1 |
(* ASCEND modelling environment |
2 |
Copyright (C) 2010 Carnegie Mellon University |
3 |
|
4 |
This program is free software; you can redistribute it and/or modify |
5 |
it under the terms of the GNU General Public License as published by |
6 |
the Free Software Foundation; either version 2, or (at your option) |
7 |
any later version. |
8 |
|
9 |
This program is distributed in the hope that it will be useful, |
10 |
but WITHOUT ANY WARRANTY; without even the implied warranty of |
11 |
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
12 |
GNU General Public License for more details. |
13 |
|
14 |
You should have received a copy of the GNU General Public License |
15 |
along with this program. If not, see <http://www.gnu.org/licenses/>. |
16 |
*)(* |
17 |
This file contains a model of a combined-cycle power station, with |
18 |
a gas turbine (Brayton) cycle running as the 'topping' cycle and a steam |
19 |
turbine (Rankine) cycle running as the 'bottoming' cycle. Initially the |
20 |
model is being based on Example 9.13 from Moran & Shapiro, 'Fundamentals of |
21 |
Engineering Thermodynamics', 4th Ed, Wiley, 2000. |
22 |
|
23 |
See also Example 10-9 from the book Çengel & Boles |
24 |
'Thermodynamcs: An Engineering Approach, 6th Ed, McGraw-Hill, 2008. |
25 |
|
26 |
This file was based on models/johnpye/combinedcycle.a4c which originally |
27 |
made use of the external library 'freesteam' for calculation of steam |
28 |
properties in the bottoming cycle. This version has been modified to make |
29 |
use of FPROPS for the property calculations, allowing the model to be |
30 |
adapted for use with various different fluids. |
31 |
|
32 |
Author: John Pye |
33 |
*) |
34 |
REQUIRE "test/bug567/rankine_fprops.a4c"; |
35 |
REQUIRE "test/bug567/brayton.a4c"; |
36 |
|
37 |
MODEL air_stream_heat_exchanger REFINES air_equipment; |
38 |
inlet_cold, outlet_cold IS_A stream_node; |
39 |
inlet.p, outlet.p ARE_THE_SAME; |
40 |
inlet_cold.p, outlet_cold.p ARE_THE_SAME; |
41 |
inlet_cold.mdot, outlet_cold.mdot ARE_THE_SAME; |
42 |
inlet_cold.cd, outlet_cold.cd ARE_THE_SAME; |
43 |
|
44 |
mdot_cold ALIASES inlet_cold.mdot; |
45 |
cd_cold ALIASES inlet_cold.cd; |
46 |
|
47 |
(* some very simplistics checks that temperatures are feasible: not totally safe! *) |
48 |
DT_1, DT_2 IS_A delta_temperature; |
49 |
DT_1 = inlet.T - outlet_cold.T; |
50 |
DT_2 = outlet.T - inlet_cold.T; |
51 |
|
52 |
(* some intermediate temperatures for plotting *) |
53 |
n IS_A integer_constant; |
54 |
n :== 20; |
55 |
H[0..n] IS_A air_node; |
56 |
H[0..n].p, inlet.p ARE_THE_SAME; |
57 |
H[0..n].mdot, inlet.mdot ARE_THE_SAME; |
58 |
H[0].h, inlet.h ARE_THE_SAME; |
59 |
H[n].h, outlet.h ARE_THE_SAME; |
60 |
FOR i IN [1..n-1] CREATE |
61 |
