1 |
REQUIRE "ivpsystem.a4l"; |
2 |
REQUIRE "atoms.a4l"; |
3 |
REQUIRE "johnpye/thermo_types.a4c"; |
4 |
|
5 |
(* |
6 |
An attempt to model direct steam generation in pipe flow, limited to the |
7 |
saturated regime, and with constant-valued friction factor. External heat |
8 |
loss is also simplified. |
9 |
*) |
10 |
REQUIRE "steam/satsteamstream.a4c"; |
11 |
|
12 |
MODEL dsgsat3; |
13 |
n IS_A integer_constant; |
14 |
n :== 4; |
15 |
|
16 |
(* temporal derivatives *) |
17 |
drho_dt[2..n] IS_A density_rate; |
18 |
dmdot_dt[2..n] IS_A mass_rate_rate; |
19 |
du_dt[2..n] IS_A power_per_volume; |
20 |
dTw_dt[2..n] IS_A temperature_rate; |
21 |
|
22 |
(* wall properties *) |
23 |
rho_w IS_A mass_density; |
24 |
D, D_2 IS_A distance; |
25 |
c_w IS_A specific_heat_capacity; |
26 |
A, A_w IS_A area; |
27 |
h_int IS_A heat_transfer_coefficient; (* internal *) |
28 |
h_ext IS_A heat_transfer_coefficient; (* external *) |
29 |
z_A: A = 1{PI}*D^2/4; |
30 |
z_Aw: A_w = 1{PI}*(D_2^2 - D^2)/4; |
31 |
dz IS_A distance; |
32 |
L IS_A distance; |
33 |
z_dz: dz = L / (n - 1); |
34 |
|
35 |
(* fluid properties *) |
36 |
node[1..n] IS_A satsteamstream; |
37 |
|
38 |
(* flow properties *) |
39 |
vel[1..n] IS_A speed; |
40 |
T_w[2..n] IS_A temperature; |
41 |
T[1..n] IS_A temperature; |
42 |
|
43 |
(* constants, for the moment: *) |
44 |
f IS_A positive_factor; |
45 |
(* mu_f IS_A viscosity; *) |
46 |
T_amb IS_A temperature; |
47 |
|
48 |
(* system dynamics *) |
49 |
qdot_t[2..n], qdot_l[2..n] IS_A power_per_length; |
50 |
qdot_s IS_A power_per_length; |
51 |
|
52 |
FOR i IN [1..n] CREATE |
53 |
z_vel[i]: vel[i] = node[i].v*node[i].mdot/A; |
54 |
END FOR; |
55 |
|
56 |
(* some aliases just for easier review of the state of the model *) |
57 |
x[1..n] IS_A fraction; |
58 |
mdot[1..n] IS_A mass_rate; |
59 |
p[1..n] IS_A pressure; |
60 |
FOR i IN [1..n] CREATE |
61 |
x[i], node[i].x ARE_THE_SAME; |
62 |
mdot[i], node[i].mdot ARE_THE_SAME; |
63 |
p[i], node[i].p ARE_THE_SAME; |
64 |
T[i], node[i].T ARE_THE_SAME; |
65 |
END FOR; |
66 |
|
67 |
(* differential equations *) |
68 |
FOR i IN [2..n] CREATE |
69 |
z_massbal[i]: A * drho_dt[i] * dz = - (node[i].mdot - node[i-1].mdot); |
70 |
|
71 |
z_enbal[i]: dz * (qdot_t[i] - node[i].rho * A * du_dt[i]) = |
72 |
+ node[i].mdot * (node[i].u - node[i-1].u) |
73 |
+ (node[i].p*node[i].v*node[i].mdot - node[i-1].p*node[i-1].v*node[i-1].mdot); |
74 |
|
75 |
z_mombal[i]: - dz/A*dmdot_dt[i] = |
76 |
(node[i].p-node[i-1].p) |
77 |
+ dz * f/D/2 * node[i].rho * vel[i]^2 |
