1 |
(* ASCEND modelling environment |
2 |
Copyright (C) 2007, 2008, 2009, 2010 Carnegie Mellon University |
3 |
|
4 |
This program is free software; you can redistribute it and/or modify |
5 |
it under the terms of the GNU General Public License as published by |
6 |
the Free Software Foundation; either version 2, or (at your option) |
7 |
any later version. |
8 |
|
9 |
This program is distributed in the hope that it will be useful, |
10 |
but WITHOUT ANY WARRANTY; without even the implied warranty of |
11 |
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
12 |
GNU General Public License for more details. |
13 |
|
14 |
You should have received a copy of the GNU General Public License |
15 |
along with this program. If not, see <http://www.gnu.org/licenses/>. |
16 |
*)(* |
17 |
This file contains some models of Brayton engines and associated cycles, |
18 |
following the development of Çengel & Boles 'Thermodynamcs: An Engineering |
19 |
Approach, 6th Ed, McGraw-Hill, 2008. |
20 |
|
21 |
Author: John Pye |
22 |
*) |
23 |
|
24 |
REQUIRE "atoms.a4l"; |
25 |
REQUIRE "johnpye/thermo_types.a4c"; |
26 |
REQUIRE "johnpye/airprops.a4c"; |
27 |
IMPORT "sensitivity/solve"; |
28 |
|
29 |
(* first some models of air as an ideal gas *) |
30 |
|
31 |
MODEL ideal_gas_base; |
32 |
M IS_A molar_weight_constant; |
33 |
c_p IS_A specific_heat_capacity; |
34 |
s IS_A specific_entropy; |
35 |
h IS_A specific_enthalpy; |
36 |
v IS_A specific_volume; |
37 |
T IS_A temperature; |
38 |
p IS_A pressure; |
39 |
R IS_A specific_gas_constant; |
40 |
|
41 |
R :== 1{GAS_C} / M; |
42 |
p * v = R * T; |
43 |
|
44 |
METHODS |
45 |
METHOD bound_self; |
46 |
s.lower_bound := -5 {kJ/kg/K}; |
47 |
END bound_self; |
48 |
END ideal_gas_base; |
49 |
|
50 |
(* |
51 |
Ideal air assuming ideal gas and constant cp. |
52 |
*) |
53 |
MODEL simple_ideal_air |
54 |
REFINES ideal_gas_base; |
55 |
|
56 |
M :== 28.958600656 {kg/kmol}; |
57 |
|
58 |
c_p = 1.005 {kJ/kg/K}; |
59 |
|
60 |
T_ref IS_A temperature_constant; |
61 |
p_ref IS_A pressure_constant; |
62 |
|
63 |
s = c_p * ln(T / T_ref) - R * ln(p / p_ref); |
64 |
h = c_p * (T - T_ref); |
65 |
|
66 |
T_ref :== 273.15 {K}; |
67 |
p_ref :== 1 {bar}; |
68 |
|
69 |
METHODS |
70 |
METHOD on_load; |
71 |
RUN ClearAll; |
72 |
RUN bound_self; |
73 |
FIX T, p; |
74 |
T := 300 {K}; |
75 |
p := 1 {bar}; |
76 |
END on_load; |
77 |
END simple_ideal_air; |
78 |
|
79 |
(* |
80 |
Ideal air, using a quartic polynomial for c_p as given in Moran & Shapiro |
81 |
4th Ed. |
82 |
*) |
83 |
MODEL ideal_air_poly REFINES ideal_gas_base; |
84 |
M :== 28.958600656 {kg/kmol}; |
85 |
|
86 |
a[0..4] IS_A real_constant; |
87 |
a[0] :== 3.653; |
88 |
a[1] :== -1.337e-3{1/K}; |
89 |
a[2] :== 3.294e-6{1/K^2}; |
90 |
a[3] :== -1.913e-9{1/K^3}; |
91 |