H[i].h = H[0].h + (H[n].h - H[0].h)/n * i; |
62 |
END FOR; |
63 |
|
64 |
Qdot IS_A energy_rate; |
65 |
(* Strange, but the following form solves better than the obvious form, |
66 |
Could maybe be something to do with scaling. *) |
67 |
outlet.h - inlet.h = Qdot/inlet.mdot; |
68 |
outlet_cold.h = inlet_cold.h - Qdot/inlet_cold.mdot; |
69 |
METHODS |
70 |
METHOD default_self; |
71 |
RUN inlet_cold.default_self; |
72 |
RUN outlet_cold.default_self; |
73 |
DT_1.lower_bound := 0 {K}; |
74 |
DT_2.lower_bound := 0 {K}; |
75 |
END default_self; |
76 |
END air_stream_heat_exchanger; |
77 |
|
78 |
|
79 |
MODEL air_stream_heat_exchanger_test REFINES air_stream_heat_exchanger; |
80 |
cd_cold.component :== 'water'; |
81 |
METHODS |
82 |
METHOD on_load; |
83 |
RUN default_self; |
84 |
FIX inlet_cold.p; inlet_cold.p := 50 {bar}; |
85 |
FIX inlet_cold.h; inlet_cold.h := 200 {kJ/kg}; |
86 |
FIX inlet.p; inlet.p := 1 {bar}; |
87 |
FIX inlet.T; inlet.T := 700 {K}; |
88 |
FIX mdot; mdot := 1 {kg/s}; |
89 |
FIX mdot_cold; mdot_cold := 0.1 {kg/s}; |
90 |
FIX Qdot; Qdot := 10 {kW}; |
91 |
END on_load; |
92 |
END air_stream_heat_exchanger_test; |
93 |
|
94 |
(* --- whole cycle models --- *) |
95 |
|
96 |
MODEL combinedcycle_fprops_common; |
97 |
(* define the blocks *) |
98 |
GC IS_A compressor; |
99 |
BU IS_A combustor; |
100 |
GT IS_A gas_turbine; |
101 |
HE IS_A air_stream_heat_exchanger; |
102 |
DI IS_A dissipator; |
103 |
TU IS_A turbine_simple; |
104 |
CO IS_A condenser_simple; |
105 |
PU IS_A pump_simple; |
106 |
|
107 |
(* wire up the model *) |
108 |
GC.outlet, BU.inlet ARE_THE_SAME; |
109 |
BU.outlet, GT.inlet ARE_THE_SAME; |
110 |
GT.outlet, HE.inlet ARE_THE_SAME; |
111 |
HE.outlet, DI.inlet ARE_THE_SAME; |
112 |
DI.outlet, GC.inlet ARE_THE_SAME; |
113 |
|
114 |
HE.outlet_cold, TU.inlet ARE_THE_SAME; |
115 |
TU.outlet, CO.inlet ARE_THE_SAME; |
116 |
CO.outlet, PU.inlet ARE_THE_SAME; |
117 |
PU.outlet, HE.inlet_cold ARE_THE_SAME; |
118 |
|
119 |
cd_rankine ALIASES TU.inlet.cd; |
120 |
|
121 |
Wdot, Wdot_gas, Wdot_vap IS_A energy_rate; |
122 |
Wdot_gas = GC.Wdot + GT.Wdot; |
123 |
Wdot_vap = TU.Wdot + PU.Wdot; |
124 |
Wdot = Wdot_gas + Wdot_vap; |
125 |
|
126 |
braytonpowerfraction IS_A fraction; |
127 |
braytonpowerfraction = Wdot_gas / Wdot; |
128 |
|
129 |
Qdot_H ALIASES BU.Qdot; |
130 |
Qdot_HE ALIASES HE.Qdot; |
131 |
Qdot_DI ALIASES DI.Qdot; |
132 |
|
133 |
eta IS_A fraction; |
134 |
eta = Wdot / Qdot_H; |
135 |
|
136 |
massflowratio IS_A factor; |
137 |
massflowratio = TU.mdot / GT.mdot; |
138 |
|
139 |
braytonpressureratio IS_A positive_factor; |
140 |
braytonpressureratio * GC.inlet.p = GC.outlet.p; |
141 |
|
142 |
METHODS |
143 |
METHOD default_self; |
144 |
RUN TU.default_self; |
145 |
RUN PU.default_self; |
