1 |
REQUIRE "atoms.a4l"; |
2 |
(* => atoms.a4l, measures.a4l, system.a4l, basemodel.a4l *) |
3 |
REQUIRE "plot.a4l"; |
4 |
(* => plot.a4l, atoms.a4l, measures.a4l, system.a4l, basemodel.a4l *) |
5 |
PROVIDE "ternary_plot.a4l"; |
6 |
|
7 |
(* |
8 |
* ternary_plot.a4l |
9 |
* by Kenneth H. Tyner |
10 |
* Part of the ASCEND Library |
11 |
* $Date: 1998/06/17 19:32:35 $ |
12 |
* $Revision: 1.6 $ |
13 |
* $Author: mthomas $ |
14 |
* $Source: /afs/cs.cmu.edu/project/ascend/Repository/models/ternary_plot.a4l,v $ |
15 |
* |
16 |
* This file is part of the ASCEND Modeling Library. |
17 |
* |
18 |
* Copyright (C) 1997 Carnegie Mellon University |
19 |
* |
20 |
* The ASCEND Modeling Library is free software; you can redistribute |
21 |
* it and/or modify it under the terms of the GNU General Public |
22 |
* License as published by the Free Software Foundation; either |
23 |
* version 2 of the License, or (at your option) any later version. |
24 |
* |
25 |
* The ASCEND Modeling Library is distributed in hope that it will be |
26 |
* useful, but WITHOUT ANY WARRANTY; without even the implied |
27 |
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. |
28 |
* See the GNU General Public License for more details. |
29 |
* |
30 |
* You should have received a copy of the GNU General Public License |
31 |
* along with the program; if not, write to the Free Software |
32 |
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139 USA. Check |
33 |
* the file named COPYING. |
34 |
*) |
35 |
|
36 |
(* |
37 |
T E R N A R Y _ P L O T . A 4 L |
38 |
------------------------------- |
39 |
|
40 |
AUTHOR: Kenneth H. Tyner |
41 |
|
42 |
DATES: 6/97 - First Public Release |
43 |
|
44 |
|
45 |
CONTENTS: Ternary plots to complement distillation modeling. |
46 |
|
47 |
|
48 |
|
49 |
|
50 |
|
51 |
NOTES: These models useable but are still in a state of flux. |
52 |
The parameter lists may change without notice!!!! |
53 |
*) |
54 |
MODEL ternary_plot_right_all( |
55 |
components WILL_BE set OF symbol_constant; |
56 |
npnts IS_A set OF integer_constant; |
57 |
comp_data[components][npnts] WILL_BE real; |
58 |
) WHERE ( |
59 |
CARD[components] = 3; |
60 |
); |
61 |
(* make triangle *) |
62 |
nt_points IS_A set OF integer_constant; |
63 |
nt_points :== [0..3]; |
64 |
x_points[nt_points] IS_A real; |
65 |
y_points[nt_points] IS_A real; |
66 |
triangle IS_A plt_curve(nt_points,y_points,x_points); |
67 |
|
68 |
FOR i IN components CREATE |
69 |
FOR j IN [components - [i]] CREATE |
70 |
curve[i][j] IS_A |
71 |
plt_curve(npnts,comp_data[i],comp_data[j]); |
72 |
