/[ascend]/trunk/models/small_components.a4l
ViewVC logotype

Contents of /trunk/models/small_components.a4l

Parent Directory Parent Directory | Revision Log Revision Log


Revision 2651 - (show annotations) (download) (as text)
Thu Dec 13 07:29:48 2012 UTC (11 years, 10 months ago) by jpye
File MIME type: text/x-ascend
File size: 97094 byte(s)
Fixing GPL header, removing postal address (rpmlint incorrect-fsf-address)
1 REQUIRE "atoms.a4l";
2 (* => atoms.a4l, measures.a4l, system.a4l, basemodel.a4l *)
3 PROVIDE "components.a4l";
4 (*
5 *
6 * WARNINGS:
7 * - The contents of this file represent a physical
8 * properties database of minimal functionality. Such a
9 * database is just messy conceptually in a declarative language,
10 * so we do not apologize for the modeling style found in this
11 * file.
12 *
13 * - We, of course, would like to replace it with a small wrapper to a
14 * thermodynamic information database with a much wider range
15 * of chemical species. We are aware of no such database of
16 * significant size being placed in the public domain
17 * in source form which we can distribute to all our users.
18 *
19 * 1:
20 * Add species or new correlation coefficients as you need them.
21 * Models you create in the ASCEND IV language are Not subject to
22 * the GNU Public License (GPL) UNLESS you base those models on GNU Public
23 * Licensed ASCEND Libraries. All ASCEND libraries distributed from
24 * Carnegie Mellon are distributed under the GPL unless explicitly noted
25 * as being in the public domain in the distributed source code.
26 *
27 * In the interest of promoting research, we make an EXCEPTION to the
28 * above condition for proprietary physical property data integrated
29 * with ASCEND library models for non-commercial research purposes only.
30 *
31 * If you base a commercial application on GNU Public Licensed ASCEND IV
32 * libraries or modifications or extensions of those libraries, then the
33 * models you create must be released in source code form per the GPL.
34 *
35 * 2: If you have such a properties database to donate, please let us know.
36 * 3:
37 * If you create a wrapper to a proprietary database for use with
38 * ASCEND in a way that entangles your code with our sources, you
39 * are required under the terms of the ASCEND GPL
40 * to _give_ the wrapper code back to us and to make it otherwise
41 * available for public use. This does not require making the
42 * proprietary database public, just the interface. If releasing
43 * such an interface violates the proprietary licensing, then do not
44 * create it in an entangled fashion.
45 * 4:
46 * If you have questions about any of the above, please contact us
47 * ascend+developers@cs.cmu.edu and aw0a@cs.cmu.edu. We will consider
48 * alternative licensing arrangements on a case-by-case basis subject
49 * to keeping the lawyers and accountants on all sides happy.
50 *)
51
52 (*
53 * components.a4l
54 * by Joseph J. Zaher and Ben Allan
55 * Part of the ASCEND Library
56 * $Date: 1998/08/10 16:03:36 $
57 * $Revision: 1.1 $
58 * $Author: ballan $
59 * $Source: /afs/cs.cmu.edu/project/ascend/Repository/models/small_components.a4l,v $
60 *
61 * This file is part of the ASCEND Modeling Library.
62 *
63 * Copyright (C) 1994 Joseph J Zaher
64 * Copyright (C) 1997 Benjamin Andrew Allan
65 *
66 * The ASCEND Modeling Library is free software; you can redistribute
67 * it and/or modify it under the terms of the GNU General Public
68 * License as published by the Free Software Foundation; either
69 * version 2 of the License, or (at your option) any later version.
70 *
71 * The ASCEND Modeling Library is distributed in hope that it
72 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
73 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
74 * See the GNU General Public License for more details.
75 *
76 * You should have received a copy of the GNU General Public License
77 * along with this program. If not, see <http://www.gnu.org/licenses/>.
78 *)
79
80 (**
81 **
82 ** C O M P O N E N T S . A 4 L
83 ** ----------------------------------------
84 **
85 ** AUTHOR: Joseph J. Zaher
86 **
87 ** DATES: 07/91 - Original code.
88 ** 02/92 - Made compatible with new set version of ASCEND.
89 ** Expanded data base, revised vapor pressure data,
90 ** and added UNIFAC group and subgroup sets with help
91 ** of Bob Huss.
92 ** 07/92 - Expanded data base with help of Kay C. Dee.
93 ** 08/92 - Replaced name attribute of each component with a
94 ** formula attribute. Component names are free to be
95 ** specified by the user.
96 ** 03/94 - Made compatible with gnu-ascend.
97 ** 08/94 - Made compatible with H,G or H,S thermo library,
98 ** and with Wilson models written by Boyd Safrit.
99 ** 02/96 - Made compatible with ASCEND IV. Ben Allan.
100 ** 01/97 - Addition OF td_component_constants by _____
101 ** 01/97 - All constants checked by Jennifer Perry
102 ** 03/97 - Added container models for data groups. BAA.
103 ** 03/98 - 99% of the code in this file should be reduced
104 ** to a call on a database.
105 **
106 **
107 ** CONTENTS: ASCEND structure for component physical property constants.
108 ** All anticipated constants which may be used by the models
109 ** of "thermodynamics.a4l" are created in a general model where
110 ** a consistent reference state (298.15{K} and 1.0{atm}) is
111 ** chosen. Specific refinements to actual chemical species are
112 ** made UNIVERSAL to ensure only one instantiation of the
113 ** constants for each component is maintained throughout a
114 ** user's simulation. A reference enthalpy and entropy is
115 ** chosen by default to be those of formation of the component
116 ** from its elements at the reference state.
117 **
118 **
119 **)
120
121 (* Wilson pairs checked by Boyd
122 i_propanol-water
123 i_propanol-ethylene_glycol
124 ethylene_glycol-water
125 acetone-chloroform
126 acetone-benzene
127 acetone-methanol
128 methanol-water
129 benzene-chloroform
130 propadiene-propylene provided by Vince Verneulli OF Sim Sci
131 propadiene-propane provided by Vince Verneulli OF Sim Sci
132 propylene-propane provided by Vince Verneulli OF Sim Sci
133 *)
134
135 MODEL compmodel() REFINES cmumodel();
136 METHODS
137 METHOD check_self;
138 END check_self;
139 METHOD check_all;
140 END check_all;
141 METHOD default_self;
142 END default_self;
143 METHOD default_all;
144 END default_all;
145 METHOD specify;
146 END specify;
147 METHOD scale_self;
148 END scale_self;
149 METHOD scale_all;
150 END scale_all;
151 METHOD bound_self;
152 END bound_self;
153 METHOD bound_all;
154 END bound_all;
155 END compmodel;
156
157 UNIVERSAL MODEL UNIFAC_constants() REFINES compmodel;
158
159 (*
160 REFERENCE:
161 The reference for the bulk of this MODEL is
162 Reid, Prausnitz & Poling, Properties of Gases and Liquids,
163 1986, Chapter 8.
164 DISCLAIMER: DISCLAIMER: DISCLAIMER: DISCLAIMER: DISCLAIMER: DISCLAIMER:
165 The authors of ASCEND and Carnegie Mellon University make
166 absolutely NO WARRANTY about the accuracy of this transcription
167 of the RPP data or of the original data itself, nor do they
168 provide any guarantee that the data here represented is
169 suitable for any purpose academic or commercial.
170 DISCLAIMER: DISCLAIMER: DISCLAIMER: DISCLAIMER: DISCLAIMER: DISCLAIMER:
171 NOTES:
172 The frontiers of group contribution methods have moved on
173 well past the data presented here and the correlations
174 it is used with. Users with a penchant for thermodynamic
175 detail are advised to MODEL their own favorite correlations.
176 COMMON USAGE:
177 The local name of every instance of this MODEL
178 (since it is UNIVERSAL) should always be uc.
179 In the comments that follow, we will use uc where applicable.
180 ANNOTATED:
181 10/96 Ben Allan
182 *)
183
184
185 groups IS_A set OF integer_constant;
186 (*
187 * uc.groups is the main group list (the ones we support) from RPP
188 * Table 8.21 column 1.
189 * Currently supported groups are (in RPP Main index)
190 * 1,2,3,4,5,6,7,8,9,23, and 11
191 *)
192 groups :== [1..47];
193 (* fix a 10, 12-22, 24-47
194 *)
195
196 (*
197 * uc.sub[i IN uc.groups] is the set of secondary groups for the ith
198 * main group. This is the column 2 data of RPP Table 8-21.
199 * The UNION of uc.sub[i] is uc.subgroups, basically the set of
200 * rows in Table 8-21 that we have entered.
201 *)
202 sub[groups] IS_A set OF symbol_constant;
203 sub[1] :== ['CH3', 'CH2', 'CH', 'C'];
204 sub[2] :== ['CH2=CH', 'CH=CH', 'CH2=C', 'CH=C', 'C=C'];
205 sub[3] :== ['ACH', 'AC'];
206 sub[4] :== ['ACCH3', 'ACCH2', 'ACCH'];
207 sub[5] :== ['OH'];
208 sub[6] :== ['CH3OH'];
209 sub[7] :== ['H2O'];
210 sub[8] :== ['ACOH'];
211 sub[9] :== ['CH3CO', 'CH2CO'];
212 sub[10] :== ['CHO'];
213 sub[11] :== ['CH3COO', 'CH2COO'];
214 sub[12] :== ['HCOO'];
215 sub[13] :== ['CH3O', 'CH2O', 'CH-O', 'FCH2O'];
216 sub[14] :== ['CH3NH2', 'CH2NH2', 'CHNH2'];
217 sub[15] :== ['CH3NH', 'CH2NH', 'CHNH'];
218 sub[16] :== ['CH3N', 'CH2N'];
219 sub[17] :== ['ACNH2'];
220 sub[18] :== ['C5H5N', 'C5H4N', 'C5H3N'];
221 sub[19] :== ['CH3CN', 'CH2CN'];
222 sub[20] :== ['COOH', 'HCOOH'];
223 sub[21] :== ['CH2Cl', 'CHCl', 'CCl'];
224 sub[22] :== ['CH2Cl2', 'CHCl2', 'CCl2'];
225 sub[23] :== ['CHCl3', 'CCl3'];
226 sub[24] :== ['CCl4'];
227 sub[25] :== ['ACCl'];
228 sub[26] :== ['CH3NO2', 'CH2NO2', 'CHNO2'];
229 sub[27] :== ['ACNO2'];
230 sub[28] :== ['CS2'];
231 sub[29] :== ['CH3SH', 'CH2SH'];
232 sub[30] :== ['Furfural'];
233 sub[31] :== ['(CH2OH)2'];
234 sub[32] :== ['I'];
235 sub[33] :== ['Br'];
236 sub[34] :== ['CH-trip-C', 'C-trip-C'];
237 sub[35] :== ['Me2SO'];
238 sub[36] :== ['Acry'];
239 sub[37] :== ['Cl(C=C)'];
240 sub[38] :== ['ACF'];
241 sub[39] :== ['DMF-1', 'DMF-2'];
242 sub[40] :== ['CF3', 'CF2', 'CF'];
243 sub[41] :== ['COO'];
244 sub[42] :== ['SiH3', 'SiH2', 'SiH', 'Si'];
245 sub[43] :== ['SiH2O', 'SiHO', 'SiO'];
246 sub[44] :== ['NMP'];
247 sub[45] :== ['tert-N'];
248 sub[46] :== ['Amide'];
249 sub[47] :== ['CON(Me)2', 'CONMeCH2', 'CON(CH2)2'];
250 subgroups IS_A set OF symbol_constant;
251
252 (*
253 * uc. subgroups is the total list of secondary groups we accomodate.