146 |
RUN CO.default_self; |
147 |
RUN HE.default_self; |
148 |
END default_self; |
149 |
METHOD specify; |
150 |
(* these values should be independent of the fluid we choose to use *) |
151 |
FIX GC.eta; GC.eta := 0.84; |
152 |
FIX GT.eta; GT.eta := 0.88; |
153 |
FIX TU.eta; TU.eta := 0.85; |
154 |
FIX PU.eta; PU.eta := 0.8; |
155 |
FIX CO.outlet.x; CO.outlet.x := 1e-6; |
156 |
FIX BU.eta; BU.eta := 1; |
157 |
END specify; |
158 |
END combinedcycle_fprops_common; |
159 |
|
160 |
|
161 |
MODEL combinedcycle_toluene REFINES combinedcycle_fprops_common; |
162 |
TU.inlet.cd.component :== 'toluene'; |
163 |
HE.outlet.T = PU.outlet.T + 40 {K}; |
164 |
HE.outlet_cold.T = GT.outlet.T - 20 {K}; |
165 |
Tmax_rankine ALIASES HE.outlet_cold.T; |
166 |
METHODS |
167 |
METHOD default_self; |
168 |
RUN combinedcycle_fprops_common::default_self; |
169 |
(* starting guess, for easy solving *) |
170 |
HE.outlet_cold.h := 400 {kJ/kg}; |
171 |
CO.outlet.h := 400 {kJ/kg}; |
172 |
END default_self; |
173 |
METHOD on_load; |
174 |
RUN ClearAll; |
175 |
RUN default_self; |
176 |
RUN combinedcycle_fprops_common::specify; |
177 |
FIX Wdot; Wdot := 100 {MW}; |
178 |
|
179 |
(* ambient conditions *) |
180 |
FIX GC.inlet.T, GC.inlet.p; |
181 |
GC.inlet.T := 30 {K} + 273.15 {K}; |
182 |
GC.inlet.p := 1 {bar}; |
183 |
|
184 |
(* Brayton parameters *) |
185 |
FIX braytonpressureratio; braytonpressureratio := 10.9; (* optimise this *) |
186 |
FIX BU.outlet.T; BU.outlet.T := 970 {K} + 273.15 {K}; |
187 |
|
188 |
(* Rankine cycle condenser *) |
189 |
CO.outlet.p := 8 {kPa}; |
190 |
FIX CO.outlet.T; CO.outlet.T := 40 {K} + 273.15 {K}; |
191 |
FIX TU.inlet.p; TU.inlet.p := 150 {bar}; |
192 |
|
193 |
(* optimisable *) |
194 |
|
195 |
(* heat exchange cycle *) |
196 |
(* FIX HE.outlet.T; HE.outlet.T := 60 {K} + 273.15 {K}; |
197 |
FIX HE.outlet_cold.T; HE.outlet_cold.T := 470 {K} + 273.15 {K}; |
198 |
*) |
199 |
SOLVER QRSlv; |
200 |
OPTION convopt 'RELNOM_SCALE'; |
201 |
END on_load; |
202 |
END combinedcycle_toluene; |
203 |
|
204 |
|
205 |
MODEL combinedcycle_water REFINES combinedcycle_fprops_common; |
206 |
TU.inlet.cd.component :== 'water'; |
207 |
x_turb_out ALIASES TU.outlet.x; |
208 |
(* the difference values in these formula have to be corrected by looking |
209 |
at the heat exchanger temperature profiles; haven't thoroughly modelled |
210 |
this bit yet! *) |
211 |
HE.outlet.T = PU.outlet.T + 130 {K}; |
212 |
HE.outlet_cold.T = GT.outlet.T - 20 {K}; |
213 |
METHODS |
214 |
METHOD default_self; |
215 |
RUN combinedcycle_fprops_common::default_self; |
216 |
(* starting guess, for easy solving *) |
217 |
HE.outlet_cold.h := 3000 {kJ/kg}; |
218 |
TU.inlet.h := 4000 {kJ/kg}; |
219 |
END default_self; |
220 |
METHOD on_load; |
