Parent Directory | Revision Log
Fixing GPL header, removing postal address (rpmlint incorrect-fsf-address)
1 | REQUIRE "atoms.a4l"; |
2 | (* => atoms.a4l, measures.a4l, system.a4l, basemodel.a4l *) |
3 | PROVIDE "components.a4l"; |
4 | (* |
5 | * |
6 | * WARNINGS: |
7 | * - The contents of this file represent a physical |
8 | * properties database of minimal functionality. Such a |
9 | * database is just messy conceptually in a declarative language, |
10 | * so we do not apologize for the modeling style found in this |
11 | * file. |
12 | * |
13 | * - We, of course, would like to replace it with a small wrapper to a |
14 | * thermodynamic information database with a much wider range |
15 | * of chemical species. We are aware of no such database of |
16 | * significant size being placed in the public domain |
17 | * in source form which we can distribute to all our users. |
18 | * |
19 | * 1: |
20 | * Add species or new correlation coefficients as you need them. |
21 | * Models you create in the ASCEND IV language are Not subject to |
22 | * the GNU Public License (GPL) UNLESS you base those models on GNU Public |
23 | * Licensed ASCEND Libraries. All ASCEND libraries distributed from |
24 | * Carnegie Mellon are distributed under the GPL unless explicitly noted |
25 | * as being in the public domain in the distributed source code. |
26 | * |
27 | * In the interest of promoting research, we make an EXCEPTION to the |
28 | * above condition for proprietary physical property data integrated |
29 | * with ASCEND library models for non-commercial research purposes only. |
30 | * |
31 | * If you base a commercial application on GNU Public Licensed ASCEND IV |
32 | * libraries or modifications or extensions of those libraries, then the |
33 | * models you create must be released in source code form per the GPL. |
34 | * |
35 | * 2: If you have such a properties database to donate, please let us know. |
36 | * 3: |
37 | * If you create a wrapper to a proprietary database for use with |
38 | * ASCEND in a way that entangles your code with our sources, you |
39 | * are required under the terms of the ASCEND GPL |
40 | * to _give_ the wrapper code back to us and to make it otherwise |
41 | * available for public use. This does not require making the |
42 | * proprietary database public, just the interface. If releasing |
43 | * such an interface violates the proprietary licensing, then do not |
44 | * create it in an entangled fashion. |
45 | * 4: |
46 | * If you have questions about any of the above, please contact us |
47 | * ascend+developers@cs.cmu.edu and aw0a@cs.cmu.edu. We will consider |
48 | * alternative licensing arrangements on a case-by-case basis subject |
49 | * to keeping the lawyers and accountants on all sides happy. |
50 | *) |
51 | |
52 | (* |
53 | * components.a4l |
54 | * by Joseph J. Zaher and Ben Allan |
55 | * Part of the ASCEND Library |
56 | * $Date: 1998/08/10 16:03:36 $ |
57 | * $Revision: 1.1 $ |
58 | * $Author: ballan $ |
59 | * $Source: /afs/cs.cmu.edu/project/ascend/Repository/models/small_components.a4l,v $ |
60 | * |
61 | * This file is part of the ASCEND Modeling Library. |
62 | * |
63 | * Copyright (C) 1994 Joseph J Zaher |
64 | * Copyright (C) 1997 Benjamin Andrew Allan |
65 | * |
66 | * The ASCEND Modeling Library is free software; you can redistribute |
67 | * it and/or modify it under the terms of the GNU General Public |
68 | * License as published by the Free Software Foundation; either |
69 | * version 2 of the License, or (at your option) any later version. |
70 | * |
71 | * The ASCEND Modeling Library is distributed in hope that it |
72 | * will be useful, but WITHOUT ANY WARRANTY; without even the implied |
73 | * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. |
74 | * See the GNU General Public License for more details. |
75 | * |
76 | * You should have received a copy of the GNU General Public License |
77 | * along with this program. If not, see <http://www.gnu.org/licenses/>. |
78 | *) |
79 | |
80 | (** |
81 | ** |
82 | ** C O M P O N E N T S . A 4 L |
83 | ** ---------------------------------------- |
84 | ** |
85 | ** AUTHOR: Joseph J. Zaher |
86 | ** |
87 | ** DATES: 07/91 - Original code. |
88 | ** 02/92 - Made compatible with new set version of ASCEND. |
89 | ** Expanded data base, revised vapor pressure data, |
90 | ** and added UNIFAC group and subgroup sets with help |
91 | ** of Bob Huss. |
92 | ** 07/92 - Expanded data base with help of Kay C. Dee. |
93 | ** 08/92 - Replaced name attribute of each component with a |
94 | ** formula attribute. Component names are free to be |
95 | ** specified by the user. |
96 | ** 03/94 - Made compatible with gnu-ascend. |
97 | ** 08/94 - Made compatible with H,G or H,S thermo library, |
98 | ** and with Wilson models written by Boyd Safrit. |
99 | ** 02/96 - Made compatible with ASCEND IV. Ben Allan. |
100 | ** 01/97 - Addition OF td_component_constants by _____ |
101 | ** 01/97 - All constants checked by Jennifer Perry |
102 | ** 03/97 - Added container models for data groups. BAA. |
103 | ** 03/98 - 99% of the code in this file should be reduced |
104 | ** to a call on a database. |
105 | ** |
106 | ** |
107 | ** CONTENTS: ASCEND structure for component physical property constants. |
108 | ** All anticipated constants which may be used by the models |
