1 |
REQUIRE "components.a4l"; |
2 |
(* => components.a4l, atoms.a4l, measures.a4l, system.a4l, basemodel.a4l *) |
3 |
REQUIRE "phases.a4l"; |
4 |
(* => phases.a4l, system.a4l, basemodel.a4l *) |
5 |
PROVIDE "thermodynamics.a4l"; |
6 |
|
7 |
(* |
8 |
* thermodynamics.a4l |
9 |
* by Arthur W. Westerberg, Ben Allan, and Vicente Rico-Ramirez |
10 |
* Part of the ASCEND Library |
11 |
* $Date: 1998/06/17 19:33:42 $ |
12 |
* $Revision: 1.6 $ |
13 |
* $Author: mthomas $ |
14 |
* $Source: /afs/cs.cmu.edu/project/ascend/Repository/models/thermodynamics.a4l,v $ |
15 |
* |
16 |
* This file is part of the ASCEND Modeling Library. |
17 |
* |
18 |
* Copyright (C) 1998 Carnegie Mellon University |
19 |
* |
20 |
* The ASCEND Modeling Library is free software; you can redistribute |
21 |
* it and/or modify it under the terms of the GNU General Public |
22 |
* License as published by the Free Software Foundation; either |
23 |
* version 2 of the License, or (at your option) any later version. |
24 |
* |
25 |
* The ASCEND Modeling Library is distributed in hope that it |
26 |
* will be useful, but WITHOUT ANY WARRANTY; without even the implied |
27 |
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. |
28 |
* See the GNU General Public License for more details. |
29 |
* |
30 |
* You should have received a copy of the GNU General Public License |
31 |
* along with the program; if not, write to the Free Software |
32 |
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139 USA. Check |
33 |
* the file named COPYING. |
34 |
*) |
35 |
|
36 |
MODEL td_model; |
37 |
(* This MODEL is simply a root and documentation container for the |
38 |
* thermodynamic modeling library. |
39 |
* It should contain nothing except notes on the library and |
40 |
* the boundwidth which is standard for this library. |
41 |
*) |
42 |
NOTES |
43 |
'licensing' SELF {This library is subject to the GNU Public License v.2.0} |
44 |
|
45 |
'sacredness' SELF { |
46 |
There is nothing sacred or mysterious about either |
47 |
thermodynamics in general or this implementation of |
48 |
property calculations in particular. Please experiment -- |
49 |
you really cannot break anything in such a way that you |
50 |
cannot also fix it. |
51 |
|
52 |
It's all really just a matter of consistent and correct |
53 |
modeling practice combined with good coefficient data |
54 |
supplied by thermodynamicists. |
55 |
} |
56 |
|
57 |
'purpose' SELF { |
58 |
Thermodynamic-based physical property package for |
59 |
expressing the state information about multiphase, |
60 |
multicomponent streams and holdups. Handles single-phase, |
61 |
single-component degenerate cases correctly. |
62 |
} |
63 |
|
64 |
'author' SELF {Arthur W. Westerberg, Ben Allan, and Vicente Rico-Ramirez} |
65 |
'created' SELF {November 9, 1997} |
66 |
'last revised' SELF {$Revision: 1.6 $} |
67 |
|
68 |
'new users' SELF { |
69 |
The enduser MODEL in this library, if there is one, is |
70 |
"thermodynamics" which has a relatively simple interface. |
71 |
Adding new correlations for properties is relatively easy. To |
72 |
understand how, examine by way of example the two models |
73 |
"ideal_vapor_mixture" and "Pitzer_vapor_mixture". |
74 |
} |
75 |
|
76 |
'telephone support' SELF { |
77 |
You must be kidding. CAPD consortium sponsors can contact the authors |
78 |
for further consultancy. Everyone else can submit questions, suggestions, |
79 |
and bug reports via the World Wide Web. |
80 |
} |
81 |
|
82 |
'URL' SELF {http://www.cs.cmu.edu/~ascend} |
83 |
|
84 |
'design goal' SELF { |
85 |
The approach used by this form for the physical property package is |
86 |
to have the modeler using it define only the components (see model |
87 |
"components_data") in mixture and the phases and the choice of |
88 |
mixture models (see model "phases_data") to be used for the vapor |
89 |
and liquid phases present. The models contained herein will set up |
90 |
all the needed pure component data models, the physical property |
91 |
models and the equilibrium relationships from just this |
92 |
information. |
93 |
|
94 |
New mixing rules should be easily added (and are) by defining new |
95 |
refinements of the phase_partials MODEL here and adding them |
96 |
to the alternatives allowed in phases.a4l. |
97 |
} |
98 |
|
99 |
'history' SELF { |
100 |
Contains previously created models for a pure Pitzer vapor |
101 |
component and a pure Rackett liquid component, and for a Pitzer |
102 |
vapor mixture, a UNIFAC liquid mixture and a Wilson liquid mixture |
103 |
created by Joe Zaher, Bob Huss and Boyd Safrit. |
104 |
New models for ideal gases added by Ben Allan. |
105 |
} |
106 |
|
107 |
'technique' SELF { |
108 |
The models in this file follow the pattern for easy reuse of: |
109 |
Given (MODEL name and parameter list are the givens) |
110 |
Assumptions (These are enforced as needed by the WHERE statements) |
111 |
Wanted (NOTES 'purpose' SELF are explain what the MODEL is to do) |
112 |
Equations and variables. |
113 |
METHODS |
114 |
Starting default values for a typical problem |
115 |
Checking functions that verify the solutions calculated if requested. |
116 |
Bounding functions that limit the variables for nonlinear search. |
117 |
Scaling functions that provide scaling values for variables and some eqns. |
118 |
Specify and reset functions for typical degree of freedom configurations. |
119 |
} |
120 |
|
121 |
'naming conventions' SELF { |
122 |
Note the following variable naming convention applies here. |
123 |
If a variable is the simple sum of simple products, |
124 |
such as Vs = Sum Vi * yi, then it is notated v_y, |
125 |
the inner product of vector V dot vector y. |
126 |
The same convention applies in streams and holdup models. |
127 |
This convention does not generalize prettily to sums of |
128 |
vector products. |
129 |
For example Sum(phi[j]*phase[j].v_y) would be rather |
130 |
ambiguously notated as phi_v_y. So there it gets |
131 |
simplified to a capital letter V. We need superscript |
132 |
underbars or curly underbars or some such. |
133 |
} |
134 |
END NOTES; |
135 |
|
136 |
boundwidth "width factor for bound calculations" IS_A bound_width; |
137 |
|
138 |
END td_model; |
139 |
|
140 |
(* murphree_equilibrium_mixture added by FIXME!! fixme! *) |
141 |
|
142 |
(* ****************************************************************** *) |
143 |
|
144 |
MODEL thermodynamic_properties( |
145 |
P WILL_BE pressure; |
146 |
T WILL_BE temperature; |
147 |
) REFINES td_model; |
148 |
|
149 |
v "species molar volume" IS_A molar_volume; |
150 |
h "species molar enthalpy" IS_A molar_energy; |
151 |
g "species molar Gibbs free energy" IS_A molar_energy; |
152 |
|
153 |
|
154 |
NOTES |
155 |
'purpose' SELF { |
156 |
The base thermodynamic property model. Two other models in this |
157 |
library are refinements of this model. Its purpose is to |
158 |
create the variables for pressure, temperature, molar volume, molar |
159 |
enthalpy and molar Gibbs free energy of a pure species. |
160 |
} |
161 |
END NOTES; |
162 |
|
163 |