a[4] :== 0.2763e-12{1/K^4}; |
92 |
|
93 |
T_ref IS_A temperature_constant; |
94 |
p_ref IS_A pressure_constant; |
95 |
h_ref IS_A real_constant; |
96 |
s_ref IS_A real_constant; |
97 |
|
98 |
T_ref :== 300 {K}; |
99 |
p_ref :== 1 {bar}; |
100 |
h_ref :== -4.40119 {kJ/kg}; |
101 |
s_ref :== 0. {kJ/kg/K}; |
102 |
|
103 |
c_p * M = 1{GAS_C} * SUM[a[i]*T^i | i IN [0..4]]; |
104 |
|
105 |
(h - h_ref) * M = 1{GAS_C} * SUM[a[i]/(i+1) * T^(i+1) | i IN[0..4]]; |
106 |
|
107 |
s0 IS_A specific_entropy; |
108 |
s0 = R * (a[0]*ln(T/T_ref) + SUM[a[i]/i * (T - T_ref)^i | i IN[1..4]]) + 1.294559 {kJ/kg/K} + 0.38191663487 {kJ/kg/K}; |
109 |
|
110 |
s = s0 - R * ln(p/p_ref); |
111 |
|
112 |
METHODS |
113 |
METHOD bound_self; |
114 |
RUN ideal_gas_base::bound_self; |
115 |
s0.lower_bound := -1e20 {kJ/kg/K}; |
116 |
END bound_self; |
117 |
METHOD on_load; |
118 |
RUN ClearAll; |
119 |
RUN bound_self; |
120 |
FIX T, p; |
121 |
T := 200 {K}; |
122 |
p := 1 {bar}; |
123 |
END on_load; |
124 |
END ideal_air_poly; |
125 |
|
126 |
IMPORT "johnpye/datareader/datareader"; |
127 |
MODEL drconf; |
128 |
filename IS_A symbol_constant; |
129 |
format IS_A symbol_constant; |
130 |
parameters IS_A symbol_constant; |
131 |
END drconf; |
132 |
|
133 |
MODEL ideal_air_table REFINES ideal_gas_base; |
134 |
M :== 28.958600656 {kg/kmol}; |
135 |
|
136 |
dataparams IS_A drconf; |
137 |
dataparams.filename :== 'johnpye/idealair.csv'; |
138 |
dataparams.format :== 'CSV'; |
139 |
dataparams.parameters :== '1,4,6'; |
140 |
|
141 |
s0 IS_A specific_entropy; |
142 |
u IS_A specific_energy; |
143 |
p_ref IS_A pressure; |
144 |
|
145 |
data: datareader( |
146 |
T : INPUT; |
147 |
u, s0 :OUTPUT; |
148 |
dataparams : DATA |
149 |
); |
150 |
|
151 |
h = u + R * T; |
152 |
|
153 |
s = s0 - R * ln(p/p_ref); |
154 |
END ideal_air_table; |
155 |
|
156 |
(* |
157 |
Thermo properties |
158 |
*) |
159 |
MODEL air_state; |
160 |
air IS_A ideal_air_poly; |
161 |
p ALIASES air.p; |
162 |
T ALIASES air.T; |
163 |
h ALIASES air.h; |
164 |
s ALIASES air.s; |
165 |
v ALIASES air.v; |
166 |
METHODS |
167 |
METHOD default; |
168 |
p := 10{bar}; |
169 |
p.nominal := 42 {bar}; |
170 |
h := 2000 {kJ/kg}; |
171 |
|
172 |
T := 400 {K}; |
173 |
v.nominal := 10 {L/kg}; |
174 |
s := 4 {kJ/kg/K}; |
175 |
END default; |
176 |
METHOD solve; |
177 |
EXTERNAL do_solve(SELF); |
178 |
END solve; |
179 |
METHOD on_load; |
180 |
RUN default_all; |
181 |
FIX p, h; |
182 |
END on_load; |
183 |
END air_state; |
184 |
|
185 |
|
186 |
(* a simple connector that includes calculation of steam properties *) |
187 |
MODEL air_node; |
188 |
state IS_A air_state; |
189 |
p ALIASES state.p; |
190 |
h ALIASES state.h; |
191 |
v ALIASES state.v; |
192 |
T ALIASES state.T; |
193 |
s ALIASES state.s; |
194 |
mdot IS_A mass_rate; |
195 |
METHODS |