254 *)
255 subgroups :== UNION[sub[i] | i IN groups];
256 group[subgroups] IS_A integer_constant;
257 (*
258 * Next we have a horribly named array, group, that lets us look up the
259 * main group given a particular subgroup. So, for example,
260 * if we want to know the main group of 'CHCl3', then
261 * group['CHCl3'] will give it to us: 'CCl3'.
262 * Note, then, that the assignments which follow in most
263 * cases expand to have several left-hand-sides.
264 *)
265 FOR i IN groups CREATE
266 group[sub[i]] :== i;
267 END FOR;
268
269 a[groups][groups] "binary group interaction parameters" IS_A UNIFAC_a;
270 (*
271 * Now we have uc.a[m][n], a portion of RPP Table 8-22, the main group
272 * interaction matrix which is asymmetric and in principle
273 * dense but in our practice rather sparse.
274 * Adding a main group to this MODEL means adding a row and
275 * column to uc.a, which is a non-trivial exercise until we
276 * get a proper tabular assignment syntax implemented.
277 * Note that such an syntax has been completely scoped but
278 * we've just not yet got round to implementation.
279 * When we do implement, this will be the first test MODEL.
280 * a[i][j] should have i and j being integer_constant!
281 *)
282
283 (* we would like the ascend TABLE syntax or a database
284 * external lookup to handle this data entry.
285 *)
286 (* row 1 *)
287 a[1][1] :== 0.0 {K};
288 a[1][2] :== 86.020 {K};
289 a[1][3] :== 61.13 {K};
290 a[1][4] :== 76.50 {K};
291 a[1][5] :== 986.5 {K};
292 a[1][6] :== 697.2 {K};
293 a[1][7] :== 1318.0 {K};
294 a[1][8] :== 1333.0 {K};
295 a[1][9] :== 476.4 {K};
296 a[1][10] :== 677 {K};
297 a[1][11] :== 232.1 {K};
298 a[1][12] :== 741.4 {K};
299 a[1][13] :== 251.5 {K};
300 a[1][14] :== 391.5 {K};
301 a[1][15] :== 225.7 {K};
302 a[1][16] :== 206.6 {K};
303 a[1][17] :== 920.7 {K};
304 a[1][18] :== 287.7 {K};
305 a[1][19] :== 597 {K};
306 a[1][20] :== 663.5 {K};
307 a[1][21] :== 35.93 {K};
308 a[1][22] :== 53.76 {K};
309 a[1][23] :== 24.90 {K};
310 a[1][24] :== 104.3 {K};
311 a[1][25] :== 321.5 {K};
312 a[1][26] :== 661.5 {K};
313 a[1][27] :== 543 {K};
314 a[1][28] :== 153.6 {K};
315 a[1][29] :== 184.4 {K};
316 a[1][30] :== 354.5 {K};
317 a[1][31] :== 3025 {K};
318 a[1][32] :== 335.8 {K};
319 a[1][33] :== 479.5 {K};
320 a[1][34] :== 298.9 {K};
321 a[1][35] :== 526.5 {K};
322 a[1][36] :== 689 {K};
323 a[1][37] :== -4.189 {K};
324 a[1][38] :== 125.8 {K};
325 a[1][39] :== 485.3 {K};
326 a[1][40] :== -2.859 {K};
327 a[1][41] :== 387.1 {K};
328 a[1][42] :== -450.4 {K};
329 a[1][43] :== 252.7 {K};
330 a[1][44] :== 13.89 {K};
331 a[1][45] :== 383 {K};
332 a[1][46] :== -1380 {K};
333 a[1][47] :== 729 {K};
334
335 (* row 2 *) (* the ?!? numbers in group 2 are bogus. probably entered by ka.
336 * they have been replaced. part looks like a paste of row 4.
337 *)
338 (* old:
339 a[2][1] :== 2520 {K}; (*?!?*)
340 a[2][2] :== 0.0 {K}; (*?!?*)
341 a[2][3] :== 340.7 {K}; (*?!?*)
342 a[2][4] :== 4102 {K}; (*?!?*)
343 a[2][5] :== 693.9 {K}; (*?!?*)
344 a[2][6] :== 1509.0 {K}; (*?!?*)
345 a[2][7] :== 634.2 {K}; (*?!?*)
346 a[2][8] :== 547.4 {K}; (*?!?*)
347 a[2][9] :== 524.5 {K}; (*?!?*)
348 a[2][11] :== 71.23 {K}; (*?!?*)
349 END old *)
350 a[2][1] :== -35.36 {K};
351 a[2][2] :== 0.0 {K};
352 a[2][3] :== 38.81 {K};
353 a[2][4] :== 74.15 {K};
354 a[2][5] :== 524.1 {K};
355 a[2][6] :== 787.6 {K};
356 a[2][7] :== 270.6 {K};
357 a[2][8] :== 526.1 {K};
358 a[2][9] :== 182.6 {K};
359 a[2][10] :== 448.8 {K};
360 a[2][11] :== 37.85 {K};
361 a[2][12] :== 449.1 {K};
362 a[2][13] :== 214.5 {K};
363 a[2][14] :== 240.9 {K};
364 a[2][15] :== 163.9 {K};
365 a[2][16] :== 61.11 {K};
366 a[2][17] :== 749.3 {K};
367 a[2][18] :== 0 {K};
368 a[2][19] :== 336.9 {K};
369 a[2][20] :== 318.9 {K};
370 a[2][21] :== 204.6 {K};
371 a[2][22] :== 5.892 {K};
372 (* old
373 a[2][23] :== 4584.0 {K}; (*?!?*)
374 END old *)
375
376 a[2][23] :== -13.99 {K};
377 a[2][24] :== -109.7 {K};
378 a[2][25] :== 393.1 {K};
379 a[2][26] :== 357.5 {K};
380 a[2][27] :== 0 {K};
381 a[2][28] :== 76.3 {K};
382 a[2][29] :== 0 {K};
383 a[2][30] :== 0 {K};
384 a[2][31] :== 0 {K};
385 a[2][32] :== 0 {K};
386 a[2][33] :== 0 {K};
387 a[2][34] :== 31.14 {K};
388 a[2][35] :== -137.4 {K};
389 a[2][36] :== 0 {K};
390 a[2][37] :== -66.46 {K};
391 a[2][38] :== 0 {K};
392 a[2][39] :== -70.45 {K};
393 a[2][40] :== 0 {K};
394 a[2][41] :== 48.33 {K};
395 a[2][42] :== 0 {K};
396 a[2][43] :== 0 {K};
397 a[2][44] :== 0 {K};
398 a[2][45] :== 0 {K};
399 a[2][46] :== 2340 {K};
400 a[2][47] :== 0 {K};
401 (* row 3 *)
402 a[3][1] :== -11.12 {K};
403 a[3][2] :== 3.446 {K};
404 a[3][3] :== 0.0 {K};
405 a[3][4] :== 167.0 {K};
406 a[3][5] :== 636.10 {K};
407 a[3][6] :== 637.3 {K};
408 a[3][7] :== 903.8 {K};
409 a[3][8] :== 1329.0 {K};
410 a[3][9] :== 25.77 {K};
411 a[3][11] :== 5.994 {K};
412 a[3][10] :== 347.3 {K};
413 a[3][12] :== -92.55 {K};
414 a[3][13] :== 32.14 {K};
415 a[3][14] :== 161.7 {K};
416 a[3][15] :== 122.8 {K};
417 a[3][16] :== 90.49 {K};
418 a[3][17] :== 648.2 {K};
419 a[3][18] :== -4.449 {K};
420 a[3][19] :== 212.5 {K};
421 a[3][20] :== 537.4 {K};
422 a[3][21] :== -18.81 {K};
423 a[3][22] :== -144.4 {K};
424 a[3][23] :== -231.9 {K};
425 a[3][24] :== 3 {K};
426 a[3][25] :== 538.2 {K};
427 a[3][26] :== 168 {K};
428 a[3][27] :== 194.9 {K};
429 a[3][28] :== 52.07 {K};
430 a[3][29] :== -10.43 {K};
431 a[3][30] :== -64.69 {K};
432 a[3][31] :== 210.4 {K};
433 a[3][32] :== 113.3 {K};
434 a[3][33] :== -13.59 {K};
435 a[3][34] :== 0 {K};
436 a[3][35] :== 169.9 {K};
437 a[3][36] :== 0 {K};
438 a[3][37] :== -259.1 {K};
439 a[3][38] :== 389.3 {K};
440 a[3][39] :== 245.6 {K};
441 a[3][40] :== 0 {K};
442 a[3][41] :== 103.5 {K};
443 a[3][42] :== -432.3 {K};
444 a[3][43] :== 238.9 {K};
445 a[3][44] :== -23.88 {K};
446 a[3][45] :== 109 {K};
447 a[3][46] :== 75.9 {K};
448 a[3][47] :== 784 {K};
449 (* row 4 *)
450 a[4][1] :== -69.70 {K};
451 a[4][2] :== -113.6 {K};
452 a[4][3] :== -146.80 {K};
453 a[4][4] :== 0.0 {K};
454 a[4][5] :== 803.20 {K};
455 a[4][6] :== 603.2 {K};
456 a[4][7] :== 5695.00 {K};
457 a[4][8] :== 547.4 {K};
458 a[4][9] :== -52.10 {K};
459 a[4][10] :== 586.6 {K};
460 a[4][11] :== 5688.0 {K};
461
462 a[4][12] :== 115.2 {K};
463 a[4][13] :== 213.1 {K};
464 a[4][14] :== 0 {K};
465 a[4][15] :== 49.29 {K};
466 a[4][16] :== 23.5 {K};
467 a[4][17] :== 664.2 {K};
468 a[4][18] :== 52.8 {K};
469 a[4][19] :== 6096 {K};
470 a[4][20] :== 603.8 {K};
471 a[4][21] :== -114.1 {K};
472 a[4][22] :== -111 {K};
473 a[4][23] :== -12.14 {K};
474 a[4][24] :== -141.3 {K};
475 a[4][25] :== -126.9 {K};
476 a[4][26] :== 3629 {K};
477 a[4][27] :== 4448 {K};
478 a[4][28] :== -9.451 {K};
479 a[4][29] :== 0 {K};
480 a[4][30] :== -20.36 {K};
481 a[4][31] :== 4975 {K};
482 a[4][32] :== 0 {K};
483 a[4][33] :== -171.3 {K};
484 a[4][34] :== 0 {K};