109 | ** of "thermodynamics.a4l" are created in a general model where |
110 | ** a consistent reference state (298.15{K} and 1.0{atm}) is |
111 | ** chosen. Specific refinements to actual chemical species are |
112 | ** made UNIVERSAL to ensure only one instantiation of the |
113 | ** constants for each component is maintained throughout a |
114 | ** user's simulation. A reference enthalpy and entropy is |
115 | ** chosen by default to be those of formation of the component |
116 | ** from its elements at the reference state. |
117 | ** |
118 | ** |
119 | **) |
120 | |
121 | (* Wilson pairs checked by Boyd |
122 | i_propanol-water |
123 | i_propanol-ethylene_glycol |
124 | ethylene_glycol-water |
125 | acetone-chloroform |
126 | acetone-benzene |
127 | acetone-methanol |
128 | methanol-water |
129 | benzene-chloroform |
130 | propadiene-propylene provided by Vince Verneulli OF Sim Sci |
131 | propadiene-propane provided by Vince Verneulli OF Sim Sci |
132 | propylene-propane provided by Vince Verneulli OF Sim Sci |
133 | *) |
134 | |
135 | MODEL compmodel() REFINES cmumodel(); |
136 | METHODS |
137 | METHOD check_self; |
138 | END check_self; |
139 | METHOD check_all; |
140 | END check_all; |
141 | METHOD default_self; |
142 | END default_self; |
143 | METHOD default_all; |
144 | END default_all; |
145 | METHOD specify; |
146 | END specify; |
147 | METHOD scale_self; |
148 | END scale_self; |
149 | METHOD scale_all; |
150 | END scale_all; |
151 | METHOD bound_self; |
152 | END bound_self; |
153 | METHOD bound_all; |
154 | END bound_all; |
155 | END compmodel; |
156 | |
157 | UNIVERSAL MODEL UNIFAC_constants() REFINES compmodel; |
158 | |
159 | (* |
160 | REFERENCE: |
161 | The reference for the bulk of this MODEL is |
162 | Reid, Prausnitz & Poling, Properties of Gases and Liquids, |
163 | 1986, Chapter 8. |
164 | DISCLAIMER: DISCLAIMER: DISCLAIMER: DISCLAIMER: DISCLAIMER: DISCLAIMER: |
165 | The authors of ASCEND and Carnegie Mellon University make |
166 | absolutely NO WARRANTY about the accuracy of this transcription |
167 | of the RPP data or of the original data itself, nor do they |
168 | provide any guarantee that the data here represented is |
169 | suitable for any purpose academic or commercial. |
170 | DISCLAIMER: DISCLAIMER: DISCLAIMER: DISCLAIMER: DISCLAIMER: DISCLAIMER: |
171 | NOTES: |
172 | The frontiers of group contribution methods have moved on |
173 | well past the data presented here and the correlations |
174 | it is used with. Users with a penchant for thermodynamic |
175 | detail are advised to MODEL their own favorite correlations. |
176 | COMMON USAGE: |
177 | The local name of every instance of this MODEL |
178 | (since it is UNIVERSAL) should always be uc. |
179 | In the comments that follow, we will use uc where applicable. |
180 | ANNOTATED: |
181 | 10/96 Ben Allan |
182 | *) |
183 | |
184 | |
185 | groups IS_A set OF integer_constant; |
186 | (* |
187 | * uc.groups is the main group list (the ones we support) from RPP |
188 | * Table 8.21 column 1. |
189 | * Currently supported groups are (in RPP Main index) |
190 | * 1,2,3,4,5,6,7,8,9,23, and 11 |
191 | *) |
192 | groups :== [1..47]; |
193 | (* fix a 10, 12-22, 24-47 |
194 | *) |
195 | |
196 | (* |
197 | * uc.sub[i IN uc.groups] is the set of secondary groups for the ith |
198 | * main group. This is the column 2 data of RPP Table 8-21. |
199 | * The UNION of uc.sub[i] is uc.subgroups, basically the set of |
200 | * rows in Table 8-21 that we have entered. |
201 | *) |
202 | sub[groups] IS_A set OF symbol_constant; |
203 | sub[1] :== ['CH3', 'CH2', 'CH', 'C']; |
204 | sub[2] :== ['CH2=CH', 'CH=CH', 'CH2=C', 'CH=C', 'C=C']; |
205 | sub[3] :== ['ACH', 'AC']; |
206 | sub[4] :== ['ACCH3', 'ACCH2', 'ACCH']; |
207 | sub[5] :== ['OH']; |
208 | sub[6] :== ['CH3OH']; |
209 | sub[7] :== ['H2O']; |
210 | sub[8] :== ['ACOH']; |
211 | sub[9] :== ['CH3CO', 'CH2CO']; |
212 | sub[10] :== ['CHO']; |
213 | sub[11] :== ['CH3COO', 'CH2COO']; |
214 | sub[12] :== ['HCOO']; |
215 | sub[13] :== ['CH3O', 'CH2O', 'CH-O', 'FCH2O']; |
216 | sub[14] :== ['CH3NH2', 'CH2NH2', 'CHNH2']; |
217 | sub[15] :== ['CH3NH', 'CH2NH', 'CHNH']; |
218 | sub[16] :== ['CH3N', 'CH2N']; |
219 | sub[17] :== ['ACNH2']; |
220 | sub[18] :== ['C5H5N', 'C5H4N', 'C5H3N']; |
221 | sub[19] :== ['CH3CN', 'CH2CN']; |
222 | sub[20] :== ['COOH', 'HCOOH']; |
223 | sub[21] :== ['CH2Cl', 'CHCl', 'CCl']; |
224 | sub[22] :== ['CH2Cl2', 'CHCl2', 'CCl2']; |
225 | sub[23] :== ['CHCl3', 'CCl3']; |
226 | sub[24] :== ['CCl4']; |
227 | sub[25] :== ['ACCl']; |
228 | sub[26] :== ['CH3NO2', 'CH2NO2', 'CHNO2']; |
229 | sub[27] :== ['ACNO2']; |
230 | sub[28] :== ['CS2']; |
231 | sub[29] :== ['CH3SH', 'CH2SH']; |
232 | sub[30] :== ['Furfural']; |
233 | sub[31] :== ['(CH2OH)2']; |
234 | sub[32] :== ['I']; |
235 | sub[33] :== ['Br']; |
236 | sub[34] :== ['CH-trip-C', 'C-trip-C']; |
237 | sub[35] :== ['Me2SO']; |
238 | sub[36] :== ['Acry']; |
239 | sub[37] :== ['Cl(C=C)']; |
240 | sub[38] :== ['ACF']; |
241 | sub[39] :== ['DMF-1', 'DMF-2']; |
242 | sub[40] :== ['CF3', 'CF2', 'CF']; |
243 | sub[41] :== ['COO']; |
244 | sub[42] :== ['SiH3', 'SiH2', 'SiH', 'Si']; |
245 | sub[43] :== ['SiH2O', 'SiHO', 'SiO']; |
246 | sub[44] :== ['NMP']; |
247 | sub[45] :== ['tert-N']; |
248 | sub[46] :== ['Amide']; |
249 | sub[47] :== ['CON(Me)2', 'CONMeCH2', 'CON(CH2)2']; |
250 | subgroups IS_A set OF symbol_constant; |