196 |
METHOD default; |
197 |
mdot.nominal := 2 {kg/s}; |
198 |
END default; |
199 |
METHOD solve; |
200 |
EXTERNAL do_solve(SELF); |
201 |
END solve; |
202 |
METHOD on_load; |
203 |
RUN default; RUN reset; RUN values; |
204 |
FIX p,h; |
205 |
END on_load; |
206 |
END air_node; |
207 |
|
208 |
MODEL air_equipment; |
209 |
inlet "in: inlet air stream" IS_A air_node; |
210 |
outlet "out: outlet air stream" IS_A air_node; |
211 |
|
212 |
inlet.mdot, outlet.mdot ARE_THE_SAME; |
213 |
mdot ALIASES inlet.mdot; |
214 |
END air_equipment; |
215 |
|
216 |
|
217 |
MODEL compressor REFINES air_equipment; |
218 |
NOTES |
219 |
'block' SELF {Simple model of a compressor using isentropic efficiency} |
220 |
END NOTES; |
221 |
|
222 |
dp IS_A delta_pressure; |
223 |
inlet.p + dp = outlet.p; |
224 |
|
225 |
outlet_is IS_A air_state; |
226 |
outlet_is.p, outlet.p ARE_THE_SAME; |
227 |
|
228 |
outlet_is.s, inlet.s ARE_THE_SAME; |
229 |
eta IS_A fraction; |
230 |
|
231 |
r IS_A factor; |
232 |
r * inlet.p = outlet.p; |
233 |
|
234 |
eta_eq:eta * (inlet.h - outlet.h) = (inlet.h - outlet_is.h); |
235 |
|
236 |
(* work done on the environment, will be negative *) |
237 |
Wdot IS_A energy_rate; |
238 |
Wdot_eq:Wdot * eta = mdot * (inlet.h - outlet_is.h); |
239 |
|
240 |
w IS_A specific_energy; |
241 |
w_eq:w = eta * (outlet.h - inlet.h); |
242 |
|
243 |
END compressor; |
244 |
|
245 |
MODEL compressor_test REFINES compressor; |
246 |
(* no equations here *) |
247 |
METHODS |
248 |
METHOD on_load; |
249 |
FIX inlet.T; |
250 |
FIX inlet.p; |
251 |
|
252 |
inlet.T := 300 {K}; |
253 |
inlet.p := 1 {bar}; |
254 |
|
255 |
FIX r; |
256 |
FIX eta; |
257 |
FIX mdot; |
258 |
|
259 |
r := 8; |
260 |
eta := 0.8; |
261 |
mdot := 1 {kg/s}; |
262 |
END on_load; |
263 |
END compressor_test; |
264 |
|
265 |
|
266 |
|
267 |
MODEL gas_turbine REFINES air_equipment; |
268 |
NOTES |
269 |
'block' SELF {Simple turbine model} |
270 |
END NOTES; |
271 |
|
272 |
dp IS_A delta_pressure; |
273 |
inlet.p + dp = outlet.p; |
274 |
|
275 |
outlet_is IS_A air_state; |
276 |
outlet_is.p, outlet.p ARE_THE_SAME; |
277 |
outlet_is.s, inlet.s ARE_THE_SAME; |
278 |
|
279 |
eta IS_A fraction; |
280 |
eta_eq:eta * (inlet.h - outlet_is.h) = (inlet.h - outlet.h); |
281 |
|
282 |
(* work done on the environment, will be positive *) |
283 |
Wdot IS_A energy_rate; |
284 |
Wedot_eq:Wdot = mdot * (inlet.h - outlet.h); |
285 |
|
286 |
w IS_A specific_energy; |
287 |
w_eq:w = inlet.h - outlet.h; |
288 |
|
289 |
r IS_A factor; |
290 |
r * outlet.p = inlet.p; |
291 |
|
292 |
END gas_turbine; |
293 |
|
294 |
MODEL gas_turbine_test REFINES gas_turbine; |
295 |
(* no equations here *) |
296 |
METHODS |
297 |
METHOD on_load; |
298 |
FIX inlet.p; |
299 |
FIX inlet.T; |
300 |
FIX outlet.p; |
301 |
FIX eta; |
302 |