END FOR; |
73 |
END FOR; |
74 |
FOR i IN components CREATE |
75 |
FOR j IN [components - [i]] CREATE |
76 |
plots[i][j][plot_set[i][j]] ALIASES ( |
77 |
triangle, curve[i][j] |
78 |
) WHERE plot_set[i][j] IS_A set OF symbol_constant |
79 |
WITH_VALUE ('triangle','profile'); |
80 |
END FOR; |
81 |
END FOR; |
82 |
FOR i IN components CREATE |
83 |
FOR j IN [components - [i]] CREATE |
84 |
plot[i][j] IS_A |
85 |
plt_plot_symbol(plot_set[i][j], |
86 |
plots[i][j]); |
87 |
END FOR; |
88 |
END FOR; |
89 |
|
90 |
METHODS |
91 |
METHOD default_self; |
92 |
x_points[0,2,3] := 0; |
93 |
x_points[1] := 1; |
94 |
y_points[0,1,3] := 0; |
95 |
y_points[2] := 1; |
96 |
FOR i IN components DO |
97 |
FOR j IN [components - [i]] DO |
98 |
plot[i][j].title := 'i vs j'; |
99 |
plot[i][j].YLabel := i; |
100 |
plot[i][j].XLabel := j; |
101 |
plot[i][j].Ylow := 0; |
102 |
plot[i][j].Yhigh := 1; |
103 |
END FOR; |
104 |
END FOR; |
105 |
END default_self; |
106 |
METHOD default_all; |
107 |
RUN default_self; |
108 |
END default_all; |
109 |
METHOD scale_self; |
110 |
END scale_self; |
111 |
METHOD scale_all; |
112 |
RUN scale_self; |
113 |
END scale_all; |
114 |
METHOD bound_self; |
115 |
END bound_self; |
116 |
METHOD bound_all; |
117 |
RUN bound_self; |
118 |
END bound_all; |
119 |
METHOD check_self; |
120 |
END check_self; |
121 |
METHOD check_all; |
122 |
RUN check_self; |
123 |
END check_all; |
124 |
END ternary_plot_right_all; |
125 |
|
126 |
MODEL ternary_plot_equilateral_all( |
127 |
components WILL_BE set OF symbol_constant; |
128 |
npnts WILL_BE set OF integer_constant; |
129 |
comp_data[components][npnts] WILL_BE real; |
130 |
) WHERE ( |
131 |
CARD[components] = 3; |
132 |
); |
133 |
(* make triangle *) |
134 |
|
135 |
tcomp1[0..58] IS_A fraction; |
136 |
tcomp2[0..58] IS_A fraction; |
137 |
|
138 |
nt_points IS_A set OF integer_constant; |
139 |
nt_points :== [0..58]; |
140 |
x_points[nt_points] IS_A fraction; |
141 |
y_points[nt_points] IS_A fraction; |
142 |
triangle IS_A plt_curve(nt_points,y_points,x_points); |
143 |
|
144 |
|
145 |
x_comp_top[1..2][components][npnts] IS_A fraction; |
146 |
y_comp_top[components][npnts] IS_A fraction; |
147 |
|
148 |
FOR i IN components CREATE |
149 |
FOR j IN npnts CREATE |
150 |
x_comp_top[1][i][j] = (comp_data[CHOICE[components - [i]]][j] + |
151 |
comp_data[components - [i,CHOICE[components - [i]]]][j])/2; |
152 |
x_comp_top[2][i][j] = 1 - x_comp_top[1][i][j]; |
153 |
y_comp_top[i][j] = 2 * abs(comp_data[CHOICE[components - [i]]][j] |
154 |
- x_comp_top[1][i][j]); |
155 |
END FOR; |
156 |