485 a[4][35] :== 4284 {K};
486 a[4][36] :== 0 {K};
487 a[4][37] :== 0 {K};
488 a[4][38] :== 101.4 {K};
489 a[4][39] :== 5629 {K};
490 a[4][40] :== 0 {K};
491 a[4][41] :== 69.26 {K};
492 a[4][42] :== 683.3 {K};
493 a[4][43] :== 355.5 {K};
494 a[4][44] :== 6.214 {K};
495 a[4][45] :== 1320 {K};
496 a[4][46] :== 482 {K};
497 a[4][47] :== 386 {K};
498 (* row 5 *)
499 a[5][1] :== 156.40 {K};
500 a[5][2] :== 475.000 {K};
501 a[5][3] :== 89.60 {K};
502 a[5][4] :== 25.82 {K};
503 a[5][5] :== 0.0 {K};
504 a[5][6] :== -137.1 {K};
505 a[5][7] :== 353.50 {K};
506 a[5][8] :== -259.7 {K};
507 a[5][9] :== 84.0 {K};
508 a[5][10] :== 441.8 {K};
509 a[5][11] :== 101.1 {K};
510 a[5][12] :== 193.1 {K};
511 a[5][13] :== 28.06 {K};
512 a[5][14] :== 83.02 {K};
513 a[5][15] :== 42.7 {K};
514 a[5][16] :== -323 {K};
515 a[5][17] :== -52.39 {K};
516 a[5][18] :== 170 {K};
517 a[5][19] :== 6.712 {K};
518 a[5][20] :== 199 {K};
519 a[5][21] :== 75.62 {K};
520 a[5][22] :== -112.1 {K};
521 a[5][23] :== -98.12 {K};
522 a[5][24] :== 143.1 {K};
523 a[5][25] :== 287.8 {K};
524 a[5][26] :== 256.5 {K};
525 a[5][27] :== 157.1 {K};
526 a[5][28] :== 477 {K};
527 a[5][29] :== 147.5 {K};
528 a[5][30] :== -120.5 {K};
529 a[5][31] :== -318.9 {K};
530 a[5][32] :== 313.5 {K};
531 a[5][33] :== 133.4 {K};
532 a[5][34] :== 0 {K};
533 a[5][35] :== -202.1 {K};
534 a[5][36] :== 0 {K};
535 a[5][37] :== 225.8 {K};
536 a[5][38] :== 44.78 {K};
537 a[5][39] :== -143.9 {K};
538 a[5][40] :== 0 {K};
539 a[5][41] :== 190.3 {K};
540 a[5][42] :== -817.7 {K};
541 a[5][43] :== 202.7 {K};
542 a[5][44] :== 796.9 {K};
543 a[5][45] :== 0 {K};
544 a[5][46] :== 0 {K};
545 a[5][47] :== 0 {K};
546 (* row 6 *)
547 a[6][1] :== 16.51 {K};
548 a[6][2] :== -12.520 {K};
549 a[6][3] :== -50.00 {K};
550 a[6][4] :== -44.50 {K};
551 a[6][5] :== 249.1 {K};
552 a[6][6] :== 0.0 {K};
553 a[6][7] :== -181.0 {K};
554 a[6][8] :== -101.7 {K};
555 a[6][9] :== 23.39 {K};
556 a[6][10] :== 306.4 {K};
557 a[6][11] :== -10.72 {K};
558 a[6][12] :== 193.4 {K};
559 a[6][13] :== -128.6 {K};
560 a[6][14] :== 359.3 {K};
561 a[6][15] :== 266 {K};
562 a[6][16] :== 53.9 {K};
563 a[6][17] :== 489.7 {K};
564 a[6][18] :== 580.5 {K};
565 a[6][19] :== 36.23 {K};
566 a[6][20] :== -289.5 {K};
567 a[6][21] :== -38.32 {K};
568 a[6][22] :== -102.5 {K};
569 a[6][23] :== -139.4 {K};
570 a[6][24] :== -67.8 {K};
571 a[6][25] :== 17.12 {K};
572 a[6][26] :== 75.14 {K};
573 a[6][27] :== 0 {K};
574 a[6][28] :== -31.09 {K};
575 a[6][29] :== 37.84 {K};
576 a[6][30] :== 0 {K};
577 a[6][31] :== 0 {K};
578 a[6][32] :== 0 {K};
579 a[6][33] :== 106.3 {K};
580 a[6][34] :== 0 {K};
581 a[6][35] :== -399.3 {K};
582 a[6][36] :== 0 {K};
583 a[6][37] :== 33.47 {K};
584 a[6][38] :== -48.25 {K};
585 a[6][39] :== -172.4 {K};
586 a[6][40] :== 0 {K};
587 a[6][41] :== 165.7 {K};
588 a[6][42] :== 0 {K};
589 a[6][43] :== 0 {K};
590 a[6][44] :== 0 {K};
591 a[6][45] :== 214 {K};
592 a[6][46] :== 0 {K};
593 a[6][47] :== 0 {K};
594 (* row 7 *)
595 a[7][1] :== 300.00 {K};
596 a[7][2] :== 496.100 {K};
597 a[7][3] :== 362.30 {K};
598 a[7][4] :== 377.60 {K};
599 a[7][5] :== -229.10 {K};
600 a[7][6] :== 289.6 {K};
601 a[7][7] :== 0.0 {K};
602 a[7][8] :== 324.5 {K};
603 a[7][9] :== -195.40 {K};
604 a[7][10] :== -257.3 {K};
605 (* a[7][11] :== 14.42 {K}; ?!?*)
606 a[7][11] :== 72.87 {K};
607 a[7][12] :== 0 {K};
608 a[7][13] :== 540.5 {K};
609 a[7][14] :== 48.89 {K};
610 a[7][15] :== 168 {K};
611 a[7][16] :== 304 {K};
612 a[7][17] :== -59.29 {K};
613 a[7][18] :== 459 {K};
614 a[7][19] :== 112.6 {K};
615 a[7][20] :== -14.09 {K};
616 a[7][21] :== 325.4 {K};
617 a[7][22] :== 370.4 {K};
618 a[7][23] :== 353.7 {K};
619 a[7][24] :== 497.5 {K};
620 a[7][25] :== 678.2 {K};
621 a[7][26] :== 220.6 {K};
622 a[7][27] :== 399.5 {K};
623 a[7][28] :== 887.1 {K};
624 a[7][29] :== 0 {K};
625 a[7][30] :== 188 {K};
626 a[7][31] :== 13.53 {K};
627 a[7][32] :== 0 {K};
628 a[7][33] :== 0 {K};
629 a[7][34] :== 0 {K};
630 a[7][35] :== -139 {K};
631 a[7][36] :== 160.8 {K};
632 a[7][37] :== 0 {K};
633 a[7][38] :== 0 {K};
634 a[7][39] :== 319 {K};
635 a[7][40] :== 0 {K};
636 a[7][41] :== -197.5 {K};
637 a[7][42] :== 0 {K};
638 a[7][43] :== 0 {K};
639 a[7][44] :== 832.2 {K};
640 a[7][45] :== 365 {K};
641 a[7][46] :== 0 {K};
642 a[7][47] :== 0 {K};
643 (* row 8 *)
644 a[8][1] :== 275.8 {K};
645 a[8][2] :== 217.5 {K};
646 a[8][3] :== 25.34 {K};
647 a[8][4] :== 244.2 {K};
648 a[8][5] :== -451.6 {K};
649 a[8][6] :== -265.2 {K};
650 a[8][7] :== -601.8 {K};
651 a[8][8] :== 0.0 {K};
652 a[8][9] :== -356.1 {K};
653 a[8][10] :== 0 {K};
654 a[8][11] :== -449.4 {K};
655 a[8][12] :== 0 {K};
656 a[8][13] :== 0 {K};
657 a[8][14] :== 0 {K};
658 a[8][15] :== 0 {K};
659 a[8][16] :== 0 {K};
660 a[8][17] :== 119.9 {K};
661 a[8][18] :== -305.5 {K};
662 a[8][19] :== 0 {K};
663 a[8][20] :== 0 {K};
664 a[8][21] :== 0 {K};
665 a[8][22] :== 0 {K};
666 a[8][23] :== 0.0 {K};
667 a[8][24] :== 1827 {K};
668 a[8][25] :== 0 {K};
669 a[8][26] :== 0 {K};
670 a[8][27] :== 0 {K};
671 a[8][28] :== 0 {K};
672 a[8][29] :== 0 {K};
673 a[8][30] :== 0 {K};
674 a[8][31] :== -687.1 {K};
675 a[8][32] :== 0 {K};
676 a[8][33] :== 0 {K};
677 a[8][34] :== 0 {K};
678 a[8][35] :== 0 {K};
679 a[8][36] :== 0 {K};
680 a[8][37] :== 0 {K};
681 a[8][38] :== 0 {K};
682 a[8][39] :== 0 {K};
683 a[8][40] :== 0 {K};
684 a[8][41] :== -494.2 {K};
685 (* a[8][42] :== undefined in book. *)
686 a[8][43] :== 0 {K};
687 a[8][44] :== 0 {K};
688 a[8][45] :== 0 {K};
689 a[8][46] :== 0 {K};
690 a[8][47] :== 0 {K};
691 (* row 9 *)
692 a[9][1] :== 26.76 {K};
693 a[9][2] :== 42.920 {K};
694 a[9][3] :== 140.10 {K};
695 a[9][4] :== 365.80 {K};
696 a[9][5] :== 164.5 {K};
697 a[9][6] :== 108.7 {K};
698 a[9][7] :== 472.5 {K};
699 a[9][8] :== -133.1 {K};
700 a[9][9] :== 0.0 {K};
701 a[9][10] :== -37.36 {K};
702 a[9][11] :== -213.7 {K};
703 a[9][12] :== -38.47 {K};
704 a[9][13] :== -103.6 {K};
705 a[9][14] :== 0 {K};
706 a[9][15] :== 0 {K};
707 a[9][16] :== -169 {K};
708 a[9][17] :== 6201 {K};
709 a[9][18] :== 165.1 {K};
710 a[9][19] :== 481.7 {K};
711 a[9][20] :== 669.4 {K};
712 a[9][21] :== -191.7 {K};
713 a[9][22] :== -284 {K};
714 a[9][23] :== -354.6 {K};
715 a[9][24] :== -39.2 {K};
716 a[9][25] :== 174.5 {K};
717 a[9][26] :== 137.5 {K};
718 a[9][27] :== 0 {K};
719 a[9][28] :== 216.1 {K};
720 a[9][29] :== -46.28 {K};
721 a[9][30] :== -163.7 {K};
722 a[9][31] :== 0 {K};
723 a[9][32] :== 53.59 {K};
724 a[9][33] :== 245.2 {K};
725 a[9][34] :== -246.2 {K};
726 a[9][35] :== -44.58 {K};
727 a[9][36] :== 0 {K};
728 a[9][37] :== -34.57 {K};
729 a[9][38] :== 0 {K};
730 a[9][39] :== -61.7 {K};
731 a[9][40] :== 0 {K};
732 a[9][41] :== -18.8 {K};
733 a[9][42] :== 0 {K};
734 a[9][43] :== 0 {K};
735 a[9][44] :== 0 {K};
736 a[9][45] :== 135 {K};
737 a[9][46] :== -1680 {K};
738 a[9][47] :== -58 {K};
739 (* row 10 *)
740 a[10][1] :== 505.7 {K};