METHODS |
164 |
|
165 |
(* inherits ClearAll, reset *) |
166 |
|
167 |
METHOD default_all; |
168 |
(* all the ATOM default values are fine so far as we know *) |
169 |
RUN default_self; |
170 |
END default_all; |
171 |
|
172 |
METHOD default_self; |
173 |
(* All the ATOM default values are fine so far as we know. |
174 |
* Might want to change the boundwidth value, though, later.. |
175 |
*) |
176 |
END default_self; |
177 |
|
178 |
METHOD check_all; |
179 |
IF (T < 0.0{K}) THEN |
180 |
STOP {Negative absolute temperature?!}; |
181 |
END IF; |
182 |
IF (P < 0.0{Pa}) THEN |
183 |
STOP {Negative absolute pressure?!}; |
184 |
END IF; |
185 |
RUN check_self; |
186 |
END check_all; |
187 |
|
188 |
METHOD check_self; |
189 |
IF (v <= 0.0{liter/mole}) THEN |
190 |
STOP {Negative molar volume?}; |
191 |
END IF; |
192 |
(* Don't know how to check g,h *) |
193 |
END check_self; |
194 |
|
195 |
METHOD scale_all; |
196 |
(* assuming all are not near 0.0, which is not necessarily so. *) |
197 |
T.nominal := T; |
198 |
P.nominal := P; |
199 |
RUN scale_self; |
200 |
END scale_all; |
201 |
|
202 |
METHOD scale_self; |
203 |
(* assuming all are not near 0.0, which is not necessarily so. *) |
204 |
v.nominal := v; |
205 |
h.nominal := abs(h); |
206 |
g.nominal := abs(g); |
207 |
END scale_self; |
208 |
|
209 |
METHOD bound_all; |
210 |
(* resets most bounds to the interval centered at the current point. |
211 |
* (variable.value) +/- boundwidth * variable.nominal |
212 |
*) |
213 |
T.lower_bound := 1.0e-8{K}; |
214 |
P.lower_bound := 1.0e-8{atm}; |
215 |
T.upper_bound := T + boundwidth*T.nominal; |
216 |
P.upper_bound := P + boundwidth*P.nominal; |
217 |
RUN bound_self; |
218 |
END bound_all; |
219 |
|
220 |
METHOD bound_self; |
221 |
v.upper_bound := v + boundwidth*v.nominal; |
222 |
v.lower_bound := 1.0e-8{liter/g_mole}; |
223 |
h.upper_bound := h + boundwidth*h.nominal; |
224 |
h.lower_bound := h - boundwidth*h.nominal; |
225 |
g.upper_bound := g + boundwidth*g.nominal; |
226 |
g.lower_bound := g - boundwidth*g.nominal; |
227 |
END bound_self; |
228 |
|
229 |
METHOD specify; |
230 |
T.fixed := TRUE; |
231 |
P.fixed := TRUE; |
232 |
v.fixed := TRUE; |
233 |
h.fixed := TRUE; |
234 |
g.fixed := TRUE; |
235 |
END specify; |
236 |
|
237 |
END thermodynamic_properties; |
238 |
|
239 |
(* ****************************************************************** *) |
240 |
|
241 |
|
242 |
MODEL pure_component( |
243 |
P WILL_BE pressure; |
244 |
T WILL_BE temperature; |
245 |
data WILL_BE td_component_constants; |
246 |
) REFINES thermodynamic_properties; |
247 |
|
248 |
NOTES |
249 |
'purpose' SELF { |
250 |
This model provides the pressure, temperature, molar volume, molar |
251 |
enthalpy and molar Gibbs free energy for a pure component. |
252 |
} |
253 |
END NOTES; |
254 |
|
255 |
METHODS |
256 |
(* Inherits: ClearAll, default_self, bound_self, |
257 |
* check_self, scale_self, specify, reset. |
258 |
*) |
259 |
METHOD check_all; |
260 |
RUN data.check_all; |
261 |
RUN check_self; |
262 |
END check_all; |
263 |
METHOD default_all; |
264 |
RUN data.default_all; |
265 |
RUN default_self; |
266 |
END default_all; |
267 |
METHOD scale_all; |
268 |
RUN data.scale_all; |
269 |
RUN scale_self; |
270 |
END scale_all; |
271 |
METHOD bound_all; |
272 |
RUN data.bound_all; |
273 |
RUN bound_self; |
274 |
END bound_all; |
275 |
|
276 |
END pure_component; |
277 |
|
278 |
(* ****************************************************************** *) |
279 |
|
280 |
|
281 |
MODEL partial_component( |
282 |
P WILL_BE pressure; |
283 |
T WILL_BE temperature; |
284 |
) REFINES thermodynamic_properties; |
285 |
|
286 |
NOTES |
287 |
'purpose' SELF { |
288 |
This model provides the pressure, temperature, partial |
289 |
molar volume, partial molar enthalpy and partial molar |
290 |
Gibbs free energy for a single component. |
291 |
} |
292 |
END NOTES; |
293 |
|
294 |
METHODS |
295 |
(* Inherits: ClearAll, default_all, default_self, bound_all, bound_self, |
296 |
* check_all, check_self, scale_all, scale_self, specify, reset. |
297 |
*) |
298 |
METHOD specify_partials_computed; |
299 |
(* assumes equations for v,h,g have been added by refinement. *) |
300 |
T.fixed := TRUE; |
301 |
P.fixed := TRUE; |
302 |
END specify_partials_computed; |
303 |
|
304 |
END partial_component; |
305 |
|
306 |
(* ****************************************************************** *) |
307 |
|
308 |
|
309 |
MODEL Pitzer_vapor_component( |
310 |
P WILL_BE pressure; |
311 |
T WILL_BE temperature; |
312 |
data WILL_BE td_component_constants; |
313 |
) REFINES pure_component; |
314 |
|
315 |
NOTES |
316 |
'purpose' SELF { |
317 |
This model provides the equations that compute molar |
318 |
volume, molar enthalpy and molar Gibbs free energy in terms |
319 |
of pressure and temperature for a single component based on |
320 |
the Pitzer vapor model. |
321 |
} |
322 |
END NOTES; |
323 |
Pitzer_component_v: |
324 |
P*v/(1{GAS_C})/data.Tc = T/data.Tc + (P/data.Pc)* |
325 |
(0.083 - 0.422*(data.Tc/T)^1.6 + data.omega* |
326 |
(0.139 - 0.172*(data.Tc/T)^4.2)); |
327 |
|
328 |
Pitzer_component_h: |
329 |
h/(1{GAS_C})/data.Tc = data.H0/(1{GAS_C})/data.Tc + |
330 |
data.cpvapa*(T - data.T0)/(1{GAS_C})/data.Tc + |
331 |
data.cpvapb*(T^2 - data.T0^2)/2/(1{GAS_C})/data.Tc + |
332 |
data.cpvapc*(T^3 - data.T0^3)/3/(1{GAS_C})/data.Tc + |
333 |
data.cpvapd*(T^4 - data.T0^4)/4/(1{GAS_C})/data.Tc + |
334 |
(P/data.Pc)*(0.083 - 1.097*(data.Tc/T)^1.6 + data.omega* |
335 |
(0.139 - 0.894*(data.Tc/T)^4.2)); |
336 |
|
337 |
Pitzer_component_g: |
338 |
g/(1{GAS_C})/data.Tc = data.G0/(1{GAS_C})/data.Tc - |
339 |
(data.H0 - data.G0)*(T/data.T0 - 1)/(1{GAS_C})/data.Tc - |
340 |
data.cpvapa*(T*lnm(T/data.T0) - T + data.T0)/1{GAS_C}/data.Tc - |
341 |
data.cpvapb*(T^2 - 2*T*data.T0 + data.T0^2)/ |
342 |
(2*1{GAS_C}*data.Tc) - |
343 |
data.cpvapc*(T^3/2 - 3*T*data.T0^2/2 + data.T0^3)/ |
344 |
(3*1{GAS_C}*data.Tc) - |
345 |
data.cpvapd*(T^4/3 - 4*T*data.T0^3/3 + data.T0^4)/ |
346 |
(4*1{GAS_C}*data.Tc) + |
347 |
T*lnm(P/data.P0)/data.Tc + |
348 |
(P/data.Pc)* |
349 |
(0.083 - 0.422*(data.Tc/T)^1.6 + data.omega* |
350 |
(0.139 - 0.172*(data.Tc/T)^4.2)); |
351 |
|
352 |
METHODS |
353 |
(* Inherited methods: ClearAll, check_all, check_self, |
354 |
* bound_all, bound_self, scale_all, scale_self, reset. |
355 |
*) |
356 |
METHOD default_all; |
357 |
(* Rather arbitrary but ok limits for defaults. |
358 |
* the default bounds on T, P are rather too large. |
359 |
*) |
360 |
T.lower_bound := 1.0{K}; |
361 |
P.lower_bound := 0.1{atm}; |
362 |
T.upper_bound := 1000{K}; |
363 |
P.upper_bound := 20{atm}; |
364 |
RUN data.default_all; |
365 |
RUN default_self; |
366 |
END default_all; |
367 |
|
368 |
METHOD default_self; |
369 |
v := 24{liter/mole}; |
370 |
(* ATOM defaults ok for rest. *) |
371 |
END default_self; |
372 |
|
373 |
METHOD specify; |
374 |
(* release v,h,g since equations calculate them. *) |
375 |
T.fixed := TRUE; |
376 |
P.fixed := TRUE; |
377 |
END specify; |
378 |
|
379 |
END Pitzer_vapor_component; |
380 |
|
381 |