END FOR; |
157 |
|
158 |
FOR i IN components CREATE |
159 |
FOR j IN [1..2] CREATE |
160 |
curve[i][j] IS_A |
161 |
plt_curve(npnts,y_comp_top[i],x_comp_top[j][i]); |
162 |
END FOR; |
163 |
END FOR; |
164 |
|
165 |
FOR i IN components CREATE |
166 |
FOR j IN [1..2] CREATE |
167 |
plots[i][j][plot_set[i][j]] ALIASES ( |
168 |
triangle, curve[i][j] |
169 |
) WHERE plot_set[i][j] IS_A set OF symbol_constant |
170 |
WITH_VALUE ('triangle','profile'); |
171 |
END FOR; |
172 |
END FOR; |
173 |
FOR i IN components CREATE |
174 |
FOR j IN [1..2] CREATE |
175 |
plot[i][j] IS_A |
176 |
plt_plot_symbol(plot_set[i][j], |
177 |
plots[i][j]); |
178 |
END FOR; |
179 |
END FOR; |
180 |
|
181 |
METHODS |
182 |
METHOD default_self; |
183 |
tcomp1[0..58].fixed := TRUE; |
184 |
tcomp2[0..58].fixed := TRUE; |
185 |
|
186 |
tcomp1[0] := 1; |
187 |
tcomp2[0] := 0; |
188 |
FOR i IN [1..5] DO |
189 |
tcomp1[4*i-3] := 0; |
190 |
tcomp1[4*i-3+1] := 0; |
191 |
tcomp2[4*i-3] := tcomp1[4*i-3-1]; |
192 |
tcomp2[4*i-3+1] := tcomp2[4*i-3] - 0.1; |
193 |
tcomp1[4*i-3+2] := tcomp2[4*i-3+1]; |
194 |
tcomp1[4*i-3+3] := tcomp1[4*i-3+2] - 0.1; |
195 |
tcomp2[4*i-3+2] := 0; |
196 |
tcomp2[4*i-3+3] := 0; |
197 |
END FOR; |
198 |
|
199 |
FOR i IN [6..10] DO |
200 |
tcomp2[4*i-3] := tcomp2[4*i-4] + 0.1; |
201 |
tcomp2[4*i-3+1] := tcomp2[4*i-3]; |
202 |
tcomp2[4*i-3+2] := tcomp2[4*i-3+1] + 0.1; |
203 |
tcomp2[4*i-3+3] := tcomp2[4*i-3+2]; |
204 |
|
205 |
tcomp1[4*i-3] := 0; |
206 |
tcomp1[4*i-3+1] := 1 - tcomp2[4*i-3+1]; |
207 |
tcomp1[4*i-3+2] := 1 - tcomp2[4*i-3+2]; |
208 |
tcomp1[4*i-3+3] := 0; |
209 |
END FOR; |
210 |
tcomp1[40] := 0.1; |
211 |
tcomp2[40] := 0.9; |
212 |
FOR i IN [10..14] DO |
213 |
tcomp1[4*i+1] := tcomp1[4*i+1-1]; |
214 |
tcomp1[4*i+1+1] := tcomp1[4*i+1] + 0.1; |
215 |
tcomp1[4*i+1+2] := tcomp1[4*i+1+1]; |
216 |
tcomp1[4*i+1+3] := tcomp1[4*i+1+2] + 0.1; |
217 |
tcomp2[4*i+1] := 0; |
218 |
tcomp2[4*i+1+1] := 0; |
219 |
tcomp2[4*i+1+2] := 1 - tcomp1[4*i+1+2]; |
220 |
tcomp2[4*i+1+3] := 1 - tcomp1[4*i+1+3]; |
221 |
END FOR; |
222 |
tcomp1[59..60] := 1; |
223 |
tcomp2[59..60] := 0; |
224 |
FOR i IN components DO |
225 |
FOR j IN [1..2] DO |
226 |
plot[i][j].title := 'i vs j'; |
227 |
plot[i][j].YLabel := i; |
228 |
plot[i][j].XLabel := j; |
229 |
plot[i][j].Ylow := 0; |
230 |
plot[i][j].Yhigh := 1; |
231 |
END FOR; |
232 |
END FOR; |
233 |
|
234 |
FOR i IN nt_points DO |
235 |
x_points[i] := (tcomp2[i] - tcomp1[i] + 1)/2; |
236 |
y_points[i] := 2 * abs(tcomp2[i] - x_points[i]); |
237 |
END FOR; |
238 |
|
239 |
END default_self; |
240 |