741 a[10][2] :== 56.3 {K};
742 a[10][3] :== 23.39 {K};
743 a[10][4] :== 106.6 {K};
744 a[10][5] :== -404.8 {K};
745 a[10][6] :== -340.2 {K};
746 a[10][7] :== 232.7 {K};
747 a[10][8] :== 0 {K};
748 a[10][9] :== 128 {K};
749 a[10][10] :== 0 {K};
750 a[10][11] :== -110.3 {K};
751 a[10][12] :== 11.31 {K};
752 a[10][13] :== 304.1 {K};
753 a[10][14] :== 0 {K};
754 a[10][15] :== 0 {K};
755 a[10][16] :== 0 {K};
756 a[10][17] :== 0 {K};
757 a[10][18] :== 0 {K};
758 a[10][19] :== 0 {K};
759 a[10][20] :== 0 {K};
760 a[10][21] :== 751.9 {K};
761 a[10][22] :== 0 {K};
762 a[10][23] :== -483.7 {K};
763 a[10][24] :== 0 {K};
764 a[10][25] :== 0 {K};
765 a[10][26] :== 0 {K};
766 a[10][27] :== 0 {K};
767 a[10][28] :== 0 {K};
768 a[10][29] :== 0 {K};
769 a[10][30] :== 0 {K};
770 a[10][31] :== 0 {K};
771 a[10][32] :== 0 {K};
772 a[10][33] :== 0 {K};
773 a[10][34] :== 0 {K};
774 a[10][35] :== 0 {K};
775 a[10][36] :== 0 {K};
776 a[10][37] :== 0 {K};
777 a[10][38] :== 0 {K};
778 a[10][39] :== 0 {K};
779 a[10][40] :== 0 {K};
780 a[10][41] :== 0 {K};
781 a[10][42] :== 0 {K};
782 a[10][43] :== 0 {K};
783 a[10][44] :== 0 {K};
784 a[10][45] :== -7.18 {K};
785 a[10][46] :== 333 {K};
786 a[10][47] :== 6810 {K};
787 (* row 11 *)
788 a[11][1] :== 114.8 {K};
789 a[11][2] :== 132.1 {K};
790 a[11][3] :== 85.84 {K};
791 a[11][4] :== -170.0 {K};
792 a[11][5] :== 245.4 {K};
793 a[11][6] :== 249.6 {K};
794 a[11][7] :== 10000.0 {K};
795 a[11][8] :== -36.72 {K};
796 a[11][9] :== 372.2 {K};
797 a[11][10] :== 185.1 {K};
798 a[11][11] :== 0.0 {K};
799 a[11][12] :== 372.9 {K};
800 a[11][13] :== -235.7 {K};
801 a[11][14] :== 0 {K};
802 a[11][15] :== -73.5 {K};
803 a[11][16] :== 0 {K};
804 a[11][17] :== 475.5 {K};
805 a[11][18] :== 0 {K};
806 a[11][19] :== 494.6 {K};
807 a[11][20] :== 660.2 {K};
808 a[11][21] :== -34.74 {K};
809 a[11][22] :== 108.9 {K};
810 a[11][23] :== -209.7 {K};
811 a[11][24] :== 54.47 {K};
812 a[11][25] :== 629 {K};
813 a[11][26] :== -81.13 {K};
814 a[11][27] :== 0 {K};
815 a[11][28] :== 183 {K};
816 a[11][29] :== 0 {K};
817 a[11][30] :== 202.3 {K};
818 a[11][31] :== -101.7 {K};
819 a[11][32] :== 148.3 {K};
820 a[11][33] :== 18.88 {K};
821 a[11][34] :== 0 {K};
822 a[11][35] :== 52.08 {K};
823 a[11][36] :== -28.61 {K};
824 a[11][37] :== -83.3 {K};
825 a[11][38] :== 0 {K};
826 a[11][39] :== 0 {K};
827 a[11][40] :== 0 {K};
828 a[11][41] :== 560.2 {K};
829 a[11][42] :== 0 {K};
830 a[11][43] :== 0 {K};
831 a[11][44] :== 0 {K};
832 a[11][45] :== -54.6 {K};
833 a[11][46] :== 0 {K};
834 a[11][47] :== 6960 {K};
835 (* row 12 *)
836 a[12][1] :== 90.49 {K};
837 a[12][2] :== -62.55 {K};
838 a[12][3] :== 1967 {K};
839 a[12][4] :== 2347 {K};
840 a[12][5] :== 191.2 {K};
841 a[12][6] :== 155.7 {K};
842 a[12][7] :== 0 {K};
843 a[12][8] :== 0 {K};
844 a[12][9] :== 70.42 {K};
845 a[12][10] :== 35.35 {K};
846 a[12][11] :== -261.1 {K};
847 a[12][12] :== 0 {K};
848 a[12][13] :== 0 {K};
849 a[12][14] :== 0 {K};
850 a[12][15] :== 0 {K};
851 a[12][16] :== 0 {K};
852 a[12][17] :== 0 {K};
853 a[12][18] :== 0 {K};
854 a[12][19] :== 0 {K};
855 a[12][20] :== -356.3 {K};
856 a[12][21] :== 0 {K};
857 a[12][22] :== 0 {K};
858 a[12][23] :== -287.2 {K};
859 a[12][24] :== 36.84 {K};
860 a[12][25] :== 0 {K};
861 a[12][26] :== 0 {K};
862 a[12][27] :== 0 {K};
863 a[12][28] :== 0 {K};
864 a[12][29] :== 4.339 {K};
865 a[12][30] :== 0 {K};
866 a[12][31] :== 0 {K};
867 a[12][32] :== 0 {K};
868 a[12][33] :== 0 {K};
869 a[12][34] :== 0 {K};
870 a[12][35] :== 0 {K};
871 a[12][36] :== 0 {K};
872 a[12][37] :== 0 {K};
873 a[12][38] :== 0 {K};
874 a[12][39] :== 0 {K};
875 a[12][40] :== 0 {K};
876 a[12][41] :== -70.24 {K};
877 a[12][42] :== 0 {K};
878 a[12][43] :== 0 {K};
879 a[12][44] :== 0 {K};
880 a[12][45] :== 0 {K};
881 a[12][46] :== 0 {K};
882 a[12][47] :== 0 {K};
883 (* row 13 *)
884 a[13][1] :== 83.36 {K};
885 a[13][2] :== 26.51 {K};
886 a[13][3] :== 52.13 {K};
887 a[13][4] :== 65.69 {K};
888 a[13][5] :== 237.7 {K};
889 a[13][6] :== 238.4 {K};
890 a[13][7] :== -314.7 {K};
891 a[13][8] :== 0 {K};
892 a[13][9] :== 191.1 {K};
893 a[13][10] :== -7.838 {K};
894 a[13][11] :== 461.3 {K};
895 a[13][12] :== 0 {K};
896 a[13][13] :== 0 {K};
897 a[13][14] :== 0 {K};
898 a[13][15] :== 141.7 {K};
899 a[13][16] :== 0 {K};
900 a[13][17] :== 0 {K};
901 a[13][18] :== 0 {K};
902 a[13][19] :== -18.51 {K};
903 a[13][20] :== 664.6 {K};
904 a[13][21] :== 301.1 {K};
905 a[13][22] :== 137.8 {K};
906 a[13][23] :== -154.3 {K};
907 a[13][24] :== 47.67 {K};
908 a[13][25] :== 66.15 {K};
909 a[13][26] :== 95.18 {K};
910 a[13][27] :== 0 {K};
911 a[13][28] :== 140.9 {K};
912 a[13][29] :== -8.538 {K};
913 a[13][30] :== 0 {K};
914 a[13][31] :== -20.11 {K};
915 a[13][32] :== -149.5 {K};
916 a[13][33] :== -202.3 {K};
917 a[13][34] :== 0 {K};
918 a[13][35] :== 172.1 {K};
919 a[13][36] :== 0 {K};
920 a[13][37] :== 240.2 {K};
921 a[13][38] :== -273.9 {K};
922 a[13][39] :== 254.8 {K};
923 a[13][40] :== 0 {K};
924 a[13][41] :== 417 {K};
925 a[13][42] :== 0 {K};
926 a[13][43] :== 0 {K};
927 a[13][44] :== 0 {K};
928 a[13][45] :== 5780 {K};
929 a[13][46] :== 131 {K};
930 a[13][47] :== 0 {K};
931 (* row 14 *)
932 a[14][1] :== -30.48 {K};
933 a[14][2] :== 1.163 {K};
934 a[14][3] :== -44.850 {K};
935 a[14][4] :== 0 {K};
936 a[14][5] :== -164 {K};
937 a[14][6] :== -481.7 {K};
938 a[14][7] :== -330.4 {K};
939 a[14][8] :== 0 {K};
940 a[14][9] :== 0 {K};
941 a[14][10] :== 0 {K};
942 a[14][11] :== 0 {K};
943 a[14][12] :== 0 {K};
944 a[14][13] :== 0 {K};
945 a[14][14] :== 0 {K};
946 a[14][15] :== 63.72 {K};
947 a[14][16] :== -41.11 {K};
948 a[14][17] :== -200.7 {K};
949 a[14][18] :== 0 {K};
950 a[14][19] :== 0 {K};
951 a[14][20] :== 0 {K};
952 a[14][21] :== 0 {K};
953 a[14][22] :== 0 {K};
954 a[14][23] :== 0 {K};
955 a[14][24] :== -99.81 {K};
956 a[14][25] :== 68.81 {K};
957 a[14][26] :== 0 {K};
958 a[14][27] :== 0 {K};
959 a[14][28] :== 0 {K};
960 a[14][29] :== -70.14 {K};
961 a[14][30] :== 0 {K};
962 a[14][31] :== 0 {K};
963 a[14][32] :== 0 {K};
964 a[14][33] :== 0 {K};
965 a[14][34] :== 0 {K};
966 a[14][35] :== 0 {K};
967 a[14][36] :== 0 {K};
968 a[14][37] :== 0 {K};
969 a[14][38] :== 0 {K};
970 a[14][39] :== 0 {K};
971 a[14][40] :== 0 {K};
972 a[14][41] :== 0 {K};
973 a[14][42] :== 0 {K};
974 a[14][43] :== 0 {K};
975 a[14][44] :== 0 {K};
976 a[14][45] :== 0 {K};
977 a[14][46] :== 0 {K};
978 a[14][47] :== 0 {K};
979 (* row 15 *)
980 a[15][1] :== 65.33 {K};
981 a[15][2] :== -28.7 {K};
982 a[15][3] :== -22.31 {K};
983 a[15][4] :== 223 {K};
984 a[15][5] :== -150 {K};
985 a[15][6] :== -500 {K};
986 a[15][7] :== -448.2 {K};
987 a[15][8] :== 0 {K};
988 a[15][9] :== 0 {K};
989 a[15][10] :== 0 {K};
990 a[15][11] :== 136 {K};
991 a[15][12] :== 0 {K};
992 a[15][13] :== -49.3 {K};
993 a[15][14] :== 108.8 {K};
994 a[15][15] :== 0 {K};
995 a[15][16] :== -189.2 {K};
996 a[15][17] :== 0 {K};