FIX mdot; |
303 |
|
304 |
inlet.p := 15 {bar}; |
305 |
inlet.T := 1200 {K}; |
306 |
outlet.p := 1 {bar}; |
307 |
eta := 0.85; |
308 |
mdot := 1 {kg/s}; |
309 |
END on_load; |
310 |
END gas_turbine_test; |
311 |
|
312 |
|
313 |
|
314 |
|
315 |
(* |
316 |
simple model assumes no pressure drop, but heating losses due to |
317 |
flue gas temperature |
318 |
*) |
319 |
MODEL combustor REFINES air_equipment; |
320 |
NOTES |
321 |
'block' SELF {Simple combustion chamber model} |
322 |
END NOTES; |
323 |
|
324 |
inlet.p, outlet.p ARE_THE_SAME; |
325 |
Qdot_fuel IS_A energy_rate; |
326 |
Qdot IS_A energy_rate; |
327 |
|
328 |
Qdot = mdot * (outlet.h - inlet.h); |
329 |
|
330 |
eta IS_A fraction; |
331 |
Qdot = eta * Qdot_fuel; |
332 |
|
333 |
qdot_fuel IS_A specific_energy_rate; |
334 |
qdot_fuel * mdot = Qdot_fuel; |
335 |
END combustor; |
336 |
|
337 |
MODEL combustor_test REFINES combustor; |
338 |
(* nothing here *) |
339 |
METHODS |
340 |
METHOD on_load; |
341 |
FIX inlet.p; |
342 |
FIX inlet.T; |
343 |
FIX eta; |
344 |
FIX outlet.T; |
345 |
FIX mdot; |
346 |
|
347 |
inlet.p := 15 {bar}; |
348 |
inlet.T := 500 {K}; |
349 |
|
350 |
eta := 0.8; |
351 |
outlet.T := 700 {K}; |
352 |
mdot := 1 {kg/s}; |
353 |
END on_load; |
354 |
END combustor_test; |
355 |
|
356 |
|
357 |
|
358 |
(* |
359 |
this is really simple (fluid props permitting): just work out the heat |
360 |
that must be expelled to get the gas down to a specified temperature |
361 |
*) |
362 |
MODEL dissipator REFINES air_equipment; |
363 |
NOTES |
364 |
'block' SELF {Simple condenser model} |
365 |
END NOTES; |
366 |
|
367 |
inlet.p, outlet.p ARE_THE_SAME; |
368 |
Qdot IS_A energy_rate; |
369 |
|
370 |
Qdot = mdot * (outlet.h - inlet.h); |
371 |
|
372 |
END dissipator; |
373 |
|
374 |
MODEL dissipator_test REFINES dissipator; |
375 |
(* nothing here *) |
376 |
METHODS |
377 |
METHOD on_load; |
378 |
FIX inlet.p, inlet.T; |
379 |
FIX outlet.T; |
380 |
FIX mdot; |
381 |
|
382 |
inlet.p := 1 {bar}; |
383 |
inlet.T := 500 {K}; |
384 |
outlet.T := 300 {K}; |
385 |
mdot := 1 {kg/s}; |
386 |
END on_load; |
387 |
END dissipator_test; |
388 |
|
389 |
|
390 |
MODEL brayton; |
391 |
NOTES |
392 |
'description' SELF { |
393 |
This is a model of a simple Brayton cycle with |
394 |
irreversible compressor (eta=0.8) and turbine (eta=0.85) operating |
395 |
between 300 K and 1300 K, with a compression ratio of 8 and an |
396 |
assumed inlet pressure of 1 bar. Based on examples 9-5 and 9-6 from |
397 |
Çengel & Boles, 'Thermodynamics: An Engineering Approach', 6th Ed, |
398 |
McGraw-Hill, 2008} |
399 |
END NOTES; |
400 |
|
401 |
CO IS_A compressor; |
402 |
TU IS_A gas_turbine; |
403 |
BU IS_A combustor; |
404 |
DI IS_A dissipator; |
405 |
|
406 |
CO.outlet, BU.inlet ARE_THE_SAME; |
407 |