(* ****************************************************************** *) |
382 |
MODEL ideal_vapor_component( |
383 |
P WILL_BE pressure; |
384 |
T WILL_BE temperature; |
385 |
data WILL_BE td_component_constants; |
386 |
) REFINES pure_component; |
387 |
|
388 |
NOTES |
389 |
'purpose' SELF { |
390 |
This model provides the equations that compute molar |
391 |
volume, molar enthalpy and molar Gibbs free energy in terms |
392 |
of pressure and temperature for a single component based on |
393 |
the ideal gas (vapor) model. |
394 |
} |
395 |
'FIXME' SELF {Needs to be independently checked. Did I get h and g correct?} |
396 |
END NOTES; |
397 |
|
398 |
ideal_component_v: P*v/(1{GAS_C})/data.Tc = T/data.Tc; |
399 |
|
400 |
ideal_component_h: |
401 |
h/(1{GAS_C})/data.Tc = |
402 |
data.H0/(1{GAS_C})/data.Tc + |
403 |
data.cpvapa*(T - data.T0)/(1{GAS_C})/data.Tc + |
404 |
data.cpvapb*(T^2 - data.T0^2)/2/(1{GAS_C})/data.Tc + |
405 |
data.cpvapc*(T^3 - data.T0^3)/3/(1{GAS_C})/data.Tc + |
406 |
data.cpvapd*(T^4 - data.T0^4)/4/(1{GAS_C})/data.Tc; |
407 |
|
408 |
ideal_component_g: |
409 |
g/(1{GAS_C})/data.Tc = |
410 |
data.G0/(1{GAS_C})/data.Tc - |
411 |
(data.H0 - data.G0)*(T/data.T0 - 1)/(1{GAS_C})/data.Tc - |
412 |
data.cpvapa*(T*lnm(T/data.T0) - T + data.T0)/1{GAS_C}/data.Tc - |
413 |
data.cpvapb*(T^2 - 2*T*data.T0 + data.T0^2)/(2*1{GAS_C}*data.Tc) - |
414 |
data.cpvapc*(T^3/2 - 3*T*data.T0^2/2 + data.T0^3)/ |
415 |
(3*1{GAS_C}*data.Tc) - |
416 |
data.cpvapd*(T^4/3 - 4*T*data.T0^3/3 + data.T0^4)/ |
417 |
(4*1{GAS_C}*data.Tc) + |
418 |
T*lnm(P/data.P0)/data.Tc; |
419 |
|
420 |
METHODS |
421 |
(* Inherited methods: ClearAll, check_all, check_self, |
422 |
* bound_all, bound_self, scale_all, scale_self, reset. |
423 |
*) |
424 |
METHOD default_all; |
425 |
(* Rather arbitrary but ok limits for defaults. |
426 |
* the default bounds on T, P are rather too large. |
427 |
*) |
428 |
T.lower_bound := 1.0{K}; |
429 |
P.lower_bound := 0.1{atm}; |
430 |
T.upper_bound := 1000{K}; |
431 |
P.upper_bound := 10{atm}; |
432 |
RUN data.default_all; |
433 |
RUN default_self; |
434 |
END default_all; |
435 |
METHOD default_self; |
436 |
v := 24{liter/mole}; |
437 |
(* ATOM defaults ok for rest. *) |
438 |
END default_self; |
439 |
METHOD specify; |
440 |
(* release v,h,g since equations calculate them. *) |
441 |
T.fixed := TRUE; |
442 |
P.fixed := TRUE; |
443 |
END specify; |
444 |
END ideal_vapor_component; |
445 |
|
446 |
(* ****************************************************************** *) |
447 |
|
448 |
|
449 |
MODEL Rackett_liquid_component( |
450 |
P WILL_BE pressure; |
451 |
T WILL_BE temperature; |
452 |
data WILL_BE td_component_constants; |
453 |
) REFINES pure_component; |
454 |
|
455 |
NOTES |
456 |
'purpose' SELF { |
457 |
This model provides the equations that compute vapor |
458 |
pressure, molar volume, molar enthalpy and molar Gibbs free |
459 |
energy in terms of pressure and temperature for a pure |
460 |
component based on the Rackett liquid model. |
461 |
} |
462 |
END NOTES; |
463 |
|
464 |
VP "pure species vapor pressure" IS_A pressure; |
465 |
|
466 |
(*Rackett_component_VP:*) |
467 |
SELECT (data.vp_correlation) |
468 |
CASE 1: |
469 |
lnm(VP/data.Pc)*T/data.Tc*abs(data.Tc - T) = |
470 |
(data.vpa * abs(1.0 - T/data.Tc) + |
471 |
data.vpb * abs(1.0 - T/data.Tc)^1.5 + |
472 |
data.vpc * abs(1.0 - T/data.Tc)^3.0 + |
473 |
data.vpd * abs(1.0 - T/data.Tc)^6.0) * (data.Tc - T); |
474 |
CASE 2: |
475 |
lnm(VP/1{bar}) / lnm(data.Pc/1{bar}) = |
476 |
(data.vpa - data.vpb/T + data.vpc * lnm(T/1{K}) + |
477 |
data.vpd * VP/sqr(T)) / lnm(data.Pc/1{bar}); |
478 |
CASE 3: |
479 |
lnm(VP/1{bar}) / lnm(data.Pc/1{bar}) = |
480 |
(data.vpa - data.vpb/(data.vpc + T)) / lnm(data.Pc/1{bar}); |
481 |
END SELECT; |
482 |
|
483 |
Rackett_component_v: v/data.Vliq = |
484 |
data.Zc^(abs(1.0 - T/data.Tc)^(2/7))/ |
485 |
data.Zc^(abs(1.0 - data.Tliq/data.Tc)^(2/7)); |
486 |
|
487 |
Rackett_component_h: |
488 |
h / (1{GAS_C} * data.Tc) = data.H0/(1{GAS_C})/data.Tc + |
489 |
(T - data.T0) * (data.cpvapa/(1{GAS_C})/data.Tc) + |
490 |
(T^2 - data.T0^2) * (data.cpvapb/2/(1{GAS_C})/data.Tc) + |
491 |
(T^3 - data.T0^3) * (data.cpvapc/3/(1{GAS_C})/data.Tc) + |
492 |
(T^4 - data.T0^4) * (data.cpvapd/4/(1{GAS_C})/data.Tc) + |
493 |
(VP/data.Pc)* |
494 |
(0.083 - 1.097*(data.Tc/T)^1.6 + data.omega* |
495 |
(0.139 - 0.894*(data.Tc/T)^4.2)) - |
496 |
(data.Hv/(1{GAS_C})/data.Tc)* |
497 |
abs((data.Tc-T)/(data.Tc-data.Tb))^0.38 + |
498 |
(P - VP)*(data.Vliq/(1{GAS_C})/data.Tc)* |
499 |
(data.Zc^(abs(1.0 - T/data.Tc)^(2/7))/ |
500 |
data.Zc^(abs(1.0 - data.Tliq/data.Tc)^(2/7)))*(1.0 - |
501 |
(-2/7)*(T/data.Tc)*(abs(1 - T/data.Tc)^(-5/7))*lnm(data.Zc)); |
502 |
|
503 |
Rackett_component_g: g/(1{GAS_C}*data.Tc) = |
504 |
data.G0/(1{GAS_C})/data.Tc - |
505 |
(T/data.T0 - 1) * ((data.H0 - data.G0)/(1{GAS_C})/data.Tc) - |
506 |
(T*lnm(T/data.T0) - T + data.T0) * |
507 |
(data.cpvapa/(1{GAS_C})/data.Tc) - |
508 |
(T^2 - T*(2*data.T0) + data.T0^2) * |
509 |
(data.cpvapb/2/(1{GAS_C})/data.Tc) - |
510 |
(T^3/2 - T*(3/2*data.T0^2) + data.T0^3) * |
511 |
(data.cpvapc/3/(1{GAS_C})/data.Tc) - |
512 |
(T^4/3 - T*(4/3*data.T0^3) + data.T0^4) * |
513 |
(data.cpvapd/4/(1{GAS_C})/data.Tc) + |
514 |
T*lnm(VP/data.P0)/data.Tc + |
515 |
(VP/data.Pc) * |
516 |
(0.083 - 0.422*(data.Tc/T)^1.6 + data.omega * |
517 |
(0.139 - 0.172*(data.Tc/T)^4.2)) + |
518 |
(P - VP)*(data.Vliq/(1{GAS_C})/data.Tc) * |
519 |
(data.Zc^(abs(1.0 - T/data.Tc)^(2/7))/ |
520 |
data.Zc^(abs(1.0 - data.Tliq/data.Tc)^(2/7))); |
521 |
|
522 |
METHODS |
523 |
(* Inherited methods: ClearAll, check_all, check_self, reset. *) |
524 |
(* we need to see if there are any qualitative checks of VP |
525 |
* or the VP slope |
526 |
* to be added in check_self. At present, we just |
527 |
* inherit checking of v. fixme, FIXME. |
528 |
*) |
529 |
METHOD default_all; |
530 |
T.lower_bound := 1.0{K}; |
531 |
P.lower_bound := 0.1{atm}; |
532 |
T.upper_bound := 1000{K}; |
533 |
P.upper_bound := 20{atm}; |
534 |
RUN data.default_all; |
535 |
RUN default_self; |
536 |
END default_all; |
537 |
|
538 |
METHOD default_self; |
539 |
VP.lower_bound := 1.0e-12{Pa}; |
540 |
v := 0.1{liter/mole}; |
541 |
END default_self; |
542 |
|
543 |
METHOD scale_all; |
544 |
RUN data.scale_all; |
545 |
RUN scale_self; |
546 |
END scale_all; |
547 |
|
548 |
METHOD scale_self; |
549 |
VP.nominal := VP; |
550 |
RUN pure_component::scale_self; |
551 |
END scale_self; |
552 |
|
553 |
METHOD bound_all; |
554 |
RUN data.bound_all; |
555 |
RUN bound_self; |
556 |
END bound_all; |
557 |
|
558 |
METHOD bound_self; |
559 |
VP.lower_bound := VP - boundwidth*VP.nominal; |
560 |
IF (VP.lower_bound < 1.0e-12{Pa}) THEN |
561 |
VP.lower_bound := 1.0e-12{Pa}; |
562 |
END IF; |
563 |
VP.upper_bound := VP + boundwidth*VP.nominal; |
564 |
RUN pure_component::bound_self; |
565 |
END bound_self; |
566 |
|
567 |
METHOD specify; |
568 |
T.fixed := TRUE; |
569 |
P.fixed := TRUE; |
570 |
END specify; |
571 |
|
572 |
END Rackett_liquid_component; |
573 |
|
574 |
