |
c_270390 |
| 2741 |
EXTERNAL MA30$DATA |
| 2742 |
c_270390 |
| 2743 |
C IF THE USER REQUIRES A MORE CONVENIENT DATA INTERFACE THEN THE MA28 0000000 |
| 2744 |
C PACKAGE SHOULD BE USED. THE MA28 SUBROUTINES CALL THE MA30 0000000 |
| 2745 |
C SUBROUTINES AFTER CHECKING THE USER'S INPUT DATA AND OPTIONALLY 0000000 |
| 2746 |
C USING MC23A/AD TO PERMUTE THE MATRIX TO BLOCK TRIANGULAR FORM. 0000000 |
| 2747 |
C THIS PACKAGE OF SUBROUTINES (MA30A/AD, MA30B/BD, MA30C/CD AND 0000000 |
| 2748 |
C MA30D/DD) PERFORMS OPERATIONS PERTINENT TO THE SOLUTION OF A 0000000 |
| 2749 |
C GENERAL SPARSE N BY N SYSTEM OF LINEAR EQUATIONS (I.E. SOLVE 0000000 |
| 2750 |
C AX=B). STRUCTUALLY SINGULAR MATRICES ARE PERMITTED INCLUDING 0000000 |
| 2751 |
C THOSE WITH ROW OR COLUMNS CONSISTING ENTIRELY OF ZEROS (I.E. 0000000 |
| 2752 |
C INCLUDING RECTANGULAR MATRICES). IT IS ASSUMED THAT THE 0000000 |
| 2753 |
C NON-ZEROS OF THE MATRIX A DO NOT DIFFER WIDELY IN SIZE. IF 0000000 |
| 2754 |
C NECESSARY A PRIOR CALL OF THE SCALING SUBROUTINE MC19A/AD MAY BE 0000000 |
| 2755 |
C MADE. 0000000 |
| 2756 |
C A DISCUSSION OF THE DESIGN OF THESE SUBROUTINES IS GIVEN BY DUFF AND 0000000 |
| 2757 |
C REID (ACM TRANS MATH SOFTWARE 5 PP 18-35,1979 (CSS 48)) WHILE 0000000 |
| 2758 |
C FULLER DETAILS OF THE IMPLEMENTATION ARE GIVEN IN DUFF (HARWELL 0000000 |
| 2759 |
C REPORT AERE-R 8730,1977). THE ADDITIONAL PIVOTING OPTION IN 0000000 |
| 2760 |
C MA30A/AD AND THE USE OF DROP TOLERANCES (SEE COMMON BLOCK 0000000 |
| 2761 |
C MA30I/ID) WERE ADDED TO THE PACKAGE AFTER JOINT WORK WITH REID, 0000000 |
| 2762 |
C SCHAUMBURG, WASNIEWSKI AND ZLATEV (DUFF, REID, SCHAUMBURG, 0000000 |
| 2763 |
C WASNIEWSKI AND ZLATEV, HARWELL REPORT CSS 135, 1983). 0000000 |
| 2764 |
C 0000000 |
| 2765 |
C MA30A/AD PERFORMS THE LU DECOMPOSITION OF THE DIAGONAL BLOCKS OF THE 0000000 |
| 2766 |
C PERMUTATION PAQ OF A SPARSE MATRIX A, WHERE INPUT PERMUTATIONS 0000000 |
| 2767 |
C P1 AND Q1 ARE USED TO DEFINE THE DIAGONAL BLOCKS. THERE MAY BE 0000000 |
| 2768 |
C NON-ZEROS IN THE OFF-DIAGONAL BLOCKS BUT THEY ARE UNAFFECTED BY 0000000 |
| 2769 |
C MA30A/AD. P AND P1 DIFFER ONLY WITHIN BLOCKS AS DO Q AND Q1. THE 0000000 |
| 2770 |
C PERMUTATIONS P1 AND Q1 MAY BE FOUND BY CALLING MC23A/AD OR THE 0000000 |
| 2771 |
C MATRIX MAY BE TREATED AS A SINGLE BLOCK BY USING P1=Q1=I. THE 0000000 |
| 2772 |
C MATRIX NON-ZEROS SHOULD BE HELD COMPACTLY BY ROWS, ALTHOUGH IT 0000000 |
| 2773 |
C SHOULD BE NOTED THAT THE USER CAN SUPPLY THE MATRIX BY COLUMNS 0000000 |
| 2774 |
C TO GET THE LU DECOMPOSITION OF A TRANSPOSE. 0000000 |
| 2775 |
C 0000000 |
| 2776 |
C THE PARAMETERS ARE... 0000000 |
| 2777 |
C THIS DESCRIPTION SHOULD ALSO BE CONSULTED FOR FURTHER INFORMATION ON 0000000 |
| 2778 |
C MOST OF THE PARAMETERS OF MA30B/BD AND MA30C/CD. 0000000 |
| 2779 |
C 0000000 |
| 2780 |
C N IS AN INTEGER VARIABLE WHICH MUST BE SET BY THE USER TO THE |
| 2781 |
C ORDER OF THE MATRIX. BECAUSE OF THE USE OF INTEGER*2 ARRAYS IN |
| 2782 |
C THE IBM VERSION, THE VALUE OF N SHOULD BE LESS THAN 32768. IT |
| 2783 |
C IS NOT ALTERED BY MA30A/AD. |
| 2784 |
C ICN IS AN INTEGER*2 ARRAY OF LENGTH LICN. POSITIONS IDISP(2) TO |
| 2785 |
C LICN MUST BE SET BY THE USER TO CONTAIN THE COLUMN INDICES OF 0000000 |
| 2786 |
C THE NON-ZEROS IN THE DIAGONAL BLOCKS OF P1*A*Q1. THOSE BELONGING 0000000 |
| 2787 |
C TO A SINGLE ROW MUST BE CONTIGUOUS BUT THE ORDERING OF COLUMN 0000000 |
| 2788 |
C INDICES WITH EACH ROW IS UNIMPORTANT. THE NON-ZEROS OF ROW I 0000000 |
| 2789 |
C PRECEDE THOSE OF ROW I+1,I=1,...,N-1 AND NO WASTED SPACE IS 0000000 |
| 2790 |
C ALLOWED BETWEEN THE ROWS. ON OUTPUT THE COLUMN INDICES OF THE 0000000 |
| 2791 |
C LU DECOMPOSITION OF PAQ ARE HELD IN POSITIONS IDISP(1) TO 0000000 |
| 2792 |
C IDISP(2), THE ROWS ARE IN PIVOTAL ORDER, AND THE COLUMN INDICES 0000000 |
| 2793 |
C OF THE L PART OF EACH ROW ARE IN PIVOTAL ORDER AND PRECEDE THOSE 0000000 |
| 2794 |
C OF U. AGAIN THERE IS NO WASTED SPACE EITHER WITHIN A ROW OR 0000000 |
| 2795 |
C BETWEEN THE ROWS. ICN(1) TO ICN(IDISP(1)-1), ARE NEITHER 0000000 |
| 2796 |
C REQUIRED NOR ALTERED. IF MC23A/AD BEEN CALLED, THESE WILL HOLD 0000000 |
| 2797 |
C INFORMATION ABOUT THE OFF-DIAGONAL BLOCKS. 0000000 |
| 2798 |
C A IS A REAL/DOUBLE PRECISION ARRAY OF LENGTH LICN WHOSE ENTRIES 0000000 |
| 2799 |
C IDISP(2) TO LICN MUST BE SET BY THE USER TO THE VALUES OF THE 0000000 |
| 2800 |
C NON-ZERO ENTRIES OF THE MATRIX IN THE ORDER INDICATED BY ICN. 0000000 |
| 2801 |
C ON OUTPUT A WILL HOLD THE LU FACTORS OF THE MATRIX WHERE AGAIN 0000000 |
| 2802 |
C THE POSITION IN THE MATRIX IS DETERMINED BY THE CORRESPONDING 0000000 |
| 2803 |
C VALUES IN ICN. A(1) TO A(IDISP(1)-1) ARE NEITHER REQUIRED NOR 0000000 |
| 2804 |
C ALTERED. 0000000 |
| 2805 |
C LICN IS AN INTEGER VARIABLE WHICH MUST BE SET BY THE USER TO THE 0000000 |
| 2806 |
C LENGTH OF ARRAYS ICN AND A. IT MUST BE BIG ENOUGH FOR A AND ICN 0000000 |
| 2807 |
C TO HOLD ALL THE NON-ZEROS OF L AND U AND LEAVE SOME "ELBOW 0000000 |
| 2808 |
C ROOM". IT IS POSSIBLE TO CALCULATE A MINIMUM VALUE FOR LICN BY 0000000 |
| 2809 |
C A PRELIMINARY RUN OF MA30A/AD. THE ADEQUACY OF THE ELBOW ROOM 0000000 |
| 2810 |
C CAN BE JUDGED BY THE SIZE OF THE COMMON BLOCK VARIABLE ICNCP. IT 0000000 |
| 2811 |
C IS NOT ALTERED BY MA30A/AD. 0000000 |
| 2812 |
C LENR IS AN INTEGER*2 ARRAY OF LENGTH N. ON INPUT, LENR(I) SHOULD |
| 2813 |
C EQUAL THE NUMBER OF NON-ZEROS IN ROW I, I=1,...,N OF THE 0000000 |
| 2814 |
C DIAGONAL BLOCKS OF P1*A*Q1. ON OUTPUT, LENR(I) WILL EQUAL THE 0000000 |
| 2815 |
C TOTAL NUMBER OF NON-ZEROS IN ROW I OF L AND ROW I OF U. 0000000 |
| 2816 |
C LENRL IS AN INTEGER*2 ARRAY OF LENGTH N. ON OUTPUT FROM MA30A/AD, |
| 2817 |
C LENRL(I) WILL HOLD THE NUMBER OF NON-ZEROS IN ROW I OF L. 0000000 |
| 2818 |
C IDISP IS AN INTEGER ARRAY OF LENGTH 2. THE USER SHOULD SET IDISP(1) 0000000 |
| 2819 |
C TO BE THE FIRST AVAILABLE POSITION IN A/ICN FOR THE LU 0000000 |
| 2820 |
C DECOMPOSITION WHILE IDISP(2) IS SET TO THE POSITION IN A/ICN OF 0000000 |
| 2821 |
C THE FIRST NON-ZERO IN THE DIAGONAL BLOCKS OF P1*A*Q1. ON OUTPUT, 0000000 |
| 2822 |
C IDISP(1) WILL BE UNALTERED WHILE IDISP(2) WILL BE SET TO THE 0000000 |
| 2823 |
C POSITION IN A/ICN OF THE LAST NON-ZERO OF THE LU DECOMPOSITION. 0000000 |
| 2824 |
C IP IS AN INTEGER*2 ARRAY OF LENGTH N WHICH HOLDS A PERMUTATION OF |
| 2825 |
C THE INTEGERS 1 TO N. ON INPUT TO MA30A/AD, THE ABSOLUTE VALUE OF 0000000 |
| 2826 |
C IP(I) MUST BE SET TO THE ROW OF A WHICH IS ROW I OF P1*A*Q1. A 0000000 |
| 2827 |
C NEGATIVE VALUE FOR IP(I) INDICATES THAT ROW I IS AT THE END OF A 0000000 |
| 2828 |
C DIAGONAL BLOCK. ON OUTPUT FROM MA30A/AD, IP(I) INDICATES THE ROW 0000000 |
| 2829 |
C OF A WHICH IS THE I TH ROW IN PAQ. IP(I) WILL STILL BE NEGATIVE 0000000 |
| 2830 |
C FOR THE LAST ROW OF EACH BLOCK (EXCEPT THE LAST). 0000000 |
| 2831 |
C IQ IS AN INTEGER*2 ARRAY OF LENGTH N WHICH AGAIN HOLDS A |
| 2832 |
C PERMUTATION OF THE INTEGERS 1 TO N. ON INPUT TO MA30A/AD, IQ(J) 0000000 |
| 2833 |
C MUST BE SET TO THE COLUMN OF A WHICH IS COLUMN J OF P1*A*Q1. ON 0000000 |
| 2834 |
C OUTPUT FROM MA30A/AD, THE ABSOLUTE VALUE OF IQ(J) INDICATES THE 0000000 |
| 2835 |
C COLUMN OF A WHICH IS THE J TH IN PAQ. FOR ROWS, I SAY, IN WHICH 0000000 |
| 2836 |
C STRUCTURAL OR NUMERICAL SINGULARITY IS DETECTED IQ(I) IS 0000000 |
| 2837 |
C NEGATED. 0000000 |
| 2838 |
C IRN IS AN INTEGER*2 ARRAY OF LENGTH LIRN USED AS WORKSPACE BY |
| 2839 |
C MA30A/AD. 0000000 |
| 2840 |
C LIRN IS AN INTEGER VARIABLE. IT SHOULD BE GREATER THAN THE 0000000 |
| 2841 |
C LARGEST NUMBER OF NON-ZEROS IN A DIAGONAL BLOCK OF P1*A*Q1 BUT 0000000 |
| 2842 |
C NEED NOT BE AS LARGE AS LICN. IT IS THE LENGTH OF ARRAY IRN AND 0000000 |
| 2843 |
C SHOULD BE LARGE ENOUGH TO HOLD THE ACTIVE PART OF ANY BLOCK, 0000000 |
| 2844 |
C PLUS SOME "ELBOW ROOM", THE A POSTERIORI ADEQUACY OF WHICH CAN 0000000 |
| 2845 |
C BE ESTIMATED BY EXAMINING THE SIZE OF COMMON BLOCK VARIABLE 0000000 |
| 2846 |
C IRNCP. 0000000 |
| 2847 |
C LENC,IFIRST,LASTR,NEXTR,LASTC,NEXTC ARE ALL INTEGER*2 ARRAYS OF |
| 2848 |
C LENGTH N WHICH ARE USED AS WORKSPACE BY MA30A/AD. IF NSRCH IS 0000000 |
| 2849 |
C SET TO A VALUE LESS THAN OR EQUAL TO N, THEN ARRAYS LASTC AND 0000000 |
| 2850 |
C NEXTC ARE NOT REFERENCED BY MA30A/AD AND SO CAN BE DUMMIED IN 0000000 |
| 2851 |
C THE CALL TO MA30A/AD. 0000000 |
| 2852 |
C IPTR,IPC ARE INTEGER ARRAYS OF LENGTH N WHICH ARE USED AS WORKSPACE 0000000 |
| 2853 |
C BY MA30A/AD. 0000000 |
| 2854 |
C U IS A REAL/DOUBLE PRECISION VARIABLE WHICH SHOULD BE SET BY THE 0000000 |
| 2855 |
C USER TO A VALUE BETWEEN 0. AND 1.0. IF LESS THAN ZERO IT IS 0000000 |
| 2856 |
C RESET TO ZERO AND IF ITS VALUE IS 1.0 OR GREATER IT IS RESET TO 0000000 |
| 2857 |
C 0.9999 (0.999999999 IN D VERSION). IT DETERMINES THE BALANCE 0000000 |
| 2858 |
C BETWEEN PIVOTING FOR SPARSITY AND FOR STABILITY, VALUES NEAR 0000000 |
| 2859 |
C ZERO EMPHASIZING SPARSITY AND VALUES NEAR ONE EMPHASIZING 0000000 |
| 2860 |
C STABILITY. WE RECOMMEND U=0.1 AS A POSIBLE FIRST TRIAL VALUE. 0000000 |
| 2861 |
C THE STABILITY CAN BE JUDGED BY A LATER CALL TO MC24A/AD OR BY 0000000 |
| 2862 |
C SETTING LBIG TO .TRUE. 0000000 |
| 2863 |
C IFLAG IS AN INTEGER VARIABLE. IT WILL HAVE A NON-NEGATIVE VALUE IF 0000000 |
| 2864 |
C MA30A/AD IS SUCCESSFUL. NEGATIVE VALUES INDICATE ERROR 0000000 |
| 2865 |
C CONDITIONS WHILE POSITIVE VALUES INDICATE THAT THE MATRIX HAS 0000000 |
| 2866 |
C BEEN SUCCESSFULLY DECOMPOSED BUT IS SINGULAR. FOR EACH NON-ZERO 0000000 |
| 2867 |
C VALUE, AN APPROPRIATE MESSAGE IS OUTPUT ON UNIT LP. POSSIBLE 0000000 |
| 2868 |
C NON-ZERO VALUES FOR IFLAG ARE ... 0000000 |
| 2869 |
C 0000000 |
| 2870 |
C -1 THE MATRIX IS STRUCTUALLY SINGULAR WITH RANK GIVEN BY IRANK IN 0000000 |
| 2871 |
C COMMON BLOCK MA30F/FD. 0000000 |
| 2872 |
C +1 IF, HOWEVER, THE USER WANTS THE LU DECOMPOSITION OF A 0000000 |
| 2873 |
C STRUCTURALLY SINGULAR MATRIX AND SETS THE COMMON BLOCK VARIABLE 0000000 |
| 2874 |
C ABORT1 TO .FALSE., THEN, IN THE EVENT OF SINGULARITY AND A 0000000 |
| 2875 |
C SUCCESSFUL DECOMPOSITION, IFLAG IS RETURNED WITH THE VALUE +1 0000000 |
| 2876 |
C AND NO MESSAGE IS OUTPUT. 0000000 |
| 2877 |
C -2 THE MATRIX IS NUMERICALLY SINGULAR (IT MAY ALSO BE STRUCTUALLY 0000000 |
| 2878 |
C SINGULAR) WITH ESTIMATED RANK GIVEN BY IRANK IN COMMON BLOCK 0000000 |
| 2879 |
C MA30F/FD. 0000000 |
| 2880 |
C +2 THE USER CAN CHOOSE TO CONTINUE THE DECOMPOSITION EVEN WHEN A 0000000 |
| 2881 |
C ZERO PIVOT IS ENCOUNTERED BY SETTING COMMON BLOCK VARIABLE 0000000 |
| 2882 |
C ABORT2 TO .FALSE. IF A SINGULARITY IS ENCOUNTERED, IFLAG WILL 0000000 |
| 2883 |
C THEN RETURN WITH A VALUE OF +2, AND NO MESSAGE IS OUTPUT IF THE 0000000 |
| 2884 |
C DECOMPOSITION HAS BEEN COMPLETED SUCCESSFULLY. 0000000 |
| 2885 |
C -3 LIRN HAS NOT BEEN LARGE ENOUGH TO CONTINUE WITH THE 0000000 |
| 2886 |
C DECOMPOSITION. IF THE STAGE WAS ZERO THEN COMMON BLOCK VARIABLE 0000000 |
| 2887 |
C MINIRN GIVES THE LENGTH SUFFICIENT TO START THE DECOMPOSITION ON 0000000 |
| 2888 |
C THIS BLOCK. FOR A SUCCESSFUL DECOMPOSITION ON THIS BLOCK THE 0000000 |
| 2889 |
C USER SHOULD MAKE LIRN SLIGHTLY (SAY ABOUT N/2) GREATER THAN THIS 0000000 |
| 2890 |
C VALUE. 0000000 |
| 2891 |
C -4 LICN NOT LARGE ENOUGH TO CONTINUE WITH THE DECOMPOSITION. 0000000 |
| 2892 |
C -5 THE DECOMPOSITION HAS BEEN COMPLETED BUT SOME OF THE LU FACTORS 0000000 |
| 2893 |
C HAVE BEEN DISCARDED TO CREATE ENOUGH ROOM IN A/ICN TO CONTINUE 0000000 |
| 2894 |
C THE DECOMPOSITION. THE VARIABLE MINICN IN COMMON BLOCK MA30F/FD 0000000 |
| 2895 |