997 a[15][18] :== 0 {K};
998 a[15][19] :== 0 {K};
999 a[15][20] :== 0 {K};
1000 a[15][21] :== 0 {K};
1001 a[15][22] :== 0 {K};
1002 a[15][23] :== 0 {K};
1003 a[15][24] :== 71.23 {K};
1004 a[15][25] :== 4350 {K};
1005 a[15][26] :== 0 {K};
1006 a[15][27] :== 0 {K};
1007 a[15][28] :== 0 {K};
1008 a[15][29] :== 0 {K};
1009 a[15][30] :== 0 {K};
1010 a[15][31] :== 0 {K};
1011 a[15][32] :== 0 {K};
1012 a[15][33] :== 0 {K};
1013 a[15][34] :== 0 {K};
1014 a[15][35] :== 0 {K};
1015 a[15][36] :== 0 {K};
1016 a[15][37] :== 0 {K};
1017 a[15][38] :== 0 {K};
1018 a[15][39] :== 0 {K};
1019 a[15][40] :== 0 {K};
1020 a[15][41] :== -38.77 {K};
1021 a[15][42] :== 0 {K};
1022 a[15][43] :== 0 {K};
1023 a[15][44] :== 0 {K};
1024 a[15][45] :== 0 {K};
1025 a[15][46] :== 0 {K};
1026 a[15][47] :== 0 {K};
1027 (* row 16 *)
1028 a[16][1] :== -83.98 {K};
1029 a[16][2] :== -25.38 {K};
1030 a[16][3] :== -223.9 {K};
1031 a[16][4] :== 109.9 {K};
1032 a[16][5] :== 28.6 {K};
1033 a[16][6] :== -406.8 {K};
1034 a[16][7] :== -598.8 {K};
1035 a[16][8] :== 0 {K};
1036 a[16][9] :== 225.3 {K};
1037 a[16][10] :== 0 {K};
1038 a[16][11] :== 0 {K};
1039 a[16][12] :== 0 {K};
1040 a[16][13] :== 0 {K};
1041 a[16][14] :== 38.89 {K};
1042 a[16][15] :== 865.9 {K};
1043 a[16][16] :== 0 {K};
1044 a[16][17] :== 0 {K};
1045 a[16][18] :== 0 {K};
1046 a[16][19] :== 0 {K};
1047 a[16][20] :== 0 {K};
1048 a[16][21] :== 0 {K};
1049 a[16][22] :== -73.85 {K};
1050 a[16][23] :== -352.9 {K};
1051 a[16][24] :== -8.238 {K};
1052 a[16][25] :== -86.36 {K};
1053 a[16][26] :== 0 {K};
1054 a[16][27] :== 0 {K};
1055 a[16][28] :== 0 {K};
1056 a[16][29] :== 0 {K};
1057 a[16][30] :== 0 {K};
1058 a[16][31] :== 0 {K};
1059 a[16][32] :== 0 {K};
1060 a[16][33] :== 0 {K};
1061 a[16][34] :== 0 {K};
1062 a[16][35] :== 243.1 {K};
1063 a[16][36] :== 0 {K};
1064 a[16][37] :== 0 {K};
1065 a[16][38] :== -196.3 {K};
1066 a[16][39] :== 0 {K};
1067 a[16][40] :== 0 {K};
1068 a[16][41] :== 0 {K};
1069 a[16][42] :== 0 {K};
1070 a[16][43] :== 0 {K};
1071 a[16][44] :== 0 {K};
1072 a[16][45] :== 0 {K};
1073 a[16][46] :== 0 {K};
1074 a[16][47] :== 0 {K};
1075 (* row 17 *)
1076 a[17][1] :== 1139 {K};
1077 a[17][2] :== 2000 {K};
1078 a[17][3] :== 247.5 {K};
1079 a[17][4] :== 762.8 {K};
1080 a[17][5] :== -17.4 {K};
1081 a[17][6] :== -118.1 {K};
1082 a[17][7] :== -367.8 {K};
1083 a[17][8] :== -253.1 {K};
1084 a[17][9] :== -450.3 {K};
1085 a[17][10] :== 0 {K};
1086 a[17][11] :== -294.8 {K};
1087 a[17][12] :== 0 {K};
1088 a[17][13] :== 0 {K};
1089 a[17][14] :== -15.07 {K};
1090 a[17][15] :== 0 {K};
1091 a[17][16] :== 0 {K};
1092 a[17][17] :== 0 {K};
1093 a[17][18] :== 0 {K};
1094 a[17][19] :== -281.6 {K};
1095 a[17][20] :== 0 {K};
1096 a[17][21] :== 287 {K};
1097 a[17][22] :== 0 {K};
1098 a[17][23] :== 0 {K};
1099 a[17][24] :== 882 {K};
1100 a[17][25] :== 287.9 {K};
1101 a[17][26] :== 0 {K};
1102 a[17][27] :== -139.3 {K};
1103 a[17][28] :== 0 {K};
1104 a[17][29] :== 0 {K};
1105 a[17][30] :== 0 {K};
1106 a[17][31] :== -136.9 {K};
1107 a[17][32] :== 0 {K};
1108 a[17][33] :== 0 {K};
1109 a[17][34] :== 0 {K};
1110 a[17][35] :== 0 {K};
1111 a[17][36] :== 0 {K};
1112 a[17][37] :== 0 {K};
1113 a[17][38] :== 0 {K};
1114 a[17][39] :== -334.4 {K};
1115 a[17][40] :== 0 {K};
1116 a[17][41] :== -89.42 {K};
1117 a[17][42] :== 0 {K};
1118 a[17][43] :== 0 {K};
1119 a[17][44] :== 0 {K};
1120 a[17][45] :== 0 {K};
1121 a[17][46] :== 0 {K};
1122 a[17][47] :== 0 {K};
1123 (* row 18 *)
1124 a[18][1] :== -101.6 {K};
1125 a[18][2] :== 0 {K};
1126 a[18][3] :== 31.87 {K};
1127 a[18][4] :== 49.8 {K};
1128 a[18][5] :== -132.3 {K};
1129 a[18][6] :== 378.2 {K};
1130 a[18][7] :== -332.9 {K};
1131 a[18][8] :== -341.6 {K};
1132 a[18][9] :== -51.54 {K};
1133 a[18][10] :== 0 {K};
1134 a[18][11] :== 0 {K};
1135 a[18][12] :== 0 {K};
1136 a[18][13] :== 0 {K};
1137 a[18][14] :== 0 {K};
1138 a[18][15] :== 0 {K};
1139 a[18][16] :== 0 {K};
1140 a[18][17] :== 0 {K};
1141 a[18][18] :== 0 {K};
1142 a[18][19] :== -169.7 {K};
1143 a[18][20] :== -153.7 {K};
1144 a[18][21] :== 0 {K};
1145 a[18][22] :== -351.6 {K};
1146 a[18][23] :== -114.7 {K};
1147 a[18][24] :== -165.1 {K};
1148 a[18][25] :== 0 {K};
1149 a[18][26] :== 0 {K};
1150 a[18][27] :== 0 {K};
1151 a[18][28] :== 0 {K};
1152 a[18][29] :== 0 {K};
1153 a[18][30] :== 0 {K};
1154 a[18][31] :== 0 {K};
1155 a[18][32] :== 0 {K};
1156 a[18][33] :== 0 {K};
1157 a[18][34] :== 0 {K};
1158 a[18][35] :== 0 {K};
1159 a[18][36] :== 0 {K};
1160 a[18][37] :== 0 {K};
1161 a[18][38] :== 0 {K};
1162 a[18][39] :== 0 {K};
1163 a[18][40] :== 0 {K};
1164 a[18][41] :== 0 {K};
1165 a[18][42] :== 0 {K};
1166 a[18][43] :== 0 {K};
1167 a[18][44] :== 0 {K};
1168 a[18][45] :== 0 {K};
1169 a[18][46] :== 0 {K};
1170 a[18][47] :== 0 {K};
1171 (* row 19 *)
1172 a[19][1] :== 24.82 {K};
1173 a[19][2] :== -40.62 {K};
1174 a[19][3] :== -22.97 {K};
1175 a[19][4] :== -138.4 {K};
1176 a[19][5] :== -185.4 {K};
1177 a[19][6] :== 157.8 {K};
1178 a[19][7] :== 242.8 {K};
1179 a[19][8] :== 0 {K};
1180 a[19][9] :== -287.5 {K};
1181 a[19][10] :== 0 {K};
1182 a[19][11] :== -266.6 {K};
1183 a[19][12] :== 0 {K};
1184 a[19][13] :== 38.81 {K};
1185 a[19][14] :== 0 {K};
1186 a[19][15] :== 0 {K};
1187 a[19][16] :== 0 {K};
1188 a[19][17] :== 777.4 {K};
1189 a[19][18] :== 134.3 {K};
1190 a[19][19] :== 0 {K};
1191 a[19][20] :== 0 {K};
1192 a[19][21] :== 88.75 {K};
1193 a[19][22] :== -152.7 {K};
1194 a[19][23] :== -15.62 {K};
1195 a[19][24] :== -54.86 {K};
1196 a[19][25] :== 52.31 {K};
1197 a[19][26] :== -0.515 {K};
1198 a[19][27] :== 0 {K};
1199 a[19][28] :== 230.9 {K};
1200 a[19][29] :== 21.37 {K};
1201 a[19][30] :== 0 {K};
1202 a[19][31] :== 0 {K};
1203 a[19][32] :== 0 {K};
1204 a[19][33] :== 0 {K};
1205 a[19][34] :== -203 {K};
1206 a[19][35] :== 0 {K};
1207 a[19][36] :== 81.57 {K};
1208 a[19][37] :== 3.509 {K};
1209 a[19][38] :== 0 {K};
1210 a[19][39] :== 0 {K};
1211 a[19][40] :== 0 {K};
1212 a[19][41] :== 120.3 {K};
1213 a[19][42] :== 0 {K};
1214 a[19][43] :== 0 {K};
1215 a[19][44] :== 0 {K};
1216 a[19][45] :== 0 {K};
1217 a[19][46] :== 0 {K};
1218 a[19][47] :== 0 {K};
1219 (* row 20 *)
1220 a[20][1] :== 315.3 {K};
1221 a[20][2] :== 1264 {K};
1222 a[20][3] :== 62.32 {K};
1223 a[20][4] :== 268.2 {K};
1224 a[20][5] :== -151 {K};
1225 a[20][6] :== 1020 {K};
1226 a[20][7] :== -66.17 {K};
1227 a[20][8] :== 0 {K};
1228 a[20][9] :== -297.8 {K};
1229 a[20][10] :== 0 {K};
1230 a[20][11] :== -256.3 {K};
1231 a[20][12] :== 312.5 {K};
1232 a[20][13] :== -338.5 {K};
1233 a[20][14] :== 0 {K};
1234 a[20][15] :== 0 {K};
1235 a[20][16] :== 0 {K};
1236 a[20][17] :== 0 {K};
1237 a[20][18] :== -313.5 {K};
1238 a[20][19] :== 0 {K};
1239 a[20][20] :== 0 {K};
1240 a[20][21] :== 44.42 {K};
1241 a[20][22] :== 120.2 {K};
1242 a[20][23] :== 76.75 {K};
1243 a[20][24] :== 212.7 {K};
1244 a[20][25] :== 0 {K};
1245 a[20][26] :== 0 {K};