(* ****************************************************************** *) |
575 |
|
576 |
MODEL phase_partials( |
577 |
cd WILL_BE components_data; |
578 |
) REFINES td_model; |
579 |
|
580 |
NOTES |
581 |
'purpose' SELF { |
582 |
This model is the base model for computing the mixture |
583 |
thermodynamic properties of molar volume, molar enthalpy and molar |
584 |
Gibbs free energy in terms of pressure and temperature for a single |
585 |
phase, based on summing the partial molar quantities times the |
586 |
corresponding mole fractions for the components in the mixture. |
587 |
This base model also provides space for relative volatilities for |
588 |
the phase -- which can be used later to computer phase equilibrium |
589 |
for multi-phase mixtures. |
590 |
} |
591 |
END NOTES; |
592 |
P IS_A pressure; |
593 |
T IS_A temperature; |
594 |
|
595 |
v_y "mixture molar volume" IS_A molar_volume; |
596 |
h_y "mixture molar enthalpy" IS_A molar_energy; |
597 |
g_y "mixture molar Gibbs free energy" IS_A molar_energy; |
598 |
|
599 |
components ALIASES cd.components; |
600 |
partial[components] IS_A partial_component(P, T); |
601 |
alpha[components] IS_A relative_volatility; |
602 |
|
603 |
NOTES 'scaling' v_mix,h_mix,g_mix { |
604 |
DIMENSIONLESS well-scaled equations are easier to converge from anywhere, |
605 |
even if simply bilinear in dimensional form. |
606 |
v*Pcref/(R*Tcref) = Sum(yi*vi |i) * Pcref/(R*Tcref); |
607 |
comes from v = Sum(yi*vi); |
608 |
} END NOTES; |
609 |
|
610 |
v_mix: v_y * (cd.data[cd.reference].Pc / |
611 |
(cd.data[cd.reference].Tc * 1{GAS_C})) |
612 |
= SUM[y[i]*partial[i].v | i IN cd.components] * |
613 |
(cd.data[cd.reference].Pc / |
614 |
(cd.data[cd.reference].Tc * 1{GAS_C})); |
615 |
|
616 |
(* likewise for h and g *) |
617 |
h_mix: h_y / (cd.data[cd.reference].Tc * 1{GAS_C}) |
618 |
= SUM[y[i]*partial[i].h | i IN cd.components] / |
619 |
(cd.data[cd.reference].Tc * 1{GAS_C}); |
620 |
|
621 |
g_mix: g_y / (cd.data[cd.reference].Tc * 1{GAS_C}) |
622 |
= SUM[y[i]*partial[i].g | i IN cd.components] / |
623 |
(cd.data[cd.reference].Tc * 1{GAS_C}); |
624 |
|
625 |
y[components] "mixture species mole fractions" IS_A mole_fraction; |
626 |
|
627 |
NOTES 'slack explanation' slack_PhaseDisappearance { |
628 |
When slack_PhaseDisappearance != 0.0, then the phase |
629 |
does not exist in this formulation of multi-phase |
630 |
equilibrium thermodynamics. |
631 |
} END NOTES; |
632 |
slack_PhaseDisappearance "complementarity slack variable" IS_A fraction; |
633 |
|
634 |
sum_y: SUM[y[components]] + slack_PhaseDisappearance = 1.0; |
635 |
|
636 |
METHODS |
637 |
|
638 |
(* Inherited methods: ClearAll, reset. *) |
639 |
METHOD default_self; |
640 |
T.lower_bound := 1.0{K}; |
641 |
P.lower_bound := 1.0{Pa}; |
642 |
v_y := 24{liter/mole}; (* presupposes a vapor *) |
643 |
RUN partial[components].default_self; |
644 |
END default_self; |
645 |
|
646 |
METHOD default_all; |
647 |
RUN cd.default_all; |
648 |
RUN default_self; |
649 |
END default_all; |
650 |
|
651 |
METHOD check_all; |
652 |
RUN cd.check_all; |
653 |
IF (T < 0.0{K}) THEN |
654 |
STOP {Phase has negative absolute temperature?!}; |
655 |
END IF; |
656 |
IF (P < 0.0{Pa}) THEN |
657 |
STOP {Phase has negative absolute pressure?!}; |
658 |
END IF; |
659 |
RUN check_self; |
660 |
END check_all; |
661 |
|
662 |
METHOD check_self; |
663 |
IF (v_y <= 0.0{liter/mole}) THEN |
664 |
STOP {Phase has negative molar volume?!}; |
665 |
END IF; |
666 |
(* Don't know how to check g_y,h_y *) |
667 |
RUN partial[components].check_self; |
668 |
END check_self; |
669 |
|
670 |
METHOD scale_all; |
671 |
RUN cd.scale_all; |
672 |
RUN scale_self; |
673 |
END scale_all; |
674 |
|
675 |
METHOD scale_self; |
676 |
(* assuming all are not near 0.0, which is not necessarily so. *) |
677 |
T.nominal := T; |
678 |
P.nominal := P; |
679 |
v_y.nominal := v_y; |
680 |
h_y.nominal := abs(h_y); |
681 |
g_y.nominal := abs(g_y); |
682 |
RUN partial[components].scale_self; |
683 |
END scale_self; |
684 |
|
685 |
METHOD bound_all; |
686 |
RUN cd.bound_all; |
687 |
RUN bound_self; |
688 |
END bound_all; |
689 |
|
690 |
METHOD bound_self; |
691 |
(* Resets most bounds to the interval centered at the current point. |
692 |
* (variable.value) +/- boundwidth * variable.nominal |
693 |
*) |
694 |
T.upper_bound := T + boundwidth*T.nominal; |
695 |
T.lower_bound := 1.0e-8{K}; |
696 |
P.upper_bound := P + boundwidth*P.nominal; |
697 |
P.lower_bound := 1.0e-8{atm}; |
698 |
v_y.upper_bound := v_y + boundwidth*v_y.nominal; |
699 |
v_y.lower_bound := 1.0e-8{liter/g_mole}; |
700 |
h_y.upper_bound := h_y + boundwidth*h_y.nominal; |
701 |
h_y.lower_bound := h_y - boundwidth*h_y.nominal; |
702 |
g_y.upper_bound := g_y + boundwidth*g_y.nominal; |
703 |
g_y.lower_bound := g_y - boundwidth*g_y.nominal; |
704 |
END bound_self; |
705 |
|
706 |
METHOD specify_partials_seqmod_massonly; |
707 |
(* like specify_partials_computed, except leaves alpha[i] free *) |
708 |
P.fixed := TRUE; |
709 |
T.fixed := TRUE; |
710 |
alpha[components].fixed := FALSE; |
711 |
RUN partial[components].specify; |
712 |
y[cd.other_components].fixed := TRUE; |
713 |
slack_PhaseDisappearance.fixed := TRUE; |
714 |
slack_PhaseDisappearance := 0.0; |
715 |
END specify_partials_seqmod_massonly; |
716 |
|
717 |
METHOD specify_partials_seqmod; |
718 |
(* like specify_partials_computed, except leaves alpha[i] free *) |
719 |
P.fixed := TRUE; |
720 |
T.fixed := TRUE; |
721 |
alpha[components].fixed := FALSE; |
722 |
RUN partial[components].specify_partials_computed; |
723 |
y[cd.other_components].fixed := TRUE; |
724 |
slack_PhaseDisappearance.fixed := TRUE; |
725 |
slack_PhaseDisappearance := 0.0; |
726 |
END specify_partials_seqmod; |
727 |
|
728 |
METHOD specify_partials_computed; |
729 |
P.fixed := TRUE; |
730 |
T.fixed := TRUE; |
731 |
alpha[components].fixed := TRUE; |
732 |
RUN partial[components].specify_partials_computed; |
733 |
y[cd.other_components].fixed := TRUE; |
734 |
slack_PhaseDisappearance.fixed := TRUE; |
735 |
slack_PhaseDisappearance := 0.0; |
736 |
END specify_partials_computed; |
737 |
|
738 |
METHOD specify; |
739 |
P.fixed := TRUE; |
740 |
T.fixed := TRUE; |
741 |
alpha[components].fixed := TRUE; |
742 |
RUN partial[components].specify; |
743 |
y[cd.other_components].fixed := TRUE; |
744 |
slack_PhaseDisappearance.fixed := TRUE; |
745 |
slack_PhaseDisappearance := 0.0; |
746 |
END specify; |
747 |
|
748 |
END phase_partials; |
749 |
|
750 |
(* ****************************************************************** *) |
751 |
|
752 |
MODEL ideal_vapor_mixture( |
753 |
cd WILL_BE components_data; |
754 |
) REFINES phase_partials(); |
755 |
|
756 |
NOTES 'purpose' SELF { |
757 |
A refinement of the phase_partials model given just above, this |
758 |
model computes the partial molar quantities for a vapor mixture |
759 |
phase for molar volume, molar enthalpy and molar Gibbs free energy |
760 |
based on the ideal gas model for a mixture. |
761 |
} END NOTES; |
762 |
|
763 |
data ALIASES cd.data; |
764 |
|
765 |
FOR i IN components CREATE |
766 |