C THEN GIVES THE SIZE THAT LICN SHOULD BE TO ENABLE THE 0000000 |
| 2896 |
C FACTORIZATION TO BE SUCCESSFUL. IF THE USER SETS COMMON BLOCK 0000000 |
| 2897 |
C VARIABLE ABORT3 TO .TRUE., THEN THE SUBROUTINE WILL EXIT 0000000 |
| 2898 |
C IMMEDIATELY INSTEAD OF DESTROYING ANY FACTORS AND CONTINUING. 0000000 |
| 2899 |
C -6 BOTH LICN AND LIRN ARE TOO SMALL. TERMINATION HAS BEEN CAUSED BY 0000000 |
| 2900 |
C LACK OF SPACE IN IRN (SEE ERROR IFLAG= -3), BUT ALREADY SOME OF 0000000 |
| 2901 |
C THE LU FACTORS IN A/ICN HAVE BEEN LOST (SEE ERROR IFLAG= -5). 0000000 |
| 2902 |
C MINICN GIVES THE MINIMUM AMOUNT OF SPACE REQUIRED IN A/ICN FOR 0000000 |
| 2903 |
C DECOMPOSITION UP TO THIS POINT. 0000000 |
| 2904 |
C 0000000 |
| 2905 |
DOUBLE PRECISION A(LICN), U, AU, UMAX, AMAX, ZERO, PIVRAT, PIVR, |
| 2906 |
* TOL, BIG, ANEW, AANEW, SCALE |
| 2907 |
INTEGER IPTR(NN), PIVOT, PIVEND, DISPC, OLDPIV, OLDEND, PIVROW, 0000000 |
| 2908 |
* ROWI, IPC(NN), IDISP(2) 0000000 |
| 2909 |
Change |
| 2910 |
C INTEGER*2 ICN(LICN), LENR(NN), LENRL(NN), IP(NN), IQ(NN), |
| 2911 |
C * LENC(NN), IRN(LIRN), IFIRST(NN), LASTR(NN), NEXTR(NN), 0000000 |
| 2912 |
C * LASTC(NN), NEXTC(NN) 0000000 |
| 2913 |
INTEGER ICN(LICN), LENR(NN), LENRL(NN), IP(NN), IQ(NN), |
| 2914 |
* LENC(NN), IRN(LIRN), IFIRST(NN), LASTR(NN), NEXTR(NN), 0000000 |
| 2915 |
* LASTC(NN), NEXTC(NN) 0000000 |
| 2916 |
Change |
| 2917 |
LOGICAL ABORT1, ABORT2, ABORT3, LBIG 0000000 |
| 2918 |
C FOR COMMENTS OF COMMON BLOCK VARIABLES SEE BLOCK DATA SUBPROGRAM. |
| 2919 |
COMMON /MA30ED/ LP, ABORT1, ABORT2, ABORT3 |
| 2920 |
COMMON /MA30FD/ IRNCP, ICNCP, IRANK, MINIRN, MINICN |
| 2921 |
COMMON /MA30ID/ TOL, BIG, NDROP, NSRCH, LBIG |
| 2922 |
C 0000000 |
| 2923 |
DATA UMAX/.999999999D0/ |
| 2924 |
DATA ZERO /0.0D0/ |
| 2925 |
MSRCH = NSRCH 0000000 |
| 2926 |
NDROP = 0 0000000 |
| 2927 |
MINIRN = 0 0000000 |
| 2928 |
MINICN = IDISP(1) - 1 0000000 |
| 2929 |
MOREI = 0 0000000 |
| 2930 |
IRANK = NN 0000000 |
| 2931 |
IRNCP = 0 0000000 |
| 2932 |
ICNCP = 0 0000000 |
| 2933 |
IFLAG = 0 0000000 |
| 2934 |
C RESET U IF NECESSARY. 0000000 |
| 2935 |
U = DMIN1(U,UMAX) |
| 2936 |
C IBEG IS THE POSITION OF THE NEXT PIVOT ROW AFTER ELIMINATION STEP 0000000 |
| 2937 |
C USING IT. 0000000 |
| 2938 |
U = DMAX1(U,ZERO) |
| 2939 |
IBEG = IDISP(1) 0000000 |
| 2940 |
C IACTIV IS THE POSITION OF THE FIRST ENTRY IN THE ACTIVE PART OF A/ICN.0000000 |
| 2941 |
IACTIV = IDISP(2) 0000000 |
| 2942 |
C NZROW IS CURRENT NUMBER OF NON-ZEROS IN ACTIVE AND UNPROCESSED PART 0000000 |
| 2943 |
C OF ROW FILE ICN. 0000000 |
| 2944 |
NZROW = LICN - IACTIV + 1 0000000 |
| 2945 |
MINICN = NZROW + MINICN 0000000 |
| 2946 |
C 0000000 |
| 2947 |
C COUNT THE NUMBER OF DIAGONAL BLOCKS AND SET UP POINTERS TO THE 0000000 |
| 2948 |
C BEGINNINGS OF THE ROWS. 0000000 |
| 2949 |
C NUM IS THE NUMBER OF DIAGONAL BLOCKS. 0000000 |
| 2950 |
NUM = 1 0000000 |
| 2951 |
IPTR(1) = IACTIV 0000000 |
| 2952 |
IF (NN.EQ.1) GO TO 20 0000000 |
| 2953 |
NNM1 = NN - 1 0000000 |
| 2954 |
DO 10 I=1,NNM1 0000000 |
| 2955 |
IF (IP(I).LT.0) NUM = NUM + 1 0000000 |
| 2956 |
IPTR(I+1) = IPTR(I) + LENR(I) 0000000 |
| 2957 |
10 CONTINUE 0000000 |
| 2958 |
C ILAST IS THE LAST ROW IN THE PREVIOUS BLOCK. 0000000 |
| 2959 |
20 ILAST = 0 0000000 |
| 2960 |
C 0000000 |
| 2961 |
C *********************************************** 0000000 |
| 2962 |
C **** LU DECOMPOSITION OF BLOCK NBLOCK **** 0000000 |
| 2963 |
C *********************************************** 0000000 |
| 2964 |
C 0000000 |
| 2965 |
C EACH PASS THROUGH THIS LOOP PERFORMS LU DECOMPOSITION ON ONE 0000000 |
| 2966 |
C OF THE DIAGONAL BLOCKS. 0000000 |
| 2967 |
DO 1000 NBLOCK=1,NUM 0000000 |
| 2968 |
ISTART = ILAST + 1 0000000 |
| 2969 |
DO 30 IROWS=ISTART,NN 0000000 |
| 2970 |
IF (IP(IROWS).LT.0) GO TO 40 0000000 |
| 2971 |
30 CONTINUE 0000000 |
| 2972 |
IROWS = NN 0000000 |
| 2973 |
40 ILAST = IROWS 0000000 |
| 2974 |
C N IS THE NUMBER OF ROWS IN THE CURRENT BLOCK. 0000000 |
| 2975 |
C ISTART IS THE INDEX OF THE FIRST ROW IN THE CURRENT BLOCK. 0000000 |
| 2976 |
C ILAST IS THE INDEX OF THE LAST ROW IN THE CURRENT BLOCK. 0000000 |
| 2977 |
C IACTIV IS THE POSITION OF THE FIRST ENTRY IN THE BLOCK. 0000000 |
| 2978 |
C ITOP IS THE POSITION OF THE LAST ENTRY IN THE BLOCK. 0000000 |
| 2979 |
N = ILAST - ISTART + 1 0000000 |
| 2980 |
IF (N.NE.1) GO TO 90 0000000 |
| 2981 |
C 0000000 |
| 2982 |
C CODE FOR DEALING WITH 1X1 BLOCK. 0000000 |
| 2983 |
LENRL(ILAST) = 0 0000000 |
| 2984 |
ISING = ISTART 0000000 |
| 2985 |
IF (LENR(ILAST).NE.0) GO TO 50 0000000 |
| 2986 |
C BLOCK IS STRUCTURALLY SINGULAR. 0000000 |
| 2987 |
IRANK = IRANK - 1 0000000 |
| 2988 |
ISING = -ISING 0000000 |
| 2989 |
IF (IFLAG.NE.2 .AND. IFLAG.NE.-5) IFLAG = 1 0000000 |
| 2990 |
IF (.NOT.ABORT1) GO TO 80 0000000 |
| 2991 |
IDISP(2) = IACTIV 0000000 |
| 2992 |
IFLAG = -1 0000000 |
| 2993 |
IF (LP.NE.0) WRITE (LP,99999) 0000000 |
| 2994 |
C RETURN 0000000 |
| 2995 |
GO TO 1120 0000000 |
| 2996 |
50 SCALE = DABS(A(IACTIV)) |
| 2997 |
IF (SCALE.EQ.ZERO) GO TO 60 0000000 |
| 2998 |
IF (LBIG) BIG = DMAX1(BIG,SCALE) |
| 2999 |
GO TO 70 0000000 |
| 3000 |
60 ISING = -ISING 0000000 |
| 3001 |
IRANK = IRANK - 1 0000000 |
| 3002 |
IPTR(ILAST) = 0 0000000 |
| 3003 |
IF (IFLAG.NE.-5) IFLAG = 2 0000000 |
| 3004 |
IF (.NOT.ABORT2) GO TO 70 0000000 |
| 3005 |
IDISP(2) = IACTIV 0000000 |
| 3006 |
IFLAG = -2 0000000 |
| 3007 |
IF (LP.NE.0) WRITE (LP,99998) 0000000 |
| 3008 |
GO TO 1120 0000000 |
| 3009 |
70 A(IBEG) = A(IACTIV) 0000000 |
| 3010 |
ICN(IBEG) = ICN(IACTIV) 0000000 |
| 3011 |
IACTIV = IACTIV + 1 0000000 |
| 3012 |
IPTR(ISTART) = 0 0000000 |
| 3013 |
IBEG = IBEG + 1 0000000 |
| 3014 |
NZROW = NZROW - 1 0000000 |
| 3015 |
80 LASTR(ISTART) = ISTART 0000000 |
| 3016 |
IPC(ISTART) = -ISING 0000000 |
| 3017 |
GO TO 1000 0000000 |
| 3018 |
C 0000000 |
| 3019 |
C NON-TRIVIAL BLOCK. 0000000 |
| 3020 |
90 ITOP = LICN 0000000 |
| 3021 |
IF (ILAST.NE.NN) ITOP = IPTR(ILAST+1) - 1 0000000 |
| 3022 |
C 0000000 |
| 3023 |
C SET UP COLUMN ORIENTED STORAGE. 0000000 |
| 3024 |
DO 100 I=ISTART,ILAST 0000000 |
| 3025 |
LENRL(I) = 0 0000000 |
| 3026 |
LENC(I) = 0 0000000 |
| 3027 |
100 CONTINUE 0000000 |
| 3028 |
IF (ITOP-IACTIV.LT.LIRN) GO TO 110 0000000 |
| 3029 |
MINIRN = ITOP - IACTIV + 1 0000000 |
| 3030 |
PIVOT = ISTART - 1 0000000 |
| 3031 |
GO TO 1100 0000000 |
| 3032 |
C 0000000 |
| 3033 |
C CALCULATE COLUMN COUNTS. 0000000 |
| 3034 |
110 DO 120 II=IACTIV,ITOP 0000000 |
| 3035 |
I = ICN(II) 0000000 |
| 3036 |
LENC(I) = LENC(I) + 1 0000000 |
| 3037 |
120 CONTINUE 0000000 |
| 3038 |
C SET UP COLUMN POINTERS SO THAT IPC(J) POINTS TO POSITION AFTER END 0000000 |
| 3039 |
C OF COLUMN J IN COLUMN FILE. 0000000 |
| 3040 |
IPC(ILAST) = LIRN + 1 0000000 |
| 3041 |
J1 = ISTART + 1 0000000 |
| 3042 |
DO 130 JJ=J1,ILAST 0000000 |
| 3043 |
J = ILAST - JJ + J1 - 1 0000000 |
| 3044 |
IPC(J) = IPC(J+1) - LENC(J+1) 0000000 |
| 3045 |
130 CONTINUE 0000000 |
| 3046 |
DO 150 INDROW=ISTART,ILAST 0000000 |
| 3047 |
J1 = IPTR(INDROW) 0000000 |
| 3048 |
J2 = J1 + LENR(INDROW) - 1 0000000 |
| 3049 |
IF (J1.GT.J2) GO TO 150 0000000 |
| 3050 |
DO 140 JJ=J1,J2 0000000 |
| 3051 |
J = ICN(JJ) 0000000 |
| 3052 |
IPOS = IPC(J) - 1 0000000 |
| 3053 |
IRN(IPOS) = INDROW 0000000 |
| 3054 |
IPC(J) = IPOS 0000000 |
| 3055 |
140 CONTINUE 0000000 |
| 3056 |
150 CONTINUE 0000000 |
| 3057 |
C DISPC IS THE LOWEST INDEXED ACTIVE LOCATION IN THE COLUMN FILE. 0000000 |
| 3058 |
DISPC = IPC(ISTART) 0000000 |
| 3059 |
NZCOL = LIRN - DISPC + 1 0000000 |
| 3060 |
MINIRN = MAX0(NZCOL,MINIRN) 0000000 |
| 3061 |
NZMIN = 1 0000000 |
| 3062 |
C 0000000 |
| 3063 |
C INITIALIZE ARRAY IFIRST. IFIRST(I) = +/- K INDICATES THAT ROW/COL 0000000 |
| 3064 |
C K HAS I NON-ZEROS. IF IFIRST(I) = 0, THERE IS NO ROW OR COLUMN 0000000 |
| 3065 |
C WITH I NON ZEROS. 0000000 |
| 3066 |
DO 160 I=1,N 0000000 |
| 3067 |
IFIRST(I) = 0 0000000 |
| 3068 |
160 CONTINUE 0000000 |
| 3069 |
C 0000000 |
| 3070 |
C COMPUTE ORDERING OF ROW AND COLUMN COUNTS. 0000000 |
| 3071 |
C FIRST RUN THROUGH COLUMNS (FROM COLUMN N TO COLUMN 1). 0000000 |
| 3072 |
DO 180 JJ=ISTART,ILAST 0000000 |
| 3073 |
J = ILAST - JJ + ISTART 0000000 |
| 3074 |
NZ = LENC(J) 0000000 |
| 3075 |
IF (NZ.NE.0) GO TO 170 0000000 |
| 3076 |
IPC(J) = 0 0000000 |
| 3077 |
GO TO 180 0000000 |
| 3078 |
170 IF (NSRCH.LE.NN) GO TO 180 0000000 |
| 3079 |
ISW = IFIRST(NZ) 0000000 |
| 3080 |
IFIRST(NZ) = -J 0000000 |
| 3081 |
LASTC(J) = 0 0000000 |
| 3082 |
NEXTC(J) = -ISW 0000000 |
| 3083 |
ISW1 = IABS(ISW) 0000000 |
| 3084 |
IF (ISW.NE.0) LASTC(ISW1) = J 0000000 |
| 3085 |
180 CONTINUE 0000000 |
| 3086 |
C NOW RUN THROUGH ROWS (AGAIN FROM N TO 1). 0000000 |
| 3087 |
DO 210 II=ISTART,ILAST 0000000 |
| 3088 |
I = ILAST - II + ISTART 0000000 |
| 3089 |
NZ = LENR(I) 0000000 |
| 3090 |
IF (NZ.NE.0) GO TO 190 0000000 |
| 3091 |
IPTR(I) = 0 0000000 |
| 3092 |
LASTR(I) = 0 0000000 |
| 3093 |
GO TO 210 0000000 |
| 3094 |
190 ISW = IFIRST(NZ) 0000000 |
| 3095 |
IFIRST(NZ) = I 0000000 |
| 3096 |
IF (ISW.GT.0) GO TO 200 0000000 |
| 3097 |
NEXTR(I) = 0 0000000 |
| 3098 |
LASTR(I) = ISW 0000000 |
| 3099 |
GO TO 210 0000000 |
| 3100 |
200 NEXTR(I) = ISW 0000000 |
| 3101 |
LASTR(I) = LASTR(ISW) 0000000 |
| 3102 |
LASTR(ISW) = I 0000000 |
| 3103 |
210 CONTINUE 0000000 |
| 3104 |
C 0000000 |
| 3105 |
C 0000000 |
| 3106 |
C ********************************************** 0000000 |
| 3107 |
C **** START OF MAIN ELIMINATION LOOP **** 0000000 |
| 3108 |
C ********************************************** 0000000 |
| 3109 |
DO 980 PIVOT=ISTART,ILAST 0000000 |
| 3110 |
C 0000000 |
| 3111 |
C FIRST FIND THE PIVOT USING MARKOWITZ CRITERION WITH STABILITY 0000000 |
| 3112 |
C CONTROL. 0000000 |
| 3113 |
C JCOST IS THE MARKOWITZ COST OF THE BEST PIVOT SO FAR,.. THIS 0000000 |
| 3114 |
C PIVOT IS IN ROW IPIV AND COLUMN JPIV. 0000000 |
| 3115 |
NZ2 = NZMIN 0000000 |
| 3116 |
JCOST = N*N 0000000 |
| 3117 |
C 0000000 |
| 3118 |
C EXAMINE ROWS/COLUMNS IN ORDER OF ASCENDING COUNT. 0000000 |
| 3119 |
DO 340 L=1,2 0000000 |
| 3120 |
PIVRAT = ZERO 0000000 |
| 3121 |
ISRCH = 1 0000000 |
| 3122 |
LL = L 0000000 |
| 3123 |
C A PASS WITH L EQUAL TO 2 IS ONLY PERFORMED IN THE CASE OF SINGULARITY.0000000 |
| 3124 |
DO 330 NZ=NZ2,N 0000000 |
| 3125 |
IF (JCOST.LE.(NZ-1)**2) GO TO 420 0000000 |
| 3126 |
IJFIR = IFIRST(NZ) 0000000 |
| 3127 |
IF (IJFIR) 230, 220, 240 0000000 |
| 3128 |
220 IF (LL.EQ.1) NZMIN = NZ + 1 0000000 |
| 3129 |
GO TO 330 0000000 |
| 3130 |
230 LL = 2 0000000 |
| 3131 |
IJFIR = -IJFIR 0000000 |
| 3132 |
GO TO 290 0000000 |
| 3133 |
240 LL = 2 0000000 |
| 3134 |
C SCAN ROWS WITH NZ NON-ZEROS. 0000000 |
| 3135 |
DO 270 IDUMMY=1,N 0000000 |
| 3136 |
IF (JCOST.LE.(NZ-1)**2) GO TO 420 0000000 |
| 3137 |
IF (ISRCH.GT.MSRCH) GO TO 420 0000000 |
| 3138 |
IF (IJFIR.EQ.0) GO TO 280 0000000 |
| 3139 |
C ROW IJFIR IS NOW EXAMINED. 0000000 |
| 3140 |
I = IJFIR 0000000 |
| 3141 |
IJFIR = NEXTR(I) 0000000 |
| 3142 |
C FIRST CALCULATE MULTIPLIER THRESHOLD LEVEL. 0000000 |
| 3143 |
AMAX = ZERO 0000000 |
| 3144 |
J1 = IPTR(I) + LENRL(I) 0000000 |
| 3145 |
J2 = IPTR(I) + LENR(I) - 1 0000000 |
| 3146 |
DO 250 JJ=J1,J2 0000000 |
| 3147 |
AMAX = DMAX1(AMAX,DABS(A(JJ))) |
| 3148 |
250 CONTINUE 0000000 |
| 3149 |
AU = AMAX*U 0000000 |
| 3150 |
ISRCH = ISRCH + 1 0000000 |
| 3151 |
C SCAN ROW FOR POSSIBLE PIVOTS 0000000 |
| 3152 |
DO 260 JJ=J1,J2 0000000 |
| 3153 |
IF (DABS(A(JJ)).LE.AU .AND. L.EQ.1) GO TO 260 |
| 3154 |
J = ICN(JJ) 0000000 |
| 3155 |
KCOST = (NZ-1)*(LENC(J)-1) 0000000 |
| 3156 |
IF (KCOST.GT.JCOST) GO TO 260 0000000 |
| 3157 |
PIVR = ZERO 0000000 |
| 3158 |
IF (AMAX.NE.ZERO) PIVR = DABS(A(JJ))/AMAX |