1246 a[20][27] :== 0 {K};
1247 a[20][28] :== 0 {K};
1248 a[20][29] :== 0 {K};
1249 a[20][30] :== 0 {K};
1250 a[20][31] :== 0 {K};
1251 a[20][32] :== 0 {K};
1252 a[20][33] :== -95 {K};
1253 a[20][34] :== 0 {K};
1254 a[20][35] :== -561.2 {K};
1255 a[20][36] :== 0 {K};
1256 a[20][37] :== -11.16 {K};
1257 a[20][38] :== 0 {K};
1258 a[20][39] :== -246.5 {K};
1259 a[20][40] :== 0 {K};
1260 a[20][41] :== -337 {K};
1261 a[20][42] :== 169.3 {K};
1262 a[20][43] :== 127.2 {K};
1263 a[20][44] :== 0 {K};
1264 a[20][45] :== 0 {K};
1265 a[20][46] :== 0 {K};
1266 a[20][47] :== 0 {K};
1267 (* row 21 *)
1268 a[21][1] :== 91.46 {K};
1269 a[21][2] :== 97.51 {K};
1270 a[21][3] :== 4.68 {K};
1271 a[21][4] :== 122.9 {K};
1272 a[21][5] :== 562.2 {K};
1273 a[21][6] :== 529 {K};
1274 a[21][7] :== 698.2 {K};
1275 a[21][8] :== 0 {K};
1276 a[21][9] :== 286.3 {K};
1277 a[21][10] :== -47.51 {K};
1278 a[21][11] :== 35.38 {K};
1279 a[21][12] :== 0 {K};
1280 a[21][13] :== 225.4 {K};
1281 a[21][14] :== 0 {K};
1282 a[21][15] :== 0 {K};
1283 a[21][16] :== 0 {K};
1284 a[21][17] :== 429.7 {K};
1285 a[21][18] :== 0 {K};
1286 a[21][19] :== -62.41 {K};
1287 a[21][20] :== 326.4 {K};
1288 a[21][21] :== 0 {K};
1289 a[21][22] :== 108.3 {K};
1290 a[21][23] :== 249.2 {K};
1291 a[21][24] :== 62.42 {K};
1292 a[21][25] :== 464.4 {K};
1293 a[21][26] :== 32.75 {K};
1294 a[21][27] :== 0 {K};
1295 a[21][28] :== 450.1 {K};
1296 a[21][29] :== 59.02 {K};
1297 a[21][30] :== 0 {K};
1298 a[21][31] :== 0 {K};
1299 a[21][32] :== 0 {K};
1300 a[21][33] :== -125.9 {K};
1301 a[21][34] :== 0 {K};
1302 a[21][35] :== 0 {K};
1303 a[21][36] :== 0 {K};
1304 a[21][37] :== -245.4 {K};
1305 a[21][38] :== 0 {K};
1306 a[21][39] :== 0 {K};
1307 a[21][40] :== 0 {K};
1308 a[21][41] :== 63.67 {K};
1309 a[21][42] :== 0 {K};
1310 a[21][43] :== 0 {K};
1311 a[21][44] :== 0 {K};
1312 a[21][45] :== 0 {K};
1313 a[21][46] :== 0 {K};
1314 a[21][47] :== 0 {K};
1315 (* row 22 *)
1316 a[22][1] :== 34.01 {K};
1317 a[22][2] :== 18.25 {K};
1318 a[22][3] :== 121.3 {K};
1319 a[22][4] :== 140.8 {K};
1320 a[22][5] :== 747.7 {K};
1321 a[22][6] :== 669.9 {K};
1322 a[22][7] :== 708.7 {K};
1323 a[22][8] :== 0 {K};
1324 a[22][9] :== 423.2 {K};
1325 a[22][10] :== 0 {K};
1326 a[22][11] :== -132.9 {K};
1327 a[22][12] :== 0 {K};
1328 a[22][13] :== -197.7 {K};
1329 a[22][14] :== 0 {K};
1330 a[22][15] :== 0 {K};
1331 a[22][16] :== -141.4 {K};
1332 a[22][17] :== 0 {K};
1333 a[22][18] :== 587.3 {K};
1334 a[22][19] :== 258.6 {K};
1335 a[22][20] :== 339.6 {K};
1336 a[22][21] :== -84.53 {K};
1337 a[22][22] :== 0 {K};
1338 a[22][23] :== 0 {K};
1339 a[22][24] :== 56.33 {K};
1340 a[22][25] :== 0 {K};
1341 a[22][26] :== 0 {K};
1342 a[22][27] :== 0 {K};
1343 a[22][28] :== 0 {K};
1344 a[22][29] :== 0 {K};
1345 a[22][30] :== 0 {K};
1346 a[22][31] :== 0 {K};
1347 a[22][32] :== 177.6 {K};
1348 a[22][33] :== 0 {K};
1349 a[22][34] :== 0 {K};
1350 a[22][35] :== 215 {K};
1351 a[22][36] :== 0 {K};
1352 a[22][37] :== 0 {K};
1353 a[22][38] :== 0 {K};
1354 a[22][39] :== 0 {K};
1355 a[22][40] :== 0 {K};
1356 a[22][41] :== -96.87 {K};
1357 a[22][42] :== 0 {K};
1358 a[22][43] :== 0 {K};
1359 a[22][44] :== 0 {K};
1360 a[22][45] :== 0 {K};
1361 a[22][46] :== 0 {K};
1362 a[22][47] :== 0 {K};
1363 (* row 23 *)
1364 a[23][1] :== 36.70 {K};
1365 a[23][2] :== 51.060 {K};
1366 a[23][3] :== 288.5 {K};
1367 a[23][4] :== 33.61 {K};
1368 a[23][5] :== 742.1 {K};
1369 a[23][6] :== 649.1 {K};
1370 a[23][7] :== 826.7 {K};
1371 a[23][8] :== 0.0 {K};
1372 a[23][9] :== 552.1 {K};
1373 a[23][10] :== 242.8 {K};
1374 a[23][11] :== 176.5 {K};
1375 a[23][12] :== 488.9 {K};
1376 a[23][13] :== -20.93 {K};
1377 a[23][14] :== 0 {K};
1378 a[23][15] :== 0 {K};
1379 a[23][16] :== -293.7 {K};
1380 a[23][17] :== 0 {K};
1381 a[23][18] :== 18.98 {K};
1382 a[23][19] :== 74.04 {K};
1383 a[23][20] :== 1346 {K};
1384 a[23][21] :== -157.1 {K};
1385 a[23][22] :== 0 {K};
1386 a[23][23] :== 0.0 {K};
1387 a[23][24] :== -30.1 {K};
1388 a[23][25] :== 0 {K};
1389 a[23][26] :== 0 {K};
1390 a[23][27] :== 0 {K};
1391 a[23][28] :== 116.6 {K};
1392 a[23][29] :== 0 {K};
1393 a[23][30] :== -64.38 {K};
1394 a[23][31] :== 0 {K};
1395 a[23][32] :== 86.4 {K};
1396 a[23][33] :== 0 {K};
1397 a[23][34] :== 0 {K};
1398 a[23][35] :== 363.7 {K};
1399 a[23][36] :== 0 {K};
1400 a[23][37] :== 111.2 {K};
1401 a[23][38] :== 0 {K};
1402 a[23][39] :== 0 {K};
1403 a[23][40] :== 0 {K};
1404 a[23][41] :== 255.8 {K};
1405 a[23][42] :== 0 {K};
1406 a[23][43] :== 0 {K};
1407 a[23][44] :== 0 {K};
1408 a[23][45] :== 0 {K};
1409 a[23][46] :== 0 {K};
1410 a[23][47] :== 0 {K};
1411
1412 (* fixme
1413 (* row 24 *)
1414 a[24][1] :==
1415 a[24][2] :==
1416 a[24][3] :==
1417 a[24][4] :==
1418 a[24][5] :==
1419 a[24][6] :==
1420 a[24][7] :==
1421 a[24][8] :==
1422 a[24][9] :==
1423 a[24][10] :==
1424 a[24][11] :==
1425 a[24][12] :==
1426 a[24][13] :==
1427 a[24][14] :==
1428 a[24][15] :==
1429 a[24][16] :==
1430 a[24][17] :==
1431 a[24][18] :==
1432 a[24][19] :==
1433 a[24][20] :==
1434 a[24][21] :==
1435 a[24][22] :==
1436 a[24][23] :==
1437 a[24][24] :==
1438 a[24][25] :==
1439 a[24][26] :==
1440 a[24][27] :==
1441 a[24][28] :==
1442 a[24][29] :==
1443 a[24][30] :==
1444 a[24][31] :==
1445 a[24][32] :==
1446 a[24][33] :==
1447 a[24][34] :==
1448 a[24][35] :==
1449 a[24][36] :==
1450 a[24][37] :==
1451 a[24][38] :==
1452 a[24][39] :==
1453 a[24][40] :==
1454 a[24][41] :==
1455 a[24][42] :==
1456 a[24][43] :==
1457 a[24][44] :==
1458 a[24][45] :==
1459 a[24][46] :==
1460 a[24][47] :==
1461
1462 (* row 25 *)
1463 a[25][1] :==
1464 a[25][2] :==
1465 a[25][3] :==
1466 a[25][4] :==
1467 a[25][5] :==
1468 a[25][6] :==
1469 a[25][7] :==
1470 a[25][8] :==
1471 a[25][9] :==
1472 a[25][10] :==
1473 a[25][11] :==
1474 a[25][12] :==
1475 a[25][13] :==
1476 a[25][14] :==
1477 a[25][15] :==
1478 a[25][16] :==
1479 a[25][17] :==
1480 a[25][18] :==
1481 a[25][19] :==
1482 a[25][20] :==
1483 a[25][21] :==
1484 a[25][22] :==
1485 a[25][23] :==
1486 a[25][24] :==
1487 a[25][25] :==
1488 a[25][26] :==
1489 a[25][27] :==
1490 a[25][28] :==
1491 a[25][29] :==
1492 a[25][30] :==
1493 a[25][31] :==
1494 a[25][32] :==
1495 a[25][33] :==
1496 a[25][34] :==
1497 a[25][35] :==
1498 a[25][36] :==
1499 a[25][37] :==
1500 a[25][38] :==
1501 a[25][39] :==
1502 a[25][40] :==
1503 a[25][41] :==
1504 a[25][42] :==
1505 a[25][43] :==
1506 a[25][44] :==
1507 a[25][45] :==
1508 a[25][46] :==
1509 a[25][47] :==
1510
1511 (* row 26 *)
1512 a[26][1] :==
1513 a[26][2] :==
1514 a[26][3] :==
1515 a[26][4] :==
1516 a[26][5] :==
1517 a[26][6] :==
1518 a[26][7] :==
1519 a[26][8] :==
1520 a[26][9] :==
1521 a[26][10] :==
1522 a[26][11] :==
1523 a[26][12] :==
1524 a[26][13] :==
1525 a[26][14] :==
1526 a[26][15] :==
1527 a[26][16] :==
1528 a[26][17] :==
1529 a[26][18] :==
1530 a[26][19] :==
1531 a[26][20] :==
1532 a[26][21] :==