METHOD default_all; |
241 |
RUN default_self; |
242 |
END default_all; |
243 |
METHOD scale_self; |
244 |
END scale_self; |
245 |
METHOD scale_all; |
246 |
RUN scale_self; |
247 |
END scale_all; |
248 |
METHOD bound_self; |
249 |
END bound_self; |
250 |
METHOD bound_all; |
251 |
RUN bound_self; |
252 |
END bound_all; |
253 |
METHOD check_self; |
254 |
END check_self; |
255 |
METHOD check_all; |
256 |
RUN check_self; |
257 |
END check_all; |
258 |
|
259 |
END ternary_plot_equilateral_all; |
260 |
|
261 |
MODEL ternary_plot_right( |
262 |
Title IS_A symbol_constant; |
263 |
components WILL_BE set OF symbol_constant; |
264 |
y_comp IS_A symbol_constant; |
265 |
x_comp IS_A symbol_constant; |
266 |
npnts IS_A set OF integer_constant; |
267 |
comp_data[components][npnts] WILL_BE fraction; |
268 |
) WHERE ( |
269 |
CARD[components] = 3; |
270 |
y_comp IN components == TRUE; |
271 |
x_comp IN components == TRUE; |
272 |
); |
273 |
(* make triangle *) |
274 |
nt_points IS_A set OF integer_constant; |
275 |
nt_points :== [0..3]; |
276 |
x_points[nt_points] IS_A real; |
277 |
y_points[nt_points] IS_A real; |
278 |
triangle IS_A plt_curve(nt_points,y_points,x_points); |
279 |
|
280 |
curve IS_A |
281 |
plt_curve(npnts,comp_data[y_comp],comp_data[x_comp]); |
282 |
|
283 |
plots[plot_set] ALIASES ( |
284 |
triangle, curve |
285 |
) WHERE plot_set IS_A set OF symbol_constant |
286 |
WITH_VALUE ('triangle','profile'); |
287 |
plot IS_A |
288 |
plt_plot_symbol(plot_set, |
289 |
plots); |
290 |
|
291 |
METHODS |
292 |
METHOD default_self; |
293 |
x_points[0,2,3] := 0; |
294 |
x_points[1] := 1; |
295 |
y_points[0,1,3] := 0; |
296 |
y_points[2] := 1; |
297 |
|
298 |
plot.title := Title; |
299 |
plot.YLabel := y_comp; |
300 |
plot.XLabel := x_comp; |
301 |
plot.Ylow := 0; |
302 |
plot.Yhigh := 1; |
303 |
plot.Xlow := 0; |
304 |
plot.Xhigh := 1; |
305 |
plots['profile'].legend := 'profile'; |
306 |
plots['triangle'].legend := 'triangle'; |
307 |
END default_self; |
308 |
METHOD default_all; |
309 |
RUN default_self; |
310 |
END default_all; |
311 |
METHOD scale_self; |
312 |
END scale_self; |
313 |
METHOD scale_all; |
314 |
RUN scale_self; |
315 |
END scale_all; |
316 |
METHOD bound_self; |
317 |
END bound_self; |
318 |
METHOD bound_all; |
319 |
RUN bound_self; |
320 |
END bound_all; |
321 |
METHOD check_self; |
322 |
END check_self; |
323 |
METHOD check_all; |
324 |
RUN check_self; |
325 |
END check_all; |
326 |
END ternary_plot_right; |
327 |
|
328 |
MODEL ternary_plot_equilateral( |
329 |
Title IS_A symbol_constant; |
330 |