| 3159 |
IF (KCOST.EQ.JCOST .AND. (PIVR.LE.PIVRAT .OR. 0000000 |
| 3160 |
* NSRCH.GT.NN+1)) GO TO 260 0000000 |
| 3161 |
C BEST PIVOT SO FAR IS FOUND. 0000000 |
| 3162 |
JCOST = KCOST 0000000 |
| 3163 |
IJPOS = JJ 0000000 |
| 3164 |
IPIV = I 0000000 |
| 3165 |
JPIV = J 0000000 |
| 3166 |
IF (MSRCH.GT.NN+1 .AND. JCOST.LE.(NZ-1)**2) GO TO 420 0000000 |
| 3167 |
PIVRAT = PIVR 0000000 |
| 3168 |
260 CONTINUE 0000000 |
| 3169 |
270 CONTINUE 0000000 |
| 3170 |
C 0000000 |
| 3171 |
C COLUMNS WITH NZ NON-ZEROS NOW EXAMINED. 0000000 |
| 3172 |
280 IJFIR = IFIRST(NZ) 0000000 |
| 3173 |
IJFIR = -LASTR(IJFIR) 0000000 |
| 3174 |
290 IF (JCOST.LE.NZ*(NZ-1)) GO TO 420 0000000 |
| 3175 |
IF (MSRCH.LE.NN) GO TO 330 0000000 |
| 3176 |
DO 320 IDUMMY=1,N 0000000 |
| 3177 |
IF (IJFIR.EQ.0) GO TO 330 0000000 |
| 3178 |
J = IJFIR 0000000 |
| 3179 |
IJFIR = NEXTC(IJFIR) 0000000 |
| 3180 |
I1 = IPC(J) 0000000 |
| 3181 |
I2 = I1 + NZ - 1 0000000 |
| 3182 |
C SCAN COLUMN J. 0000000 |
| 3183 |
DO 310 II=I1,I2 0000000 |
| 3184 |
I = IRN(II) 0000000 |
| 3185 |
KCOST = (NZ-1)*(LENR(I)-LENRL(I)-1) 0000000 |
| 3186 |
IF (KCOST.GE.JCOST) GO TO 310 0000000 |
| 3187 |
C PIVOT HAS BEST MARKOWITZ COUNT SO FAR ... NOW CHECK ITS 0000000 |
| 3188 |
C SUITABILITY ON NUMERIC GROUNDS BY EXAMINING THE OTHER NON-ZEROS 0000000 |
| 3189 |
C IN ITS ROW. 0000000 |
| 3190 |
J1 = IPTR(I) + LENRL(I) 0000000 |
| 3191 |
J2 = IPTR(I) + LENR(I) - 1 0000000 |
| 3192 |
C WE NEED A STABILITY CHECK ON SINGLETON COLUMNS BECAUSE OF POSSIBLE 0000000 |
| 3193 |
C PROBLEMS WITH UNDERDETERMINED SYSTEMS. 0000000 |
| 3194 |
AMAX = ZERO 0000000 |
| 3195 |
DO 300 JJ=J1,J2 0000000 |
| 3196 |
AMAX = DMAX1(AMAX,DABS(A(JJ))) |
| 3197 |
IF (ICN(JJ).EQ.J) JPOS = JJ 0000000 |
| 3198 |
300 CONTINUE 0000000 |
| 3199 |
IF (DABS(A(JPOS)).LE.AMAX*U .AND. L.EQ.1) GO TO 310 |
| 3200 |
JCOST = KCOST 0000000 |
| 3201 |
IPIV = I 0000000 |
| 3202 |
JPIV = J 0000000 |
| 3203 |
IJPOS = JPOS 0000000 |
| 3204 |
IF (AMAX.NE.ZERO) PIVRAT = DABS(A(JPOS))/AMAX |
| 3205 |
IF (JCOST.LE.NZ*(NZ-1)) GO TO 420 0000000 |
| 3206 |
310 CONTINUE 0000000 |
| 3207 |
C 0000000 |
| 3208 |
320 CONTINUE 0000000 |
| 3209 |
C 0000000 |
| 3210 |
330 CONTINUE 0000000 |
| 3211 |
C IN THE EVENT OF SINGULARITY, WE MUST MAKE SURE ALL ROWS AND COLUMNS 0000000 |
| 3212 |
C ARE TESTED. 0000000 |
| 3213 |
MSRCH = N 0000000 |
| 3214 |
C 0000000 |
| 3215 |
C MATRIX IS NUMERICALLY OR STRUCTURALLY SINGULAR ... WHICH IT IS WILL 0000000 |
| 3216 |
C BE DIAGNOSED LATER. 0000000 |
| 3217 |
IRANK = IRANK - 1 0000000 |
| 3218 |
340 CONTINUE 0000000 |
| 3219 |
C ASSIGN REST OF ROWS AND COLUMNS TO ORDERING ARRAY. 0000000 |
| 3220 |
C MATRIX IS STRUCTURALLY SINGULAR. 0000000 |
| 3221 |
IF (IFLAG.NE.2 .AND. IFLAG.NE.-5) IFLAG = 1 0000000 |
| 3222 |
IRANK = IRANK - ILAST + PIVOT + 1 0000000 |
| 3223 |
IF (.NOT.ABORT1) GO TO 350 0000000 |
| 3224 |
IDISP(2) = IACTIV 0000000 |
| 3225 |
IFLAG = -1 0000000 |
| 3226 |
IF (LP.NE.0) WRITE (LP,99999) 0000000 |
| 3227 |
GO TO 1120 0000000 |
| 3228 |
350 K = PIVOT - 1 0000000 |
| 3229 |
DO 390 I=ISTART,ILAST 0000000 |
| 3230 |
IF (LASTR(I).NE.0) GO TO 390 0000000 |
| 3231 |
K = K + 1 0000000 |
| 3232 |
LASTR(I) = K 0000000 |
| 3233 |
IF (LENRL(I).EQ.0) GO TO 380 0000000 |
| 3234 |
MINICN = MAX0(MINICN,NZROW+IBEG-1+MOREI+LENRL(I)) 0000000 |
| 3235 |
IF (IACTIV-IBEG.GE.LENRL(I)) GO TO 360 0000000 |
| 3236 |
CALL MA30DD(A, ICN, IPTR(ISTART), N, IACTIV, ITOP, .TRUE.) |
| 3237 |
C CHECK NOW TO SEE IF MA30D/DD HAS CREATED ENOUGH AVAILABLE SPACE. 0000000 |
| 3238 |
IF (IACTIV-IBEG.GE.LENRL(I)) GO TO 360 0000000 |
| 3239 |
C CREATE MORE SPACE BY DESTROYING PREVIOUSLY CREATED LU FACTORS. 0000000 |
| 3240 |
MOREI = MOREI + IBEG - IDISP(1) 0000000 |
| 3241 |
IBEG = IDISP(1) 0000000 |
| 3242 |
IF (LP.NE.0) WRITE (LP,99997) 0000000 |
| 3243 |
IFLAG = -5 0000000 |
| 3244 |
IF (ABORT3) GO TO 1090 0000000 |
| 3245 |
360 J1 = IPTR(I) 0000000 |
| 3246 |
J2 = J1 + LENRL(I) - 1 0000000 |
| 3247 |
IPTR(I) = 0 0000000 |
| 3248 |
DO 370 JJ=J1,J2 0000000 |
| 3249 |
A(IBEG) = A(JJ) 0000000 |
| 3250 |
ICN(IBEG) = ICN(JJ) 0000000 |
| 3251 |
ICN(JJ) = 0 0000000 |
| 3252 |
IBEG = IBEG + 1 0000000 |
| 3253 |
370 CONTINUE 0000000 |
| 3254 |
NZROW = NZROW - LENRL(I) 0000000 |
| 3255 |
380 IF (K.EQ.ILAST) GO TO 400 0000000 |
| 3256 |
390 CONTINUE 0000000 |
| 3257 |
400 K = PIVOT - 1 0000000 |
| 3258 |
DO 410 I=ISTART,ILAST 0000000 |
| 3259 |
IF (IPC(I).NE.0) GO TO 410 0000000 |
| 3260 |
K = K + 1 0000000 |
| 3261 |
IPC(I) = K 0000000 |
| 3262 |
IF (K.EQ.ILAST) GO TO 990 0000000 |
| 3263 |
410 CONTINUE 0000000 |
| 3264 |
C 0000000 |
| 3265 |
C THE PIVOT HAS NOW BEEN FOUND IN POSITION (IPIV,JPIV) IN LOCATION 0000000 |
| 3266 |
C IJPOS IN ROW FILE. 0000000 |
| 3267 |
C UPDATE COLUMN AND ROW ORDERING ARRAYS TO CORRESPOND WITH REMOVAL 0000000 |
| 3268 |
C OF THE ACTIVE PART OF THE MATRIX. 0000000 |
| 3269 |
420 ISING = PIVOT 0000000 |
| 3270 |
IF (A(IJPOS).NE.ZERO) GO TO 430 0000000 |
| 3271 |
C NUMERICAL SINGULARITY IS RECORDED HERE. 0000000 |
| 3272 |
ISING = -ISING 0000000 |
| 3273 |
IF (IFLAG.NE.-5) IFLAG = 2 0000000 |
| 3274 |
IF (.NOT.ABORT2) GO TO 430 0000000 |
| 3275 |
IDISP(2) = IACTIV 0000000 |
| 3276 |
IFLAG = -2 0000000 |
| 3277 |
IF (LP.NE.0) WRITE (LP,99998) 0000000 |
| 3278 |
GO TO 1120 0000000 |
| 3279 |
430 OLDPIV = IPTR(IPIV) + LENRL(IPIV) 0000000 |
| 3280 |
OLDEND = IPTR(IPIV) + LENR(IPIV) - 1 0000000 |
| 3281 |
C CHANGES TO COLUMN ORDERING. 0000000 |
| 3282 |
IF (NSRCH.LE.NN) GO TO 460 0000000 |
| 3283 |
DO 450 JJ=OLDPIV,OLDEND 0000000 |
| 3284 |
J = ICN(JJ) 0000000 |
| 3285 |
LC = LASTC(J) 0000000 |
| 3286 |
NC = NEXTC(J) 0000000 |
| 3287 |
IF (NC.NE.0) LASTC(NC) = LC 0000000 |
| 3288 |
IF (LC.EQ.0) GO TO 440 0000000 |
| 3289 |
NEXTC(LC) = NC 0000000 |
| 3290 |
GO TO 450 0000000 |
| 3291 |
440 NZ = LENC(J) 0000000 |
| 3292 |
ISW = IFIRST(NZ) 0000000 |
| 3293 |
IF (ISW.GT.0) LASTR(ISW) = -NC 0000000 |
| 3294 |
IF (ISW.LT.0) IFIRST(NZ) = -NC 0000000 |
| 3295 |
450 CONTINUE 0000000 |
| 3296 |
C CHANGES TO ROW ORDERING. 0000000 |
| 3297 |
460 I1 = IPC(JPIV) 0000000 |
| 3298 |
I2 = I1 + LENC(JPIV) - 1 0000000 |
| 3299 |
DO 480 II=I1,I2 0000000 |
| 3300 |
I = IRN(II) 0000000 |
| 3301 |
LR = LASTR(I) 0000000 |
| 3302 |
NR = NEXTR(I) 0000000 |
| 3303 |
IF (NR.NE.0) LASTR(NR) = LR 0000000 |
| 3304 |
IF (LR.LE.0) GO TO 470 0000000 |
| 3305 |
NEXTR(LR) = NR 0000000 |
| 3306 |
GO TO 480 0000000 |
| 3307 |
470 NZ = LENR(I) - LENRL(I) 0000000 |
| 3308 |
IF (NR.NE.0) IFIRST(NZ) = NR 0000000 |
| 3309 |
IF (NR.EQ.0) IFIRST(NZ) = LR 0000000 |
| 3310 |
480 CONTINUE 0000000 |
| 3311 |
C 0000000 |
| 3312 |
C MOVE PIVOT TO POSITION LENRL+1 IN PIVOT ROW AND MOVE PIVOT ROW 0000000 |
| 3313 |
C TO THE BEGINNING OF THE AVAILABLE STORAGE. 0000000 |
| 3314 |
C THE L PART AND THE PIVOT IN THE OLD COPY OF THE PIVOT ROW IS 0000000 |
| 3315 |
C NULLIFIED WHILE, IN THE STRICTLY UPPER TRIANGULAR PART, THE 0000000 |
| 3316 |
C COLUMN INDICES, J SAY, ARE OVERWRITTEN BY THE CORRESPONDING 0000000 |
| 3317 |
C ENTRY OF IQ (IQ(J)) AND IQ(J) IS SET TO THE NEGATIVE OF THE 0000000 |
| 3318 |
C DISPLACEMENT OF THE COLUMN INDEX FROM THE PIVOT ENTRY. 0000000 |
| 3319 |
IF (OLDPIV.EQ.IJPOS) GO TO 490 0000000 |
| 3320 |
AU = A(OLDPIV) 0000000 |
| 3321 |
A(OLDPIV) = A(IJPOS) 0000000 |
| 3322 |
A(IJPOS) = AU 0000000 |
| 3323 |
ICN(IJPOS) = ICN(OLDPIV) 0000000 |
| 3324 |
ICN(OLDPIV) = JPIV 0000000 |
| 3325 |
C CHECK TO SEE IF THERE IS SPACE IMMEDIATELY AVAILABLE IN A/ICN TO 0000000 |
| 3326 |
C HOLD NEW COPY OF PIVOT ROW. 0000000 |
| 3327 |
490 MINICN = MAX0(MINICN,NZROW+IBEG-1+MOREI+LENR(IPIV)) 0000000 |
| 3328 |
IF (IACTIV-IBEG.GE.LENR(IPIV)) GO TO 500 0000000 |
| 3329 |
CALL MA30DD(A, ICN, IPTR(ISTART), N, IACTIV, ITOP, .TRUE.) |
| 3330 |
OLDPIV = IPTR(IPIV) + LENRL(IPIV) 0000000 |
| 3331 |
OLDEND = IPTR(IPIV) + LENR(IPIV) - 1 0000000 |
| 3332 |
C CHECK NOW TO SEE IF MA30D/DD HAS CREATED ENOUGH AVAILABLE SPACE. 0000000 |
| 3333 |
IF (IACTIV-IBEG.GE.LENR(IPIV)) GO TO 500 0000000 |
| 3334 |
C CREATE MORE SPACE BY DESTROYING PREVIOUSLY CREATED LU FACTORS. 0000000 |
| 3335 |
MOREI = MOREI + IBEG - IDISP(1) 0000000 |
| 3336 |
IBEG = IDISP(1) 0000000 |
| 3337 |
IF (LP.NE.0) WRITE (LP,99997) 0000000 |
| 3338 |
IFLAG = -5 0000000 |
| 3339 |
IF (ABORT3) GO TO 1090 0000000 |
| 3340 |
IF (IACTIV-IBEG.GE.LENR(IPIV)) GO TO 500 0000000 |
| 3341 |
C THERE IS STILL NOT ENOUGH ROOM IN A/ICN. 0000000 |
| 3342 |
IFLAG = -4 0000000 |
| 3343 |
GO TO 1090 0000000 |
| 3344 |
C COPY PIVOT ROW AND SET UP IQ ARRAY. 0000000 |
| 3345 |
500 IJPOS = 0 0000000 |
| 3346 |
J1 = IPTR(IPIV) 0000000 |
| 3347 |
C 0000000 |
| 3348 |
DO 530 JJ=J1,OLDEND 0000000 |
| 3349 |
A(IBEG) = A(JJ) 0000000 |
| 3350 |
ICN(IBEG) = ICN(JJ) 0000000 |
| 3351 |
IF (IJPOS.NE.0) GO TO 510 0000000 |
| 3352 |
IF (ICN(JJ).EQ.JPIV) IJPOS = IBEG 0000000 |
| 3353 |
ICN(JJ) = 0 0000000 |
| 3354 |
GO TO 520 0000000 |
| 3355 |
510 K = IBEG - IJPOS 0000000 |
| 3356 |
J = ICN(JJ) 0000000 |
| 3357 |
ICN(JJ) = IQ(J) 0000000 |
| 3358 |
IQ(J) = -K 0000000 |
| 3359 |
520 IBEG = IBEG + 1 0000000 |
| 3360 |
530 CONTINUE 0000000 |
| 3361 |
C 0000000 |
| 3362 |
IJP1 = IJPOS + 1 0000000 |
| 3363 |
PIVEND = IBEG - 1 0000000 |
| 3364 |
LENPIV = PIVEND - IJPOS 0000000 |
| 3365 |
NZROW = NZROW - LENRL(IPIV) - 1 0000000 |
| 3366 |
IPTR(IPIV) = OLDPIV + 1 0000000 |
| 3367 |
IF (LENPIV.EQ.0) IPTR(IPIV) = 0 0000000 |
| 3368 |
C 0000000 |
| 3369 |
C REMOVE PIVOT ROW (INCLUDING PIVOT) FROM COLUMN ORIENTED FILE. 0000000 |
| 3370 |
DO 560 JJ=IJPOS,PIVEND 0000000 |
| 3371 |
J = ICN(JJ) 0000000 |
| 3372 |
I1 = IPC(J) 0000000 |
| 3373 |
LENC(J) = LENC(J) - 1 0000000 |
| 3374 |
C I2 IS LAST POSITION IN NEW COLUMN. 0000000 |
| 3375 |
I2 = IPC(J) + LENC(J) - 1 0000000 |
| 3376 |
IF (I2.LT.I1) GO TO 550 0000000 |
| 3377 |
DO 540 II=I1,I2 0000000 |
| 3378 |
IF (IRN(II).NE.IPIV) GO TO 540 0000000 |
| 3379 |
IRN(II) = IRN(I2+1) 0000000 |
| 3380 |
GO TO 550 0000000 |
| 3381 |
540 CONTINUE 0000000 |
| 3382 |
550 IRN(I2+1) = 0 0000000 |
| 3383 |
560 CONTINUE 0000000 |
| 3384 |
NZCOL = NZCOL - LENPIV - 1 0000000 |
| 3385 |
C 0000000 |
| 3386 |
C GO DOWN THE PIVOT COLUMN AND FOR EACH ROW WITH A NON-ZERO ADD 0000000 |
| 3387 |
C THE APPROPRIATE MULTIPLE OF THE PIVOT ROW TO IT. 0000000 |
| 3388 |
C WE LOOP ON THE NUMBER OF NON-ZEROS IN THE PIVOT COLUMN SINCE 0000000 |
| 3389 |
C MA30D/DD MAY CHANGE ITS ACTUAL POSITION. 0000000 |
| 3390 |
C 0000000 |
| 3391 |
NZPC = LENC(JPIV) 0000000 |
| 3392 |
IF (NZPC.EQ.0) GO TO 900 0000000 |
| 3393 |
DO 840 III=1,NZPC 0000000 |
| 3394 |
II = IPC(JPIV) + III - 1 0000000 |
| 3395 |
I = IRN(II) 0000000 |
| 3396 |
C SEARCH ROW I FOR NON-ZERO TO BE ELIMINATED, CALCULATE MULTIPLIER, 0000000 |
| 3397 |
C AND PLACE IT IN POSITION LENRL+1 IN ITS ROW. 0000000 |
| 3398 |
C IDROP IS THE NUMBER OF NON-ZERO ENTRIES DROPPED FROM ROW I 0000000 |
| 3399 |
C BECAUSE THESE FALL BENEATH TOLERANCE LEVEL. 0000000 |
| 3400 |
C 0000000 |
| 3401 |
IDROP = 0 0000000 |
| 3402 |
J1 = IPTR(I) + LENRL(I) 0000000 |
| 3403 |
IEND = IPTR(I) + LENR(I) - 1 0000000 |
| 3404 |
DO 570 JJ=J1,IEND 0000000 |
| 3405 |
IF (ICN(JJ).NE.JPIV) GO TO 570 0000000 |
| 3406 |
C IF PIVOT IS ZERO, REST OF COLUMN IS AND SO MULTIPLIER IS ZERO. 0000000 |
| 3407 |
AU = ZERO 0000000 |
| 3408 |
IF (A(IJPOS).NE.ZERO) AU = -A(JJ)/A(IJPOS) 0000000 |
| 3409 |
IF (LBIG) BIG = DMAX1(BIG,DABS(AU)) |
| 3410 |
A(JJ) = A(J1) 0000000 |
| 3411 |
A(J1) = AU 0000000 |
| 3412 |
ICN(JJ) = ICN(J1) 0000000 |
| 3413 |
ICN(J1) = JPIV 0000000 |
| 3414 |
LENRL(I) = LENRL(I) + 1 0000000 |
| 3415 |
GO TO 580 0000000 |
| 3416 |
570 CONTINUE 0000000 |
| 3417 |