78 |
+ (node[i].rho*vel[i]^2 - node[i-1].rho*vel[i-1]^2); |
79 |
|
80 |
z_wall[i]: rho_w*A_w*c_w*dTw_dt[i] = qdot_s - qdot_l[i] - qdot_t[i]; |
81 |
z_loss[i]: qdot_l[i] = h_ext*(1{PI}*D_2)*(T_w[i] - T_amb); |
82 |
z_trans[i]: qdot_t[i] = h_int*(1{PI}*D) *(T_w[i] - node[i].T); |
83 |
|
84 |
(* -- original formulation -- |
85 |
z_massbal[i]: A * drho_dt[i] * dz = - (node[i].mdot - node[i-1].mdot); |
86 |
z_mombal[i]: dz/A*dmdot_dt[i] = -(node[i].p-node[i-1].p) |
87 |
- f/D/2*node[i].rho*node[i].v^2*( |
88 |
node[i].rho*vel[i]^2 - node[i-1].rho*vel[i-1]^2 |
89 |
); |
90 |
z_enbal[i]: dz * (A * drhou_dt[i] - qdot_t[i]) = - (node[i].Hdot - node[i-1].Hdot); |
91 |
z_wall[i]: rho_w*A_w*c_w*dTw_dt[i] = qdot_s - qdot_l[i] - qdot_t[i]; |
92 |
z_loss[i]: qdot_l[i] = h_ext*(1{PI}*D_2)*(T_w[i] - T_amb); |
93 |
z_trans[i]: qdot_t[i] = h_int*(1{PI}*D) *(T_w[i] - node[i].T); |
94 |
*) |
95 |
END FOR; |
96 |
|
97 |
t IS_A time; |
98 |
METHODS |
99 |
METHOD bound_self; |
100 |
vel[1..n].upper_bound := 100 {m/s}; |
101 |
qdot_l[2..n].lower_bound := 0 {W/m}; |
102 |
FOR i IN [1..n] DO |
103 |
RUN node[i].bound_self; |
104 |
END FOR; |
105 |
END bound_self; |
106 |
METHOD default_self; |
107 |
D := 0.06 {m}; |
108 |
D_2 := 0.07 {m}; |
109 |
A_w := 0.25{PI}*D_2^2 -0.25{PI}*D^2; |
110 |
FOR i IN [1..n] DO |
111 |
RUN node[i].default_self; |
112 |
END FOR; |
113 |
END default_self; |
114 |
METHOD values; |
115 |
L := 1 {m}; |
116 |
h_int := 100 {W/m^2/K}; |
117 |
h_ext := 10 {W/m^2/K}; |
118 |
f := 0.01; |
119 |
node[1].mdot := 0.2 {kg/s}; |
120 |
node[1].p := 7 {bar}; |
121 |
node[1].x := 0.2; |
122 |
qdot_s := 1000 {W/m^2} * D_2 * 10; |
123 |
FOR i IN [2..n] DO |
124 |
dmdot_dt[i] := 0.0 {kg/s/s}; |
125 |
du_dt[i] := 0 {W/m^3}; |
126 |
node[i].v := 0.2 {L/kg}; |
127 |
node[i].rho := 6 {kg/L}; |
128 |
node[i].dp_dT := +0.5 {kPa/K}; |
129 |
node[i].p := 5 {bar}; |
130 |
END FOR; |
131 |
END values; |
132 |
METHOD on_load; |
133 |
RUN configure_steady; |
134 |
RUN ode_init; |
135 |
END on_load; |
136 |
(*---------------- a physically sensible steady-state configuration-----------*) |
137 |
METHOD configure_steady; |
138 |
RUN default_self; |
139 |
RUN ClearAll; |
140 |
RUN specify_steady; |
141 |
RUN bound_steady; |
142 |
RUN values; |
143 |
END configure_steady; |
144 |
METHOD bound_steady; |
145 |
RUN bound_self; |
146 |
T_w[2..n].upper_bound := 1000 {K}; |
147 |
END bound_steady; |
148 |
METHOD specify_steady; |
149 |
(* change to a proper steady-state problem, with fluid properties FREEd *) |