pure[i] "pure species ideal gas properties for the i-th species" |
767 |
IS_A ideal_vapor_component(P, T, data[i]); |
768 |
END FOR; |
769 |
|
770 |
FOR i IN components CREATE |
771 |
|
772 |
ideal_mixture_v[i]: |
773 |
(partial[i].v - pure[i].v) * |
774 |
(data[i].Pc/(1{GAS_C}*data[i].Tc)) = 0; |
775 |
|
776 |
ideal_mixture_h[i]: |
777 |
(partial[i].h - pure[i].h)/((1{GAS_C})*data[i].Tc) = 0; |
778 |
|
779 |
ideal_mixture_g[i]: |
780 |
(partial[i].g - pure[i].g - (1{GAS_C})*T*lnm(y[i])) / |
781 |
(1{GAS_C}*data[i].Tc) = 0; |
782 |
END FOR; |
783 |
|
784 |
METHODS |
785 |
|
786 |
(* Inherited methods: ClearAll, default_all, check_all, bound_all, |
787 |
* scale_all, reset. |
788 |
*) |
789 |
METHOD default_self; |
790 |
RUN phase_partials::default_self; |
791 |
RUN pure[components].default_self; |
792 |
END default_self; |
793 |
|
794 |
METHOD check_self; |
795 |
RUN phase_partials::check_self; |
796 |
RUN pure[components].check_self; |
797 |
END check_self; |
798 |
|
799 |
METHOD bound_self; |
800 |
RUN phase_partials::bound_self; |
801 |
RUN pure[components].bound_self; |
802 |
END bound_self; |
803 |
|
804 |
METHOD scale_self; |
805 |
RUN phase_partials::scale_self; |
806 |
RUN pure[components].scale_self; |
807 |
END scale_self; |
808 |
|
809 |
METHOD specify; |
810 |
RUN phase_partials::specify_partials_computed; |
811 |
END specify; |
812 |
|
813 |
END ideal_vapor_mixture; |
814 |
|
815 |
(* ****************************************************************** *) |
816 |
|
817 |
MODEL Pitzer_vapor_mixture( |
818 |
cd WILL_BE components_data; |
819 |
) REFINES phase_partials(); |
820 |
|
821 |
NOTES 'purpose' SELF { |
822 |
A refinement of the phase_partials model given just above, this |
823 |
model computes the partial molar quantities for a vapor mixture |
824 |
phase for molar volume, molar enthalpy and molar Gibbs free energy |
825 |
based on the Pitzer vapor model for a mixture. |
826 |
} |
827 |
END NOTES; |
828 |
|
829 |
data ALIASES cd.data; |
830 |
|
831 |
FOR i IN components CREATE |
832 |
pure[i] |
833 |
"pure species properties for the i-th species using acentric factors" |
834 |
IS_A Pitzer_vapor_component(P, T, data[i]); |
835 |
END FOR; |
836 |
|
837 |
FOR i IN components CREATE |
838 |
|
839 |
Pitzer_mixture_v[i]: |
840 |
(partial[i].v - pure[i].v)*(data[i].Pc/ |
841 |
(1{GAS_C}*data[i].Tc)) = |
842 |
-1.0*(0.083 - 0.422*(data[i].Tc/T)^1.6 + data[i].omega* |
843 |
(0.139 - 0.172*(data[i].Tc/T)^4.2))*(1.0 - y[i])^2 + |
844 |
0.50*(1.0 - y[i])* |
845 |
SUM[y[j]*((1.0 + (data[j].Vc/data[i].Vc)^(1/3))^3/ |
846 |
(1.0 + data[j].Zc/data[i].Zc))* |
847 |
(0.083 - 0.422*(sqrt(data[i].Tc*data[j].Tc)/T)^1.6 + |
848 |
0.5*(data[i].omega + data[j].omega)* |
849 |
(0.139 - 0.172*(sqrt(data[i].Tc*data[j].Tc)/T)^4.2)) |
850 |
| j IN components - [i]]; |
851 |
|
852 |
Pitzer_mixture_h[i]: |
853 |
(partial[i].h - pure[i].h)/((1{GAS_C})*data[i].Tc) = |
854 |
-(P/data[i].Pc)* |
855 |
(0.083 - 1.097*(data[i].Tc/T)^1.6 + data[i].omega* |
856 |
(0.139 - 0.894*(data[i].Tc/T)^4.2))*(1.0 - y[i])^2 + |
857 |
(1.0 - y[i])*(P/(data[i].Pc*2))* |
858 |
SUM[y[j]*((1.0 + (data[j].Vc/data[i].Vc)^(1/3))^3/ |
859 |
(1.0 + data[j].Zc/data[i].Zc))* |
860 |
(0.083 - 1.097*(sqrt(data[i].Tc*data[j].Tc)/T)^1.6 + |
861 |
0.5*(data[i].omega + data[j].omega)* |
862 |
(0.139 - 0.894*(sqrt(data[i].Tc*data[j].Tc)/T)^4.2)) |
863 |
| j IN components - [i]]; |
864 |
|
865 |
Pitzer_mixture_g[i]: |
866 |
(partial[i].g - pure[i].g - (1{GAS_C})*T*lnm(y[i])) / |
867 |
(1{GAS_C}*data[i].Tc) = |
868 |
-(P/data[i].Pc)* |
869 |
(0.083 - 0.422*(data[i].Tc/T)^1.6 + data[i].omega* |
870 |
(0.139 - 0.172*(data[i].Tc/T)^4.2))*(1.0 - y[i])^2 + |
871 |
(1.0 - y[i])*(P/(data[i].Pc*2))* |
872 |
SUM[y[j]*((1.0 + (data[j].Vc/data[i].Vc)^(1/3))^3/ |
873 |
(1.0 + data[j].Zc/data[i].Zc))* |
874 |
(0.083 - 0.422*(sqrt(data[i].Tc*data[j].Tc)/T)^1.6 + |
875 |
0.5*(data[i].omega + data[j].omega)* |
876 |
(0.139 - 0.172*(sqrt(data[i].Tc*data[j].Tc)/T)^4.2)) |
877 |
| j IN components - [i]]; |
878 |
END FOR; |
879 |
|
880 |
METHODS |
881 |
|
882 |
(* Inherited methods: ClearAll, default_all, check_all, bound_all, |
883 |
* scale_all, reset. |
884 |
*) |
885 |
METHOD default_self; |
886 |
RUN phase_partials::default_self; |
887 |
RUN pure[components].default_self; |
888 |
END default_self; |
889 |
|
890 |
METHOD check_self; |
891 |
RUN phase_partials::check_self; |
892 |
RUN pure[components].check_self; |
893 |
END check_self; |
894 |
|
895 |
METHOD bound_self; |
896 |
RUN phase_partials::bound_self; |
897 |
RUN pure[components].bound_self; |
898 |
END bound_self; |
899 |
|
900 |
METHOD scale_self; |
901 |
RUN phase_partials::scale_self; |
902 |
RUN pure[components].scale_self; |
903 |
END scale_self; |
904 |
|
905 |
METHOD specify; |
906 |
RUN phase_partials::specify_partials_computed; |
907 |
END specify; |
908 |
|
909 |
END Pitzer_vapor_mixture; |
910 |
|
911 |
(* ****************************************************************** *) |
912 |
|
913 |
|
914 |
MODEL UNIFAC_liquid_mixture( |
915 |
cd WILL_BE components_data; |
916 |
) REFINES phase_partials(); |
917 |
|
918 |
NOTES 'purpose' SELF { |
919 |
A refinement of the phase_partials model given just above, this |
920 |
model computes the partial molar quantities for a liquid mixture |
921 |
phase for molar volume, molar enthalpy and molar Gibbs free energy |
922 |
based on the UNIFAC model for a liquid mixture. |
923 |
} END NOTES; |
924 |
|
925 |
data ALIASES cd.data; |
926 |
|
927 |
FOR i IN components CREATE |
928 |
pure[i] |
929 |
"pure species liquid properties for the i-th species by Rackett" |
930 |
IS_A Rackett_liquid_component(P, T, data[i]); |
931 |
END FOR; |
932 |
|
933 |
subgroups IS_A set OF symbol_constant; |
934 |
groups IS_A set OF integer_constant; |
935 |
comps[subgroups] IS_A set OF symbol_constant; |
936 |
rv[components] "computed molecular volumes, ri constant" |
937 |
IS_A UNIFAC_size; |
938 |
qs[components] "computed molecular areas, qi constant" |
939 |
IS_A UNIFAC_size; |
940 |
Jv[components] IS_A factor; |
941 |
Ls[components] IS_A factor; |
942 |
theta[subgroups] IS_A factor; |
943 |
eta[subgroups] IS_A factor; |
944 |
uc IS_A UNIFAC_constants; |
945 |
|
946 |
subgroups :== UNION[data[i].subgroups | i IN components]; |
947 |
groups :== UNION[data[i].groups | i IN components]; |
948 |
FOR k IN subgroups CREATE |
949 |
comps[k] :== [i IN components | k IN data[i].subgroups]; |
950 |
END FOR; |
951 |
FOR k IN subgroups CREATE |
952 |
UNIFAC_mixture_theta[k]: |
953 |
theta[k] = uc.Q[k]*SUM[data[i].nu[k]*y[i] | i IN comps[k]]; |
954 |
|
955 |
UNIFAC_mixture_eta[k]: |
956 |
eta[k] = |
957 |
SUM[theta[m] | m IN subgroups*uc.sub[uc.group[k]]] + |
958 |
SUM[SUM[theta[m]*exp(-uc.a[g][uc.group[k]]/T) |
959 |
| m IN subgroups*uc.sub[g]] |
960 |
| g IN groups - [uc.group[k]]]; |
961 |
END FOR; |
962 |
|
963 |
FOR i IN components CREATE |
964 |
rv[i] :== SUM[0, data[i].nu[k]*uc.R[k] |
965 |
| k IN data[i].subgroups]; |
966 |
qs[i] :== SUM[0, data[i].nu[k]*uc.Q[k] |
967 |
| k IN data[i].subgroups]; |
968 |
END FOR; |