C JUMP IF PIVOT ROW IS A SINGLETON. 0000000 |
| 3418 |
580 IF (LENPIV.EQ.0) GO TO 840 0000000 |
| 3419 |
C NOW PERFORM NECESSARY OPERATIONS ON REST OF NON-PIVOT ROW I. 0000000 |
| 3420 |
ROWI = J1 + 1 0000000 |
| 3421 |
IOP = 0 0000000 |
| 3422 |
C JUMP IF ALL THE PIVOT ROW CAUSES FILL-IN. 0000000 |
| 3423 |
IF (ROWI.GT.IEND) GO TO 650 0000000 |
| 3424 |
C PERFORM OPERATIONS ON CURRENT NON-ZEROS IN ROW I. 0000000 |
| 3425 |
C INNERMOST LOOP. 0000000 |
| 3426 |
DO 590 JJ=ROWI,IEND 0000000 |
| 3427 |
J = ICN(JJ) 0000000 |
| 3428 |
IF (IQ(J).GT.0) GO TO 590 0000000 |
| 3429 |
IOP = IOP + 1 0000000 |
| 3430 |
PIVROW = IJPOS - IQ(J) 0000000 |
| 3431 |
A(JJ) = A(JJ) + AU*A(PIVROW) 0000000 |
| 3432 |
IF (LBIG) BIG = DMAX1(DABS(A(JJ)),BIG) |
| 3433 |
ICN(PIVROW) = -ICN(PIVROW) 0000000 |
| 3434 |
IF (DABS(A(JJ)).LT.TOL) IDROP = IDROP + 1 |
| 3435 |
590 CONTINUE 0000000 |
| 3436 |
C 0000000 |
| 3437 |
C JUMP IF NO NON-ZEROS IN NON-PIVOT ROW HAVE BEEN REMOVED 0000000 |
| 3438 |
C BECAUSE THESE ARE BENEATH THE DROP-TOLERANCE TOL. 0000000 |
| 3439 |
C 0000000 |
| 3440 |
IF (IDROP.EQ.0) GO TO 650 0000000 |
| 3441 |
C 0000000 |
| 3442 |
C RUN THROUGH NON-PIVOT ROW COMPRESSING ROW SO THAT ONLY 0000000 |
| 3443 |
C NON-ZEROS GREATER THAN TOL ARE STORED. ALL NON-ZEROS 0000000 |
| 3444 |
C LESS THAN TOL ARE ALSO REMOVED FROM THE COLUMN STRUCTURE. 0000000 |
| 3445 |
C 0000000 |
| 3446 |
JNEW = ROWI 0000000 |
| 3447 |
DO 630 JJ=ROWI,IEND 0000000 |
| 3448 |
IF (DABS(A(JJ)).LT.TOL) GO TO 600 |
| 3449 |
A(JNEW) = A(JJ) 0000000 |
| 3450 |
ICN(JNEW) = ICN(JJ) 0000000 |
| 3451 |
JNEW = JNEW + 1 0000000 |
| 3452 |
GO TO 630 0000000 |
| 3453 |
C 0000000 |
| 3454 |
C REMOVE NON-ZERO ENTRY FROM COLUMN STRUCTURE. 0000000 |
| 3455 |
C 0000000 |
| 3456 |
600 J = ICN(JJ) 0000000 |
| 3457 |
I1 = IPC(J) 0000000 |
| 3458 |
I2 = I1 + LENC(J) - 1 0000000 |
| 3459 |
DO 610 II=I1,I2 0000000 |
| 3460 |
IF (IRN(II).EQ.I) GO TO 620 0000000 |
| 3461 |
610 CONTINUE 0000000 |
| 3462 |
620 IRN(II) = IRN(I2) 0000000 |
| 3463 |
IRN(I2) = 0 0000000 |
| 3464 |
LENC(J) = LENC(J) - 1 0000000 |
| 3465 |
630 CONTINUE 0000000 |
| 3466 |
DO 640 JJ=JNEW,IEND 0000000 |
| 3467 |
ICN(JJ) = 0 0000000 |
| 3468 |
640 CONTINUE 0000000 |
| 3469 |
C THE VALUE OF IDROP MIGHT BE DIFFERENT FROM THAT CALCULATED EARLIER 0000000 |
| 3470 |
C BECAUSE, WE MAY NOW HAVE DROPPED SOME NON-ZEROS WHICH WERE NOT 0000000 |
| 3471 |
C MODIFIED BY THE PIVOT ROW. 0000000 |
| 3472 |
IDROP = IEND + 1 - JNEW 0000000 |
| 3473 |
IEND = JNEW - 1 0000000 |
| 3474 |
LENR(I) = LENR(I) - IDROP 0000000 |
| 3475 |
NZROW = NZROW - IDROP 0000000 |
| 3476 |
NZCOL = NZCOL - IDROP 0000000 |
| 3477 |
NDROP = NDROP + IDROP 0000000 |
| 3478 |
650 IFILL = LENPIV - IOP 0000000 |
| 3479 |
C JUMP IS IF THERE IS NO FILL-IN. 0000000 |
| 3480 |
IF (IFILL.EQ.0) GO TO 750 0000000 |
| 3481 |
C NOW FOR THE FILL-IN. 0000000 |
| 3482 |
MINICN = MAX0(MINICN,MOREI+IBEG-1+NZROW+IFILL+LENR(I)) 0000000 |
| 3483 |
C SEE IF THERE IS ROOM FOR FILL-IN. 0000000 |
| 3484 |
C GET MAXIMUM SPACE FOR ROW I IN SITU. 0000000 |
| 3485 |
DO 660 JDIFF=1,IFILL 0000000 |
| 3486 |
JNPOS = IEND + JDIFF 0000000 |
| 3487 |
IF (JNPOS.GT.LICN) GO TO 670 0000000 |
| 3488 |
IF (ICN(JNPOS).NE.0) GO TO 670 0000000 |
| 3489 |
660 CONTINUE 0000000 |
| 3490 |
C THERE IS ROOM FOR ALL THE FILL-IN AFTER THE END OF THE ROW SO IT 0000000 |
| 3491 |
C CAN BE LEFT IN SITU. 0000000 |
| 3492 |
C NEXT AVAILABLE SPACE FOR FILL-IN. 0000000 |
| 3493 |
IEND = IEND + 1 0000000 |
| 3494 |
GO TO 750 0000000 |
| 3495 |
C JMORE SPACES FOR FILL-IN ARE REQUIRED IN FRONT OF ROW. 0000000 |
| 3496 |
670 JMORE = IFILL - JDIFF + 1 0000000 |
| 3497 |
I1 = IPTR(I) 0000000 |
| 3498 |
C WE NOW LOOK IN FRONT OF THE ROW TO SEE IF THERE IS SPACE FOR 0000000 |
| 3499 |
C THE REST OF THE FILL-IN. 0000000 |
| 3500 |
DO 680 JDIFF=1,JMORE 0000000 |
| 3501 |
JNPOS = I1 - JDIFF 0000000 |
| 3502 |
IF (JNPOS.LT.IACTIV) GO TO 690 0000000 |
| 3503 |
IF (ICN(JNPOS).NE.0) GO TO 700 0000000 |
| 3504 |
680 CONTINUE 0000000 |
| 3505 |
690 JNPOS = I1 - JMORE 0000000 |
| 3506 |
GO TO 710 0000000 |
| 3507 |
C WHOLE ROW MUST BE MOVED TO THE BEGINNING OF AVAILABLE STORAGE. 0000000 |
| 3508 |
700 JNPOS = IACTIV - LENR(I) - IFILL 0000000 |
| 3509 |
C JUMP IF THERE IS SPACE IMMEDIATELY AVAILABLE FOR THE SHIFTED ROW. 0000000 |
| 3510 |
710 IF (JNPOS.GE.IBEG) GO TO 730 0000000 |
| 3511 |
CALL MA30DD(A, ICN, IPTR(ISTART), N, IACTIV, ITOP, .TRUE.) |
| 3512 |
I1 = IPTR(I) 0000000 |
| 3513 |
IEND = I1 + LENR(I) - 1 0000000 |
| 3514 |
JNPOS = IACTIV - LENR(I) - IFILL 0000000 |
| 3515 |
IF (JNPOS.GE.IBEG) GO TO 730 0000000 |
| 3516 |
C NO SPACE AVAILABLE SO TRY TO CREATE SOME BY THROWING AWAY PREVIOUS 0000000 |
| 3517 |
C LU DECOMPOSITION. 0000000 |
| 3518 |
MOREI = MOREI + IBEG - IDISP(1) - LENPIV - 1 0000000 |
| 3519 |
IF (LP.NE.0) WRITE (LP,99997) 0000000 |
| 3520 |
IFLAG = -5 0000000 |
| 3521 |
IF (ABORT3) GO TO 1090 0000000 |
| 3522 |
C KEEP RECORD OF CURRENT PIVOT ROW. 0000000 |
| 3523 |
IBEG = IDISP(1) 0000000 |
| 3524 |
ICN(IBEG) = JPIV 0000000 |
| 3525 |
A(IBEG) = A(IJPOS) 0000000 |
| 3526 |
IJPOS = IBEG 0000000 |
| 3527 |
DO 720 JJ=IJP1,PIVEND 0000000 |
| 3528 |
IBEG = IBEG + 1 0000000 |
| 3529 |
A(IBEG) = A(JJ) 0000000 |
| 3530 |
ICN(IBEG) = ICN(JJ) 0000000 |
| 3531 |
720 CONTINUE 0000000 |
| 3532 |
IJP1 = IJPOS + 1 0000000 |
| 3533 |
PIVEND = IBEG 0000000 |
| 3534 |
IBEG = IBEG + 1 0000000 |
| 3535 |
IF (JNPOS.GE.IBEG) GO TO 730 0000000 |
| 3536 |
C THIS STILL DOES NOT GIVE ENOUGH ROOM. 0000000 |
| 3537 |
IFLAG = -4 0000000 |
| 3538 |
GO TO 1090 0000000 |
| 3539 |
730 IACTIV = MIN0(IACTIV,JNPOS) 0000000 |
| 3540 |
C MOVE NON-PIVOT ROW I. 0000000 |
| 3541 |
IPTR(I) = JNPOS 0000000 |
| 3542 |
DO 740 JJ=I1,IEND 0000000 |
| 3543 |
A(JNPOS) = A(JJ) 0000000 |
| 3544 |
ICN(JNPOS) = ICN(JJ) 0000000 |
| 3545 |
JNPOS = JNPOS + 1 0000000 |
| 3546 |
ICN(JJ) = 0 0000000 |
| 3547 |
740 CONTINUE 0000000 |
| 3548 |
C FIRST NEW AVAILABLE SPACE. 0000000 |
| 3549 |
IEND = JNPOS 0000000 |
| 3550 |
750 NZROW = NZROW + IFILL 0000000 |
| 3551 |
C INNERMOST FILL-IN LOOP WHICH ALSO RESETS ICN. 0000000 |
| 3552 |
DO 830 JJ=IJP1,PIVEND 0000000 |
| 3553 |
J = ICN(JJ) 0000000 |
| 3554 |
IF (J.LT.0) GO TO 820 0000000 |
| 3555 |
ANEW = AU*A(JJ) 0000000 |
| 3556 |
AANEW = DABS(ANEW) |
| 3557 |
IF (AANEW.GE.TOL) GO TO 760 0000000 |
| 3558 |
NDROP = NDROP + 1 0000000 |
| 3559 |
NZROW = NZROW - 1 0000000 |
| 3560 |
MINICN = MINICN - 1 0000000 |
| 3561 |
IFILL = IFILL - 1 0000000 |
| 3562 |
GO TO 830 0000000 |
| 3563 |
760 IF (LBIG) BIG = DMAX1(AANEW,BIG) |
| 3564 |
A(IEND) = ANEW 0000000 |
| 3565 |
ICN(IEND) = J 0000000 |
| 3566 |
IEND = IEND + 1 0000000 |
| 3567 |
C 0000000 |
| 3568 |
C PUT NEW ENTRY IN COLUMN FILE. 0000000 |
| 3569 |
MINIRN = MAX0(MINIRN,NZCOL+LENC(J)+1) 0000000 |
| 3570 |
JEND = IPC(J) + LENC(J) 0000000 |
| 3571 |
JROOM = NZPC - III + 1 + LENC(J) 0000000 |
| 3572 |
IF (JEND.GT.LIRN) GO TO 770 0000000 |
| 3573 |
IF (IRN(JEND).EQ.0) GO TO 810 0000000 |
| 3574 |
770 IF (JROOM.LT.DISPC) GO TO 780 0000000 |
| 3575 |
C COMPRESS COLUMN FILE TO OBTAIN SPACE FOR NEW COPY OF COLUMN. 0000000 |
| 3576 |
CALL MA30DD(A, IRN, IPC(ISTART), N, DISPC, LIRN, .FALSE.) |
| 3577 |
IF (JROOM.LT.DISPC) GO TO 780 0000000 |
| 3578 |
JROOM = DISPC - 1 0000000 |
| 3579 |
IF (JROOM.GE.LENC(J)+1) GO TO 780 0000000 |
| 3580 |
C COLUMN FILE IS NOT LARGE ENOUGH. 0000000 |
| 3581 |
GO TO 1100 0000000 |
| 3582 |
C COPY COLUMN TO BEGINNING OF FILE. 0000000 |
| 3583 |
780 JBEG = IPC(J) 0000000 |
| 3584 |
JEND = IPC(J) + LENC(J) - 1 0000000 |
| 3585 |
JZERO = DISPC - 1 0000000 |
| 3586 |
DISPC = DISPC - JROOM 0000000 |
| 3587 |
IDISPC = DISPC 0000000 |
| 3588 |
DO 790 II=JBEG,JEND 0000000 |
| 3589 |
IRN(IDISPC) = IRN(II) 0000000 |
| 3590 |
IRN(II) = 0 0000000 |
| 3591 |
IDISPC = IDISPC + 1 0000000 |
| 3592 |
790 CONTINUE 0000000 |
| 3593 |
IPC(J) = DISPC 0000000 |
| 3594 |
JEND = IDISPC 0000000 |
| 3595 |
DO 800 II=JEND,JZERO 0000000 |
| 3596 |
IRN(II) = 0 0000000 |
| 3597 |
800 CONTINUE 0000000 |
| 3598 |
810 IRN(JEND) = I 0000000 |
| 3599 |
NZCOL = NZCOL + 1 0000000 |
| 3600 |
LENC(J) = LENC(J) + 1 0000000 |
| 3601 |
C END OF ADJUSTMENT TO COLUMN FILE. 0000000 |
| 3602 |
GO TO 830 0000000 |
| 3603 |
C 0000000 |
| 3604 |
820 ICN(JJ) = -J 0000000 |
| 3605 |
830 CONTINUE 0000000 |
| 3606 |
LENR(I) = LENR(I) + IFILL 0000000 |
| 3607 |
C END OF SCAN OF PIVOT COLUMN. 0000000 |
| 3608 |
840 CONTINUE 0000000 |
| 3609 |
C 0000000 |
| 3610 |
C 0000000 |
| 3611 |
C REMOVE PIVOT COLUMN FROM COLUMN ORIENTED STORAGE AND UPDATE ROW 0000000 |
| 3612 |
C ORDERING ARRAYS. 0000000 |
| 3613 |
I1 = IPC(JPIV) 0000000 |
| 3614 |
I2 = IPC(JPIV) + LENC(JPIV) - 1 0000000 |
| 3615 |
NZCOL = NZCOL - LENC(JPIV) 0000000 |
| 3616 |
DO 890 II=I1,I2 0000000 |
| 3617 |
I = IRN(II) 0000000 |
| 3618 |
IRN(II) = 0 0000000 |
| 3619 |
NZ = LENR(I) - LENRL(I) 0000000 |
| 3620 |
IF (NZ.NE.0) GO TO 850 0000000 |
| 3621 |
LASTR(I) = 0 0000000 |
| 3622 |
GO TO 890 0000000 |
| 3623 |
850 IFIR = IFIRST(NZ) 0000000 |
| 3624 |
IFIRST(NZ) = I 0000000 |
| 3625 |
IF (IFIR) 860, 880, 870 0000000 |
| 3626 |
860 LASTR(I) = IFIR 0000000 |
| 3627 |
NEXTR(I) = 0 0000000 |
| 3628 |
GO TO 890 0000000 |
| 3629 |
870 LASTR(I) = LASTR(IFIR) 0000000 |
| 3630 |
NEXTR(I) = IFIR 0000000 |
| 3631 |
LASTR(IFIR) = I 0000000 |
| 3632 |
GO TO 890 0000000 |
| 3633 |
880 LASTR(I) = 0 0000000 |
| 3634 |
NEXTR(I) = 0 0000000 |
| 3635 |
NZMIN = MIN0(NZMIN,NZ) 0000000 |
| 3636 |
890 CONTINUE 0000000 |
| 3637 |
C RESTORE IQ AND NULLIFY U PART OF OLD PIVOT ROW. 0000000 |
| 3638 |
C RECORD THE COLUMN PERMUTATION IN LASTC(JPIV) AND THE ROW 0000000 |
| 3639 |
C PERMUTATION IN LASTR(IPIV). 0000000 |
| 3640 |
900 IPC(JPIV) = -ISING 0000000 |
| 3641 |
LASTR(IPIV) = PIVOT 0000000 |
| 3642 |
IF (LENPIV.EQ.0) GO TO 980 0000000 |
| 3643 |
NZROW = NZROW - LENPIV 0000000 |
| 3644 |
JVAL = IJP1 0000000 |
| 3645 |
JZER = IPTR(IPIV) 0000000 |
| 3646 |
IPTR(IPIV) = 0 0000000 |
| 3647 |
DO 910 JCOUNT=1,LENPIV 0000000 |
| 3648 |
J = ICN(JVAL) 0000000 |
| 3649 |
IQ(J) = ICN(JZER) 0000000 |
| 3650 |
ICN(JZER) = 0 0000000 |
| 3651 |
JVAL = JVAL + 1 0000000 |
| 3652 |
JZER = JZER + 1 0000000 |
| 3653 |
910 CONTINUE 0000000 |
| 3654 |
C ADJUST COLUMN ORDERING ARRAYS. 0000000 |
| 3655 |
DO 970 JJ=IJP1,PIVEND 0000000 |
| 3656 |
J = ICN(JJ) 0000000 |
| 3657 |
NZ = LENC(J) 0000000 |
| 3658 |
IF (NZ.NE.0) GO TO 920 0000000 |
| 3659 |
IPC(J) = 0 0000000 |
| 3660 |
GO TO 970 0000000 |
| 3661 |
920 IF (NSRCH.LE.NN) GO TO 960 0000000 |
| 3662 |
IFIR = IFIRST(NZ) 0000000 |
| 3663 |
LASTC(J) = 0 0000000 |
| 3664 |
IF (IFIR) 930, 940, 950 0000000 |
| 3665 |
930 IFIRST(NZ) = -J 0000000 |
| 3666 |
IFIR = -IFIR 0000000 |
| 3667 |
LASTC(IFIR) = J 0000000 |
| 3668 |
NEXTC(J) = IFIR 0000000 |
| 3669 |
GO TO 970 0000000 |
| 3670 |
940 IFIRST(NZ) = -J 0000000 |
| 3671 |
NEXTC(J) = 0 0000000 |
| 3672 |
GO TO 960 0000000 |
| 3673 |
950 LC = -LASTR(IFIR) 0000000 |
| 3674 |
LASTR(IFIR) = -J 0000000 |
| 3675 |
NEXTC(J) = LC 0000000 |
| 3676 |
IF (LC.NE.0) LASTC(LC) = J 0000000 |
| 3677 |
960 NZMIN = MIN0(NZMIN,NZ) 0000000 |
| 3678 |
970 CONTINUE 0000000 |
| 3679 |
980 CONTINUE 0000000 |
| 3680 |
C ******************************************** 0000000 |
| 3681 |
C **** END OF MAIN ELIMINATION LOOP **** 0000000 |
| 3682 |
C ******************************************** 0000000 |
| 3683 |
C 0000000 |
| 3684 |
C RESET IACTIV TO POINT TO THE BEGINNING OF THE NEXT BLOCK. 0000000 |
| 3685 |
990 IF (ILAST.NE.NN) IACTIV = IPTR(ILAST+1) 0000000 |
| 3686 |
1000 CONTINUE 0000000 |
| 3687 |
C 0000000 |
| 3688 |
C ******************************************** 0000000 |
| 3689 |