251 | |
252 | (* |
253 | * uc. subgroups is the total list of secondary groups we accomodate. |
254 | *) |
255 | subgroups :== UNION[sub[i] | i IN groups]; |
256 | group[subgroups] IS_A integer_constant; |
257 | (* |
258 | * Next we have a horribly named array, group, that lets us look up the |
259 | * main group given a particular subgroup. So, for example, |
260 | * if we want to know the main group of 'CHCl3', then |
261 | * group['CHCl3'] will give it to us: 'CCl3'. |
262 | * Note, then, that the assignments which follow in most |
263 | * cases expand to have several left-hand-sides. |
264 | *) |
265 | FOR i IN groups CREATE |
266 | group[sub[i]] :== i; |
267 | END FOR; |
268 | |
269 | a[groups][groups] "binary group interaction parameters" IS_A UNIFAC_a; |
270 | (* |
271 | * Now we have uc.a[m][n], a portion of RPP Table 8-22, the main group |
272 | * interaction matrix which is asymmetric and in principle |
273 | * dense but in our practice rather sparse. |
274 | * Adding a main group to this MODEL means adding a row and |
275 | * column to uc.a, which is a non-trivial exercise until we |
276 | * get a proper tabular assignment syntax implemented. |
277 | * Note that such an syntax has been completely scoped but |
278 | * we've just not yet got round to implementation. |
279 | * When we do implement, this will be the first test MODEL. |
280 | * a[i][j] should have i and j being integer_constant! |
281 | *) |
282 | |
283 | (* we would like the ascend TABLE syntax or a database |
284 | * external lookup to handle this data entry. |
285 | *) |
286 | (* row 1 *) |
287 | a[1][1] :== 0.0 {K}; |
288 | a[1][2] :== 86.020 {K}; |
289 | a[1][3] :== 61.13 {K}; |
290 | a[1][4] :== 76.50 {K}; |
291 | a[1][5] :== 986.5 {K}; |
292 | a[1][6] :== 697.2 {K}; |
293 | a[1][7] :== 1318.0 {K}; |
294 | a[1][8] :== 1333.0 {K}; |
295 | a[1][9] :== 476.4 {K}; |
296 | a[1][10] :== 677 {K}; |
297 | a[1][11] :== 232.1 {K}; |
298 | a[1][12] :== 741.4 {K}; |
299 | a[1][13] :== 251.5 {K}; |
300 | a[1][14] :== 391.5 {K}; |
301 | a[1][15] :== 225.7 {K}; |
302 | a[1][16] :== 206.6 {K}; |
303 | a[1][17] :== 920.7 {K}; |
304 | a[1][18] :== 287.7 {K}; |
305 | a[1][19] :== 597 {K}; |
306 | a[1][20] :== 663.5 {K}; |
307 | a[1][21] :== 35.93 {K}; |
308 | a[1][22] :== 53.76 {K}; |
309 | a[1][23] :== 24.90 {K}; |
310 | a[1][24] :== 104.3 {K}; |
311 | a[1][25] :== 321.5 {K}; |
312 | a[1][26] :== 661.5 {K}; |
313 | a[1][27] :== 543 {K}; |
314 | a[1][28] :== 153.6 {K}; |
315 | a[1][29] :== 184.4 {K}; |
316 | a[1][30] :== 354.5 {K}; |
317 | a[1][31] :== 3025 {K}; |
318 | a[1][32] :== 335.8 {K}; |
319 | a[1][33] :== 479.5 {K}; |
320 | a[1][34] :== 298.9 {K}; |
321 | a[1][35] :== 526.5 {K}; |
322 | a[1][36] :== 689 {K}; |
323 | a[1][37] :== -4.189 {K}; |
324 | a[1][38] :== 125.8 {K}; |
325 | a[1][39] :== 485.3 {K}; |
326 | a[1][40] :== -2.859 {K}; |
327 | a[1][41] :== 387.1 {K}; |
328 | a[1][42] :== -450.4 {K}; |
329 | a[1][43] :== 252.7 {K}; |
330 | a[1][44] :== 13.89 {K}; |
331 | a[1][45] :== 383 {K}; |
332 | a[1][46] :== -1380 {K}; |
333 | a[1][47] :== 729 {K}; |
334 | |
335 | (* row 2 *) (* the ?!? numbers in group 2 are bogus. probably entered by ka. |
336 | * they have been replaced. part looks like a paste of row 4. |
337 | *) |
338 | (* old: |
339 | a[2][1] :== 2520 {K}; (*?!?*) |
340 | a[2][2] :== 0.0 {K}; (*?!?*) |
341 | a[2][3] :== 340.7 {K}; (*?!?*) |
342 | a[2][4] :== 4102 {K}; (*?!?*) |
343 | a[2][5] :== 693.9 {K}; (*?!?*) |
344 | a[2][6] :== 1509.0 {K}; (*?!?*) |
345 | a[2][7] :== 634.2 {K}; (*?!?*) |
346 | a[2][8] :== 547.4 {K}; (*?!?*) |
347 | a[2][9] :== 524.5 {K}; (*?!?*) |
348 | a[2][11] :== 71.23 {K}; (*?!?*) |
349 | END old *) |
350 | a[2][1] :== -35.36 {K}; |
351 | a[2][2] :== 0.0 {K}; |
352 | a[2][3] :== 38.81 {K}; |
353 | a[2][4] :== 74.15 {K}; |
354 | a[2][5] :== 524.1 {K}; |
355 | a[2][6] :== 787.6 {K}; |
356 | a[2][7] :== 270.6 {K}; |
357 | a[2][8] :== 526.1 {K}; |
358 | a[2][9] :== 182.6 {K}; |
359 | a[2][10] :== 448.8 {K}; |
360 | a[2][11] :== 37.85 {K}; |
361 | a[2][12] :== 449.1 {K}; |
362 | a[2][13] :== 214.5 {K}; |
363 | a[2][14] :== 240.9 {K}; |
364 | a[2][15] :== 163.9 {K}; |
365 | a[2][16] :== 61.11 {K}; |
366 | a[2][17] :== 749.3 {K}; |
367 | a[2][18] :== 0 {K}; |
368 | a[2][19] :== 336.9 {K}; |
369 | a[2][20] :== 318.9 {K}; |
370 | a[2][21] :== 204.6 {K}; |
371 | a[2][22] :== 5.892 {K}; |
372 | (* old |
373 | a[2][23] :== 4584.0 {K}; (*?!?*) |
374 | END old *) |
375 | |
376 | a[2][23] :== -13.99 {K}; |
377 | a[2][24] :== -109.7 {K}; |
378 | a[2][25] :== 393.1 {K}; |
379 | a[2][26] :== 357.5 {K}; |
380 | a[2][27] :== 0 {K}; |
381 | a[2][28] :== 76.3 {K}; |
382 | a[2][29] :== 0 {K}; |
383 | a[2][30] :== 0 {K}; |
384 | a[2][31] :== 0 {K}; |
385 | a[2][32] :== 0 {K}; |
386 | a[2][33] :== 0 {K}; |
387 | a[2][34] :== 31.14 {K}; |
388 | a[2][35] :== -137.4 {K}; |
389 | a[2][36] :== 0 {K}; |
390 | a[2][37] :== -66.46 {K}; |
391 | a[2][38] :== 0 {K}; |
392 | a[2][39] :== -70.45 {K}; |
393 | a[2][40] :== 0 {K}; |
394 | a[2][41] :== 48.33 {K}; |
395 | a[2][42] :== 0 {K}; |
396 | a[2][43] :== 0 {K}; |
397 | a[2][44] :== 0 {K}; |
398 | a[2][45] :== 0 {K}; |
399 | a[2][46] :== 2340 {K}; |
400 | a[2][47] :== 0 {K}; |
401 | (* row 3 *) |
402 | a[3][1] :== -11.12 {K}; |
403 | a[3][2] :== 3.446 {K}; |
404 | a[3][3] :== 0.0 {K}; |
405 | a[3][4] :== 167.0 {K}; |