969 |
FOR i IN components CREATE |
970 |
UNIFAC_mixture_rv[i]: |
971 |
rv[i] = Jv[i]*SUM[rv[j]*y[j] | j IN components]; |
972 |
|
973 |
UNIFAC_mixture_qs[i]: |
974 |
qs[i] = Ls[i]*SUM[qs[j]*y[j] | j IN components]; |
975 |
UNIFAC_partial_v[i]: |
976 |
partial[i].v = pure[i].v; |
977 |
|
978 |
UNIFAC_mixture_h_excess[i]: |
979 |
(partial[i].h - pure[i].h)/(1{GAS_C})/data[i].Tc = |
980 |
SUM[0,theta[k]* |
981 |
SUM[0,SUM[0,theta[n]* |
982 |
((uc.a[g][uc.group[k]] - |
983 |
uc.a[uc.group[n]][uc.group[k]])/data[i].Tc)* |
984 |
exp(-(uc.a[g][uc.group[k]] + |
985 |
uc.a[uc.group[n]][uc.group[k]])/T)* |
986 |
SUM[0,data[i].nu[m]*uc.Q[m] |
987 |
| m IN data[i].subgroups*uc.sub[g]] |
988 |
| g IN data[i].groups - [uc.group[n]]] |
989 |
| n IN subgroups]/eta[k]/eta[k] |
990 |
| k IN subgroups] - |
991 |
SUM[0,(data[i].nu[k]*uc.Q[k]/( |
992 |
SUM[0,data[i].nu[m]*uc.Q[m] |
993 |
| m IN data[i].subgroups*uc.sub[uc.group[k]]] + |
994 |
SUM[0,SUM[0,data[i].nu[m]*uc.Q[m] * |
995 |
exp(-uc.a[g][uc.group[k]]/T) |
996 |
| m IN data[i].subgroups*uc.sub[g]] |
997 |
| g IN data[i].groups - [uc.group[k]]]))* |
998 |
SUM[0,SUM[0,theta[n]* |
999 |
((uc.a[g][uc.group[k]] - |
1000 |
uc.a[uc.group[n]][uc.group[k]])/data[i].Tc)* |
1001 |
exp(-(uc.a[g][uc.group[k]] + |
1002 |
uc.a[uc.group[n]][uc.group[k]])/T)* |
1003 |
SUM[0,data[i].nu[m]*uc.Q[m] |
1004 |
| m IN data[i].subgroups*uc.sub[g]] |
1005 |
| g IN data[i].groups - [uc.group[n]]] |
1006 |
| n IN subgroups]/eta[k] |
1007 |
| k IN data[i].subgroups]; |
1008 |
|
1009 |
UNIFAC_mixture_g_excess[i]: |
1010 |
(partial[i].g - pure[i].g - (1{GAS_C})*T*lnm(y[i])) / |
1011 |
(1{GAS_C}*data[i].Tc) = |
1012 |
(1.0 - Jv[i] + lnm(Jv[i]) - |
1013 |
5.0*qs[i]*(1.0 - Jv[i]/Ls[i] + lnm(Jv[i]/Ls[i])) + |
1014 |
qs[i]*(1 - lnm(Ls[i])))*T/data[i].Tc - |
1015 |
SUM[0,theta[k]*( |
1016 |
SUM[0,data[i].nu[m]*uc.Q[m] |
1017 |
| m IN data[i].subgroups*uc.sub[uc.group[k]]] + |
1018 |
SUM[0,SUM[0,data[i].nu[m] * uc.Q[m] * |
1019 |
exp(-uc.a[g][uc.group[k]]/T) |
1020 |
| m IN data[i].subgroups*uc.sub[g]] |
1021 |
| g IN data[i].groups - [uc.group[k]]])/eta[k] |
1022 |
| k IN subgroups]*T/data[i].Tc + |
1023 |
SUM[0,data[i].nu[k]*uc.Q[k]*lnm(( |
1024 |
SUM[0,data[i].nu[m]*uc.Q[m] |
1025 |
| m IN data[i].subgroups*uc.sub[uc.group[k]]] + |
1026 |
SUM[0,SUM[0, data[i].nu[m] * uc.Q[m] * |
1027 |
exp(-uc.a[g][uc.group[k]]/T) |
1028 |
| m IN data[i].subgroups*uc.sub[g]] |
1029 |
| g IN data[i].groups - [uc.group[k]]])/eta[k]) |
1030 |
| k IN data[i].subgroups]*T/data[i].Tc; |
1031 |
END FOR; |
1032 |
|
1033 |
FOR i IN components CREATE |
1034 |
rv[i] :== SUM[0,data[i].nu[k]*uc.R[k] |
1035 |
| k IN data[i].subgroups]; |
1036 |
qs[i] :== SUM[0,data[i].nu[k]*uc.Q[k] |
1037 |
| k IN data[i].subgroups]; |
1038 |
END FOR; |
1039 |
|
1040 |
METHODS |
1041 |
|
1042 |
(* inherited methods: ClearAll, default_all, check_all, bound_all, |
1043 |
* scale_all, reset. |
1044 |
*) |
1045 |
|
1046 |
METHOD default_UNIFAC; |
1047 |
NOTES 'purpose' SELF { |
1048 |
This method should be run after partial and pure are defaulted. |
1049 |
This takes care of the mess of local variables in UNIFAC |
1050 |
and makes the molar volumes initial values to a liquid size. |
1051 |
} END NOTES; |
1052 |
Jv[components].lower_bound := 1.0e-8; |
1053 |
Ls[components].lower_bound := 1.0e-8; |
1054 |
theta[subgroups].lower_bound := 0.0; |
1055 |
eta[subgroups].lower_bound := 0.0; |
1056 |
(* liquid molar volumes are much smaller than vapor volumes *) |
1057 |
v_y := 0.1{liter/mole}; |
1058 |
partial[components].v := 0.1{liter/mole}; |
1059 |
pure[components].v := 0.1{liter/mole}; |
1060 |
END default_UNIFAC; |
1061 |
|
1062 |
METHOD default_self; |
1063 |
RUN phase_partials::default_self; |
1064 |
RUN pure[components].default_self; |
1065 |
RUN default_UNIFAC; |
1066 |
END default_self; |
1067 |
|
1068 |
METHOD check_self; |
1069 |
(* fixme FIXME. Are there limits, on eta,theta,Ls,Jv we need to check?*) |
1070 |
RUN phase_partials::check_self; |
1071 |
RUN pure[components].check_self; |
1072 |
END check_self; |
1073 |
|
1074 |
METHOD scale_self; |
1075 |
RUN phase_partials::scale_self; |
1076 |
RUN pure[components].scale_self; |
1077 |
(* we may need to further investigate the scaling on these |
1078 |
* when we approach small numbers for Ls, Jv. |
1079 |
* fixme FIXME. |
1080 |
*) |
1081 |
FOR i IN components DO |
1082 |
Ls[i].nominal := Ls[i]; |
1083 |
Jv[i].nominal := Jv[i]; |
1084 |
END FOR; |
1085 |
FOR j IN subgroups DO |
1086 |
theta[j].nominal := theta[j]; |
1087 |
eta[j].nominal := eta[j]; |
1088 |
END FOR; |
1089 |
END scale_self; |
1090 |
|
1091 |
METHOD bound_self; |
1092 |
RUN phase_partials::bound_self; |
1093 |
RUN pure[components].bound_self; |
1094 |
(* we may need to further investigate the bounding on these |
1095 |
* when we approach small numbers for Ls, Jv. |
1096 |
* fixme FIXME. |
1097 |
*) |
1098 |
FOR i IN components DO |
1099 |
Ls[i].upper_bound := Ls[i] + boundwidth*Ls[i].nominal; |
1100 |
Jv[i].upper_bound := Jv[i] + boundwidth*Jv[i].nominal; |
1101 |
END FOR; |
1102 |
FOR j IN subgroups DO |
1103 |
theta[j].upper_bound := theta[j] + boundwidth*theta[j].nominal; |
1104 |
eta[j].upper_bound := eta[j] + boundwidth*eta[j].nominal; |
1105 |
END FOR; |
1106 |
END bound_self; |
1107 |
|
1108 |
METHOD specify; |
1109 |
RUN phase_partials::specify_partials_computed; |
1110 |
END specify; |
1111 |
|
1112 |
END UNIFAC_liquid_mixture; |
1113 |
|
1114 |
(* ****************************************************************** *) |
1115 |
|
1116 |
MODEL Wilson_liquid_mixture( |
1117 |
cd WILL_BE components_data; |
1118 |
) REFINES phase_partials(); |
1119 |
|
1120 |
NOTES 'purpose' SELF { |
1121 |
A refinement of the phase_partials model given just above, this |
1122 |
model computes the partial molar quantities for a liquid mixture |
1123 |
phase for molar volume, molar enthalpy and molar Gibbs free energy |
1124 |
based on the Wilson model for a liquid mixture. |
1125 |
} END NOTES; |
1126 |
|
1127 |
data ALIASES cd.data; |
1128 |
|
1129 |
FOR i IN components CREATE |
1130 |
pure[i] IS_A Rackett_liquid_component(P, T, data[i]); |
1131 |
END FOR; |
1132 |
|
1133 |
lambda[components][components] "Wilson binary parameters" |
1134 |
IS_A factor; |
1135 |
|
1136 |
FOR i IN components CREATE |
1137 |
FOR j IN components CREATE |
1138 |
lambda[i][j] = (pure[j].v / pure[i].v) * |
1139 |
exp(-data[i].del_ip[data[j].formula] / |
1140 |
(1{GAS_C} * T)); |
1141 |
END FOR; |
1142 |
END FOR; |
1143 |
|
1144 |
FOR i IN components CREATE |
1145 |
partial[i].v = pure[i].v; (* fix me. scaling. *) |
1146 |
|
1147 |
Wilson_mixture_g_excess[i]: |
1148 |
partial[i].g - pure[i].g - (1{GAS_C})*T*lnm(y[i]) = |
1149 |
(1{GAS_C})*T*(-lnm( SUM[y[j]*lambda[i][j] | j IN components]) |
1150 |
+ 1 - |
1151 |
SUM[(y[k] * lambda[k][i]) / SUM[ y[j] * lambda[k][j] |
1152 |
| j IN components] | k IN components]); |
1153 |
|
1154 |
Wilson_mixture_h_excess[i]: |
1155 |
partial[i].h - pure[i].h = |
1156 |
(SUM[ y[j] * lambda[i][j] * |
1157 |
data[i].del_ip[data[j].formula] |
1158 |