components WILL_BE set OF symbol_constant; |
331 |
left_comp IS_A symbol_constant; |
332 |
right_comp IS_A symbol_constant; |
333 |
npnts IS_A set OF integer_constant; |
334 |
comp_data[components][npnts] WILL_BE fraction; |
335 |
) WHERE ( |
336 |
CARD[components] = 3; |
337 |
left_comp IN components == TRUE; |
338 |
right_comp IN components == TRUE; |
339 |
); |
340 |
(* make triangle *) |
341 |
|
342 |
tcomp1[0..60] IS_A fraction; |
343 |
tcomp2[0..60] IS_A fraction; |
344 |
|
345 |
nt_points IS_A set OF integer_constant; |
346 |
nt_points :== [0..60]; |
347 |
x_points[nt_points] IS_A fraction; |
348 |
y_points[nt_points] IS_A fraction; |
349 |
triangle IS_A plt_curve(nt_points,y_points,x_points); |
350 |
|
351 |
x_comp_eq[npnts] IS_A fraction; |
352 |
y_comp_eq[npnts] IS_A fraction; |
353 |
|
354 |
FOR i IN npnts CREATE |
355 |
x_comp_eq[i] = (comp_data[right_comp][i] - |
356 |
comp_data[left_comp][i] + 1)/2; |
357 |
y_comp_eq[i] = 2 * abs(comp_data[right_comp][i] - x_comp_eq[i]); |
358 |
END FOR; |
359 |
|
360 |
curve IS_A |
361 |
plt_curve(npnts,y_comp_eq,x_comp_eq); |
362 |
|
363 |
plots[plot_set] ALIASES ( |
364 |
triangle, curve |
365 |
) WHERE plot_set IS_A set OF symbol_constant |
366 |
WITH_VALUE ('triangle','profile'); |
367 |
|
368 |
plot IS_A |
369 |
plt_plot_symbol(plot_set, |
370 |
plots); |
371 |
|
372 |
METHODS |
373 |
METHOD default_self; |
374 |
tcomp1[0..58].fixed := TRUE; |
375 |
tcomp2[0..58].fixed := TRUE; |
376 |
|
377 |
|
378 |
tcomp1[0] := 1; |
379 |
tcomp2[0] := 0; |
380 |
FOR i IN [1..5] DO |
381 |
tcomp1[4*i-3] := 0; |
382 |
tcomp1[4*i-3+1] := 0; |
383 |
tcomp2[4*i-3] := tcomp1[4*i-3-1]; |
384 |
tcomp2[4*i-3+1] := tcomp2[4*i-3] - 0.1; |
385 |
tcomp1[4*i-3+2] := tcomp2[4*i-3+1]; |
386 |
tcomp1[4*i-3+3] := tcomp1[4*i-3+2] - 0.1; |
387 |
tcomp2[4*i-3+2] := 0; |
388 |
tcomp2[4*i-3+3] := 0; |
389 |
END FOR; |
390 |
|
391 |
FOR i IN [6..10] DO |
392 |
tcomp2[4*i-3] := tcomp2[4*i-4] + 0.1; |
393 |
tcomp2[4*i-3+1] := tcomp2[4*i-3]; |
394 |
tcomp2[4*i-3+2] := tcomp2[4*i-3+1] + 0.1; |
395 |
tcomp2[4*i-3+3] := tcomp2[4*i-3+2]; |
396 |
|
397 |
tcomp1[4*i-3] := 0; |
398 |
tcomp1[4*i-3+1] := 1 - tcomp2[4*i-3+1]; |
399 |
tcomp1[4*i-3+2] := 1 - tcomp2[4*i-3+2]; |
400 |
tcomp1[4*i-3+3] := 0; |
401 |
END FOR; |
402 |
tcomp1[40] := 0.1; |
403 |
tcomp2[40] := 0.9; |
404 |
FOR i IN [10..14] DO |
405 |
tcomp1[4*i+1] := tcomp1[4*i+1-1]; |
406 |
tcomp1[4*i+1+1] := tcomp1[4*i+1] + 0.1; |
407 |
tcomp1[4*i+1+2] := tcomp1[4*i+1+1]; |
408 |
tcomp1[4*i+1+3] := tcomp1[4*i+1+2] + 0.1; |
409 |
tcomp2[4*i+1] := 0; |
410 |
tcomp2[4*i+1+1] := 0; |