406 | a[3][5] :== 636.10 {K}; |
407 | a[3][6] :== 637.3 {K}; |
408 | a[3][7] :== 903.8 {K}; |
409 | a[3][8] :== 1329.0 {K}; |
410 | a[3][9] :== 25.77 {K}; |
411 | a[3][11] :== 5.994 {K}; |
412 | a[3][10] :== 347.3 {K}; |
413 | a[3][12] :== -92.55 {K}; |
414 | a[3][13] :== 32.14 {K}; |
415 | a[3][14] :== 161.7 {K}; |
416 | a[3][15] :== 122.8 {K}; |
417 | a[3][16] :== 90.49 {K}; |
418 | a[3][17] :== 648.2 {K}; |
419 | a[3][18] :== -4.449 {K}; |
420 | a[3][19] :== 212.5 {K}; |
421 | a[3][20] :== 537.4 {K}; |
422 | a[3][21] :== -18.81 {K}; |
423 | a[3][22] :== -144.4 {K}; |
424 | a[3][23] :== -231.9 {K}; |
425 | a[3][24] :== 3 {K}; |
426 | a[3][25] :== 538.2 {K}; |
427 | a[3][26] :== 168 {K}; |
428 | a[3][27] :== 194.9 {K}; |
429 | a[3][28] :== 52.07 {K}; |
430 | a[3][29] :== -10.43 {K}; |
431 | a[3][30] :== -64.69 {K}; |
432 | a[3][31] :== 210.4 {K}; |
433 | a[3][32] :== 113.3 {K}; |
434 | a[3][33] :== -13.59 {K}; |
435 | a[3][34] :== 0 {K}; |
436 | a[3][35] :== 169.9 {K}; |
437 | a[3][36] :== 0 {K}; |
438 | a[3][37] :== -259.1 {K}; |
439 | a[3][38] :== 389.3 {K}; |
440 | a[3][39] :== 245.6 {K}; |
441 | a[3][40] :== 0 {K}; |
442 | a[3][41] :== 103.5 {K}; |
443 | a[3][42] :== -432.3 {K}; |
444 | a[3][43] :== 238.9 {K}; |
445 | a[3][44] :== -23.88 {K}; |
446 | a[3][45] :== 109 {K}; |
447 | a[3][46] :== 75.9 {K}; |
448 | a[3][47] :== 784 {K}; |
449 | (* row 4 *) |
450 | a[4][1] :== -69.70 {K}; |
451 | a[4][2] :== -113.6 {K}; |
452 | a[4][3] :== -146.80 {K}; |
453 | a[4][4] :== 0.0 {K}; |
454 | a[4][5] :== 803.20 {K}; |
455 | a[4][6] :== 603.2 {K}; |
456 | a[4][7] :== 5695.00 {K}; |
457 | a[4][8] :== 547.4 {K}; |
458 | a[4][9] :== -52.10 {K}; |
459 | a[4][10] :== 586.6 {K}; |
460 | a[4][11] :== 5688.0 {K}; |
461 | |
462 | a[4][12] :== 115.2 {K}; |
463 | a[4][13] :== 213.1 {K}; |
464 | a[4][14] :== 0 {K}; |
465 | a[4][15] :== 49.29 {K}; |
466 | a[4][16] :== 23.5 {K}; |
467 | a[4][17] :== 664.2 {K}; |
468 | a[4][18] :== 52.8 {K}; |
469 | a[4][19] :== 6096 {K}; |
470 | a[4][20] :== 603.8 {K}; |
471 | a[4][21] :== -114.1 {K}; |
472 | a[4][22] :== -111 {K}; |
473 | a[4][23] :== -12.14 {K}; |
474 | a[4][24] :== -141.3 {K}; |
475 | a[4][25] :== -126.9 {K}; |
476 | a[4][26] :== 3629 {K}; |
477 | a[4][27] :== 4448 {K}; |
478 | a[4][28] :== -9.451 {K}; |
479 | a[4][29] :== 0 {K}; |
480 | a[4][30] :== -20.36 {K}; |
481 | a[4][31] :== 4975 {K}; |
482 | a[4][32] :== 0 {K}; |
483 | a[4][33] :== -171.3 {K}; |
484 | a[4][34] :== 0 {K}; |
485 | a[4][35] :== 4284 {K}; |
486 | a[4][36] :== 0 {K}; |
487 | a[4][37] :== 0 {K}; |
488 | a[4][38] :== 101.4 {K}; |
489 | a[4][39] :== 5629 {K}; |
490 | a[4][40] :== 0 {K}; |
491 | a[4][41] :== 69.26 {K}; |
492 | a[4][42] :== 683.3 {K}; |
493 | a[4][43] :== 355.5 {K}; |
494 | a[4][44] :== 6.214 {K}; |
495 | a[4][45] :== 1320 {K}; |
496 | a[4][46] :== 482 {K}; |
497 | a[4][47] :== 386 {K}; |
498 | (* row 5 *) |
499 | a[5][1] :== 156.40 {K}; |
500 | a[5][2] :== 475.000 {K}; |
501 | a[5][3] :== 89.60 {K}; |
502 | a[5][4] :== 25.82 {K}; |
503 | a[5][5] :== 0.0 {K}; |
504 | a[5][6] :== -137.1 {K}; |
505 | a[5][7] :== 353.50 {K}; |
506 | a[5][8] :== -259.7 {K}; |
507 | a[5][9] :== 84.0 {K}; |
508 | a[5][10] :== 441.8 {K}; |
509 | a[5][11] :== 101.1 {K}; |
510 | a[5][12] :== 193.1 {K}; |
511 | a[5][13] :== 28.06 {K}; |
512 | a[5][14] :== 83.02 {K}; |
513 | a[5][15] :== 42.7 {K}; |
514 | a[5][16] :== -323 {K}; |
515 | a[5][17] :== -52.39 {K}; |
516 | a[5][18] :== 170 {K}; |
517 | a[5][19] :== 6.712 {K}; |
518 | a[5][20] :== 199 {K}; |
519 | a[5][21] :== 75.62 {K}; |
520 | a[5][22] :== -112.1 {K}; |
521 | a[5][23] :== -98.12 {K}; |
522 | a[5][24] :== 143.1 {K}; |
523 | a[5][25] :== 287.8 {K}; |
524 | a[5][26] :== 256.5 {K}; |
525 | a[5][27] :== 157.1 {K}; |
526 | a[5][28] :== 477 {K}; |
527 | a[5][29] :== 147.5 {K}; |
528 | a[5][30] :== -120.5 {K}; |
529 | a[5][31] :== -318.9 {K}; |
530 | a[5][32] :== 313.5 {K}; |
531 | a[5][33] :== 133.4 {K}; |
532 | a[5][34] :== 0 {K}; |
533 | a[5][35] :== -202.1 {K}; |
534 | a[5][36] :== 0 {K}; |
535 | a[5][37] :== 225.8 {K}; |
536 | a[5][38] :== 44.78 {K}; |
537 | a[5][39] :== -143.9 {K}; |
538 | a[5][40] :== 0 {K}; |
539 | a[5][41] :== 190.3 {K}; |
540 | a[5][42] :== -817.7 {K}; |
541 | a[5][43] :== 202.7 {K}; |
542 | a[5][44] :== 796.9 {K}; |
543 | a[5][45] :== 0 {K}; |
544 | a[5][46] :== 0 {K}; |
545 | a[5][47] :== 0 {K}; |
546 | (* row 6 *) |
547 | a[6][1] :== 16.51 {K}; |
548 | a[6][2] :== -12.520 {K}; |
549 | a[6][3] :== -50.00 {K}; |
550 | a[6][4] :== -44.50 {K}; |
551 | a[6][5] :== 249.1 {K}; |
552 | a[6][6] :== 0.0 {K}; |
553 | a[6][7] :== -181.0 {K}; |
554 | a[6][8] :== -101.7 {K}; |
555 | a[6][9] :== 23.39 {K}; |
556 | a[6][10] :== 306.4 {K}; |
557 | a[6][11] :== -10.72 {K}; |
558 | a[6][12] :== 193.4 {K}; |
559 | a[6][13] :== -128.6 {K}; |
560 | a[6][14] :== 359.3 {K}; |
561 | a[6][15] :== 266 {K}; |
562 | a[6][16] :== 53.9 {K}; |
563 | a[6][17] :== 489.7 {K}; |
564 | a[6][18] :== 580.5 {K}; |
565 | a[6][19] :== 36.23 {K}; |
566 | a[6][20] :== -289.5 {K}; |
567 | a[6][21] :== -38.32 {K}; |
568 | a[6][22] :== -102.5 {K}; |
569 | a[6][23] :== -139.4 {K}; |
570 | a[6][24] :== -67.8 {K}; |
571 | a[6][25] :== 17.12 {K}; |
572 | a[6][26] :== 75.14 {K}; |
573 | a[6][27] :== 0 {K}; |
574 | a[6][28] :== -31.09 {K}; |
575 | a[6][29] :== 37.84 {K}; |
576 | a[6][30] :== 0 {K}; |
577 | a[6][31] :== 0 {K}; |
578 | a[6][32] :== 0 {K}; |