1533 a[26][22] :==
1534 a[26][23] :==
1535 a[26][24] :==
1536 a[26][25] :==
1537 a[26][26] :==
1538 a[26][27] :==
1539 a[26][28] :==
1540 a[26][29] :==
1541 a[26][30] :==
1542 a[26][31] :==
1543 a[26][32] :==
1544 a[26][33] :==
1545 a[26][34] :==
1546 a[26][35] :==
1547 a[26][36] :==
1548 a[26][37] :==
1549 a[26][38] :==
1550 a[26][39] :==
1551 a[26][40] :==
1552 a[26][41] :==
1553 a[26][42] :==
1554 a[26][43] :==
1555 a[26][44] :==
1556 a[26][45] :==
1557 a[26][46] :==
1558 a[26][47] :==
1559
1560 (* row 27 *)
1561 a[27][1] :==
1562 a[27][2] :==
1563 a[27][3] :==
1564 a[27][4] :==
1565 a[27][5] :==
1566 a[27][6] :==
1567 a[27][7] :==
1568 a[27][8] :==
1569 a[27][9] :==
1570 a[27][10] :==
1571 a[27][11] :==
1572 a[27][12] :==
1573 a[27][13] :==
1574 a[27][14] :==
1575 a[27][15] :==
1576 a[27][16] :==
1577 a[27][17] :==
1578 a[27][18] :==
1579 a[27][19] :==
1580 a[27][20] :==
1581 a[27][21] :==
1582 a[27][22] :==
1583 a[27][23] :==
1584 a[27][24] :==
1585 a[27][25] :==
1586 a[27][26] :==
1587 a[27][27] :==
1588 a[27][28] :==
1589 a[27][29] :==
1590 a[27][30] :==
1591 a[27][31] :==
1592 a[27][32] :==
1593 a[27][33] :==
1594 a[27][34] :==
1595 a[27][35] :==
1596 a[27][36] :==
1597 a[27][37] :==
1598 a[27][38] :==
1599 a[27][39] :==
1600 a[27][40] :==
1601 a[27][41] :==
1602 a[27][42] :==
1603 a[27][43] :==
1604 a[27][44] :==
1605 a[27][45] :==
1606 a[27][46] :==
1607 a[27][47] :==
1608
1609 (* row 28 *)
1610 a[28][1] :==
1611 a[28][2] :==
1612 a[28][3] :==
1613 a[28][4] :==
1614 a[28][5] :==
1615 a[28][6] :==
1616 a[28][7] :==
1617 a[28][8] :==
1618 a[28][9] :==
1619 a[28][10] :==
1620 a[28][11] :==
1621 a[28][12] :==
1622 a[28][13] :==
1623 a[28][14] :==
1624 a[28][15] :==
1625 a[28][16] :==
1626 a[28][17] :==
1627 a[28][18] :==
1628 a[28][19] :==
1629 a[28][20] :==
1630 a[28][21] :==
1631 a[28][22] :==
1632 a[28][23] :==
1633 a[28][24] :==
1634 a[28][25] :==
1635 a[28][26] :==
1636 a[28][27] :==
1637 a[28][28] :==
1638 a[28][29] :==
1639 a[28][30] :==
1640 a[28][31] :==
1641 a[28][32] :==
1642 a[28][33] :==
1643 a[28][34] :==
1644 a[28][35] :==
1645 a[28][36] :==
1646 a[28][37] :==
1647 a[28][38] :==
1648 a[28][39] :==
1649 a[28][40] :==
1650 a[28][41] :==
1651 a[28][42] :==
1652 a[28][43] :==
1653 a[28][44] :==
1654 a[28][45] :==
1655 a[28][46] :==
1656 a[28][47] :==
1657
1658 (* row 29 *)
1659 a[29][1] :==
1660 a[29][2] :==
1661 a[29][3] :==
1662 a[29][4] :==
1663 a[29][5] :==
1664 a[29][6] :==
1665 a[29][7] :==
1666 a[29][8] :==
1667 a[29][9] :==
1668 a[29][10] :==
1669 a[29][11] :==
1670 a[29][12] :==
1671 a[29][13] :==
1672 a[29][14] :==
1673 a[29][15] :==
1674 a[29][16] :==
1675 a[29][17] :==
1676 a[29][18] :==
1677 a[29][19] :==
1678 a[29][20] :==
1679 a[29][21] :==
1680 a[29][22] :==
1681 a[29][23] :==
1682 a[29][24] :==
1683 a[29][25] :==
1684 a[29][26] :==
1685 a[29][27] :==
1686 a[29][28] :==
1687 a[29][29] :==
1688 a[29][30] :==
1689 a[29][31] :==
1690 a[29][32] :==
1691 a[29][33] :==
1692 a[29][34] :==
1693 a[29][35] :==
1694 a[29][36] :==
1695 a[29][37] :==
1696 a[29][38] :==
1697 a[29][39] :==
1698 a[29][40] :==
1699 a[29][41] :==
1700 a[29][42] :==
1701 a[29][43] :==
1702 a[29][44] :==
1703 a[29][45] :==
1704 a[29][46] :==
1705 a[29][47] :==
1706
1707 (* row 30 *)
1708 a[30][1] :==
1709 a[30][2] :==
1710 a[30][3] :==
1711 a[30][4] :==
1712 a[30][5] :==
1713 a[30][6] :==
1714 a[30][7] :==
1715 a[30][8] :==
1716 a[30][9] :==
1717 a[30][10] :==
1718 a[30][11] :==
1719 a[30][12] :==
1720 a[30][13] :==
1721 a[30][14] :==
1722 a[30][15] :==
1723 a[30][16] :==
1724 a[30][17] :==
1725 a[30][18] :==
1726 a[30][19] :==
1727 a[30][20] :==
1728 a[30][21] :==
1729 a[30][22] :==
1730 a[30][23] :==
1731 a[30][24] :==
1732 a[30][25] :==
1733 a[30][26] :==
1734 a[30][27] :==
1735 a[30][28] :==
1736 a[30][29] :==
1737 a[30][30] :==
1738 a[30][31] :==
1739 a[30][32] :==
1740 a[30][33] :==
1741 a[30][34] :==
1742 a[30][35] :==
1743 a[30][36] :==
1744 a[30][37] :==
1745 a[30][38] :==
1746 a[30][39] :==
1747 a[30][40] :==
1748 a[30][41] :==
1749 a[30][42] :==
1750 a[30][43] :==
1751 a[30][44] :==
1752 a[30][45] :==
1753 a[30][46] :==
1754 a[30][47] :==
1755
1756 (* row 31 *)
1757 a[31][1] :==
1758 a[31][2] :==
1759 a[31][3] :==
1760 a[31][4] :==
1761 a[31][5] :==
1762 a[31][6] :==
1763 a[31][7] :==
1764 a[31][8] :==
1765 a[31][9] :==
1766 a[31][10] :==
1767 a[31][11] :==
1768 a[31][12] :==
1769 a[31][13] :==
1770 a[31][14] :==
1771 a[31][15] :==
1772 a[31][16] :==
1773 a[31][17] :==
1774 a[31][18] :==
1775 a[31][19] :==
1776 a[31][20] :==
1777 a[31][21] :==
1778 a[31][22] :==
1779 a[31][23] :==
1780 a[31][24] :==
1781 a[31][25] :==
1782 a[31][26] :==
1783 a[31][27] :==
1784 a[31][28] :==
1785 a[31][29] :==
1786 a[31][30] :==
1787 a[31][31] :==
1788 a[31][32] :==
1789 a[31][33] :==
1790 a[31][34] :==
1791 a[31][35] :==
1792 a[31][36] :==
1793 a[31][37] :==
1794 a[31][38] :==
1795 a[31][39] :==
1796 a[31][40] :==
1797 a[31][41] :==
1798 a[31][42] :==
1799 a[31][43] :==
1800 a[31][44] :==
1801 a[31][45] :==
1802 a[31][46] :==
1803 a[31][47] :==
1804
1805 (* row 32 *)
1806 a[32][1] :==
1807 a[32][2] :==
1808 a[32][3] :==
1809 a[32][4] :==
1810 a[32][5] :==
1811 a[32][6] :==
1812 a[32][7] :==
1813 a[32][8] :==
1814 a[32][9] :==
1815 a[32][10] :==
1816 a[32][11] :==
1817 a[32][12] :==
1818 a[32][13] :==
1819 a[32][14] :==
1820 a[32][15] :==
1821 a[32][16] :==
1822 a[32][17] :==
1823 a[32][18] :==
1824 a[32][19] :==
1825 a[32][20] :==
1826 a[32][21] :==
1827 a[32][22] :==
1828 a[32][23] :==
1829 a[32][24] :==
1830 a[32][25] :==
1831 a[32][26] :==
1832 a[32][27] :==
1833 a[32][28] :==
1834 a[32][29] :==
1835 a[32][30] :==
1836 a[32][31] :==
1837 a[32][32] :==
1838 a[32][33] :==
1839 a[32][34] :==
1840 a[32][35] :==
1841 a[32][36] :==
1842 a[32][37] :==
1843 a[32][38] :==
1844 a[32][39] :==
1845 a[32][40] :==
1846 a[32][41] :==
1847 a[32][42] :==
1848 a[32][43] :==
1849 a[32][44] :==
1850 a[32][45] :==
1851 a[32][46] :==
1852 a[32][47] :==
1853
1854 (* row 33 *)
1855 a[33][1] :==
1856 a[33][2] :==
1857 a[33][3] :==
1858 a[33][4] :==
1859 a[33][5] :==
1860 a[33][6] :==
1861 a[33][7] :==
1862 a[33][8] :==
1863 a[33][9] :==
1864 a[33][10] :==
1865 a[33][11] :==
1866 a[33][12] :==
1867 a[33][13] :==
1868 a[33][14] :==
1869 a[33][15] :==
1870 a[33][16] :==
1871 a[33][17] :==
1872 a[33][18] :==
1873 a[33][19] :==
1874 a[33][20] :==
1875 a[33][21] :==
1876 a[33][22] :==
1877 a[33][23] :==
1878 a[33][24] :==
1879 a[33][25] :==
1880 a[33][26] :==
1881 a[33][27] :==
1882 a[33][28] :==
1883 a[33][29] :==
1884 a[33][30] :==
1885 a[33][31] :==
1886 a[33][32] :==
1887 a[33][33] :==
1888 a[33][34] :==
1889 a[33][35] :==
1890 a[33][36] :==
1891 a[33][37] :==
1892 a[33][38] :==
1893 a[33][39] :==
1894 a[33][40] :==
1895 a[33][41] :==
1896 a[33][42] :==
1897 a[33][43] :==
1898 a[33][44] :==