411 |
tcomp2[4*i+1+2] := 1 - tcomp1[4*i+1+2]; |
412 |
tcomp2[4*i+1+3] := 1 - tcomp1[4*i+1+3]; |
413 |
END FOR; |
414 |
tcomp1[59..60] := 1; |
415 |
tcomp2[59..60] := 0; |
416 |
FOR i IN nt_points DO |
417 |
x_points[i] := (tcomp2[i] - tcomp1[i] + 1)/2; |
418 |
y_points[i] := 2 * abs(tcomp2[i] - x_points[i]); |
419 |
END FOR; |
420 |
plot.title := Title; |
421 |
FOR i IN [components - [left_comp] - [right_comp]] DO |
422 |
plot.YLabel := i; |
423 |
END FOR; |
424 |
plot.XLabel := right_comp; |
425 |
plot.Ylow := 0; |
426 |
plot.Yhigh := 1; |
427 |
plot.Xlow := 0; |
428 |
plot.Xhigh := 1; |
429 |
plots['profile'].legend := 'profile'; |
430 |
plots['triangle'].legend := 'triangle'; |
431 |
END default_self; |
432 |
METHOD default_all; |
433 |
RUN default_self; |
434 |
END default_all; |
435 |
METHOD scale_self; |
436 |
END scale_self; |
437 |
METHOD scale_all; |
438 |
RUN scale_self; |
439 |
END scale_all; |
440 |
METHOD bound_self; |
441 |
END bound_self; |
442 |
METHOD bound_all; |
443 |
RUN bound_self; |
444 |
END bound_all; |
445 |
METHOD check_self; |
446 |
END check_self; |
447 |
METHOD check_all; |
448 |
RUN check_self; |
449 |
END check_all; |
450 |
METHOD seqmod; |
451 |
tcomp1[0..60].fixed := TRUE; |
452 |
tcomp2[0..60].fixed := TRUE; |
453 |
END seqmod; |
454 |
METHOD reset; |
455 |
RUN seqmod; |
456 |
comp_data[components][npnts].fixed := TRUE; |
457 |
END reset; |
458 |
END ternary_plot_equilateral; |
459 |
|
460 |
MODEL ternary_plot_equilateral2( |
461 |
Title IS_A symbol_constant; |
462 |
components WILL_BE set OF symbol_constant; |
463 |
left_comp IS_A symbol_constant; |
464 |
right_comp IS_A symbol_constant; |
465 |
curves IS_A set OF symbol_constant; |
466 |
curve[curves] WILL_BE plt_curve; |
467 |
) WHERE ( |
468 |
CARD[components] = 3; |
469 |
left_comp IN components == TRUE; |
470 |
right_comp IN components == TRUE; |
471 |
); |
472 |
(* make triangle *) |
473 |
|
474 |
tcomp1[0..60] IS_A fraction; |
475 |
tcomp2[0..60] IS_A fraction; |
476 |
|
477 |
nt_points IS_A set OF integer_constant; |
478 |
nt_points :== [0..60]; |
479 |
x_points[nt_points] IS_A fraction; |
480 |
y_points[nt_points] IS_A fraction; |
481 |
triangle IS_A plt_curve(nt_points,y_points,x_points); |
482 |
|
483 |
plots[plot_set] ALIASES ( |
484 |
triangle, curve[curves] |
485 |
) WHERE plot_set IS_A set OF symbol_constant |
486 |
WITH_VALUE ('triangle',curves); |
487 |
|
488 |
plot IS_A |
489 |
plt_plot_symbol(plot_set, |
490 |
plots); |
491 |
|
492 |
METHODS |
493 |
METHOD default_self; |
494 |
tcomp1[0..58].fixed := TRUE; |
495 |