C **** END OF DEOMPOSITION OF BLOCK **** 0000000 |
| 3690 |
C ******************************************** 0000000 |
| 3691 |
C 0000000 |
| 3692 |
C RECORD SINGULARITY (IF ANY) IN IQ ARRAY. 0000000 |
| 3693 |
IF (IRANK.EQ.NN) GO TO 1020 0000000 |
| 3694 |
DO 1010 I=1,NN 0000000 |
| 3695 |
IF (IPC(I).LT.0) GO TO 1010 0000000 |
| 3696 |
ISING = IPC(I) 0000000 |
| 3697 |
IQ(ISING) = -IQ(ISING) 0000000 |
| 3698 |
IPC(I) = -ISING 0000000 |
| 3699 |
1010 CONTINUE 0000000 |
| 3700 |
C 0000000 |
| 3701 |
C RUN THROUGH LU DECOMPOSITION CHANGING COLUMN INDICES TO THAT OF NEW 0000000 |
| 3702 |
C ORDER AND PERMUTING LENR AND LENRL ARRAYS ACCORDING TO PIVOT 0000000 |
| 3703 |
C PERMUTATIONS. 0000000 |
| 3704 |
1020 ISTART = IDISP(1) 0000000 |
| 3705 |
IEND = IBEG - 1 0000000 |
| 3706 |
IF (IEND.LT.ISTART) GO TO 1040 0000000 |
| 3707 |
DO 1030 JJ=ISTART,IEND 0000000 |
| 3708 |
JOLD = ICN(JJ) 0000000 |
| 3709 |
ICN(JJ) = -IPC(JOLD) 0000000 |
| 3710 |
1030 CONTINUE 0000000 |
| 3711 |
1040 DO 1050 II=1,NN 0000000 |
| 3712 |
I = LASTR(II) 0000000 |
| 3713 |
NEXTR(I) = LENR(II) 0000000 |
| 3714 |
IPTR(I) = LENRL(II) 0000000 |
| 3715 |
1050 CONTINUE 0000000 |
| 3716 |
DO 1060 I=1,NN 0000000 |
| 3717 |
LENRL(I) = IPTR(I) 0000000 |
| 3718 |
LENR(I) = NEXTR(I) 0000000 |
| 3719 |
1060 CONTINUE 0000000 |
| 3720 |
C 0000000 |
| 3721 |
C UPDATE PERMUTATION ARRAYS IP AND IQ. 0000000 |
| 3722 |
DO 1070 II=1,NN 0000000 |
| 3723 |
I = LASTR(II) 0000000 |
| 3724 |
J = -IPC(II) 0000000 |
| 3725 |
NEXTR(I) = IABS(IP(II)+0) 0000000 |
| 3726 |
IPTR(J) = IABS(IQ(II)+0) 0000000 |
| 3727 |
1070 CONTINUE 0000000 |
| 3728 |
DO 1080 I=1,NN 0000000 |
| 3729 |
IF (IP(I).LT.0) NEXTR(I) = -NEXTR(I) 0000000 |
| 3730 |
IP(I) = NEXTR(I) 0000000 |
| 3731 |
IF (IQ(I).LT.0) IPTR(I) = -IPTR(I) 0000000 |
| 3732 |
IQ(I) = IPTR(I) 0000000 |
| 3733 |
1080 CONTINUE 0000000 |
| 3734 |
IP(NN) = IABS(IP(NN)+0) 0000000 |
| 3735 |
IDISP(2) = IEND 0000000 |
| 3736 |
GO TO 1120 0000000 |
| 3737 |
C 0000000 |
| 3738 |
C *** ERROR RETURNS *** 0000000 |
| 3739 |
1090 IDISP(2) = IACTIV 0000000 |
| 3740 |
IF (LP.EQ.0) GO TO 1120 0000000 |
| 3741 |
WRITE (LP,99996) 0000000 |
| 3742 |
GO TO 1110 0000000 |
| 3743 |
1100 IF (IFLAG.EQ.-5) IFLAG = -6 0000000 |
| 3744 |
IF (IFLAG.NE.-6) IFLAG = -3 0000000 |
| 3745 |
IDISP(2) = IACTIV 0000000 |
| 3746 |
IF (LP.EQ.0) GO TO 1120 0000000 |
| 3747 |
IF (IFLAG.EQ.-3) WRITE (LP,99995) 0000000 |
| 3748 |
IF (IFLAG.EQ.-6) WRITE (LP,99994) 0000000 |
| 3749 |
1110 PIVOT = PIVOT - ISTART + 1 0000000 |
| 3750 |
WRITE (LP,99993) PIVOT, NBLOCK, ISTART, ILAST 0000000 |
| 3751 |
IF (PIVOT.EQ.0) WRITE (LP,99992) MINIRN 0000000 |
| 3752 |
C 0000000 |
| 3753 |
C 0000000 |
| 3754 |
1120 RETURN 0000000 |
| 3755 |
99999 FORMAT (54H ERROR RETURN FROM MA30A/AD BECAUSE MATRIX IS STRUCTUR,0000000 |
| 3756 |
* 13HALLY SINGULAR) 0000000 |
| 3757 |
99998 FORMAT (54H ERROR RETURN FROM MA30A/AD BECAUSE MATRIX IS NUMERICA,0000000 |
| 3758 |
* 12HLLY SINGULAR) 0000000 |
| 3759 |
99997 FORMAT (48H LU DECOMPOSITION DESTROYED TO CREATE MORE SPACE) 0000000 |
| 3760 |
99996 FORMAT (54H ERROR RETURN FROM MA30A/AD BECAUSE LICN NOT BIG ENOUG,0000000 |
| 3761 |
* 1HH) 0000000 |
| 3762 |
99995 FORMAT (54H ERROR RETURN FROM MA30A/AD BECAUSE LIRN NOT BIG ENOUG,0000000 |
| 3763 |
* 1HH) 0000000 |
| 3764 |
99994 FORMAT (51H ERROR RETURN FROM MA30A/AD LIRN AND LICN TOO SMALL) 0000000 |
| 3765 |
99993 FORMAT (10H AT STAGE , I5, 10H IN BLOCK , I5, 16H WITH FIRST ROW ,0000000 |
| 3766 |
* I5, 14H AND LAST ROW , I5) 0000000 |
| 3767 |
99992 FORMAT (34H TO CONTINUE SET LIRN TO AT LEAST , I8) 0000000 |
| 3768 |
END 0000000 |
| 3769 |
SUBROUTINE MA30DD(A, ICN, IPTR, N, IACTIV, ITOP, REALS) |
| 3770 |
c_270390 |
| 3771 |
EXTERNAL MA30$DATA |
| 3772 |
c_270390 |
| 3773 |
C THIS SUBROUTINE PERFORMS GARBAGE COLLECTION OPERATIONS ON THE 0000000 |
| 3774 |
C ARRAYS A, ICN AND IRN. 0000000 |
| 3775 |
C IACTIV IS THE FIRST POSITION IN ARRAYS A/ICN FROM WHICH THE COMPRESS 0000000 |
| 3776 |
C STARTS. ON EXIT, IACTIV EQUALS THE POSITION OF THE FIRST ENTRY 0000000 |
| 3777 |
C IN THE COMPRESSED PART OF A/ICN 0000000 |
| 3778 |
C 0000000 |
| 3779 |
DOUBLE PRECISION A(ITOP) |
| 3780 |
LOGICAL REALS 0000000 |
| 3781 |
INTEGER IPTR(N) 0000000 |
| 3782 |
Change |
| 3783 |
C INTEGER*2 ICN(ITOP) |
| 3784 |
INTEGER ICN(ITOP) |
| 3785 |
Change |
| 3786 |
C SEE BLOCK DATA FOR COMMENTS ON VARIABLES IN COMMON. |
| 3787 |
COMMON /MA30FD/ IRNCP, ICNCP, IRANK, MINIRN, MINICN |
| 3788 |
C 0000000 |
| 3789 |
IF (REALS) ICNCP = ICNCP + 1 0000000 |
| 3790 |
IF (.NOT.REALS) IRNCP = IRNCP + 1 0000000 |
| 3791 |
C SET THE FIRST NON-ZERO ENTRY IN EACH ROW TO THE NEGATIVE OF THE 0000000 |
| 3792 |
C ROW/COL NUMBER AND HOLD THIS ROW/COL INDEX IN THE ROW/COL 0000000 |
| 3793 |
C POINTER. THIS IS SO THAT THE BEGINNING OF EACH ROW/COL CAN 0000000 |
| 3794 |
C BE RECOGNIZED IN THE SUBSEQUENT SCAN. 0000000 |
| 3795 |
DO 10 J=1,N 0000000 |
| 3796 |
K = IPTR(J) 0000000 |
| 3797 |
IF (K.LT.IACTIV) GO TO 10 0000000 |
| 3798 |
IPTR(J) = ICN(K) 0000000 |
| 3799 |
ICN(K) = -J 0000000 |
| 3800 |
10 CONTINUE 0000000 |
| 3801 |
KN = ITOP + 1 0000000 |
| 3802 |
KL = ITOP - IACTIV + 1 0000000 |
| 3803 |
C GO THROUGH ARRAYS IN REVERSE ORDER COMPRESSING TO THE BACK SO 0000000 |
| 3804 |
C THAT THERE ARE NO ZEROS HELD IN POSITIONS IACTIV TO ITOP IN ICN. 0000000 |
| 3805 |
C RESET FIRST ENTRY OF EACH ROW/COL AND POINTER ARRAY IPTR. 0000000 |
| 3806 |
DO 30 K=1,KL 0000000 |
| 3807 |
JPOS = ITOP - K + 1 0000000 |
| 3808 |
IF (ICN(JPOS).EQ.0) GO TO 30 0000000 |
| 3809 |
KN = KN - 1 0000000 |
| 3810 |
IF (REALS) A(KN) = A(JPOS) 0000000 |
| 3811 |
IF (ICN(JPOS).GE.0) GO TO 20 0000000 |
| 3812 |
C FIRST NON-ZERO OF ROW/COL HAS BEEN LOCATED 0000000 |
| 3813 |
J = -ICN(JPOS) 0000000 |
| 3814 |
ICN(JPOS) = IPTR(J) 0000000 |
| 3815 |
IPTR(J) = KN 0000000 |
| 3816 |
20 ICN(KN) = ICN(JPOS) 0000000 |
| 3817 |
30 CONTINUE 0000000 |
| 3818 |
IACTIV = KN 0000000 |
| 3819 |
RETURN 0000000 |
| 3820 |
END 0000000 |
| 3821 |
SUBROUTINE MA30BD(N, ICN, A, LICN, LENR, LENRL, IDISP, IP, IQ, W, |
| 3822 |
* IW, IFLAG) 0000000 |
| 3823 |
c_270390 |
| 3824 |
EXTERNAL MA30$DATA |
| 3825 |
c_270390 |
| 3826 |
C MA30B/BD PERFORMS THE LU DECOMPOSITION OF THE DIAGONAL BLOCKS OF A 0000000 |
| 3827 |
C NEW MATRIX PAQ OF THE SAME SPARSITY PATTERN, USING INFORMATION 0000000 |
| 3828 |
C FROM A PREVIOUS CALL TO MA30A/AD. THE ENTRIES OF THE INPUT 0000000 |
| 3829 |
C MATRIX MUST ALREADY BE IN THEIR FINAL POSITIONS IN THE LU 0000000 |
| 3830 |
C DECOMPOSITION STRUCTURE. THIS ROUTINE EXECUTES ABOUT FIVE TIMES 0000000 |
| 3831 |
C FASTER THAN MA30A/AD. 0000000 |
| 3832 |
C 0000000 |
| 3833 |
C WE NOW DESCRIBE THE ARGUMENT LIST FOR MA30B/BD. CONSULT MA30A/AD FOR 0000000 |
| 3834 |
C FURTHER INFORMATION ON THESE PARAMETERS. 0000000 |
| 3835 |
C N IS AN INTEGER VARIABLE SET TO THE ORDER OF THE MATRIX. 0000000 |
| 3836 |
C ICN IS AN INTEGER*2 ARRAY OF LENGTH LICN. IT SHOULD BE UNCHANGED |
| 3837 |
C SINCE THE LAST CALL TO MA30A/AD. IT IS NOT ALTERED BY MA30B/BD. 0000000 |
| 3838 |
C A IS A REAL/DOUBLE PRECISION ARRAY OF LENGTH LICN THE USER MUST SET 0000000 |
| 3839 |
C ENTRIES IDISP(1) TO IDISP(2) TO CONTAIN THE ENTRIES IN THE 0000000 |
| 3840 |
C DIAGONAL BLOCKS OF THE MATRIX PAQ WHOSE COLUMN NUMBERS ARE HELD 0000000 |
| 3841 |
C IN ICN, USING CORRESPONDING POSITIONS. NOTE THAT SOME ZEROS MAY 0000000 |
| 3842 |
C NEED TO BE HELD EXPLICITLY. ON OUTPUT ENTRIES IDISP(1) TO 0000000 |
| 3843 |
C IDISP(2) OF ARRAY A CONTAIN THE LU DECOMPOSITION OF THE DIAGONAL 0000000 |
| 3844 |
C BLOCKS OF PAQ. ENTRIES A(1) TO A(IDISP(1)-1) ARE NEITHER 0000000 |
| 3845 |
C REQUIRED NOR ALTERED BY MA30B/BD. 0000000 |
| 3846 |
C LICN IS AN INTEGER VARIABLE WHICH MUST BE SET BY THE USER TO THE 0000000 |
| 3847 |
C LENGTH OF ARRAYS A AND ICN. IT IS NOT ALTERED BY MA30B/BD. 0000000 |
| 3848 |
C LENR,LENRL ARE INTEGER*2 ARRAYS OF LENGTH N. THEY SHOULD BE |
| 3849 |
C UNCHANGED SINCE THE LAST CALL TO MA30A/AD. THEY ARE NOT ALTERED 0000000 |
| 3850 |
C BY MA30B/BD. 0000000 |
| 3851 |
C IDISP IS AN INTEGER ARRAY OF LENGTH 2. IT SHOULD BE UNCHANGED SINCE 0000000 |
| 3852 |
C THE LAST CALL TO MA30A/AD. IT IS NOT ALTERED BY MA30B/BD. 0000000 |
| 3853 |
C IP,IQ ARE INTEGER*2 ARRAYS OF LENGTH N. THEY SHOULD BE UNCHANGED |
| 3854 |
C SINCE THE LAST CALL TO MA30A/AD. THEY ARE NOT ALTERED BY 0000000 |
| 3855 |
C MA30B/BD. 0000000 |
| 3856 |
C W IS A REAL/DOUBLE PRECISION ARRAY OF LENGTH N WHICH IS USED AS 0000000 |
| 3857 |
C WORKSPACE BY MA30B/BD. 0000000 |
| 3858 |
C IW IS AN INTEGER ARRAY OF LENGTH N WHICH IS USED AS WORKSPACE BY 0000000 |
| 3859 |
C MA30B/BD. 0000000 |
| 3860 |
C IFLAG IS AN INTEGER VARIABLE. ON OUTPUT FROM MA30B/BD, IFLAG HAS 0000000 |
| 3861 |
C THE VALUE ZERO IF THE FACTORIZATION WAS SUCCESSFUL, HAS THE 0000000 |
| 3862 |
C VALUE I IF PIVOT I WAS VERY SMALL AND HAS THE VALUE -I IF AN 0000000 |
| 3863 |
C UNEXPECTED SINGULARITY WAS DETECTED AT STAGE I OF THE 0000000 |
| 3864 |
C DECOMPOSITION. 0000000 |
| 3865 |
C 0000000 |
| 3866 |
DOUBLE PRECISION A(LICN), W(N), AU, EPS, ROWMAX, ZERO, ONE, RMIN, |
| 3867 |
* TOL, BIG |
| 3868 |
LOGICAL ABORT1, ABORT2, ABORT3, STAB, LBIG 0000000 |
| 3869 |
INTEGER IW(N), IDISP(2), PIVPOS 0000000 |
| 3870 |
Change |
| 3871 |
C INTEGER*2 ICN(LICN), LENR(N), LENRL(N), IP(N), IQ(N) |
| 3872 |
INTEGER ICN(LICN), LENR(N), LENRL(N), IP(N), IQ(N) |
| 3873 |
Change |
| 3874 |
C SEE BLOCK DATA FOR COMMENTS ON VARIABLES IN COMMON. |
| 3875 |
COMMON /MA30ED/ LP, ABORT1, ABORT2, ABORT3 |
| 3876 |
COMMON /MA30ID/ TOL, BIG, NDROP, NSRCH, LBIG |
| 3877 |
COMMON /MA30GD/ EPS, RMIN |
| 3878 |
DATA ZERO /0.0D0/, ONE /1.0D0/ |
| 3879 |
STAB = EPS.LE.ONE 0000000 |
| 3880 |
RMIN = EPS 0000000 |
| 3881 |
ISING = 0 0000000 |
| 3882 |
IFLAG = 0 0000000 |
| 3883 |
DO 10 I=1,N 0000000 |
| 3884 |
W(I) = ZERO 0000000 |
| 3885 |
10 CONTINUE 0000000 |
| 3886 |
C SET UP POINTERS TO THE BEGINNING OF THE ROWS. 0000000 |
| 3887 |
IW(1) = IDISP(1) 0000000 |
| 3888 |
IF (N.EQ.1) GO TO 25 0000000 |
| 3889 |
DO 20 I=2,N 0000000 |
| 3890 |
IW(I) = IW(I-1) + LENR(I-1) 0000000 |
| 3891 |
20 CONTINUE 0000000 |
| 3892 |
C 0000000 |
| 3893 |
C **** START OF MAIN LOOP **** 0000000 |
| 3894 |
C AT STEP I, ROW I OF A IS TRANSFORMED TO ROW I OF L/U BY ADDING 0000000 |
| 3895 |
C APPROPRIATE MULTIPLES OF ROWS 1 TO I-1. 0000000 |
| 3896 |
C .... USING ROW-GAUSS ELIMINATION. 0000000 |
| 3897 |
25 DO 160 I=1,N 0000000 |
| 3898 |
C ISTART IS BEGINNING OF ROW I OF A AND ROW I OF L. 0000000 |
| 3899 |
ISTART = IW(I) 0000000 |
| 3900 |
C IFIN IS END OF ROW I OF A AND ROW I OF U. 0000000 |
| 3901 |
IFIN = ISTART + LENR(I) - 1 0000000 |
| 3902 |
C ILEND IS END OF ROW I OF L. 0000000 |
| 3903 |
ILEND = ISTART + LENRL(I) - 1 0000000 |
| 3904 |
IF (ISTART.GT.ILEND) GO TO 90 0000000 |
| 3905 |
C LOAD ROW I OF A INTO VECTOR W. 0000000 |
| 3906 |
DO 30 JJ=ISTART,IFIN 0000000 |
| 3907 |
J = ICN(JJ) 0000000 |
| 3908 |
W(J) = A(JJ) 0000000 |
| 3909 |
30 CONTINUE 0000000 |
| 3910 |
C 0000000 |
| 3911 |
C ADD MULTIPLES OF APPROPRIATE ROWS OF I TO I-1 TO ROW I. 0000000 |
| 3912 |
DO 70 JJ=ISTART,ILEND 0000000 |
| 3913 |
J = ICN(JJ) 0000000 |
| 3914 |
C IPIVJ IS POSITION OF PIVOT IN ROW J. 0000000 |
| 3915 |
IPIVJ = IW(J) + LENRL(J) 0000000 |
| 3916 |
C FORM MULTIPLIER AU. 0000000 |
| 3917 |
AU = -W(J)/A(IPIVJ) 0000000 |
| 3918 |
IF (LBIG) BIG = DMAX1(DABS(AU),BIG) |
| 3919 |
W(J) = AU 0000000 |
| 3920 |
C AU * ROW J (U PART) IS ADDED TO ROW I. 0000000 |
| 3921 |
IPIVJ = IPIVJ + 1 0000000 |
| 3922 |
JFIN = IW(J) + LENR(J) - 1 0000000 |
| 3923 |
IF (IPIVJ.GT.JFIN) GO TO 70 0000000 |
| 3924 |
C INNERMOST LOOP. 0000000 |
| 3925 |