221 |
RUN ClearAll; |
222 |
RUN default_self; |
223 |
RUN combinedcycle_fprops_common::specify; |
224 |
FIX Wdot; Wdot := 100 {MW}; |
225 |
|
226 |
(* ambient conditions *) |
227 |
FIX GC.inlet.T, GC.inlet.p; |
228 |
GC.inlet.T := 30 {K} + 273.15 {K}; |
229 |
GC.inlet.p := 1 {bar}; |
230 |
|
231 |
(* Brayton parameters *) |
232 |
FIX braytonpressureratio; braytonpressureratio := 7.2; (* optimise this *) |
233 |
FIX BU.outlet.T; BU.outlet.T := 970 {K} + 273.15 {K}; |
234 |
|
235 |
(* Rankine cycle condenser *) |
236 |
CO.outlet.p := 8 {kPa}; |
237 |
FIX CO.outlet.T; CO.outlet.T := 40 {K} + 273.15 {K}; |
238 |
FIX TU.inlet.p; TU.inlet.p := 150 {bar}; |
239 |
|
240 |
SOLVER QRSlv; |
241 |
OPTION convopt 'RELNOM_SCALE'; |
242 |
END on_load; |
243 |
METHOD set_x_limit; |
244 |
FREE PU.outlet.p; |
245 |
PU.outlet.p.upper_bound := 150 {bar}; |
246 |
FIX TU.outlet.x; TU.outlet.x := 0.9; |
247 |
END set_x_limit; |
248 |
|
249 |
END combinedcycle_water; |
250 |
|
251 |
MODEL combinedcycle_water_opt REFINES combinedcycle_water; |
252 |
MAXIMIZE eta; |
253 |
METHODS |
254 |
METHOD on_load; |
255 |
RUN combinedcycle_water::on_load; |
256 |
braytonpressureratio.lower_bound := 8; |
257 |
braytonpressureratio.upper_bound := 20; |
258 |
END on_load; |
259 |
END combinedcycle_water_opt; |
260 |
|
261 |
|
262 |
|
263 |
MODEL combinedcycle_ammonia REFINES combinedcycle_fprops_common; |
264 |
TU.inlet.cd.component :== 'ammonia'; |
265 |
HE.outlet.T = PU.outlet.T + 15 {K}; |
266 |
HE.outlet_cold.T = GT.outlet.T - 12 {K}; |
267 |
METHODS |
268 |
METHOD default_self; |
269 |
RUN combinedcycle_fprops_common::default_self; |
270 |
(* starting guess, for easy solving *) |
271 |
HE.outlet_cold.h := 400 {kJ/kg}; |
272 |
CO.outlet.h := 400 {kJ/kg}; |
273 |
END default_self; |
274 |
METHOD on_load; |
275 |
RUN ClearAll; |
276 |
RUN default_self; |
277 |
RUN combinedcycle_fprops_common::specify; |
278 |
FIX Wdot; Wdot := 100 {MW}; |
279 |
|
280 |
(* ambient conditions *) |
281 |
FIX GC.inlet.T, GC.inlet.p; |
282 |
GC.inlet.T := 30 {K} + 273.15 {K}; |
283 |
GC.inlet.p := 1 {bar}; |
284 |
|
285 |
(* Brayton parameters *) |
286 |
FIX braytonpressureratio; braytonpressureratio := 11.2; (* optimise this *) |
287 |
FIX BU.outlet.T; BU.outlet.T := 970 {K} + 273.15 {K}; |
288 |
|
289 |
(* Rankine cycle condenser *) |
290 |
CO.outlet.p := 8 {kPa}; |
291 |
FIX CO.outlet.T; CO.outlet.T := 40 {K} + 273.15 {K}; |
292 |
FIX TU.inlet.p; TU.inlet.p := 150 {bar}; |
293 |
|
294 |
SOLVER QRSlv; |
295 |
OPTION convopt 'RELNOM_SCALE'; |
296 |
END on_load; |
297 |
END combinedcycle_ammonia; |
298 |
|
299 |
(* |
300 |
the combinedcycle_co2 model is removed, because it wasn't viable due to the |
301 |
location of the CO2 critical point. |
302 |
*) |