579 | a[6][33] :== 106.3 {K}; |
580 | a[6][34] :== 0 {K}; |
581 | a[6][35] :== -399.3 {K}; |
582 | a[6][36] :== 0 {K}; |
583 | a[6][37] :== 33.47 {K}; |
584 | a[6][38] :== -48.25 {K}; |
585 | a[6][39] :== -172.4 {K}; |
586 | a[6][40] :== 0 {K}; |
587 | a[6][41] :== 165.7 {K}; |
588 | a[6][42] :== 0 {K}; |
589 | a[6][43] :== 0 {K}; |
590 | a[6][44] :== 0 {K}; |
591 | a[6][45] :== 214 {K}; |
592 | a[6][46] :== 0 {K}; |
593 | a[6][47] :== 0 {K}; |
594 | (* row 7 *) |
595 | a[7][1] :== 300.00 {K}; |
596 | a[7][2] :== 496.100 {K}; |
597 | a[7][3] :== 362.30 {K}; |
598 | a[7][4] :== 377.60 {K}; |
599 | a[7][5] :== -229.10 {K}; |
600 | a[7][6] :== 289.6 {K}; |
601 | a[7][7] :== 0.0 {K}; |
602 | a[7][8] :== 324.5 {K}; |
603 | a[7][9] :== -195.40 {K}; |
604 | a[7][10] :== -257.3 {K}; |
605 | (* a[7][11] :== 14.42 {K}; ?!?*) |
606 | a[7][11] :== 72.87 {K}; |
607 | a[7][12] :== 0 {K}; |
608 | a[7][13] :== 540.5 {K}; |
609 | a[7][14] :== 48.89 {K}; |
610 | a[7][15] :== 168 {K}; |
611 | a[7][16] :== 304 {K}; |
612 | a[7][17] :== -59.29 {K}; |
613 | a[7][18] :== 459 {K}; |
614 | a[7][19] :== 112.6 {K}; |
615 | a[7][20] :== -14.09 {K}; |
616 | a[7][21] :== 325.4 {K}; |
617 | a[7][22] :== 370.4 {K}; |
618 | a[7][23] :== 353.7 {K}; |
619 | a[7][24] :== 497.5 {K}; |
620 | a[7][25] :== 678.2 {K}; |
621 | a[7][26] :== 220.6 {K}; |
622 | a[7][27] :== 399.5 {K}; |
623 | a[7][28] :== 887.1 {K}; |
624 | a[7][29] :== 0 {K}; |
625 | a[7][30] :== 188 {K}; |
626 | a[7][31] :== 13.53 {K}; |
627 | a[7][32] :== 0 {K}; |
628 | a[7][33] :== 0 {K}; |
629 | a[7][34] :== 0 {K}; |
630 | a[7][35] :== -139 {K}; |
631 | a[7][36] :== 160.8 {K}; |
632 | a[7][37] :== 0 {K}; |
633 | a[7][38] :== 0 {K}; |
634 | a[7][39] :== 319 {K}; |
635 | a[7][40] :== 0 {K}; |
636 | a[7][41] :== -197.5 {K}; |
637 | a[7][42] :== 0 {K}; |
638 | a[7][43] :== 0 {K}; |
639 | a[7][44] :== 832.2 {K}; |
640 | a[7][45] :== 365 {K}; |
641 | a[7][46] :== 0 {K}; |
642 | a[7][47] :== 0 {K}; |
643 | (* row 8 *) |
644 | a[8][1] :== 275.8 {K}; |
645 | a[8][2] :== 217.5 {K}; |
646 | a[8][3] :== 25.34 {K}; |
647 | a[8][4] :== 244.2 {K}; |
648 | a[8][5] :== -451.6 {K}; |
649 | a[8][6] :== -265.2 {K}; |
650 | a[8][7] :== -601.8 {K}; |
651 | a[8][8] :== 0.0 {K}; |
652 | a[8][9] :== -356.1 {K}; |
653 | a[8][10] :== 0 {K}; |
654 | a[8][11] :== -449.4 {K}; |
655 | a[8][12] :== 0 {K}; |
656 | a[8][13] :== 0 {K}; |
657 | a[8][14] :== 0 {K}; |
658 | a[8][15] :== 0 {K}; |
659 | a[8][16] :== 0 {K}; |
660 | a[8][17] :== 119.9 {K}; |
661 | a[8][18] :== -305.5 {K}; |
662 | a[8][19] :== 0 {K}; |
663 | a[8][20] :== 0 {K}; |
664 | a[8][21] :== 0 {K}; |
665 | a[8][22] :== 0 {K}; |
666 | a[8][23] :== 0.0 {K}; |
667 | a[8][24] :== 1827 {K}; |
668 | a[8][25] :== 0 {K}; |
669 | a[8][26] :== 0 {K}; |
670 | a[8][27] :== 0 {K}; |
671 | a[8][28] :== 0 {K}; |
672 | a[8][29] :== 0 {K}; |
673 | a[8][30] :== 0 {K}; |
674 | a[8][31] :== -687.1 {K}; |
675 | a[8][32] :== 0 {K}; |
676 | a[8][33] :== 0 {K}; |
677 | a[8][34] :== 0 {K}; |
678 | a[8][35] :== 0 {K}; |
679 | a[8][36] :== 0 {K}; |
680 | a[8][37] :== 0 {K}; |
681 | a[8][38] :== 0 {K}; |
682 | a[8][39] :== 0 {K}; |
683 | a[8][40] :== 0 {K}; |
684 | a[8][41] :== -494.2 {K}; |
685 | (* a[8][42] :== undefined in book. *) |
686 | a[8][43] :== 0 {K}; |
687 | a[8][44] :== 0 {K}; |
688 | a[8][45] :== 0 {K}; |
689 | a[8][46] :== 0 {K}; |
690 | a[8][47] :== 0 {K}; |
691 | (* row 9 *) |
692 | a[9][1] :== 26.76 {K}; |
693 | a[9][2] :== 42.920 {K}; |
694 | a[9][3] :== 140.10 {K}; |
695 | a[9][4] :== 365.80 {K}; |
696 | a[9][5] :== 164.5 {K}; |
697 | a[9][6] :== 108.7 {K}; |
698 | a[9][7] :== 472.5 {K}; |
699 | a[9][8] :== -133.1 {K}; |
700 | a[9][9] :== 0.0 {K}; |
701 | a[9][10] :== -37.36 {K}; |
702 | a[9][11] :== -213.7 {K}; |
703 | a[9][12] :== -38.47 {K}; |
704 | a[9][13] :== -103.6 {K}; |
705 | a[9][14] :== 0 {K}; |
706 | a[9][15] :== 0 {K}; |
707 | a[9][16] :== -169 {K}; |
708 | a[9][17] :== 6201 {K}; |
709 | a[9][18] :== 165.1 {K}; |
710 | a[9][19] :== 481.7 {K}; |
711 | a[9][20] :== 669.4 {K}; |
712 | a[9][21] :== -191.7 {K}; |
713 | a[9][22] :== -284 {K}; |
714 | a[9][23] :== -354.6 {K}; |
715 | a[9][24] :== -39.2 {K}; |
716 | a[9][25] :== 174.5 {K}; |
717 | a[9][26] :== 137.5 {K}; |
718 | a[9][27] :== 0 {K}; |
719 | a[9][28] :== 216.1 {K}; |
720 | a[9][29] :== -46.28 {K}; |
721 | a[9][30] :== -163.7 {K}; |
722 | a[9][31] :== 0 {K}; |
723 | a[9][32] :== 53.59 {K}; |
724 | a[9][33] :== 245.2 {K}; |
725 | a[9][34] :== -246.2 {K}; |
726 | a[9][35] :== -44.58 {K}; |
727 | a[9][36] :== 0 {K}; |
728 | a[9][37] :== -34.57 {K}; |
729 | a[9][38] :== 0 {K}; |
730 | a[9][39] :== -61.7 {K}; |
731 | a[9][40] :== 0 {K}; |
732 | a[9][41] :== -18.8 {K}; |
733 | a[9][42] :== 0 {K}; |
734 | a[9][43] :== 0 {K}; |
735 | a[9][44] :== 0 {K}; |
736 | a[9][45] :== 135 {K}; |
737 | a[9][46] :== -1680 {K}; |
738 | a[9][47] :== -58 {K}; |
739 | (* row 10 *) |
740 | a[10][1] :== 505.7 {K}; |
741 | a[10][2] :== 56.3 {K}; |
742 | a[10][3] :== 23.39 {K}; |
743 | a[10][4] :== 106.6 {K}; |
744 | a[10][5] :== -404.8 {K}; |
745 | a[10][6] :== -340.2 {K}; |
746 | a[10][7] :== 232.7 {K}; |
747 | a[10][8] :== 0 {K}; |
748 | a[10][9] :== 128 {K}; |
749 | a[10][10] :== 0 {K}; |
750 | a[10][11] :== -110.3 {K}; |
751 | a[10][12] :== 11.31 {K}; |
752 | a[10][13] :== 304.1 {K}; |
753 | a[10][14] :== 0 {K}; |
754 | a[10][15] :== 0 {K}; |
755 | a[10][16] :== 0 {K}; |