IF (LBIG) GO TO 50 0000000 |
| 3926 |
DO 40 JAYJAY=IPIVJ,JFIN 0000000 |
| 3927 |
JAY = ICN(JAYJAY) 0000000 |
| 3928 |
W(JAY) = W(JAY) + AU*A(JAYJAY) 0000000 |
| 3929 |
40 CONTINUE 0000000 |
| 3930 |
GO TO 70 0000000 |
| 3931 |
50 DO 60 JAYJAY=IPIVJ,JFIN 0000000 |
| 3932 |
JAY = ICN(JAYJAY) 0000000 |
| 3933 |
W(JAY) = W(JAY) + AU*A(JAYJAY) 0000000 |
| 3934 |
BIG = DMAX1(DABS(W(JAY)),BIG) |
| 3935 |
60 CONTINUE 0000000 |
| 3936 |
70 CONTINUE 0000000 |
| 3937 |
C 0000000 |
| 3938 |
C RELOAD W BACK INTO A (NOW L/U) 0000000 |
| 3939 |
DO 80 JJ=ISTART,IFIN 0000000 |
| 3940 |
J = ICN(JJ) 0000000 |
| 3941 |
A(JJ) = W(J) 0000000 |
| 3942 |
W(J) = ZERO 0000000 |
| 3943 |
80 CONTINUE 0000000 |
| 3944 |
C WE NOW PERFORM THE STABILITY CHECKS. 0000000 |
| 3945 |
90 PIVPOS = ILEND + 1 0000000 |
| 3946 |
IF (IQ(I).GT.0) GO TO 140 0000000 |
| 3947 |
C MATRIX HAD SINGULARITY AT THIS POINT IN MA30A/AD. 0000000 |
| 3948 |
C IS IT THE FIRST SUCH PIVOT IN CURRENT BLOCK ? 0000000 |
| 3949 |
IF (ISING.EQ.0) ISING = I 0000000 |
| 3950 |
C DOES CURRENT MATRIX HAVE A SINGULARITY IN THE SAME PLACE ? 0000000 |
| 3951 |
IF (PIVPOS.GT.IFIN) GO TO 100 0000000 |
| 3952 |
IF (A(PIVPOS).NE.ZERO) GO TO 170 0000000 |
| 3953 |
C IT DOES .. SO SET ISING IF IT IS NOT THE END OF THE CURRENT BLOCK 0000000 |
| 3954 |
C CHECK TO SEE THAT APPROPRIATE PART OF L/U IS ZERO OR NULL. 0000000 |
| 3955 |
100 IF (ISTART.GT.IFIN) GO TO 120 0000000 |
| 3956 |
DO 110 JJ=ISTART,IFIN 0000000 |
| 3957 |
IF (ICN(JJ).LT.ISING) GO TO 110 0000000 |
| 3958 |
IF (A(JJ).NE.ZERO) GO TO 170 0000000 |
| 3959 |
110 CONTINUE 0000000 |
| 3960 |
120 IF (PIVPOS.LE.IFIN) A(PIVPOS) = ONE 0000000 |
| 3961 |
IF (IP(I).GT.0 .AND. I.NE.N) GO TO 160 0000000 |
| 3962 |
C END OF CURRENT BLOCK ... RESET ZERO PIVOTS AND ISING. 0000000 |
| 3963 |
DO 130 J=ISING,I 0000000 |
| 3964 |
IF ((LENR(J)-LENRL(J)).EQ.0) GO TO 130 0000000 |
| 3965 |
JJ = IW(J) + LENRL(J) 0000000 |
| 3966 |
A(JJ) = ZERO 0000000 |
| 3967 |
130 CONTINUE 0000000 |
| 3968 |
ISING = 0 0000000 |
| 3969 |
GO TO 160 0000000 |
| 3970 |
C MATRIX HAD NON-ZERO PIVOT IN MA30A/AD AT THIS STAGE. 0000000 |
| 3971 |
140 IF (PIVPOS.GT.IFIN) GO TO 170 0000000 |
| 3972 |
IF (A(PIVPOS).EQ.ZERO) GO TO 170 0000000 |
| 3973 |
IF (.NOT.STAB) GO TO 160 0000000 |
| 3974 |
ROWMAX = ZERO 0000000 |
| 3975 |
DO 150 JJ=PIVPOS,IFIN 0000000 |
| 3976 |
ROWMAX = DMAX1(ROWMAX,DABS(A(JJ))) |
| 3977 |
150 CONTINUE 0000000 |
| 3978 |
IF (DABS(A(PIVPOS))/ROWMAX.GE.RMIN) GO TO 160 |
| 3979 |
IFLAG = I 0000000 |
| 3980 |
RMIN = DABS(A(PIVPOS))/ROWMAX |
| 3981 |
C **** END OF MAIN LOOP **** 0000000 |
| 3982 |
160 CONTINUE 0000000 |
| 3983 |
C 0000000 |
| 3984 |
GO TO 180 0000000 |
| 3985 |
C *** ERROR RETURN *** 0000000 |
| 3986 |
170 IF (LP.NE.0) WRITE (LP,99999) I 0000000 |
| 3987 |
IFLAG = -I 0000000 |
| 3988 |
C 0000000 |
| 3989 |
180 RETURN 0000000 |
| 3990 |
99999 FORMAT (54H ERROR RETURN FROM MA30B/BD SINGULARITY DETECTED IN RO,0000000 |
| 3991 |
* 1HW, I8) 0000000 |
| 3992 |
END 0000000 |
| 3993 |
SUBROUTINE MA30CD(N, ICN, A, LICN, LENR, LENRL, LENOFF, IDISP, IP, |
| 3994 |
* IQ, X, W, MTYPE) 0000000 |
| 3995 |
c_270390 |
| 3996 |
EXTERNAL MA30$DATA |
| 3997 |
c_270390 |
| 3998 |
C MA30C/CD USES THE FACTORS PRODUCED BY MA30A/AD OR MA30B/BD TO SOLVE 0000000 |
| 3999 |
C AX=B OR A TRANSPOSE X=B WHEN THE MATRIX P1*A*Q1 (PAQ) IS BLOCK 0000000 |
| 4000 |
C LOWER TRIANGULAR (INCLUDING THE CASE OF ONLY ONE DIAGONAL 0000000 |
| 4001 |
C BLOCK). 0000000 |
| 4002 |
C 0000000 |
| 4003 |
C WE NOW DESCRIBE THE ARGUMENT LIST FOR MA30C/CD. 0000000 |
| 4004 |
C N IS AN INTEGER VARIABLE SET TO THE ORDER OF THE MATRIX. IT IS NOT 0000000 |
| 4005 |
C ALTERED BY THE SUBROUTINE. 0000000 |
| 4006 |
C ICN IS AN INTEGER*2 ARRAY OF LENGTH LICN. ENTRIES IDISP(1) TO |
| 4007 |
C IDISP(2) SHOULD BE UNCHANGED SINCE THE LAST CALL TO MA30A/AD. IF 0000000 |
| 4008 |
C THE MATRIX HAS MORE THAN ONE DIAGONAL BLOCK, THEN COLUMN INDICES 0000000 |
| 4009 |
C CORRESPONDING TO NON-ZEROS IN SUB-DIAGONAL BLOCKS OF PAQ MUST 0000000 |
| 4010 |
C APPEAR IN POSITIONS 1 TO IDISP(1)-1. FOR THE SAME ROW THOSE 0000000 |
| 4011 |
C ENTRIES MUST BE CONTIGUOUS, WITH THOSE IN ROW I PRECEDING THOSE 0000000 |
| 4012 |
C IN ROW I+1 (I=1,...,N-1) AND NO WASTED SPACE BETWEEN ROWS. 0000000 |
| 4013 |
C ENTRIES MAY BE IN ANY ORDER WITHIN EACH ROW. IT IS NOT ALTERED 0000000 |
| 4014 |
C BY MA30C/CD. 0000000 |
| 4015 |
C A IS A REAL/DOUBLE PRECISION ARRAY OF LENGTH LICN. ENTRIES 0000000 |
| 4016 |
C IDISP(1) TO IDISP(2) SHOULD BE UNCHANGED SINCE THE LAST CALL TO 0000000 |
| 4017 |
C MA30A/AD OR MA30B/BD. IF THE MATRIX HAS MORE THAN ONE DIAGONAL 0000000 |
| 4018 |
C BLOCK, THEN THE VALUES OF THE NON-ZEROS IN SUB-DIAGONAL BLOCKS 0000000 |
| 4019 |
C MUST BE IN POSITIONS 1 TO IDISP(1)-1 IN THE ORDER GIVEN BY ICN. 0000000 |
| 4020 |
C IT IS NOT ALTERED BY MA30C/CD. 0000000 |
| 4021 |
C LICN IS AN INTEGER VARIABLE SET TO THE SIZE OF ARRAYS ICN AND A. 0000000 |
| 4022 |
C IT IS NOT ALTERED BY MA30C/CD. 0000000 |
| 4023 |
C LENR,LENRL ARE INTEGER*2 ARRAYS OF LENGTH N WHICH SHOULD BE |
| 4024 |
C UNCHANGED SINCE THE LAST CALL TO MA30A/AD. THEY ARE NOT ALTERED 0000000 |
| 4025 |
C BY MA30C/CD. 0000000 |
| 4026 |
C LENOFF IS AN INTEGER*2 ARRAY OF LENGTH N. IF THE MATRIX PAQ (OR |
| 4027 |
C P1*A*Q1) HAS MORE THAN ONE DIAGONAL BLOCK, THEN LENOFF(I), 0000000 |
| 4028 |
C I=1,...,N SHOULD BE SET TO THE NUMBER OF NON-ZEROS IN ROW I OF 0000000 |
| 4029 |
C THE MATRIX PAQ WHICH ARE IN SUB-DIAGONAL BLOCKS. IF THERE IS 0000000 |
| 4030 |
C ONLY ONE DIAGONAL BLOCK THEN LENOFF(1) MAY BE SET TO -1, IN 0000000 |
| 4031 |
C WHICH CASE THE OTHER ENTRIES OF LENOFF ARE NEVER ACCESSED. IT IS 0000000 |
| 4032 |
C NOT ALTERED BY MA30C/CD. 0000000 |
| 4033 |
C IDISP IS AN INTEGER ARRAY OF LENGTH 2 WHICH SHOULD BE UNCHANGED 0000000 |
| 4034 |
C SINCE THE LAST CALL TO MA30A/AD. IT IS NOT ALTERED BY MA30C/CD. 0000000 |
| 4035 |
C IP,IQ ARE INTEGER*2 ARRAYS OF LENGTH N WHICH SHOULD BE UNCHANGED |
| 4036 |
C SINCE THE LAST CALL TO MA30A/AD. THEY ARE NOT ALTERED BY 0000000 |
| 4037 |
C MA30C/CD. 0000000 |
| 4038 |
C X IS A REAL/DOUBLE PRECISION ARRAY OF LENGTH N. IT MUST BE SET BY 0000000 |
| 4039 |
C THE USER TO THE VALUES OF THE RIGHT HAND SIDE VECTOR B FOR THE 0000000 |
| 4040 |
C EQUATIONS BEING SOLVED. ON EXIT FROM MA30C/CD IT WILL BE EQUAL 0000000 |
| 4041 |
C TO THE SOLUTION X REQUIRED. 0000000 |
| 4042 |
C W IS A REAL/DOUBLE PRECISION ARRAY OF LENGTH N WHICH IS USED AS 0000000 |
| 4043 |
C WORKSPACE BY MA30C/CD. 0000000 |
| 4044 |
C MTYPE IS AN INTEGER VARIABLE WHICH MUST BE SET BY THE USER. IF 0000000 |
| 4045 |
C MTYPE=1, THEN THE SOLUTION TO THE SYSTEM AX=B IS RETURNED; ANY 0000000 |
| 4046 |
C OTHER VALUE FOR MTYPE WILL RETURN THE SOLUTION TO THE SYSTEM A 0000000 |
| 4047 |
C TRANSPOSE X=B. IT IS NOT ALTERED BY MA30C/CD. 0000000 |
| 4048 |
C 0000000 |
| 4049 |
DOUBLE PRECISION A(LICN), X(N), W(N), WII, WI, RESID, ZERO |
| 4050 |
LOGICAL NEG, NOBLOC 0000000 |
| 4051 |
INTEGER IDISP(2) 0000000 |
| 4052 |
Change |
| 4053 |
C INTEGER*2 ICN(LICN), LENR(N), LENRL(N), LENOFF(N), IP(N), IQ(N) |
| 4054 |
INTEGER ICN(LICN), LENR(N), LENRL(N), LENOFF(N), IP(N), IQ(N) |
| 4055 |
Change |
| 4056 |
C SEE BLOCK DATA FOR COMMENTS ON VARIABLES IN COMMON. |
| 4057 |
COMMON /MA30HD/ RESID |
| 4058 |
DATA ZERO /0.0D0/ |
| 4059 |
C 0000000 |
| 4060 |
C THE FINAL VALUE OF RESID IS THE MAXIMUM RESIDUAL FOR AN INCONSISTENT 0000000 |
| 4061 |
C SET OF EQUATIONS. 0000000 |
| 4062 |
RESID = ZERO 0000000 |
| 4063 |
C NOBLOC IS .TRUE. IF SUBROUTINE BLOCK HAS BEEN USED PREVIOUSLY AND 0000000 |
| 4064 |
C IS .FALSE. OTHERWISE. THE VALUE .FALSE. MEANS THAT LENOFF 0000000 |
| 4065 |
C WILL NOT BE SUBSEQUENTLY ACCESSED. 0000000 |
| 4066 |
NOBLOC = LENOFF(1).LT.0 0000000 |
| 4067 |
IF (MTYPE.NE.1) GO TO 140 0000000 |
| 4068 |
C 0000000 |
| 4069 |
C WE NOW SOLVE A * X = B. 0000000 |
| 4070 |
C NEG IS USED TO INDICATE WHEN THE LAST ROW IN A BLOCK HAS BEEN 0000000 |
| 4071 |
C REACHED. IT IS THEN SET TO TRUE WHEREAFTER BACKSUBSTITUTION IS 0000000 |
| 4072 |
C PERFORMED ON THE BLOCK. 0000000 |
| 4073 |
NEG = .FALSE. 0000000 |
| 4074 |
C IP(N) IS NEGATED SO THAT THE LAST ROW OF THE LAST BLOCK CAN BE 0000000 |
| 4075 |
C RECOGNISED. IT IS RESET TO ITS POSITIVE VALUE ON EXIT. 0000000 |
| 4076 |
IP(N) = -IP(N) 0000000 |
| 4077 |
C PREORDER VECTOR ... W(I) = X(IP(I)) 0000000 |
| 4078 |
DO 10 II=1,N 0000000 |
| 4079 |
I = IP(II) 0000000 |
| 4080 |
I = IABS(I) 0000000 |
| 4081 |
W(II) = X(I) 0000000 |
| 4082 |
10 CONTINUE 0000000 |
| 4083 |
C LT HOLDS THE POSITION OF THE FIRST NON-ZERO IN THE CURRENT ROW OF THE 0000000 |
| 4084 |
C OFF-DIAGONAL BLOCKS. 0000000 |
| 4085 |
LT = 1 0000000 |
| 4086 |
C IFIRST HOLDS THE INDEX OF THE FIRST ROW IN THE CURRENT BLOCK. 0000000 |
| 4087 |
IFIRST = 1 0000000 |
| 4088 |
C IBLOCK HOLDS THE POSITION OF THE FIRST NON-ZERO IN THE CURRENT ROW 0000000 |
| 4089 |
C OF THE LU DECOMPOSITION OF THE DIAGONAL BLOCKS. 0000000 |
| 4090 |
IBLOCK = IDISP(1) 0000000 |
| 4091 |
C IF I IS NOT THE LAST ROW OF A BLOCK, THEN A PASS THROUGH THIS LOOP 0000000 |
| 4092 |
C ADDS THE INNER PRODUCT OF ROW I OF THE OFF-DIAGONAL BLOCKS AND W 0000000 |
| 4093 |
C TO W AND PERFORMS FORWARD ELIMINATION USING ROW I OF THE LU 0000000 |
| 4094 |
C DECOMPOSITION. IF I IS THE LAST ROW OF A BLOCK THEN, AFTER 0000000 |
| 4095 |
C PERFORMING THESE AFOREMENTIONED OPERATIONS, BACKSUBSTITUTION IS 0000000 |
| 4096 |
C PERFORMED USING THE ROWS OF THE BLOCK. 0000000 |
| 4097 |
DO 120 I=1,N 0000000 |
| 4098 |
WI = W(I) 0000000 |
| 4099 |
IF (NOBLOC) GO TO 30 0000000 |
| 4100 |
IF (LENOFF(I).EQ.0) GO TO 30 0000000 |
| 4101 |
C OPERATIONS USING LOWER TRIANGULAR BLOCKS. 0000000 |
| 4102 |
C LTEND IS THE END OF ROW I IN THE OFF-DIAGONAL BLOCKS. 0000000 |
| 4103 |
LTEND = LT + LENOFF(I) - 1 0000000 |
| 4104 |
DO 20 JJ=LT,LTEND 0000000 |
| 4105 |
J = ICN(JJ) 0000000 |
| 4106 |
WI = WI - A(JJ)*W(J) 0000000 |
| 4107 |
20 CONTINUE 0000000 |
| 4108 |
C LT IS SET THE BEGINNING OF THE NEXT OFF-DIAGONAL ROW. 0000000 |
| 4109 |
LT = LTEND + 1 0000000 |
| 4110 |
C SET NEG TO .TRUE. IF WE ARE ON THE LAST ROW OF THE BLOCK. 0000000 |
| 4111 |
30 IF (IP(I).LT.0) NEG = .TRUE. 0000000 |
| 4112 |
IF (LENRL(I).EQ.0) GO TO 50 0000000 |
| 4113 |
C FORWARD ELIMINATION PHASE. 0000000 |
| 4114 |
C IEND IS THE END OF THE L PART OF ROW I IN THE LU DECOMPOSITION. 0000000 |
| 4115 |
IEND = IBLOCK + LENRL(I) - 1 0000000 |
| 4116 |
DO 40 JJ=IBLOCK,IEND 0000000 |
| 4117 |
J = ICN(JJ) 0000000 |
| 4118 |
WI = WI + A(JJ)*W(J) 0000000 |
| 4119 |
40 CONTINUE 0000000 |
| 4120 |
C IBLOCK IS ADJUSTED TO POINT TO THE START OF THE NEXT ROW. 0000000 |
| 4121 |
50 IBLOCK = IBLOCK + LENR(I) 0000000 |
| 4122 |
W(I) = WI 0000000 |
| 4123 |
IF (.NOT.NEG) GO TO 120 0000000 |
| 4124 |
C BACK SUBSTITUTION PHASE. 0000000 |
| 4125 |
C J1 IS POSITION IN A/ICN AFTER END OF BLOCK BEGINNING IN ROW IFIRST 0000000 |
| 4126 |
C AND ENDING IN ROW I. 0000000 |
| 4127 |
J1 = IBLOCK 0000000 |
| 4128 |
C ARE THERE ANY SINGULARITIES IN THIS BLOCK? IF NOT, CONTINUE WITH 0000000 |
| 4129 |
C THE BACKSUBSTITUTION. 0000000 |
| 4130 |
IB = I 0000000 |
| 4131 |
IF (IQ(I).GT.0) GO TO 70 0000000 |
| 4132 |
DO 60 III=IFIRST,I 0000000 |
| 4133 |
IB = I - III + IFIRST 0000000 |
| 4134 |
IF (IQ(IB).GT.0) GO TO 70 0000000 |
| 4135 |
J1 = J1 - LENR(IB) 0000000 |
| 4136 |
RESID = DMAX1(RESID,DABS(W(IB))) |
| 4137 |
W(IB) = ZERO 0000000 |
| 4138 |
60 CONTINUE 0000000 |
| 4139 |
C ENTIRE BLOCK IS SINGULAR. 0000000 |
| 4140 |
GO TO 110 0000000 |
| 4141 |
C EACH PASS THROUGH THIS LOOP PERFORMS THE BACK-SUBSTITUTION 0000000 |
| 4142 |