BU.outlet, TU.inlet ARE_THE_SAME; |
408 |
TU.outlet, DI.inlet ARE_THE_SAME; |
409 |
DI.outlet, CO.inlet ARE_THE_SAME; |
410 |
braytonpressureratio IS_A positive_factor; |
411 |
braytonpressureratio * CO.inlet.p = TU.outlet.p; |
412 |
|
413 |
Wdot_CO ALIASES CO.Wdot; |
414 |
Wdot_TU ALIASES TU.Wdot; |
415 |
Wdot IS_A energy_rate; |
416 |
Wdot = Wdot_CO + Wdot_TU; |
417 |
|
418 |
Qdot_BU ALIASES BU.Qdot; |
419 |
Qdot_DI ALIASES DI.Qdot; |
420 |
|
421 |
Qdot IS_A energy_rate; |
422 |
Qdot = Qdot_BU + Qdot_DI; |
423 |
|
424 |
Edot IS_A energy_rate; |
425 |
Edot = Wdot - Qdot; |
426 |
|
427 |
eta IS_A fraction; |
428 |
eta = Wdot / Qdot_BU; |
429 |
|
430 |
r_bw IS_A factor; |
431 |
r_bw = -Wdot_CO / Wdot_TU; |
432 |
|
433 |
state[1..4] IS_A air_node; |
434 |
state[1], CO.inlet ARE_THE_SAME; |
435 |
state[2], BU.inlet ARE_THE_SAME; |
436 |
state[3], TU.inlet ARE_THE_SAME; |
437 |
state[4], DI.inlet ARE_THE_SAME; |
438 |
|
439 |
eta_TU ALIASES TU.eta; |
440 |
eta_CO ALIASES CO.eta; |
441 |
|
442 |
METHODS |
443 |
METHOD on_load; |
444 |
FIX CO.eta, TU.eta; |
445 |
CO.eta := 0.8; |
446 |
TU.eta := 0.85; |
447 |
FIX CO.inlet.T, TU.inlet.T; |
448 |
CO.inlet.T := 300 {K}; |
449 |
TU.inlet.T := 1300 {K}; |
450 |
FIX CO.r; |
451 |
CO.r := 8; |
452 |
FIX CO.inlet.p; |
453 |
CO.inlet.p := 1 {bar}; |
454 |
FIX CO.inlet.mdot; |
455 |
CO.inlet.mdot := 1 {kg/s}; |
456 |
FIX BU.eta; |
457 |
BU.eta := 1; |
458 |
END on_load; |
459 |
END brayton; |
460 |
|
461 |
|
462 |
(* |
463 |
Regenerator: air-to-air heat exchanger |
464 |
|
465 |
Assumption: fluid on both sides have the same c_p. |
466 |
*) |
467 |
MODEL regenerator REFINES air_equipment; |
468 |
inlet_hot, outlet_hot IS_A air_node; |
469 |
|
470 |
inlet.p, outlet.p ARE_THE_SAME; |
471 |
inlet_hot.p, outlet_hot.p ARE_THE_SAME; |
472 |
|
473 |
inlet_hot.mdot, outlet_hot.mdot ARE_THE_SAME; |
474 |
mdot_hot ALIASES inlet_hot.mdot; |
475 |
|
476 |
(* for perfect eps=1 case: inlet_hot.T, outlet.T ARE_THE_SAME;*) |
477 |
|
478 |
epsilon IS_A fraction; |
479 |
|
480 |
Qdot IS_A energy_rate; |
481 |
mdot_min IS_A mass_rate; |
482 |
mdot_min = inlet.mdot + 0.5*(inlet.mdot - inlet_hot.mdot + abs(inlet.mdot - inlet_hot.mdot)); |
483 |
|
484 |
Qdot = epsilon * mdot_min * (inlet_hot.h - inlet.h); |
485 |
outlet.h = inlet.h + Qdot/inlet.mdot; |
486 |
outlet_hot.h = inlet_hot.h - Qdot/inlet_hot.mdot; |
487 |
END regenerator; |
488 |
|
489 |
MODEL regenerator_test REFINES regenerator; |
490 |
METHODS |
491 |
METHOD on_load; |
492 |
FIX inlet.mdot, inlet.p, inlet.T; |
493 |
FIX inlet_hot.mdot, inlet_hot.p, inlet_hot.T; |
494 |
inlet.mdot := 1 {kg/s}; |
495 |
inlet.p := 1 {bar}; |
496 |
inlet.T := 300 {K}; |
497 |
inlet_hot.mdot := 1.05 {kg/s}; |
498 |
inlet_hot.p := 15 {bar}; |
499 |
inlet_hot.T := 500 {K}; |
500 |
FIX epsilon; |