756 | a[10][17] :== 0 {K}; |
757 | a[10][18] :== 0 {K}; |
758 | a[10][19] :== 0 {K}; |
759 | a[10][20] :== 0 {K}; |
760 | a[10][21] :== 751.9 {K}; |
761 | a[10][22] :== 0 {K}; |
762 | a[10][23] :== -483.7 {K}; |
763 | a[10][24] :== 0 {K}; |
764 | a[10][25] :== 0 {K}; |
765 | a[10][26] :== 0 {K}; |
766 | a[10][27] :== 0 {K}; |
767 | a[10][28] :== 0 {K}; |
768 | a[10][29] :== 0 {K}; |
769 | a[10][30] :== 0 {K}; |
770 | a[10][31] :== 0 {K}; |
771 | a[10][32] :== 0 {K}; |
772 | a[10][33] :== 0 {K}; |
773 | a[10][34] :== 0 {K}; |
774 | a[10][35] :== 0 {K}; |
775 | a[10][36] :== 0 {K}; |
776 | a[10][37] :== 0 {K}; |
777 | a[10][38] :== 0 {K}; |
778 | a[10][39] :== 0 {K}; |
779 | a[10][40] :== 0 {K}; |
780 | a[10][41] :== 0 {K}; |
781 | a[10][42] :== 0 {K}; |
782 | a[10][43] :== 0 {K}; |
783 | a[10][44] :== 0 {K}; |
784 | a[10][45] :== -7.18 {K}; |
785 | a[10][46] :== 333 {K}; |
786 | a[10][47] :== 6810 {K}; |
787 | (* row 11 *) |
788 | a[11][1] :== 114.8 {K}; |
789 | a[11][2] :== 132.1 {K}; |
790 | a[11][3] :== 85.84 {K}; |
791 | a[11][4] :== -170.0 {K}; |
792 | a[11][5] :== 245.4 {K}; |
793 | a[11][6] :== 249.6 {K}; |
794 | a[11][7] :== 10000.0 {K}; |
795 | a[11][8] :== -36.72 {K}; |
796 | a[11][9] :== 372.2 {K}; |
797 | a[11][10] :== 185.1 {K}; |
798 | a[11][11] :== 0.0 {K}; |
799 | a[11][12] :== 372.9 {K}; |
800 | a[11][13] :== -235.7 {K}; |
801 | a[11][14] :== 0 {K}; |
802 | a[11][15] :== -73.5 {K}; |
803 | a[11][16] :== 0 {K}; |
804 | a[11][17] :== 475.5 {K}; |
805 | a[11][18] :== 0 {K}; |
806 | a[11][19] :== 494.6 {K}; |
807 | a[11][20] :== 660.2 {K}; |
808 | a[11][21] :== -34.74 {K}; |
809 | a[11][22] :== 108.9 {K}; |
810 | a[11][23] :== -209.7 {K}; |
811 | a[11][24] :== 54.47 {K}; |
812 | a[11][25] :== 629 {K}; |
813 | a[11][26] :== -81.13 {K}; |
814 | a[11][27] :== 0 {K}; |
815 | a[11][28] :== 183 {K}; |
816 | a[11][29] :== 0 {K}; |
817 | a[11][30] :== 202.3 {K}; |
818 | a[11][31] :== -101.7 {K}; |
819 | a[11][32] :== 148.3 {K}; |
820 | a[11][33] :== 18.88 {K}; |
821 | a[11][34] :== 0 {K}; |
822 | a[11][35] :== 52.08 {K}; |
823 | a[11][36] :== -28.61 {K}; |
824 | a[11][37] :== -83.3 {K}; |
825 | a[11][38] :== 0 {K}; |
826 | a[11][39] :== 0 {K}; |
827 | a[11][40] :== 0 {K}; |
828 | a[11][41] :== 560.2 {K}; |
829 | a[11][42] :== 0 {K}; |
830 | a[11][43] :== 0 {K}; |
831 | a[11][44] :== 0 {K}; |
832 | a[11][45] :== -54.6 {K}; |
833 | a[11][46] :== 0 {K}; |
834 | a[11][47] :== 6960 {K}; |
835 | (* row 12 *) |
836 | a[12][1] :== 90.49 {K}; |
837 | a[12][2] :== -62.55 {K}; |
838 | a[12][3] :== 1967 {K}; |
839 | a[12][4] :== 2347 {K}; |
840 | a[12][5] :== 191.2 {K}; |
841 | a[12][6] :== 155.7 {K}; |
842 | a[12][7] :== 0 {K}; |
843 | a[12][8] :== 0 {K}; |
844 | a[12][9] :== 70.42 {K}; |
845 | a[12][10] :== 35.35 {K}; |
846 | a[12][11] :== -261.1 {K}; |
847 | a[12][12] :== 0 {K}; |
848 | a[12][13] :== 0 {K}; |
849 | a[12][14] :== 0 {K}; |
850 | a[12][15] :== 0 {K}; |
851 | a[12][16] :== 0 {K}; |
852 | a[12][17] :== 0 {K}; |
853 | a[12][18] :== 0 {K}; |
854 | a[12][19] :== 0 {K}; |
855 | a[12][20] :== -356.3 {K}; |
856 | a[12][21] :== 0 {K}; |
857 | a[12][22] :== 0 {K}; |
858 | a[12][23] :== -287.2 {K}; |
859 | a[12][24] :== 36.84 {K}; |
860 | a[12][25] :== 0 {K}; |
861 | a[12][26] :== 0 {K}; |
862 | a[12][27] :== 0 {K}; |
863 | a[12][28] :== 0 {K}; |
864 | a[12][29] :== 4.339 {K}; |
865 | a[12][30] :== 0 {K}; |
866 | a[12][31] :== 0 {K}; |
867 | a[12][32] :== 0 {K}; |
868 | a[12][33] :== 0 {K}; |
869 | a[12][34] :== 0 {K}; |
870 | a[12][35] :== 0 {K}; |
871 | a[12][36] :== 0 {K}; |
872 | a[12][37] :== 0 {K}; |
873 | a[12][38] :== 0 {K}; |
874 | a[12][39] :== 0 {K}; |
875 | a[12][40] :== 0 {K}; |
876 | a[12][41] :== -70.24 {K}; |
877 | a[12][42] :== 0 {K}; |
878 | a[12][43] :== 0 {K}; |
879 | a[12][44] :== 0 {K}; |
880 | a[12][45] :== 0 {K}; |
881 | a[12][46] :== 0 {K}; |
882 | a[12][47] :== 0 {K}; |
883 | (* row 13 *) |
884 | a[13][1] :== 83.36 {K}; |
885 | a[13][2] :== 26.51 {K}; |
886 | a[13][3] :== 52.13 {K}; |
887 | a[13][4] :== 65.69 {K}; |
888 | a[13][5] :== 237.7 {K}; |
889 | a[13][6] :== 238.4 {K}; |
890 | a[13][7] :== -314.7 {K}; |
891 | a[13][8] :== 0 {K}; |
892 | a[13][9] :== 191.1 {K}; |
893 | a[13][10] :== -7.838 {K}; |
894 | a[13][11] :== 461.3 {K}; |
895 | a[13][12] :== 0 {K}; |
896 | a[13][13] :== 0 {K}; |
897 | a[13][14] :== 0 {K}; |
898 | a[13][15] :== 141.7 {K}; |
899 | a[13][16] :== 0 {K}; |
900 | a[13][17] :== 0 {K}; |
901 | a[13][18] :== 0 {K}; |
902 | a[13][19] :== -18.51 {K}; |
903 | a[13][20] :== 664.6 {K}; |
904 | a[13][21] :== 301.1 {K}; |
905 | a[13][22] :== 137.8 {K}; |
906 | a[13][23] :== -154.3 {K}; |
907 | a[13][24] :== 47.67 {K}; |
908 | a[13][25] :== 66.15 {K}; |
909 | a[13][26] :== 95.18 {K}; |
910 | a[13][27] :== 0 {K}; |
911 | a[13][28] :== 140.9 {K}; |
912 | a[13][29] :== -8.538 {K}; |
913 | a[13][30] :== 0 {K}; |
914 | a[13][31] :== -20.11 {K}; |
915 | a[13][32] :== -149.5 {K}; |
916 | a[13][33] :== -202.3 {K}; |
917 | a[13][34] :== 0 {K}; |
918 | a[13][35] :== 172.1 {K}; |
919 | a[13][36] :== 0 {K}; |
920 | a[13][37] :== 240.2 {K}; |
921 | a[13][38] :== -273.9 {K}; |
922 | a[13][39] :== 254.8 {K}; |
923 | a[13][40] :== 0 {K}; |
924 | a[13][41] :== 417 {K}; |
925 | a[13][42] :== 0 {K}; |
926 | a[13][43] :== 0 {K}; |
927 | a[13][44] :== 0 {K}; |
928 | a[13][45] :== 5780 {K}; |
929 | a[13][46] :== 131 {K}; |