C OPERATIONS FOR A SINGLE ROW, STARTING AT THE END OF THE BLOCK AND 0000000 |
| 4143 |
C WORKING THROUGH IT IN REVERSE ORDER. 0000000 |
| 4144 |
70 DO 100 III=IFIRST,IB 0000000 |
| 4145 |
II = IB - III + IFIRST 0000000 |
| 4146 |
C J2 IS END OF ROW II. 0000000 |
| 4147 |
J2 = J1 - 1 0000000 |
| 4148 |
C J1 IS BEGINNING OF ROW II. 0000000 |
| 4149 |
J1 = J1 - LENR(II) 0000000 |
| 4150 |
C JPIV IS THE POSITION OF THE PIVOT IN ROW II. 0000000 |
| 4151 |
JPIV = J1 + LENRL(II) 0000000 |
| 4152 |
JPIVP1 = JPIV + 1 0000000 |
| 4153 |
C JUMP IF ROW II OF U HAS NO NON-ZEROS. 0000000 |
| 4154 |
IF (J2.LT.JPIVP1) GO TO 90 0000000 |
| 4155 |
WII = W(II) 0000000 |
| 4156 |
DO 80 JJ=JPIVP1,J2 0000000 |
| 4157 |
J = ICN(JJ) 0000000 |
| 4158 |
WII = WII - A(JJ)*W(J) 0000000 |
| 4159 |
80 CONTINUE 0000000 |
| 4160 |
W(II) = WII 0000000 |
| 4161 |
90 W(II) = W(II)/A(JPIV) 0000000 |
| 4162 |
100 CONTINUE 0000000 |
| 4163 |
110 IFIRST = I + 1 0000000 |
| 4164 |
NEG = .FALSE. 0000000 |
| 4165 |
120 CONTINUE 0000000 |
| 4166 |
C 0000000 |
| 4167 |
C REORDER SOLUTION VECTOR ... X(I) = W(IQINVERSE(I)) 0000000 |
| 4168 |
DO 130 II=1,N 0000000 |
| 4169 |
I = IQ(II) 0000000 |
| 4170 |
I = IABS(I) 0000000 |
| 4171 |
X(I) = W(II) 0000000 |
| 4172 |
130 CONTINUE 0000000 |
| 4173 |
IP(N) = -IP(N) 0000000 |
| 4174 |
GO TO 320 0000000 |
| 4175 |
C 0000000 |
| 4176 |
C 0000000 |
| 4177 |
C WE NOW SOLVE ATRANSPOSE * X = B. 0000000 |
| 4178 |
C PREORDER VECTOR ... W(I)=X(IQ(I)) 0000000 |
| 4179 |
140 DO 150 II=1,N 0000000 |
| 4180 |
I = IQ(II) 0000000 |
| 4181 |
I = IABS(I) 0000000 |
| 4182 |
W(II) = X(I) 0000000 |
| 4183 |
150 CONTINUE 0000000 |
| 4184 |
C LJ1 POINTS TO THE BEGINNING THE CURRENT ROW IN THE OFF-DIAGONAL 0000000 |
| 4185 |
C BLOCKS. 0000000 |
| 4186 |
LJ1 = IDISP(1) 0000000 |
| 4187 |
C IBLOCK IS INITIALIZED TO POINT TO THE BEGINNING OF THE BLOCK AFTER 0000000 |
| 4188 |
C THE LAST ONE ] 0000000 |
| 4189 |
IBLOCK = IDISP(2) + 1 0000000 |
| 4190 |
C ILAST IS THE LAST ROW IN THE CURRENT BLOCK. 0000000 |
| 4191 |
ILAST = N 0000000 |
| 4192 |
C IBLEND POINTS TO THE POSITION AFTER THE LAST NON-ZERO IN THE 0000000 |
| 4193 |
C CURRENT BLOCK. 0000000 |
| 4194 |
IBLEND = IBLOCK 0000000 |
| 4195 |
C EACH PASS THROUGH THIS LOOP OPERATES WITH ONE DIAGONAL BLOCK AND 0000000 |
| 4196 |
C THE OFF-DIAGONAL PART OF THE MATRIX CORRESPONDING TO THE ROWS 0000000 |
| 4197 |
C OF THIS BLOCK. THE BLOCKS ARE TAKEN IN REVERSE ORDER AND THE 0000000 |
| 4198 |
C NUMBER OF TIMES THE LOOP IS ENTERED IS MIN(N,NO. BLOCKS+1). 0000000 |
| 4199 |
DO 290 NUMBLK=1,N 0000000 |
| 4200 |
IF (ILAST.EQ.0) GO TO 300 0000000 |
| 4201 |
IBLOCK = IBLOCK - LENR(ILAST) 0000000 |
| 4202 |
C THIS LOOP FINDS THE INDEX OF THE FIRST ROW IN THE CURRENT BLOCK.. 0000000 |
| 4203 |
C IT IS FIRST AND IBLOCK IS SET TO THE POSITION OF THE BEGINNING 0000000 |
| 4204 |
C OF THIS FIRST ROW. 0000000 |
| 4205 |
DO 160 K=1,N 0000000 |
| 4206 |
II = ILAST - K 0000000 |
| 4207 |
IF (II.EQ.0) GO TO 170 0000000 |
| 4208 |
IF (IP(II).LT.0) GO TO 170 0000000 |
| 4209 |
IBLOCK = IBLOCK - LENR(II) 0000000 |
| 4210 |
160 CONTINUE 0000000 |
| 4211 |
170 IFIRST = II + 1 0000000 |
| 4212 |
C J1 POINTS TO THE POSITION OF THE BEGINNING OF ROW I (LT PART) OR PIVOT0000000 |
| 4213 |
J1 = IBLOCK 0000000 |
| 4214 |
C FORWARD ELIMINATION. 0000000 |
| 4215 |
C EACH PASS THROUGH THIS LOOP PERFORMS THE OPERATIONS FOR ONE ROW OF THE0000000 |
| 4216 |
C BLOCK. IF THE CORRESPONDING ENTRY OF W IS ZERO THEN THE 0000000 |
| 4217 |
C OPERATIONS CAN BE AVOIDED. 0000000 |
| 4218 |
DO 210 I=IFIRST,ILAST 0000000 |
| 4219 |
IF (W(I).EQ.ZERO) GO TO 200 0000000 |
| 4220 |
C JUMP IF ROW I SINGULAR. 0000000 |
| 4221 |
IF (IQ(I).LT.0) GO TO 220 0000000 |
| 4222 |
C J2 FIRST POINTS TO THE PIVOT IN ROW I AND THEN IS MADE TO POINT TO THE0000000 |
| 4223 |
C FIRST NON-ZERO IN THE U TRANSPOSE PART OF THE ROW. 0000000 |
| 4224 |
J2 = J1 + LENRL(I) 0000000 |
| 4225 |
WI = W(I)/A(J2) 0000000 |
| 4226 |
IF (LENR(I)-LENRL(I).EQ.1) GO TO 190 0000000 |
| 4227 |
J2 = J2 + 1 0000000 |
| 4228 |
C J3 POINTS TO THE END OF ROW I. 0000000 |
| 4229 |
J3 = J1 + LENR(I) - 1 0000000 |
| 4230 |
DO 180 JJ=J2,J3 0000000 |
| 4231 |
J = ICN(JJ) 0000000 |
| 4232 |
W(J) = W(J) - A(JJ)*WI 0000000 |
| 4233 |
180 CONTINUE 0000000 |
| 4234 |
190 W(I) = WI 0000000 |
| 4235 |
200 J1 = J1 + LENR(I) 0000000 |
| 4236 |
210 CONTINUE 0000000 |
| 4237 |
GO TO 240 0000000 |
| 4238 |
C DEALS WITH REST OF BLOCK WHICH IS SINGULAR. 0000000 |
| 4239 |
220 DO 230 II=I,ILAST 0000000 |
| 4240 |
RESID = DMAX1(RESID,DABS(W(II))) |
| 4241 |
W(II) = ZERO 0000000 |
| 4242 |
230 CONTINUE 0000000 |
| 4243 |
C BACK SUBSTITUTION. 0000000 |
| 4244 |
C THIS LOOP DOES THE BACK SUBSTITUTION ON THE ROWS OF THE BLOCK IN 0000000 |
| 4245 |
C THE REVERSE ORDER DOING IT SIMULTANEOUSLY ON THE L TRANSPOSE PART 0000000 |
| 4246 |
C OF THE DIAGONAL BLOCKS AND THE OFF-DIAGONAL BLOCKS. 0000000 |
| 4247 |
240 J1 = IBLEND 0000000 |
| 4248 |
DO 280 IBACK=IFIRST,ILAST 0000000 |
| 4249 |
I = ILAST - IBACK + IFIRST 0000000 |
| 4250 |
C J1 POINTS TO THE BEGINNING OF ROW I. 0000000 |
| 4251 |
J1 = J1 - LENR(I) 0000000 |
| 4252 |
IF (LENRL(I).EQ.0) GO TO 260 0000000 |
| 4253 |
C J2 POINTS TO THE END OF THE L TRANSPOSE PART OF ROW I. 0000000 |
| 4254 |
J2 = J1 + LENRL(I) - 1 0000000 |
| 4255 |
DO 250 JJ=J1,J2 0000000 |
| 4256 |
J = ICN(JJ) 0000000 |
| 4257 |
W(J) = W(J) + A(JJ)*W(I) 0000000 |
| 4258 |
250 CONTINUE 0000000 |
| 4259 |
260 IF (NOBLOC) GO TO 280 0000000 |
| 4260 |
C OPERATIONS USING LOWER TRIANGULAR BLOCKS. 0000000 |
| 4261 |
IF (LENOFF(I).EQ.0) GO TO 280 0000000 |
| 4262 |
C LJ2 POINTS TO THE END OF ROW I OF THE OFF-DIAGONAL BLOCKS. 0000000 |
| 4263 |
LJ2 = LJ1 - 1 0000000 |
| 4264 |
C LJ1 POINTS TO THE BEGINNING OF ROW I OF THE OFF-DIAGONAL BLOCKS. 0000000 |
| 4265 |
LJ1 = LJ1 - LENOFF(I) 0000000 |
| 4266 |
DO 270 JJ=LJ1,LJ2 0000000 |
| 4267 |
J = ICN(JJ) 0000000 |
| 4268 |
W(J) = W(J) - A(JJ)*W(I) 0000000 |
| 4269 |
270 CONTINUE 0000000 |
| 4270 |
280 CONTINUE 0000000 |
| 4271 |
IBLEND = J1 0000000 |
| 4272 |
ILAST = IFIRST - 1 0000000 |
| 4273 |
290 CONTINUE 0000000 |
| 4274 |
C REORDER SOLUTION VECTOR ... X(I)=W(IPINVERSE(I)) 0000000 |
| 4275 |
300 DO 310 II=1,N 0000000 |
| 4276 |
I = IP(II) 0000000 |
| 4277 |
I = IABS(I) 0000000 |
| 4278 |
X(I) = W(II) 0000000 |
| 4279 |
310 CONTINUE 0000000 |
| 4280 |
C 0000000 |
| 4281 |
320 RETURN 0000000 |
| 4282 |
END 0000000 |
| 4283 |
BLOCK DATA ma30$data |
| 4284 |
C_270390ak BLOCK DATA 0000000 |
| 4285 |
C ALTHOUGH ALL COMMON BLOCK VARIABLES DO NOT HAVE DEFAULT VALUES, 0000000 |
| 4286 |
C WE COMMENT ON ALL THE COMMON BLOCK VARIABLES HERE. 0000000 |
| 4287 |
C 0000000 |
| 4288 |
C COMMON BLOCK MA30E/ED HOLDS CONTROL PARAMETERS .... 0000000 |
| 4289 |
C COMMON /MA30ED/ LP, ABORT1, ABORT2, ABORT3 0000000 |
| 4290 |
C THE INTEGER LP IS THE UNIT NUMBER TO WHICH THE ERROR MESSAGES ARE 0000000 |
| 4291 |
C SENT. LP HAS A DEFAULT VALUE OF 6. THIS DEFAULT VALUE CAN BE 0000000 |
| 4292 |
C RESET BY THE USER, IF DESIRED. A VALUE OF 0 SUPPRESSES ALL 0000000 |
| 4293 |
C MESSAGES. 0000000 |
| 4294 |
C THE LOGICAL VARIABLES ABORT1,ABORT2,ABORT3 ARE USED TO CONTROL THE 0000000 |
| 4295 |
C CONDITIONS UNDER WHICH THE SUBROUTINE WILL TERMINATE. 0000000 |
| 4296 |
C IF ABORT1 IS .TRUE. THEN THE SUBROUTINE WILL EXIT IMMEDIATELY ON 0000000 |
| 4297 |
C DETECTING STRUCTURAL SINGULARITY. 0000000 |
| 4298 |
C IF ABORT2 IS .TRUE. THEN THE SUBROUTINE WILL EXIT IMMEDIATELY ON 0000000 |
| 4299 |
C DETECTING NUMERICAL SINGULARITY. 0000000 |
| 4300 |
C IF ABORT3 IS .TRUE. THEN THE SUBROUTINE WILL EXIT IMMEDIATELY WHEN 0000000 |
| 4301 |
C THE AVAILABLE SPACE IN A/ICN IS FILLED UP BY THE PREVIOUSLY 0000000 |
| 4302 |
C DECOMPOSED, ACTIVE, AND UNDECOMPOSED PARTS OF THE MATRIX. 0000000 |
| 4303 |
C THE DEFAULT VALUES FOR ABORT1,ABORT2,ABORT3 ARE SET TO .TRUE.,.TRUE. 0000000 |
| 4304 |
C AND .FALSE. RESPECTIVELY. 0000000 |
| 4305 |
C 0000000 |
| 4306 |
C THE VARIABLES IN THE COMMON BLOCK MA30F/FD ARE USED TO PROVIDE THE 0000000 |
| 4307 |
C USER WITH INFORMATION ON THE DECOMPOSITION. 0000000 |
| 4308 |
C COMMON /MA30FD/ IRNCP, ICNCP, IRANK, MINIRN, MINICN 0000000 |
| 4309 |
C IRNCP AND ICNCP ARE INTEGER VARIABLES USED TO MONITOR THE ADEQUACY 0000000 |
| 4310 |
C OF THE ALLOCATED SPACE IN ARRAYS IRN AND A/ICN RESPECTIVELY, BY 0000000 |
| 4311 |
C TAKING ACCOUNT OF THE NUMBER OF DATA MANAGEMENT COMPRESSES 0000000 |
| 4312 |
C REQUIRED ON THESE ARRAYS. IF IRNCP OR ICNCP IS FAIRLY LARGE (SAY 0000000 |
| 4313 |
C GREATER THAN N/10), IT MAY BE ADVANTAGEOUS TO INCREASE THE SIZE 0000000 |
| 4314 |
C OF THE CORRESPONDING ARRAY(S). IRNCP AND ICNCP ARE INITIALIZED 0000000 |
| 4315 |
C TO ZERO ON ENTRY TO MA30A/AD AND ARE INCREMENTED EACH TIME THE 0000000 |
| 4316 |
C COMPRESSING ROUTINE MA30D/DD IS ENTERED. 0000000 |
| 4317 |
C ICNCP IS THE NUMBER OF COMPRESSES ON A/ICN. 0000000 |
| 4318 |
C IRNCP IS THE NUMBER OF COMPRESSES ON IRN. 0000000 |
| 4319 |
C IRANK IS AN INTEGER VARIABLE WHICH GIVES AN ESTIMATE (ACTUALLY AN 0000000 |
| 4320 |
C UPPER BOUND) OF THE RANK OF THE MATRIX. ON AN EXIT WITH IFLAG 0000000 |
| 4321 |
C EQUAL TO 0, THIS WILL BE EQUAL TO N. 0000000 |
| 4322 |
C MINIRN IS AN INTEGER VARIABLE WHICH, AFTER A SUCCESSFUL CALL TO 0000000 |
| 4323 |
C MA30A/AD, INDICATES THE MINIMUM LENGTH TO WHICH IRN CAN BE 0000000 |
| 4324 |
C REDUCED WHILE STILL PERMITTING A SUCCESSFUL DECOMPOSITION OF THE 0000000 |
| 4325 |
C SAME MATRIX. IF, HOWEVER, THE USER WERE TO DECREASE THE LENGTH 0000000 |
| 4326 |
C OF IRN TO THAT SIZE, THE NUMBER OF COMPRESSES (IRNCP) MAY BE 0000000 |
| 4327 |
C VERY HIGH AND QUITE COSTLY. IF LIRN IS NOT LARGE ENOUGH TO BEGIN 0000000 |
| 4328 |
C THE DECOMPOSITION ON A DIAGONAL BLOCK, MINIRN WILL BE EQUAL TO 0000000 |
| 4329 |
C THE VALUE REQUIRED TO CONTINUE THE DECOMPOSITION AND IFLAG WILL 0000000 |
| 4330 |
C BE SET TO -3 OR -6. A VALUE OF LIRN SLIGHTLY GREATER THAN THIS 0000000 |
| 4331 |
C (SAY ABOUT N/2) WILL USUALLY PROVIDE ENOUGH SPACE TO COMPLETE 0000000 |
| 4332 |
C THE DECOMPOSITION ON THAT BLOCK. IN THE EVENT OF ANY OTHER 0000000 |
| 4333 |
C FAILURE MINIRN GIVES THE MINIMUM SIZE OF IRN REQUIRED FOR A 0000000 |
| 4334 |
C SUCCESSFUL DECOMPOSITION UP TO THAT POINT. 0000000 |
| 4335 |
C MINICN IS AN INTEGER VARIABLE WHICH AFTER A SUCCESSFUL CALL TO 0000000 |
| 4336 |
C MA30A/AD, INDICATES THE MINIMUM SIZE OF LICN REQUIRED TO ENABLE 0000000 |
| 4337 |
C A SUCCESSFUL DECOMPOSITION. IN THE EVENT OF FAILURE WITH IFLAG= 0000000 |
| 4338 |
C -5, MINICN WILL, IF ABORT3 IS LEFT SET TO .FALSE., INDICATE THE 0000000 |
| 4339 |
C MINIMUM LENGTH THAT WOULD BE SUFFICIENT TO PREVENT THIS ERROR IN 0000000 |
| 4340 |
C A SUBSEQUENT RUN ON AN IDENTICAL MATRIX. AGAIN THE USER MAY 0000000 |
| 4341 |
C PREFER TO USE A VALUE OF ICN SLIGHTLY GREATER THAN MINICN FOR 0000000 |
| 4342 |
C SUBSEQUENT RUNS TO AVOID TOO MANY CONPRESSES (ICNCP). IN THE 0000000 |
| 4343 |
C EVENT OF FAILURE WITH IFLAG EQUAL TO ANY NEGATIVE VALUE EXCEPT 0000000 |
| 4344 |
C -4, MINICN WILL GIVE THE MINIMUM LENGTH TO WHICH LICN COULD BE 0000000 |
| 4345 |
C REDUCED TO ENABLE A SUCCESSFUL DECOMPOSITION TO THE POINT AT 0000000 |
| 4346 |
C WHICH FAILURE OCCURRED. NOTICE THAT, ON A SUCCESSFUL ENTRY 0000000 |
| 4347 |
C IDISP(2) GIVES THE AMOUNT OF SPACE IN A/ICN REQUIRED FOR THE 0000000 |
| 4348 |
C DECOMPOSITION WHILE MINICN WILL USUALLY BE SLIGHTLY GREATER 0000000 |
| 4349 |
C BECAUSE OF THE NEED FOR "ELBOW ROOM". IF THE USER IS VERY 0000000 |
| 4350 |
C UNSURE HOW LARGE TO MAKE LICN, THE VARIABLE MINICN CAN BE USED 0000000 |
| 4351 |
C TO PROVIDE THAT INFORMATION. A PRELIMINARY RUN SHOULD BE 0000000 |