tcomp2[0..58].fixed := TRUE; |
496 |
|
497 |
|
498 |
tcomp1[0] := 1; |
499 |
tcomp2[0] := 0; |
500 |
FOR i IN [1..5] DO |
501 |
tcomp1[4*i-3] := 0; |
502 |
tcomp1[4*i-3+1] := 0; |
503 |
tcomp2[4*i-3] := tcomp1[4*i-3-1]; |
504 |
tcomp2[4*i-3+1] := tcomp2[4*i-3] - 0.1; |
505 |
tcomp1[4*i-3+2] := tcomp2[4*i-3+1]; |
506 |
tcomp1[4*i-3+3] := tcomp1[4*i-3+2] - 0.1; |
507 |
tcomp2[4*i-3+2] := 0; |
508 |
tcomp2[4*i-3+3] := 0; |
509 |
END FOR; |
510 |
|
511 |
FOR i IN [6..10] DO |
512 |
tcomp2[4*i-3] := tcomp2[4*i-4] + 0.1; |
513 |
tcomp2[4*i-3+1] := tcomp2[4*i-3]; |
514 |
tcomp2[4*i-3+2] := tcomp2[4*i-3+1] + 0.1; |
515 |
tcomp2[4*i-3+3] := tcomp2[4*i-3+2]; |
516 |
|
517 |
tcomp1[4*i-3] := 0; |
518 |
tcomp1[4*i-3+1] := 1 - tcomp2[4*i-3+1]; |
519 |
tcomp1[4*i-3+2] := 1 - tcomp2[4*i-3+2]; |
520 |
tcomp1[4*i-3+3] := 0; |
521 |
END FOR; |
522 |
tcomp1[40] := 0.1; |
523 |
tcomp2[40] := 0.9; |
524 |
FOR i IN [10..14] DO |
525 |
tcomp1[4*i+1] := tcomp1[4*i+1-1]; |
526 |
tcomp1[4*i+1+1] := tcomp1[4*i+1] + 0.1; |
527 |
tcomp1[4*i+1+2] := tcomp1[4*i+1+1]; |
528 |
tcomp1[4*i+1+3] := tcomp1[4*i+1+2] + 0.1; |
529 |
tcomp2[4*i+1] := 0; |
530 |
tcomp2[4*i+1+1] := 0; |
531 |
tcomp2[4*i+1+2] := 1 - tcomp1[4*i+1+2]; |
532 |
tcomp2[4*i+1+3] := 1 - tcomp1[4*i+1+3]; |
533 |
END FOR; |
534 |
tcomp1[59..60] := 1; |
535 |
tcomp2[59..60] := 0; |
536 |
FOR i IN nt_points DO |
537 |
x_points[i] := (tcomp2[i] - tcomp1[i] + 1)/2; |
538 |
y_points[i] := 2 * abs(tcomp2[i] - x_points[i]); |
539 |
END FOR; |
540 |
plot.title := Title; |
541 |
FOR i IN [components - [left_comp] - [right_comp]] DO |
542 |
plot.YLabel := i; |
543 |
END FOR; |
544 |
plot.XLabel := right_comp; |
545 |
plot.Ylow := 0; |
546 |
plot.Yhigh := 1; |
547 |
plot.Xlow := 0; |
548 |
plot.Xhigh := 1; |
549 |
FOR j IN curves DO |
550 |
plots[j].legend := j; |
551 |
END FOR; |
552 |
plots['triangle'].legend := 'triangle'; |
553 |
|
554 |
END default_self; |
555 |
METHOD default_all; |
556 |
RUN default_self; |
557 |
END default_all; |
558 |
METHOD scale_self; |
559 |
END scale_self; |
560 |
METHOD scale_all; |
561 |
RUN scale_self; |
562 |
END scale_all; |
563 |
METHOD bound_self; |
564 |
END bound_self; |
565 |
METHOD bound_all; |
566 |
RUN bound_self; |
567 |
END bound_all; |
568 |
METHOD check_self; |
569 |
END check_self; |
570 |
METHOD check_all; |
571 |
RUN check_self; |
572 |
END check_all; |
573 |
METHOD values; |
574 |
END values; |
575 |
METHOD seqmod; |
576 |
tcomp1[0..60].fixed := TRUE; |
577 |
tcomp2[0..60].fixed := TRUE; |
578 |
END seqmod; |
579 |
END ternary_plot_equilateral2; |