930 | a[13][47] :== 0 {K}; |
931 | (* row 14 *) |
932 | a[14][1] :== -30.48 {K}; |
933 | a[14][2] :== 1.163 {K}; |
934 | a[14][3] :== -44.850 {K}; |
935 | a[14][4] :== 0 {K}; |
936 | a[14][5] :== -164 {K}; |
937 | a[14][6] :== -481.7 {K}; |
938 | a[14][7] :== -330.4 {K}; |
939 | a[14][8] :== 0 {K}; |
940 | a[14][9] :== 0 {K}; |
941 | a[14][10] :== 0 {K}; |
942 | a[14][11] :== 0 {K}; |
943 | a[14][12] :== 0 {K}; |
944 | a[14][13] :== 0 {K}; |
945 | a[14][14] :== 0 {K}; |
946 | a[14][15] :== 63.72 {K}; |
947 | a[14][16] :== -41.11 {K}; |
948 | a[14][17] :== -200.7 {K}; |
949 | a[14][18] :== 0 {K}; |
950 | a[14][19] :== 0 {K}; |
951 | a[14][20] :== 0 {K}; |
952 | a[14][21] :== 0 {K}; |
953 | a[14][22] :== 0 {K}; |
954 | a[14][23] :== 0 {K}; |
955 | a[14][24] :== -99.81 {K}; |
956 | a[14][25] :== 68.81 {K}; |
957 | a[14][26] :== 0 {K}; |
958 | a[14][27] :== 0 {K}; |
959 | a[14][28] :== 0 {K}; |
960 | a[14][29] :== -70.14 {K}; |
961 | a[14][30] :== 0 {K}; |
962 | a[14][31] :== 0 {K}; |
963 | a[14][32] :== 0 {K}; |
964 | a[14][33] :== 0 {K}; |
965 | a[14][34] :== 0 {K}; |
966 | a[14][35] :== 0 {K}; |
967 | a[14][36] :== 0 {K}; |
968 | a[14][37] :== 0 {K}; |
969 | a[14][38] :== 0 {K}; |
970 | a[14][39] :== 0 {K}; |
971 | a[14][40] :== 0 {K}; |
972 | a[14][41] :== 0 {K}; |
973 | a[14][42] :== 0 {K}; |
974 | a[14][43] :== 0 {K}; |
975 | a[14][44] :== 0 {K}; |
976 | a[14][45] :== 0 {K}; |
977 | a[14][46] :== 0 {K}; |
978 | a[14][47] :== 0 {K}; |
979 | (* row 15 *) |
980 | a[15][1] :== 65.33 {K}; |
981 | a[15][2] :== -28.7 {K}; |
982 | a[15][3] :== -22.31 {K}; |
983 | a[15][4] :== 223 {K}; |
984 | a[15][5] :== -150 {K}; |
985 | a[15][6] :== -500 {K}; |
986 | a[15][7] :== -448.2 {K}; |
987 | a[15][8] :== 0 {K}; |
988 | a[15][9] :== 0 {K}; |
989 | a[15][10] :== 0 {K}; |
990 | a[15][11] :== 136 {K}; |
991 | a[15][12] :== 0 {K}; |
992 | a[15][13] :== -49.3 {K}; |
993 | a[15][14] :== 108.8 {K}; |
994 | a[15][15] :== 0 {K}; |
995 | a[15][16] :== -189.2 {K}; |
996 | a[15][17] :== 0 {K}; |
997 | a[15][18] :== 0 {K}; |
998 | a[15][19] :== 0 {K}; |
999 | a[15][20] :== 0 {K}; |
1000 | a[15][21] :== 0 {K}; |
1001 | a[15][22] :== 0 {K}; |
1002 | a[15][23] :== 0 {K}; |
1003 | a[15][24] :== 71.23 {K}; |
1004 | a[15][25] :== 4350 {K}; |
1005 | a[15][26] :== 0 {K}; |
1006 | a[15][27] :== 0 {K}; |
1007 | a[15][28] :== 0 {K}; |
1008 | a[15][29] :== 0 {K}; |
1009 | a[15][30] :== 0 {K}; |
1010 | a[15][31] :== 0 {K}; |
1011 | a[15][32] :== 0 {K}; |
1012 | a[15][33] :== 0 {K}; |
1013 | a[15][34] :== 0 {K}; |
1014 | a[15][35] :== 0 {K}; |
1015 | a[15][36] :== 0 {K}; |
1016 | a[15][37] :== 0 {K}; |
1017 | a[15][38] :== 0 {K}; |
1018 | a[15][39] :== 0 {K}; |
1019 | a[15][40] :== 0 {K}; |
1020 | a[15][41] :== -38.77 {K}; |
1021 | a[15][42] :== 0 {K}; |
1022 | a[15][43] :== 0 {K}; |
1023 | a[15][44] :== 0 {K}; |
1024 | a[15][45] :== 0 {K}; |
1025 | a[15][46] :== 0 {K}; |
1026 | a[15][47] :== 0 {K}; |
1027 | (* row 16 *) |
1028 | a[16][1] :== -83.98 {K}; |
1029 | a[16][2] :== -25.38 {K}; |
1030 | a[16][3] :== -223.9 {K}; |
1031 | a[16][4] :== 109.9 {K}; |
1032 | a[16][5] :== 28.6 {K}; |
1033 | a[16][6] :== -406.8 {K}; |
1034 | a[16][7] :== -598.8 {K}; |
1035 | a[16][8] :== 0 {K}; |
1036 | a[16][9] :== 225.3 {K}; |
1037 | a[16][10] :== 0 {K}; |
1038 | a[16][11] :== 0 {K}; |
1039 | a[16][12] :== 0 {K}; |
1040 | a[16][13] :== 0 {K}; |
1041 | a[16][14] :== 38.89 {K}; |
1042 | a[16][15] :== 865.9 {K}; |
1043 | a[16][16] :== 0 {K}; |
1044 | a[16][17] :== 0 {K}; |
1045 | a[16][18] :== 0 {K}; |
1046 | a[16][19] :== 0 {K}; |
1047 | a[16][20] :== 0 {K}; |
1048 | a[16][21] :== 0 {K}; |
1049 | a[16][22] :== -73.85 {K}; |
1050 | a[16][23] :== -352.9 {K}; |
1051 | a[16][24] :== -8.238 {K}; |
1052 | a[16][25] :== -86.36 {K}; |
1053 | a[16][26] :== 0 {K}; |
1054 | a[16][27] :== 0 {K}; |
1055 | a[16][28] :== 0 {K}; |
1056 | a[16][29] :== 0 {K}; |
1057 | a[16][30] :== 0 {K}; |
1058 | a[16][31] :== 0 {K}; |
1059 | a[16][32] :== 0 {K}; |
1060 | a[16][33] :== 0 {K}; |
1061 | a[16][34] :== 0 {K}; |
1062 | a[16][35] :== 243.1 {K}; |
1063 | a[16][36] :== 0 {K}; |
1064 | a[16][37] :== 0 {K}; |
1065 | a[16][38] :== -196.3 {K}; |
1066 | a[16][39] :== 0 {K}; |
1067 | a[16][40] :== 0 {K}; |
1068 | a[16][41] :== 0 {K}; |
1069 | a[16][42] :== 0 {K}; |
1070 | a[16][43] :== 0 {K}; |
1071 | a[16][44] :== 0 {K}; |
1072 | a[16][45] :== 0 {K}; |
1073 | a[16][46] :== 0 {K}; |
1074 | a[16][47] :== 0 {K}; |
1075 | (* row 17 *) |
1076 | a[17][1] :== 1139 {K}; |
1077 | a[17][2] :== 2000 {K}; |
1078 | a[17][3] :== 247.5 {K}; |
1079 | a[17][4] :== 762.8 {K}; |
1080 | a[17][5] :== -17.4 {K}; |
1081 | a[17][6] :== -118.1 {K}; |
1082 | a[17][7] :== -367.8 {K}; |
1083 | a[17][8] :== -253.1 {K}; |
1084 | a[17][9] :== -450.3 {K}; |
1085 | a[17][10] :== 0 {K}; |
1086 | a[17][11] :== -294.8 {K}; |
1087 | a[17][12] :== 0 {K}; |
1088 | a[17][13] :== 0 {K}; |
1089 | a[17][14] :== -15.07 {K}; |
1090 | a[17][15] :== 0 {K}; |
1091 | a[17][16] :== 0 {K}; |
1092 | a[17][17] :== 0 {K}; |
1093 | a[17][18] :== 0 {K}; |
1094 | a[17][19] :== -281.6 {K}; |
1095 | a[17][20] :== 0 {K}; |
1096 | a[17][21] :== 287 {K}; |
1097 | a[17][22] :== 0 {K}; |
1098 | a[17][23] :== 0 {K}; |
1099 | a[17][24] :== 882 {K}; |
1100 | a[17][25] :== 287.9 {K}; |
1101 | a[17][26] :== 0 {K}; |
1102 | a[17][27] :== -139.3 {K}; |
1103 | a[17][28] :== 0 {K}; |
1104 | a[17][29] :== 0 {K}; |
1105 | a[17][30] :== 0 {K}; |