| 4352 |
C PERFORMED WITH ABORT3 LEFT SET TO .FALSE. AND LICN ABOUT 3/2 0000000 |
| 4353 |
C TIMES AS BIG AS THE NUMBER OF NON-ZEROS IN THE ORIGINAL MATRIX. 0000000 |
| 4354 |
C UNLESS THE INITIAL PROBLEM IS VERY SPARSE (WHEN THE RUN WILL BE 0000000 |
| 4355 |
C SUCCESSFUL) OR FILLS IN EXTREMELY BADLY (GIVING AN ERROR RETURN 0000000 |
| 4356 |
C WITH IFLAG EQUAL TO -4), AN ERROR RETURN WITH IFLAG EQUAL TO -5 0000000 |
| 4357 |
C SHOULD RESULT AND MINICN WILL GIVE THE AMOUNT OF SPACE REQUIRED 0000000 |
| 4358 |
C FOR A SUCCESSFUL DECOMPOSITION. 0000000 |
| 4359 |
C 0000000 |
| 4360 |
C COMMON BLOCK MA30G/GD IS USED BY THE MA30B/BD ENTRY ONLY. 0000000 |
| 4361 |
C COMMON /MA30GD/ EPS, RMIN 0000000 |
| 4362 |
C EPS IS A REAL/DOUBLE PRECISION VARIABLE. IT IS USED TO TEST FOR 0000000 |
| 4363 |
C SMALL PIVOTS. ITS DEFAULT VALUE IS 1.0E-4 (1.0D-4 IN D VERSION). 0000000 |
| 4364 |
C IF THE USER SETS EPS TO ANY VALUE GREATER THAN 1.0, THEN NO 0000000 |
| 4365 |
C CHECK IS MADE ON THE SIZE OF THE PIVOTS. ALTHOUGH THE ABSENCE OF 0000000 |
| 4366 |
C SUCH A CHECK WOULD FAIL TO WARN THE USER OF BAD INSTABILITY, ITS 0000000 |
| 4367 |
C ABSENCE WILL ENABLE MA30B/BD TO RUN SLIGHTLY FASTER. AN A 0000000 |
| 4368 |
C POSTERIORI CHECK ON THE STABILITY OF THE FACTORIZATION CAN BE 0000000 |
| 4369 |
C OBTAINED FROM MC24A/AD. 0000000 |
| 4370 |
C RMIN IS A REAL/DOUBLE PRECISION VARIABLE WHICH GIVES THE USER SOME 0000000 |
| 4371 |
C INFORMATION ABOUT THE STABILITY OF THE DECOMPOSITION. AT EACH 0000000 |
| 4372 |
C STAGE OF THE LU DECOMPOSITION THE MAGNITUDE OF THE PIVOT APIV 0000000 |
| 4373 |
C IS COMPARED WITH THE LARGEST OFF-DIAGONAL ENTRY CURRENTLY IN ITS 0000000 |
| 4374 |
C ROW (ROW OF U), ROWMAX SAY. IF THE RATIO 0000000 |
| 4375 |
C MIN (APIV/ROWMAX) 0000000 |
| 4376 |
C WHERE THE MINIMUM IS TAKEN OVER ALL THE ROWS, IS LESS THAN EPS 0000000 |
| 4377 |
C THEN RMIN IS SET TO THIS MINIMUM VALUE AND IFLAG IS RETURNED 0000000 |
| 4378 |
C WITH THE VALUE +I WHERE I IS THE ROW IN WHICH THIS MINIMUM 0000000 |
| 4379 |
C OCCURS. IF THE USER SETS EPS GREATER THAN ONE, THEN THIS TEST 0000000 |
| 4380 |
C IS NOT PERFORMED. IN THIS CASE, AND WHEN THERE ARE NO SMALL 0000000 |
| 4381 |
C PIVOTS RMIN WILL BE SET EQUAL TO EPS. 0000000 |
| 4382 |
C 0000000 |
| 4383 |
C COMMON BLOCK MA30H/HD IS USED BY MA30C/CD ONLY. 0000000 |
| 4384 |
C COMMON /MA30HD/ RESID 0000000 |
| 4385 |
C RESID IS A REAL/DOUBLE PRECISION VARIABLE. IN THE CASE OF SINGULAR 0000000 |
| 4386 |
C OR RECTANGULAR MATRICES ITS FINAL VALUE WILL BE EQUAL TO THE 0000000 |
| 4387 |
C MAXIMUM RESIDUAL FOR THE UNSATISFIED EQUATIONS; OTHERWISE ITS 0000000 |
| 4388 |
C VALUE WILL BE SET TO ZERO. 0000000 |
| 4389 |
C 0000000 |
| 4390 |
C COMMON BLOCK MA30I/ID CONTROLS THE USE OF DROP TOLERANCES, THE 0000000 |
| 4391 |
C MODIFIED PIVOT OPTION AND THE THE CALCULATION OF THE LARGEST 0000000 |
| 4392 |
C ENTRY IN THE FACTORIZATION PROCESS. THIS COMMON BLOCK WAS ADDED 0000000 |
| 4393 |
C TO THE MA30 PACKAGE IN FEBRUARY, 1983. 0000000 |
| 4394 |
C COMMON /MA30ID/ TOL, BIG, NDROP, NSRCH, LBIG 0000000 |
| 4395 |
C TOL IS A REAL/DOUBLE PRECISION VARIABLE. IF IT IS SET TO A POSITIVE 0000000 |
| 4396 |
C VALUE, THEN MA30A/AD WILL DROP FROM THE FACTORS ANY NON-ZERO 0000000 |
| 4397 |
C WHOSE MODULUS IS LESS THAN TOL. THE FACTORIZATION WILL THEN 0000000 |
| 4398 |
C REQUIRE LESS STORAGE BUT WILL BE INACCURATE. AFTER A RUN OF 0000000 |
| 4399 |
C MA30A/AD WHERE ENTRIES HAVE BEEN DROPPED, MA30B/BD SHOULD NOT 0000000 |
| 4400 |
C BE CALLED. THE DEFAULT VALUE FOR TOL IS 0.0. 0000000 |
| 4401 |
C BIG IS A REAL/DOUBLE PRECISION VARIABLE. IF LBIG HAS BEEN SET TO 0000000 |
| 4402 |
C .TRUE., BIG WILL BE SET TO THE LARGEST ENTRY ENCOUNTERED DURING 0000000 |
| 4403 |
C THE FACTORIZATION. 0000000 |
| 4404 |
C NDROP IS AN INTEGER VARIABLE. IF TOL HAS BEEN SET POSITIVE, ON EXIT 0000000 |
| 4405 |
C FROM MA30A/AD, NDROP WILL HOLD THE NUMBER OF ENTRIES DROPPED 0000000 |
| 4406 |
C FROM THE DATA STRUCTURE. 0000000 |
| 4407 |
C NSRCH IS AN INTEGER VARIABLE. IF NSRCH IS SET TO A VALUE LESS THAN 0000000 |
| 4408 |
C OR EQUAL TO N, THEN A DIFFERENT PIVOT OPTION WILL BE EMPLOYED BY 0000000 |
| 4409 |
C MA30A/AD. THIS MAY RESULT IN DIFFERENT FILL-IN AND EXECUTION 0000000 |
| 4410 |
C TIME FOR MA30A/AD. IF NSRCH IS LESS THAN OR EQUAL TO N, THE 0000000 |
| 4411 |
C WORKSPACE ARRAYS LASTC AND NEXTC ARE NOT REFERENCED BY MA30A/AD. 0000000 |
| 4412 |
C THE DEFAULT VALUE FOR NSRCH IS 32768. 0000000 |
| 4413 |
C LBIG IS A LOGICAL VARIABLE. IF LBIG IS SET TO .TRUE., THE VALUE OF 0000000 |
| 4414 |
C THE LARGEST ENTRY ENCOUNTERED IN THE FACTORIZATION BY MA30A/AD 0000000 |
| 4415 |
C IS RETURNED IN BIG. SETTING LBIG TO .TRUE. WILL MARGINALLY 0000000 |
| 4416 |
C INCREASE THE FACTORIZATION TIME FOR MA30A/AD AND WILL INCREASE 0000000 |
| 4417 |
C THAT FOR MA30B/BD BY ABOUT 20%. THE DEFAULT VALUE FOR LBIG IS 0000000 |
| 4418 |
C .FALSE. 0000000 |
| 4419 |
C 0000000 |
| 4420 |
DOUBLE PRECISION EPS, RMIN, TOL, BIG |
| 4421 |
LOGICAL ABORT1, ABORT2, ABORT3, LBIG |
| 4422 |
COMMON /MA30ED/ LP, ABORT1, ABORT2, ABORT3 |
| 4423 |
COMMON /MA30GD/ EPS, RMIN |
| 4424 |
COMMON /MA30ID/ TOL, BIG, NDROP, NSRCH, LBIG |
| 4425 |
DATA EPS /1.0D-4/, TOL /0.0D0/, BIG /0.0D0/ |
| 4426 |
DATA LP /6/, NSRCH /32768/ |
| 4427 |
DATA LBIG /.FALSE./ |
| 4428 |
DATA ABORT1 /.TRUE./, ABORT2 /.TRUE./, ABORT3 /.FALSE./ |
| 4429 |
END |
| 4430 |
SUBROUTINE XERRWV (MSG, NMES, NERR, IERT, NI, I1, I2, NR, R1, R2) |
| 4431 |
INTEGER MSG, NMES, NERR, IERT, NI, I1, I2, NR, |
| 4432 |
1 I, LUN, LUNIT, MESFLG, NCPW, NCH, NWDS |
| 4433 |
DOUBLE PRECISION R1, R2 |
| 4434 |
DIMENSION MSG(NMES) |
| 4435 |
C----------------------------------------------------------------------- |
| 4436 |
C SUBROUTINES XERRWV, XSETF, AND XSETUN, AS GIVEN HERE, CONSTITUTE |
| 4437 |
C A SIMPLIFIED VERSION OF THE SLATEC ERROR HANDLING PACKAGE. |
| 4438 |
C WRITTEN BY A. C. HINDMARSH AT LLNL. VERSION OF AUGUST 13, 1981. |
| 4439 |
C THIS VERSION IS IN DOUBLE PRECISION. |
| 4440 |
C |
| 4441 |
C ALL ARGUMENTS ARE INPUT ARGUMENTS. |
| 4442 |
C |
| 4443 |
C MSG = THE MESSAGE (HOLLERITH LITTERAL OR INTEGER ARRAY). |
| 4444 |
C NMES = THE LENGTH OF MSG (NUMBER OF CHARACTERS). |
| 4445 |
C NERR = THE ERROR NUMBER (NOT USED). |
| 4446 |
C IERT = THE ERROR TYPE.. |
| 4447 |
C 1 MEANS RECOVERABLE (CONTROL RETURNS TO CALLER). |
| 4448 |
C 2 MEANS FATAL (RUN IS ABORTED--SEE NOTE BELOW). |
| 4449 |
C NI = NUMBER OF INTEGERS (0, 1, OR 2) TO BE PRINTED WITH MESSAGE. |
| 4450 |
C I1,I2 = INTEGERS TO BE PRINTED, DEPENDING ON NI. |
| 4451 |
C NR = NUMBER OF REALS (0, 1, OR 2) TO BE PRINTED WITH MESSAGE. |
| 4452 |
C R1,R2 = REALS TO BE PRINTED, DEPENDING ON NR. |
| 4453 |
C |
| 4454 |
C NOTE.. THIS ROUTINE IS MACHINE-DEPENDENT AND SPECIALIZED FOR USE |
| 4455 |
C IN LIMITED CONTEXT, IN THE FOLLOWING WAYS.. |
| 4456 |
C 1. THE NUMBER OF HOLLERITH CHARACTERS STORED PER WORD, DENOTED |
| 4457 |
C BY NCPW BELOW, IS A DATA-LOADED CONSTANT. |
| 4458 |
C 2. THE VALUE OF NMES IS ASSUMED TO BE AT MOST 60. |
| 4459 |
C (MULTI-LINE MESSAGES ARE GENERATED BY REPEATED CALLS.) |
| 4460 |
C 3. IF IERT = 2, CONTROL PASSES TO THE STATEMENT STOP |
| 4461 |
C TO ABORT THE RUN. THIS STATEMENT MAY BE MACHINE-DEPENDENT. |
| 4462 |
C 4. R1 AND R2 ARE ASSUMED TO BE IN DOUBLE PRECISION AND ARE PRINTED |
| 4463 |
C IN D21.13 FORMAT. |
| 4464 |
C 5. THE COMMON BLOCK /EH0001/ BELOW IS DATA-LOADED (A MACHINE- |
| 4465 |
C DEPENDENT FEATURE) WITH DEFAULT VALUES. |
| 4466 |
C THIS BLOCK IS NEEDED FOR PROPER RETENTION OF PARAMETERS USED BY |
| 4467 |
C THIS ROUTINE WHICH THE USER CAN RESET BY CALLING XSETF OR XSETUN. |
| 4468 |
C THE VARIABLES IN THIS BLOCK ARE AS FOLLOWS.. |
| 4469 |
C MESFLG = PRINT CONTROL FLAG.. |
| 4470 |
C 1 MEANS PRINT ALL MESSAGES (THE DEFAULT). |
| 4471 |
C 0 MEANS NO PRINTING. |
| 4472 |
C LUNIT = LOGICAL UNIT NUMBER FOR MESSAGES. |
| 4473 |
C THE DEFAULT IS 6 (MACHINE-DEPENDENT). |
| 4474 |
C----------------------------------------------------------------------- |
| 4475 |
C THE FOLLOWING ARE INSTRUCTIONS FOR INSTALLING THIS ROUTINE |
| 4476 |
C IN DIFFERENT MACHINE ENVIRONMENTS. |
| 4477 |
C |
| 4478 |
C TO CHANGE THE DEFAULT OUTPUT UNIT, CHANGE THE DATA STATEMENT |
| 4479 |
C IN THE BLOCK DATA SUBPROGRAM BELOW. |
| 4480 |
C |
| 4481 |
C FOR A DIFFERENT NUMBER OF CHARACTERS PER WORD, CHANGE THE |
| 4482 |
C DATA STATEMENT SETTING NCPW BELOW, AND FORMAT 10. ALTERNATIVES FOR |
| 4483 |
C VARIOUS COMPUTERS ARE SHOWN IN COMMENT CARDS. |
| 4484 |
C |
| 4485 |
C FOR A DIFFERENT RUN-ABORT COMMAND, CHANGE THE STATEMENT FOLLOWING |
| 4486 |
C STATEMENT 100 AT THE END. |
| 4487 |
C----------------------------------------------------------------------- |
| 4488 |
COMMON /EH0001/ MESFLG, LUNIT |
| 4489 |
C----------------------------------------------------------------------- |
| 4490 |
C THE FOLLOWING DATA-LOADED VALUE OF NCPW IS VALID FOR THE CDC-6600 |
| 4491 |
C AND CDC-7600 COMPUTERS. |
| 4492 |
C DATA NCPW/10/ |
| 4493 |
C THE FOLLOWING IS VALID FOR THE CRAY-1 COMPUTER. |
| 4494 |
C DATA NCPW/8/ |
| 4495 |
C THE FOLLOWING IS VALID FOR THE BURROUGHS 6700 AND 7800 COMPUTERS. |
| 4496 |
C DATA NCPW/6/ |
| 4497 |
C THE FOLLOWING IS VALID FOR THE PDP-10 COMPUTER. |
| 4498 |
C DATA NCPW/5/ |
| 4499 |
C THE FOLLOWING IS VALID FOR THE VAX COMPUTER WITH 4 BYTES PER INTEGER, |
| 4500 |
C AND FOR THE IBM-360, IBM-370, IBM-303X, AND IBM-43XX COMPUTERS. |
| 4501 |
DATA NCPW/4/ |
| 4502 |
C THE FOLLOWING IS VALID FOR THE PDP-11, OR VAX WITH 2-BYTE INTEGERS. |
| 4503 |
C DATA NCPW/2/ |
| 4504 |
C----------------------------------------------------------------------- |
| 4505 |
IF (MESFLG .EQ. 0) GO TO 100 |
| 4506 |
C GET LOGICAL UNIT NUMBER. --------------------------------------------- |
| 4507 |
LUN = LUNIT |
| 4508 |
C GET NUMBER OF WORDS IN MESSAGE. -------------------------------------- |
| 4509 |
NCH = MIN0(NMES,60) |
| 4510 |
NWDS = NCH/NCPW |
| 4511 |
IF (NCH .NE. NWDS*NCPW) NWDS = NWDS + 1 |
| 4512 |
C WRITE THE MESSAGE. --------------------------------------------------- |
| 4513 |
WRITE (LUN, 10) (MSG(I),I=1,NWDS) |
| 4514 |
C----------------------------------------------------------------------- |
| 4515 |
C THE FOLLOWING FORMAT STATEMENT IS TO HAVE THE FORM |
| 4516 |
C 10 FORMAT(1X,MMANN) |
| 4517 |
C WHERE NN = NCPW AND MM IS THE SMALLEST INTEGER .GE. 60/NCPW. |
| 4518 |
C THE FOLLOWING IS VALID FOR NCPW = 10. |
| 4519 |
C 10 FORMAT(1X,6A10) |
| 4520 |
C THE FOLLOWING IS VALID FOR NCPW = 8. |
| 4521 |
C 10 FORMAT(1X,8A8) |
| 4522 |
C THE FOLLOWING IS VALID FOR NCPW = 6. |
| 4523 |
C 10 FORMAT(1X,10A6) |
| 4524 |
C THE FOLLOWING IS VALID FOR NCPW = 5. |
| 4525 |
C 10 FORMAT(1X,12A5) |
| 4526 |
C THE FOLLOWING IS VALID FOR NCPW = 4. |
| 4527 |
10 FORMAT(1X,15A4) |
| 4528 |
C THE FOLLOWING IS VALID FOR NCPW = 2. |
| 4529 |
C 10 FORMAT(1X,30A2) |
| 4530 |
C----------------------------------------------------------------------- |
| 4531 |
IF (NI .EQ. 1) WRITE (LUN, 20) I1 |
| 4532 |
20 FORMAT(6X,23HIN ABOVE MESSAGE, I1 =,I10) |
| 4533 |
IF (NI .EQ. 2) WRITE (LUN, 30) I1,I2 |
| 4534 |
30 FORMAT(6X,23HIN ABOVE MESSAGE, I1 =,I10,3X,4HI2 =,I10) |
| 4535 |
IF (NR .EQ. 1) WRITE (LUN, 40) R1 |
| 4536 |
40 FORMAT(6X,23HIN ABOVE MESSAGE, R1 =,D21.13) |
| 4537 |
IF (NR .EQ. 2) WRITE (LUN, 50) R1,R2 |
| 4538 |
50 FORMAT(6X,15HIN ABOVE, R1 =,D21.13,3X,4HR2 =,D21.13) |
| 4539 |
C ABORT THE RUN IF IERT = 2. ------------------------------------------- |
| 4540 |
100 IF (IERT .NE. 2) RETURN |
| 4541 |
STOP |
| 4542 |
C----------------------- END OF SUBROUTINE XERRWV ---------------------- |
| 4543 |
END |