501 |
epsilon := 0.8; |
502 |
END on_load; |
503 |
END regenerator_test; |
504 |
|
505 |
|
506 |
|
507 |
MODEL brayton_regenerative; |
508 |
NOTES |
509 |
'description' SELF { |
510 |
This is a model of a regenerative Brayton cycle with |
511 |
irreversible compressor (eta=0.8) and turbine (eta=0.85) operating |
512 |
between 300 K and 1300 K, with a compression ratio of 8 and an |
513 |
assumed inlet pressure of 1 bar. The regenerator effectiveness is |
514 |
0.8. |
515 |
|
516 |
Based on example 9-7 from Çengel & Boles, 'Thermodynamics: An |
517 |
Engineering Approach', 6th Ed, McGraw-Hill, 2008} |
518 |
END NOTES; |
519 |
|
520 |
CO IS_A compressor; |
521 |
TU IS_A gas_turbine; |
522 |
BU IS_A combustor; |
523 |
DI IS_A dissipator; |
524 |
RE IS_A regenerator; |
525 |
|
526 |
CO.outlet, RE.inlet ARE_THE_SAME; |
527 |
RE.outlet, BU.inlet ARE_THE_SAME; |
528 |
BU.outlet, TU.inlet ARE_THE_SAME; |
529 |
TU.outlet, RE.inlet_hot ARE_THE_SAME; |
530 |
RE.outlet_hot, DI.inlet ARE_THE_SAME; |
531 |
DI.outlet, CO.inlet ARE_THE_SAME; |
532 |
|
533 |
Wdot_CO ALIASES CO.Wdot; |
534 |
Wdot_TU ALIASES TU.Wdot; |
535 |
Wdot IS_A energy_rate; |
536 |
Wdot = Wdot_CO + Wdot_TU; |
537 |
|
538 |
Qdot_BU ALIASES BU.Qdot; |
539 |
Qdot_DI ALIASES DI.Qdot; |
540 |
|
541 |
Qdot IS_A energy_rate; |
542 |
Qdot = Qdot_BU + Qdot_DI; |
543 |
|
544 |
Edot IS_A energy_rate; |
545 |
Edot = Wdot - Qdot; |
546 |
|
547 |
eta IS_A factor; |
548 |
eta = Wdot / Qdot_BU; |
549 |
|
550 |
r_bw IS_A factor; |
551 |
r_bw = -Wdot_CO / Wdot_TU; |
552 |
|
553 |
Qdot_RE ALIASES RE.Qdot; |
554 |
|
555 |
eta_TU ALIASES TU.eta; |
556 |
eta_CO ALIASES CO.eta; |
557 |
epsilon_RE ALIASES RE.epsilon; |
558 |
|
559 |
braytonpressureratio ALIASES CO.r; |
560 |
METHODS |
561 |
METHOD on_load; |
562 |
FIX CO.eta, TU.eta; |
563 |
CO.eta := 0.88; |
564 |
TU.eta := 0.85; |
565 |
FIX CO.inlet.T, TU.inlet.T; |
566 |
CO.inlet.T := 300 {K}; |
567 |
TU.inlet.T := 1300 {K}; |
568 |
FIX CO.r; |
569 |
CO.r := 4.5; |
570 |
FIX CO.inlet.p; |
571 |
CO.inlet.p := 1 {bar}; |
572 |
FIX CO.inlet.mdot; |
573 |
CO.inlet.mdot := 1 {kg/s}; |
574 |
FIX BU.eta; |
575 |
BU.eta := 1; |
576 |
FIX RE.epsilon; |
577 |
RE.epsilon := 0.8; |
578 |
END on_load; |
579 |
END brayton_regenerative; |
580 |
|
581 |
|
582 |
|
583 |
|
584 |
MODEL brayton_intercool_reheat_regen; |
585 |
NOTES |
586 |
'description' SELF { |
587 |
This is a model of a Brayton cycle with intercooling, reheating, and |
588 |
regeneration. |
589 |
|
590 |
It has an irreversible compressor (eta=0.8) and turbine (eta=0.85) |
591 |
and operates between 300 K and 1300 K, with a compression ratio of 8 |
592 |
and an assumed inlet pressure of 1 bar. The regenerator |
593 |
effectiveness is 0.8. |
594 |
|
595 |
In adding the intercooling and reheating stages, we assume an |