| j IN components]) / |
1159 |
(SUM[y[s]*lambda[i][s] |
1160 |
| s IN components]) - |
1161 |
(SUM[y[k]*lambda[k][i] | k IN components]* |
1162 |
SUM[SUM[y[l]*lambda[m][l]* |
1163 |
data[m].del_ip[data[l].formula] |
1164 |
| l IN components] |
1165 |
| m IN components]) / ( |
1166 |
SUM[SUM[y[n]*lambda[o][n] |
1167 |
| n IN components] |
1168 |
| o IN components])^2 + |
1169 |
(SUM[y[p]*lambda[p][i]* |
1170 |
data[p].del_ip[data[i].formula] |
1171 |
| p IN components]) / |
1172 |
(SUM[SUM[y[q]*lambda[r][q] |
1173 |
| q IN components] |
1174 |
| r IN components]); |
1175 |
END FOR; |
1176 |
|
1177 |
METHODS |
1178 |
|
1179 |
(* inherited methods: ClearAll, default_all, check_all, bound_all, |
1180 |
* scale_all, reset. |
1181 |
*) |
1182 |
|
1183 |
METHOD default_Wilson; |
1184 |
NOTES 'purpose' SELF { |
1185 |
This method should be run after partial and pure are defaulted. |
1186 |
This takes care of the mess of local variables in Wilson |
1187 |
and makes the molar volumes initial values to a liquid size. |
1188 |
} END NOTES; |
1189 |
|
1190 |
(* The following initial bounds on lambda will only be useful |
1191 |
if meaninful bounds on pure[i].v have been set. *) |
1192 |
FOR i IN components DO |
1193 |
FOR j IN components DO |
1194 |
IF (pure[i].v.upper_bound > 0{liter/mole}) THEN |
1195 |
lambda[i][j].lower_bound := |
1196 |
(pure[j].v.lower_bound / pure[i].v.upper_bound) * |
1197 |
exp(-data[i].del_ip[data[j].formula] / |
1198 |
(1{GAS_C} * T)); |
1199 |
END IF; |
1200 |
IF (pure[i].v.lower_bound > 0{liter/mole}) THEN |
1201 |
lambda[i][j].upper_bound := |
1202 |
(pure[j].v.upper_bound / pure[i].v.lower_bound) * |
1203 |
exp(-data[i].del_ip[data[j].formula] / |
1204 |
(1{GAS_C} * T)); |
1205 |
END IF; |
1206 |
END FOR; |
1207 |
END FOR; |
1208 |
|
1209 |
(* liquid molar volumes are much smaller than vapor volumes *) |
1210 |
v_y := 0.1{liter/mole}; |
1211 |
partial[components].v := 0.1{liter/mole}; |
1212 |
pure[components].v := 0.1{liter/mole}; |
1213 |
END default_Wilson; |
1214 |
|
1215 |
METHOD default_self; |
1216 |
RUN phase_partials::default_self; |
1217 |
RUN pure[components].default_self; |
1218 |
RUN default_Wilson; |
1219 |
END default_self; |
1220 |
|
1221 |
METHOD check_self; |
1222 |
(* fixme FIXME. Are there limits, on lambdaIJ we need to check?*) |
1223 |
RUN phase_partials::check_self; |
1224 |
RUN pure[components].check_self; |
1225 |
END check_self; |
1226 |
|
1227 |
METHOD scale_self; |
1228 |
RUN phase_partials::scale_self; |
1229 |
RUN pure[components].scale_self; |
1230 |
(* we may need to further investigate the scaling on these |
1231 |
* when we approach small numbers for lambdaIJ. |
1232 |
* fixme FIXME. |
1233 |
*) |
1234 |
FOR i IN components DO |
1235 |
FOR j IN components DO |
1236 |
lambda[i][j].nominal := lambda[i][j]; |
1237 |
END FOR; |
1238 |
END FOR; |
1239 |
END scale_self; |
1240 |
|
1241 |
METHOD bound_self; |
1242 |
RUN phase_partials::bound_self; |
1243 |
RUN pure[components].bound_self; |
1244 |
FOR i IN components DO |
1245 |
FOR j IN components DO |
1246 |
IF (pure[i].v.upper_bound > 0{liter/mole}) THEN |
1247 |
lambda[i][j].lower_bound := |
1248 |
(pure[j].v.lower_bound / pure[i].v.upper_bound) * |
1249 |
exp(-data[i].del_ip[data[j].formula] / |
1250 |
(1{GAS_C} * T)); |
1251 |
END IF; |
1252 |
IF (pure[i].v.lower_bound > 0{liter/mole}) THEN |
1253 |
lambda[i][j].upper_bound := |
1254 |
(pure[j].v.upper_bound / pure[i].v.lower_bound) * |
1255 |
exp(-data[i].del_ip[data[j].formula] / |
1256 |
(1{GAS_C} * T)); |
1257 |
END IF; |
1258 |
END FOR; |
1259 |
END FOR; |
1260 |
END bound_self; |
1261 |
|
1262 |
METHOD specify; |
1263 |
RUN phase_partials::specify_partials_computed; |
1264 |
END specify; |
1265 |
|
1266 |
END Wilson_liquid_mixture; |
1267 |
|
1268 |
(* ****************************************************************** *) |
1269 |
|
1270 |
|
1271 |
MODEL thermodynamics( |
1272 |
cd WILL_BE components_data; |
1273 |
pd WILL_BE phases_data; |
1274 |
phase[pd.phases] WILL_BE phase_partials; |
1275 |
equilibrated WILL_BE boolean; |
1276 |
) REFINES td_model; |
1277 |
|
1278 |
NOTES |
1279 |
'purpose' SELF { |
1280 |
This model is the target model for this library of models. |
1281 |
It computes the state of a multiphase multicomponent |
1282 |
mixture. The state of a multiphase multicomponent mixture |
1283 |
is a sufficient set of intensive variables to completely |
1284 |
characterize it when one assumes the phases are in |
1285 |
thermodynamic equilibrium. Here a sufficient set of |
1286 |
variables is: pressure, temperature, molar composition, |
1287 |
molar volume, molar enthalpy and molar Gibbs free energy |
1288 |
for each of the phases and overall for all the phases. |
1289 |
} |
1290 |
|
1291 |
'equilibrium' SELF { |
1292 |
Equilibrium is expressed in this MODEL by equating |
1293 |
temperature and pressure in all the phases and then by |
1294 |
using either a relative volatility model (equilibrated := |
1295 |
FALSE) or by equating the partial molar Gibbs free energy |
1296 |
(chemical potential) for each of the components in each of |
1297 |
the phases (equilibrated := TRUE). |
1298 |
} |
1299 |
END NOTES; |
1300 |
|
1301 |
P ALIASES phase[pd.reference_phase].P; |
1302 |
T ALIASES phase[pd.reference_phase].T; |
1303 |
|
1304 |
V "molar average volume over all species i, phases j" IS_A molar_volume; |
1305 |
H "molar average enthalpy over all species i, phases j" IS_A molar_energy; |
1306 |
G "molar average Gibbs free energy over all species i, phases j" |
1307 |
IS_A molar_energy; |
1308 |
y[cd.components] "average mole fractions over all phases j" IS_A fraction; |
1309 |
phase_fraction[pd.phases] "division of moles into phases " IS_A fraction; |
1310 |
alpha_bar[pd.other_phases] "mole fraction weighted sum of volatilities" |
1311 |
IS_A relative_volatility; |
1312 |
number_of_other_phases "Np - 1" IS_A integer_constant; |
1313 |
|
1314 |
FOR j IN [pd.phases] CREATE |
1315 |
slack_PhaseDisappearance[j] ALIASES phase[j].slack_PhaseDisappearance; |
1316 |
(* If you set slack_PhaseDisappearance[j].fixed := TRUE, |
1317 |
* (useful if you want to _force_ a phase to exist) |
1318 |
* then you must also set complementarity[j].included := FALSE; |
1319 |
* OTHERWISE the Jacobian matrix of this MODEL is singular. |
1320 |
* The only sensible value of slack_PhaseDisappearance[i] |
1321 |
* when it is fixed is 0.0. |
1322 |
*) |
1323 |
END FOR; |
1324 |
|
1325 |
sum_phase_fractions: SUM[phase_fraction[pd.phases]] = 1.0; |
1326 |
overall_v: V * (cd.data[cd.reference].Pc / |
1327 |
(1{GAS_C} * cd.data[cd.reference].Tc)) |
1328 |
= SUM[phase_fraction[j]*phase[j].v_y | j IN pd.phases] * |
1329 |
(cd.data[cd.reference].Pc / |
1330 |
(1{GAS_C} * cd.data[cd.reference].Tc)); |
1331 |
overall_h: H / (1{GAS_C} * cd.data[cd.reference].Tc) |
1332 |
= SUM[phase_fraction[j]*phase[j].h_y | j IN pd.phases] / |
1333 |
(1{GAS_C} * cd.data[cd.reference].Tc); |
1334 |
overall_g: G / (1{GAS_C} * cd.data[cd.reference].Tc) |
1335 |
= SUM[phase_fraction[j]*phase[j].g_y | j IN pd.phases]/ |
1336 |