1899 a[33][45] :==
1900 a[33][46] :==
1901 a[33][47] :==
1902
1903 (* row 34 *)
1904 a[34][1] :==
1905 a[34][2] :==
1906 a[34][3] :==
1907 a[34][4] :==
1908 a[34][5] :==
1909 a[34][6] :==
1910 a[34][7] :==
1911 a[34][8] :==
1912 a[34][9] :==
1913 a[34][10] :==
1914 a[34][11] :==
1915 a[34][12] :==
1916 a[34][13] :==
1917 a[34][14] :==
1918 a[34][15] :==
1919 a[34][16] :==
1920 a[34][17] :==
1921 a[34][18] :==
1922 a[34][19] :==
1923 a[34][20] :==
1924 a[34][21] :==
1925 a[34][22] :==
1926 a[34][23] :==
1927 a[34][24] :==
1928 a[34][25] :==
1929 a[34][26] :==
1930 a[34][27] :==
1931 a[34][28] :==
1932 a[34][29] :==
1933 a[34][30] :==
1934 a[34][31] :==
1935 a[34][32] :==
1936 a[34][33] :==
1937 a[34][34] :==
1938 a[34][35] :==
1939 a[34][36] :==
1940 a[34][37] :==
1941 a[34][38] :==
1942 a[34][39] :==
1943 a[34][40] :==
1944 a[34][41] :==
1945 a[34][42] :==
1946 a[34][43] :==
1947 a[34][44] :==
1948 a[34][45] :==
1949 a[34][46] :==
1950 a[34][47] :==
1951
1952 (* row 35 *)
1953 a[35][1] :==
1954 a[35][2] :==
1955 a[35][3] :==
1956 a[35][4] :==
1957 a[35][5] :==
1958 a[35][6] :==
1959 a[35][7] :==
1960 a[35][8] :==
1961 a[35][9] :==
1962 a[35][10] :==
1963 a[35][11] :==
1964 a[35][12] :==
1965 a[35][13] :==
1966 a[35][14] :==
1967 a[35][15] :==
1968 a[35][16] :==
1969 a[35][17] :==
1970 a[35][18] :==
1971 a[35][19] :==
1972 a[35][20] :==
1973 a[35][21] :==
1974 a[35][22] :==
1975 a[35][23] :==
1976 a[35][24] :==
1977 a[35][25] :==
1978 a[35][26] :==
1979 a[35][27] :==
1980 a[35][28] :==
1981 a[35][29] :==
1982 a[35][30] :==
1983 a[35][31] :==
1984 a[35][32] :==
1985 a[35][33] :==
1986 a[35][34] :==
1987 a[35][35] :==
1988 a[35][36] :==
1989 a[35][37] :==
1990 a[35][38] :==
1991 a[35][39] :==
1992 a[35][40] :==
1993 a[35][41] :==
1994 a[35][42] :==
1995 a[35][43] :==
1996 a[35][44] :==
1997 a[35][45] :==
1998 a[35][46] :==
1999 a[35][47] :==
2000
2001 (* row 36 *)
2002 a[36][1] :==
2003 a[36][2] :==
2004 a[36][3] :==
2005 a[36][4] :==
2006 a[36][5] :==
2007 a[36][6] :==
2008 a[36][7] :==
2009 a[36][8] :==
2010 a[36][9] :==
2011 a[36][10] :==
2012 a[36][11] :==
2013 a[36][12] :==
2014 a[36][13] :==
2015 a[36][14] :==
2016 a[36][15] :==
2017 a[36][16] :==
2018 a[36][17] :==
2019 a[36][18] :==
2020 a[36][19] :==
2021 a[36][20] :==
2022 a[36][21] :==
2023 a[36][22] :==
2024 a[36][23] :==
2025 a[36][24] :==
2026 a[36][25] :==
2027 a[36][26] :==
2028 a[36][27] :==
2029 a[36][28] :==
2030 a[36][29] :==
2031 a[36][30] :==
2032 a[36][31] :==
2033 a[36][32] :==
2034 a[36][33] :==
2035 a[36][34] :==
2036 a[36][35] :==
2037 a[36][36] :==
2038 a[36][37] :==
2039 a[36][38] :==
2040 a[36][39] :==
2041 a[36][40] :==
2042 a[36][41] :==
2043 a[36][42] :==
2044 a[36][43] :==
2045 a[36][44] :==
2046 a[36][45] :==
2047 a[36][46] :==
2048 a[36][47] :==
2049
2050 (* row 37 *)
2051 a[37][1] :==
2052 a[37][2] :==
2053 a[37][3] :==
2054 a[37][4] :==
2055 a[37][5] :==
2056 a[37][6] :==
2057 a[37][7] :==
2058 a[37][8] :==
2059 a[37][9] :==
2060 a[37][10] :==
2061 a[37][11] :==
2062 a[37][12] :==
2063 a[37][13] :==
2064 a[37][14] :==
2065 a[37][15] :==
2066 a[37][16] :==
2067 a[37][17] :==
2068 a[37][18] :==
2069 a[37][19] :==
2070 a[37][20] :==
2071 a[37][21] :==
2072 a[37][22] :==
2073 a[37][23] :==
2074 a[37][24] :==
2075 a[37][25] :==
2076 a[37][26] :==
2077 a[37][27] :==
2078 a[37][28] :==
2079 a[37][29] :==
2080 a[37][30] :==
2081 a[37][31] :==
2082 a[37][32] :==
2083 a[37][33] :==
2084 a[37][34] :==
2085 a[37][35] :==
2086 a[37][36] :==
2087 a[37][37] :==
2088 a[37][38] :==
2089 a[37][39] :==
2090 a[37][40] :==
2091 a[37][41] :==
2092 a[37][42] :==
2093 a[37][43] :==
2094 a[37][44] :==
2095 a[37][45] :==
2096 a[37][46] :==
2097 a[37][47] :==
2098
2099 (* row 38 *)
2100 a[38][1] :==
2101 a[38][2] :==
2102 a[38][3] :==
2103 a[38][4] :==
2104 a[38][5] :==
2105 a[38][6] :==
2106 a[38][7] :==
2107 a[38][8] :==
2108 a[38][9] :==
2109 a[38][10] :==
2110 a[38][11] :==
2111 a[38][12] :==
2112 a[38][13] :==
2113 a[38][14] :==
2114 a[38][15] :==
2115 a[38][16] :==
2116 a[38][17] :==
2117 a[38][18] :==
2118 a[38][19] :==
2119 a[38][20] :==
2120 a[38][21] :==
2121 a[38][22] :==
2122 a[38][23] :==
2123 a[38][24] :==
2124 a[38][25] :==
2125 a[38][26] :==
2126 a[38][27] :==
2127 a[38][28] :==
2128 a[38][29] :==
2129 a[38][30] :==
2130 a[38][31] :==
2131 a[38][32] :==
2132 a[38][33] :==
2133 a[38][34] :==
2134 a[38][35] :==
2135 a[38][36] :==
2136 a[38][37] :==
2137 a[38][38] :==
2138 a[38][39] :==
2139 a[38][40] :==
2140 a[38][41] :==
2141 a[38][42] :==
2142 a[38][43] :==
2143 a[38][44] :==
2144 a[38][45] :==
2145 a[38][46] :==
2146 a[38][47] :==
2147
2148 (* row 39 *)
2149 a[39][1] :==
2150 a[39][2] :==
2151 a[39][3] :==
2152 a[39][4] :==
2153 a[39][5] :==
2154 a[39][6] :==
2155 a[39][7] :==
2156 a[39][8] :==
2157 a[39][9] :==
2158 a[39][10] :==
2159 a[39][11] :==
2160 a[39][12] :==
2161 a[39][13] :==
2162 a[39][14] :==
2163 a[39][15] :==
2164 a[39][16] :==
2165 a[39][17] :==
2166 a[39][18] :==
2167 a[39][19] :==
2168 a[39][20] :==
2169 a[39][21] :==
2170 a[39][22] :==
2171 a[39][23] :==
2172 a[39][24] :==
2173 a[39][25] :==
2174 a[39][26] :==
2175 a[39][27] :==
2176 a[39][28] :==
2177 a[39][29] :==
2178 a[39][30] :==
2179 a[39][31] :==
2180 a[39][32] :==
2181 a[39][33] :==
2182 a[39][34] :==
2183 a[39][35] :==
2184 a[39][36] :==
2185 a[39][37] :==
2186 a[39][38] :==
2187 a[39][39] :==
2188 a[39][40] :==
2189 a[39][41] :==
2190 a[39][42] :==
2191 a[39][43] :==
2192 a[39][44] :==
2193 a[39][45] :==
2194 a[39][46] :==
2195 a[39][47] :==
2196
2197 (* row 40 *)
2198 a[40][1] :==
2199 a[40][2] :==
2200 a[40][3] :==
2201 a[40][4] :==
2202 a[40][5] :==
2203 a[40][6] :==
2204 a[40][7] :==
2205 a[40][8] :==
2206 a[40][9] :==
2207 a[40][10] :==
2208 a[40][11] :==
2209 a[40][12] :==
2210 a[40][13] :==
2211 a[40][14] :==
2212 a[40][15] :==
2213 a[40][16] :==
2214 a[40][17] :==
2215 a[40][18] :==
2216 a[40][19] :==
2217 a[40][20] :==
2218 a[40][21] :==
2219 a[40][22] :==
2220 a[40][23] :==
2221 a[40][24] :==
2222 a[40][25] :==
2223 a[40][26] :==
2224 a[40][27] :==
2225 a[40][28] :==
2226 a[40][29] :==
2227 a[40][30] :==
2228 a[40][31] :==
2229 a[40][32] :==
2230 a[40][33] :==
2231 a[40][34] :==
2232 a[40][35] :==
2233 a[40][36] :==
2234 a[40][37] :==
2235 a[40][38] :==
2236 a[40][39] :==
2237 a[40][40] :==
2238 a[40][41] :==
2239 a[40][42] :==
2240 a[40][43] :==
2241 a[40][44] :==
2242 a[40][45] :==
2243 a[40][46] :==
2244 a[40][47] :==
2245
2246 (* row 41 *)
2247 a[41][1] :==
2248 a[41][2] :==
2249 a[41][3] :==
2250 a[41][4] :==
2251 a[41][5] :==
2252 a[41][6] :==
2253 a[41][7] :==
2254 a[41][8] :==
2255 a[41][9] :==
2256 a[41][10] :==
2257 a[41][11] :==
2258 a[41][12] :==
2259 a[41][13] :==
2260 a[41][14] :==
2261 a[41][15] :==
2262 a[41][16] :==
2263 a[41][17] :==
2264 a[41][18] :==
2265 a[41][19] :==
2266 a[41][