150 |
FOR i IN [1..n] DO |
151 |
RUN node[i].specify; |
152 |
FIX dTw_dt[i]; FREE T_w[i]; |
153 |
END FOR; |
154 |
FIX node[1].p; |
155 |
FREE node[1].T; |
156 |
FIX qdot_s; |
157 |
FIX D, D_2, L; |
158 |
FIX h_int, c_w, rho_w, h_ext; |
159 |
FIX f; |
160 |
(* FIX mu_f; *) |
161 |
FIX T_amb; |
162 |
(* fix derivatives to zero *) |
163 |
FOR i IN [2..n] DO |
164 |
(* FIX dmdot_dt[i]; FREE node[i].mdot; *) |
165 |
FREE node[i].x; FIX node[i].p; |
166 |
FIX drho_dt[i]; FREE node[i].p; |
167 |
FIX du_dt[i]; FREE node[i].T; |
168 |
FREE mdot[i]; FIX dmdot_dt[i]; |
169 |
END FOR; |
170 |
END specify_steady; |
171 |
(*------------------------- the dynamic problem ------------------------------*) |
172 |
METHOD configure_dynamic; |
173 |
FOR i IN [2..n] DO |
174 |
FREE drho_dt[i]; FIX node[i].rho; |
175 |
FREE dmdot_dt[i]; FIX node[i].mdot; |
176 |
FREE du_dt[i]; FIX node[i].u; |
177 |
FREE dTw_dt[i]; FIX T_w[i]; |
178 |
FREE node[i].x; |
179 |
FREE node[i].T; |
180 |
END FOR; |
181 |
t := 0 {s}; |
182 |
END configure_dynamic; |
183 |
METHOD free_states; |
184 |
FOR i IN [2..n] DO |
185 |
FREE node[i].rho; |
186 |
FREE node[i].mdot; |
187 |
FREE node[i].u; |
188 |
FREE T_w[i]; |
189 |
END FOR; |
190 |
END free_states; |
191 |
METHOD ode_init; |
192 |
(* add the necessary meta data to allow solving with the integrator *) |
193 |
t.ode_type := -1; |
194 |
|
195 |
FOR i IN [2..n] DO |
196 |
drho_dt[i].ode_id := 4*i; node[i].rho.ode_id := 4*i; |
197 |
drho_dt[i].ode_type := 2; node[i].rho.ode_type := 1; |
198 |
|
199 |
dmdot_dt[i].ode_id := 4*i+1; node[i].mdot.ode_id := 4*i+1; |
200 |
dmdot_dt[i].ode_type := 2; node[i].mdot.ode_type := 1; |
201 |
|
202 |
du_dt[i].ode_id := 4*i+2; node[i].u.ode_id := 4*i+2; |
203 |
du_dt[i].ode_type := 2; node[i].u.ode_type := 1; |
204 |
|
205 |
dTw_dt[i].ode_id := 4*i+3; T_w[i].ode_id := 4*i+3; |
206 |
dTw_dt[i].ode_type := 2; T_w[i].ode_type := 1; |
207 |
END FOR; |
208 |
|
209 |
FOR i IN [1..n] DO |
210 |
p[i].obs_id := 1 + 10*i; |
211 |
x[i].obs_id := 2 + 10*i; |
212 |
node[i].mdot.obs_id := 4 + 10*i; |
213 |
END FOR; |
214 |
FOR i IN [2..n] DO |
215 |
qdot_t[i].obs_id := 3 + 10*i; |
216 |
T_w[i].obs_id := 5 + 10*i; |
217 |
T[i].obs_id := 6 + 10*i; |
218 |
END FOR; |
219 |
END ode_init; |
220 |
METHOD fix_outlet_quality; |
221 |
FIX x[n]; |
222 |
FREE node[1].mdot; |
223 |
END fix_outlet_quality; |
224 |
|
225 |
END dsgsat3; |
226 |
ADD NOTES IN dsgsat2; |
227 |
'QRSlv' iterationlimit {50} |
228 |
END NOTES; |