(1{GAS_C} * cd.data[cd.reference].Tc); |
1337 |
|
1338 |
FOR i IN cd.components CREATE |
1339 |
overall_y[i]: y[i] = SUM[phase_fraction[j]*phase[j].y[i] | j IN pd.phases]; |
1340 |
END FOR; |
1341 |
|
1342 |
number_of_other_phases :== CARD[pd.other_phases]; |
1343 |
|
1344 |
SELECT (number_of_other_phases) |
1345 |
CASE 0: |
1346 |
(* Create Nothing *) |
1347 |
OTHERWISE: |
1348 |
|
1349 |
(* Create equilibrium relationships *) |
1350 |
|
1351 |
(* equilibrium *) |
1352 |
|
1353 |
(* pressure and temperature equilibrium. |
1354 |
* this condition of equilibrium is not UNIVERSAL |
1355 |
* to all equilibrium thermodynamic systems. |
1356 |
* It certainly applies to non-electrolytic Vapor-Liquid |
1357 |
* systems, however. |
1358 |
*) |
1359 |
FOR j IN [pd.other_phases] CREATE |
1360 |
equateP[j]: phase[j].P = phase[pd.reference_phase].P; |
1361 |
equateT[j]: phase[j].T = phase[pd.reference_phase].T; |
1362 |
END FOR; |
1363 |
|
1364 |
NOTES |
1365 |
'usage' alpha_bar, alphaeqn, phase[pd.phases].alpha[components] { |
1366 |
If using a relative volatility version for equilibrium, fix |
1367 |
the relative volatilities alpha for all components in all |
1368 |
phases (except perhaps the reference phase) and compute |
1369 |
alpha_bar. |
1370 |
|
1371 |
Else activate the equations that equate the chemical |
1372 |
potential for each component in each phase to its value in |
1373 |
the reference phase, fix alpha_bar and set its value to one |
1374 |
and compute alphas for all the components. |
1375 |
|
1376 |
Note, there is a vector of alphas in the reference phase |
1377 |
that is unused. |
1378 |
} |
1379 |
'interpretation' alpha { |
1380 |
When alpha_bar is fixed at 1.0, then the alpha[i] are essentially |
1381 |
K-values. When alpha bar is computed from fixed alpha[i], the |
1382 |
alpha[i] are essentially relative volatilities. The oldest of the |
1383 |
authors believes this note to be entirely redundant, but the |
1384 |
youngest has found it helps some people to relate the MODEL to |
1385 |
their old unit operations textbooks. |
1386 |
} |
1387 |
END NOTES; |
1388 |
|
1389 |
FOR j IN [pd.other_phases] CREATE |
1390 |
FOR i IN cd.components CREATE |
1391 |
alphaeqn[j][i]: |
1392 |
alpha_bar[j] * phase[j].y[i] |
1393 |
= phase[j].alpha[i] * phase[pd.reference_phase].y[i]; |
1394 |
END FOR; |
1395 |
END FOR; |
1396 |
|
1397 |
FOR j IN [pd.other_phases] CREATE |
1398 |
FOR i IN cd.components CREATE |
1399 |
td_eql[j][i]: |
1400 |
phase[j].partial[i].g |
1401 |
= phase[pd.reference_phase].partial[i].g; |
1402 |
END FOR; |
1403 |
END FOR; |
1404 |
|
1405 |
WHEN (equilibrated) |
1406 |
CASE TRUE: |
1407 |
USE td_eql; |
1408 |
OTHERWISE: |
1409 |
(* relax free energy, but still insist T,P same over all *) |
1410 |
END WHEN; |
1411 |
|
1412 |
(* Complementarity formulation *) |
1413 |
|
1414 |
FOR j IN [pd.phases] CREATE |
1415 |
complementarity[j]: |
1416 |
slack_PhaseDisappearance[j] * phase_fraction[j] = 0.0; |
1417 |
END FOR; |
1418 |
|
1419 |
END SELECT; |
1420 |
|
1421 |
METHODS |
1422 |
|
1423 |
(* inherited methods: ClearAll, reset. *) |
1424 |
METHOD check_self; |
1425 |
(* there really isn't much that can be checked here since |
1426 |
* whether phases missing or not is an error we can't tell here. |
1427 |
* STOP {MODEL "thermodynamics" needs a check method for complementarity.}; |
1428 |
*) |
1429 |
END check_self; |
1430 |
METHOD check_all; |
1431 |
RUN cd.check_all; |
1432 |
RUN pd.check_all; |
1433 |
RUN phase[pd.phases].check_all; |
1434 |
RUN check_self; |
1435 |
END check_all; |
1436 |
METHOD default_self; |
1437 |
V := 30 {liter/mole}; |
1438 |
END default_self; |
1439 |
METHOD default_all; |
1440 |
RUN cd.default_all; |
1441 |
RUN pd.default_all; |
1442 |
RUN phase[pd.phases].default_all; |
1443 |
equilibrated := FALSE; |
1444 |
RUN default_self; |
1445 |
END default_all; |
1446 |
METHOD scale_self; |
1447 |
(* fixme! assumed nonzero! always TRUE? *) |
1448 |
V.nominal := V; |
1449 |
G.nominal := abs(G); |
1450 |
H.nominal := abs(H); |
1451 |
(* should we rescale y, phase_fraction, alpha_bar here?? *) |
1452 |
END scale_self; |
1453 |
METHOD scale_all; |
1454 |
RUN cd.scale_all; |
1455 |
RUN pd.scale_all; |
1456 |
RUN phase[pd.phases].scale_all; |
1457 |
RUN scale_self; |
1458 |
END scale_all; |
1459 |
|
1460 |
METHOD bound_all; |
1461 |
RUN cd.bound_all; |
1462 |
RUN pd.bound_all; |
1463 |
RUN phase[pd.phases].bound_all; |
1464 |
RUN bound_self; |
1465 |
END bound_all; |
1466 |
|
1467 |
METHOD bound_self; |
1468 |
(* bounds on alpha_bar? y, phase_fraction? *) |
1469 |
V.upper_bound := V + boundwidth*V.nominal; |
1470 |
V.lower_bound := 1.0e-8{liter/g_mole}; |
1471 |
H.upper_bound := H + boundwidth*H.nominal; |
1472 |
H.lower_bound := H - boundwidth*H.nominal; |
1473 |
G.upper_bound := G + boundwidth*G.nominal; |
1474 |
G.lower_bound := G - boundwidth*G.nominal; |
1475 |
END bound_self; |
1476 |
|
1477 |
METHOD specify; |
1478 |
IF (pd.phase_indicator != 'M') THEN |
1479 |
RUN phase[pd.phases].specify_partials_seqmod; |
1480 |
ELSE |
1481 |
RUN phase[pd.phases].specify_partials_seqmod_massonly; |
1482 |
END IF; |
1483 |
(* The phase specify methods fix |
1484 |
* all but one y variable per phase, and each phase's P and T. |
1485 |
* They also specify that the phases must not disappear. |
1486 |
* They leave the alpha[i] free. |
1487 |
*) |
1488 |
phase[pd.other_phases].P.fixed := FALSE; |
1489 |
phase[pd.other_phases].T.fixed := FALSE; |
1490 |
phase[pd.phases].y[cd.components].fixed := FALSE; |
1491 |
(* Now only reference phase P,T fixed, unless a mass only MODEL. *) |
1492 |
|
1493 |
IF (number_of_other_phases != 0) THEN |
1494 |
(* allow phases to disappear *) |
1495 |
slack_PhaseDisappearance[pd.phases].fixed := FALSE; |
1496 |
slack_PhaseDisappearance[pd.phases] := 0.0; |
1497 |
END IF; |
1498 |
|
1499 |
(* Fix Np - 1 phase fractions and Nc - 1 overall mole fractions *) |
1500 |
y[cd.other_components].fixed := TRUE; |
1501 |
|
1502 |
IF (equilibrated) THEN |
1503 |
(* use thermo instead of relative volatility. free alphas. *) |
1504 |
phase[pd.phases].alpha[cd.components].fixed := FALSE; |
1505 |
alpha_bar[pd.other_phases].fixed := TRUE; |
1506 |
alpha_bar[pd.other_phases] := 1.0; |
1507 |
(* When alphas are free, they are essentially K-values *) |
1508 |
(* Solve for fixed phase fraction for equilibrium |
1509 |
* flash -- setting T may push flash out of multiphase region. |
1510 |
* Do we need to swap T,ph_fr here? Think so. |
1511 |
*) |
1512 |
ELSE |
1513 |
(* Else solve as relative volatility model *) |
1514 |
phase_fraction[pd.other_phases].fixed := TRUE; |
1515 |
phase[pd.other_phases].alpha[cd.components].fixed := TRUE; |
1516 |
END IF; |
1517 |
END specify; |
1518 |
|
1519 |
METHOD reset_to_massbalance; |
1520 |
RUN ClearAll; |
1521 |
equilibrated := FALSE; |
1522 |
RUN specify; |
1523 |
END reset_to_massbalance; |
1524 |
|
1525 |
METHOD reset_to_fullthermo; |
1526 |
RUN ClearAll; |
1527 |
equilibrated := TRUE; |
1528 |
RUN specify; |
1529 |
END reset_to_fullthermo; |
1530 |
|
1531 |
END thermodynamics; |