596 |
intermediate pressure that results in two compression stages of |
597 |
equal pressure ratio, and two turbine stages of equal pressure |
598 |
ratio. |
599 |
|
600 |
Based on example 9-8 from Çengel & Boles, 'Thermodynamics: An |
601 |
Engineering Approach', 6th Ed, McGraw-Hill, 2008} |
602 |
END NOTES; |
603 |
|
604 |
CO1, CO2 IS_A compressor; |
605 |
TU1, TU2 IS_A gas_turbine; |
606 |
BU IS_A combustor; |
607 |
DI IS_A dissipator; |
608 |
RE IS_A regenerator; |
609 |
IC IS_A dissipator; |
610 |
RH IS_A combustor; |
611 |
|
612 |
CO1.outlet, IC.inlet ARE_THE_SAME; |
613 |
IC.outlet, CO2.inlet ARE_THE_SAME; |
614 |
CO2.outlet, RE.inlet ARE_THE_SAME; |
615 |
RE.outlet, BU.inlet ARE_THE_SAME; |
616 |
BU.outlet, TU1.inlet ARE_THE_SAME; |
617 |
TU1.outlet, RH.inlet ARE_THE_SAME; |
618 |
RH.outlet, TU2.inlet ARE_THE_SAME; |
619 |
TU2.outlet, RE.inlet_hot ARE_THE_SAME; |
620 |
RE.outlet_hot, DI.inlet ARE_THE_SAME; |
621 |
DI.outlet, CO1.inlet ARE_THE_SAME; |
622 |
|
623 |
Wdot_CO1 ALIASES CO1.Wdot; |
624 |
Wdot_CO2 ALIASES CO2.Wdot; |
625 |
Wdot_TU1 ALIASES TU1.Wdot; |
626 |
Wdot_TU2 ALIASES TU2.Wdot; |
627 |
|
628 |
Wdot_CO, Wdot_TU, Wdot IS_A energy_rate; |
629 |
Wdot_CO = Wdot_CO1 + Wdot_CO2; |
630 |
Wdot_TU = Wdot_TU1 + Wdot_TU2; |
631 |
Wdot = Wdot_CO + Wdot_TU; |
632 |
|
633 |
Qdot_BU ALIASES BU.Qdot; |
634 |
Qdot_DI ALIASES DI.Qdot; |
635 |
Qdot_IC ALIASES IC.Qdot; |
636 |
Qdot_RH ALIASES RH.Qdot; |
637 |
|
638 |
Qdot IS_A energy_rate; |
639 |
Qdot = Qdot_BU + Qdot_DI + Qdot_IC + Qdot_RH; |
640 |
|
641 |
Edot IS_A energy_rate; |
642 |
Edot = Wdot - Qdot; |
643 |
|
644 |
eta IS_A factor; |
645 |
eta = Wdot / Qdot_BU; |
646 |
|
647 |
CO1.r = CO2.r; |
648 |
TU1.r = TU2.r; |
649 |
|
650 |
RH.outlet.T = BU.outlet.T; |
651 |
IC.outlet.T = DI.outlet.T; |
652 |
|
653 |
r IS_A factor; |
654 |
r = CO2.outlet.p / CO1.inlet.p; |
655 |
|
656 |
r_bw IS_A factor; |
657 |
r_bw = -Wdot_CO / Wdot_TU; |
658 |
|
659 |
Qdot_RE ALIASES RE.Qdot; |
660 |
|
661 |
eta_TU1 ALIASES TU1.eta; |
662 |
eta_TU2 ALIASES TU2.eta; |
663 |
eta_CO1 ALIASES CO1.eta; |
664 |
eta_CO2 ALIASES CO2.eta; |
665 |
epsilon_RE ALIASES RE.epsilon; |
666 |
METHODS |
667 |
METHOD on_load; |
668 |
FIX CO1.eta, CO2.eta, TU1.eta, TU2.eta; |
669 |
CO1.eta := 0.8; |
670 |
CO2.eta := 0.8; |
671 |
TU1.eta := 0.85; |
672 |
TU2.eta := 0.85; |
673 |
FIX CO1.inlet.T, TU1.inlet.T; |
674 |
CO1.inlet.T := 300 {K}; |
675 |
TU1.inlet.T := 1300 {K}; |
676 |
FIX r; |
677 |
r := 8; |
678 |
FIX CO1.inlet.p; |
679 |
CO1.inlet.p := 1 {bar}; |
680 |
FIX CO1.inlet.mdot; |
681 |
CO1.inlet.mdot := 1 {kg/s}; |
682 |
FIX BU.eta, RH.eta; |
683 |
BU.eta := 1; |
684 |
RH.eta := 1; |
685 |
FIX RE.epsilon; |
686 |
RE.epsilon := 0.8; |
687 |
END on_load; |
688 |
END brayton_intercool_reheat_regen; |