1106 | a[17][31] :== -136.9 {K}; |
1107 | a[17][32] :== 0 {K}; |
1108 | a[17][33] :== 0 {K}; |
1109 | a[17][34] :== 0 {K}; |
1110 | a[17][35] :== 0 {K}; |
1111 | a[17][36] :== 0 {K}; |
1112 | a[17][37] :== 0 {K}; |
1113 | a[17][38] :== 0 {K}; |
1114 | a[17][39] :== -334.4 {K}; |
1115 | a[17][40] :== 0 {K}; |
1116 | a[17][41] :== -89.42 {K}; |
1117 | a[17][42] :== 0 {K}; |
1118 | a[17][43] :== 0 {K}; |
1119 | a[17][44] :== 0 {K}; |
1120 | a[17][45] :== 0 {K}; |
1121 | a[17][46] :== 0 {K}; |
1122 | a[17][47] :== 0 {K}; |
1123 | (* row 18 *) |
1124 | a[18][1] :== -101.6 {K}; |
1125 | a[18][2] :== 0 {K}; |
1126 | a[18][3] :== 31.87 {K}; |
1127 | a[18][4] :== 49.8 {K}; |
1128 | a[18][5] :== -132.3 {K}; |
1129 | a[18][6] :== 378.2 {K}; |
1130 | a[18][7] :== -332.9 {K}; |
1131 | a[18][8] :== -341.6 {K}; |
1132 | a[18][9] :== -51.54 {K}; |
1133 | a[18][10] :== 0 {K}; |
1134 | a[18][11] :== 0 {K}; |
1135 | a[18][12] :== 0 {K}; |
1136 | a[18][13] :== 0 {K}; |
1137 | a[18][14] :== 0 {K}; |
1138 | a[18][15] :== 0 {K}; |
1139 | a[18][16] :== 0 {K}; |
1140 | a[18][17] :== 0 {K}; |
1141 | a[18][18] :== 0 {K}; |
1142 | a[18][19] :== -169.7 {K}; |
1143 | a[18][20] :== -153.7 {K}; |
1144 | a[18][21] :== 0 {K}; |
1145 | a[18][22] :== -351.6 {K}; |
1146 | a[18][23] :== -114.7 {K}; |
1147 | a[18][24] :== -165.1 {K}; |
1148 | a[18][25] :== 0 {K}; |
1149 | a[18][26] :== 0 {K}; |
1150 | a[18][27] :== 0 {K}; |
1151 | a[18][28] :== 0 {K}; |
1152 | a[18][29] :== 0 {K}; |
1153 | a[18][30] :== 0 {K}; |
1154 | a[18][31] :== 0 {K}; |
1155 | a[18][32] :== 0 {K}; |
1156 | a[18][33] :== 0 {K}; |
1157 | a[18][34] :== 0 {K}; |
1158 | a[18][35] :== 0 {K}; |
1159 | a[18][36] :== 0 {K}; |
1160 | a[18][37] :== 0 {K}; |
1161 | a[18][38] :== 0 {K}; |
1162 | a[18][39] :== 0 {K}; |
1163 | a[18][40] :== 0 {K}; |
1164 | a[18][41] :== 0 {K}; |
1165 | a[18][42] :== 0 {K}; |
1166 | a[18][43] :== 0 {K}; |
1167 | a[18][44] :== 0 {K}; |
1168 | a[18][45] :== 0 {K}; |
1169 | a[18][46] :== 0 {K}; |
1170 | a[18][47] :== 0 {K}; |
1171 | (* row 19 *) |
1172 | a[19][1] :== 24.82 {K}; |
1173 | a[19][2] :== -40.62 {K}; |
1174 | a[19][3] :== -22.97 {K}; |
1175 | a[19][4] :== -138.4 {K}; |
1176 | a[19][5] :== -185.4 {K}; |
1177 | a[19][6] :== 157.8 {K}; |
1178 | a[19][7] :== 242.8 {K}; |
1179 | a[19][8] :== 0 {K}; |
1180 | a[19][9] :== -287.5 {K}; |
1181 | a[19][10] :== 0 {K}; |
1182 | a[19][11] :== -266.6 {K}; |
1183 | a[19][12] :== 0 {K}; |
1184 | a[19][13] :== 38.81 {K}; |
1185 | a[19][14] :== 0 {K}; |
1186 | a[19][15] :== 0 {K}; |
1187 | a[19][16] :== 0 {K}; |
1188 | a[19][17] :== 777.4 {K}; |
1189 | a[19][18] :== 134.3 {K}; |
1190 | a[19][19] :== 0 {K}; |
1191 | a[19][20] :== 0 {K}; |
1192 | a[19][21] :== 88.75 {K}; |
1193 | a[19][22] :== -152.7 {K}; |
1194 | a[19][23] :== -15.62 {K}; |
1195 | a[19][24] :== -54.86 {K}; |
1196 | a[19][25] :== 52.31 {K}; |
1197 | a[19][26] :== -0.515 {K}; |
1198 | a[19][27] :== 0 {K}; |
1199 | a[19][28] :== 230.9 {K}; |
1200 | a[19][29] :== 21.37 {K}; |
1201 | a[19][30] :== 0 {K}; |
1202 | a[19][31] :== 0 {K}; |
1203 | a[19][32] :== 0 {K}; |
1204 | a[19][33] :== 0 {K}; |
1205 | a[19][34] :== -203 {K}; |
1206 | a[19][35] :== 0 {K}; |
1207 | a[19][36] :== 81.57 {K}; |
1208 | a[19][37] :== 3.509 {K}; |
1209 | a[19][38] :== 0 {K}; |
1210 | a[19][39] :== 0 {K}; |
1211 | a[19][40] :== 0 {K}; |
1212 | a[19][41] :== 120.3 {K}; |
1213 | a[19][42] :== 0 {K}; |
1214 | a[19][43] :== 0 {K}; |
1215 | a[19][44] :== 0 {K}; |
1216 | a[19][45] :== 0 {K}; |
1217 | a[19][46] :== 0 {K}; |
1218 | a[19][47] :== 0 {K}; |
1219 | (* row 20 *) |
1220 | a[20][1] :== 315.3 {K}; |
1221 | a[20][2] :== 1264 {K}; |
1222 | a[20][3] :== 62.32 {K}; |
1223 | a[20][4] :== 268.2 {K}; |
1224 | a[20][5] :== -151 {K}; |
1225 | a[20][6] :== 1020 {K}; |
1226 | a[20][7] :== -66.17 {K}; |
1227 | a[20][8] :== 0 {K}; |
1228 | a[20][9] :== -297.8 {K}; |
1229 | a[20][10] :== 0 {K}; |
1230 | a[20][11] :== -256.3 {K}; |
1231 | a[20][12] :== 312.5 {K}; |
1232 | a[20][13] :== -338.5 {K}; |
1233 | a[20][14] :== 0 {K}; |
1234 | a[20][15] :== 0 {K}; |
1235 | a[20][16] :== 0 {K}; |
1236 | a[20][17] :== 0 {K}; |
1237 | a[20][18] :== -313.5 {K}; |
1238 | a[20][19] :== 0 {K}; |
1239 | a[20][20] :== 0 {K}; |
1240 | a[20][21] :== 44.42 {K}; |
1241 | a[20][22] :== 120.2 {K}; |
1242 | a[20][23] :== 76.75 {K}; |
1243 | a[20][24] :== 212.7 {K}; |
1244 | a[20][25] :== 0 {K}; |
1245 | a[20][26] :== 0 {K}; |
1246 | a[20][27] :== 0 {K}; |
1247 | a[20][28] :== 0 {K}; |
1248 | a[20][29] :== 0 {K}; |
1249 | a[20][30] :== 0 {K}; |
1250 | a[20][31] :== 0 {K}; |
1251 | a[20][32] :== 0 {K}; |
1252 | a[20][33] :== -95 {K}; |
1253 | a[20][34] :== 0 {K}; |
1254 | a[20][35] :== -561.2 {K}; |
1255 | a[20][36] :== 0 {K}; |
1256 | a[20][37] :== -11.16 {K}; |
1257 | a[20][38] :== 0 {K}; |
1258 | a[20][39] :== -246.5 {K}; |
1259 | a[20][40] :== 0 {K}; |
1260 | a[20][41] :== -337 {K}; |
1261 | a[20][42] :== 169.3 {K}; |
1262 | a[20][43] :== 127.2 {K}; |
1263 | a[20][44] :== 0 {K}; |
1264 | a[20][45] :== 0 {K}; |
1265 | a[20][46] :== 0 {K}; |
1266 | a[20][47] :== 0 {K}; |
1267 | (* row 21 *) |
1268 | a[21][1] :== 91.46 {K}; |
1269 | a[21][2] :== 97.51 {K}; |
1270 | a[21][3] :== 4.68 {K}; |
1271 | a[21][4] :== 122.9 {K}; |
1272 | a[21][5] :== 562.2 {K}; |
1273 | a[21][6] :== 529 {K}; |
1274 | a[21][7] :== 698.2 {K}; |
1275 | a[21][8] :== 0 {K}; |
1276 | a[21][9] :== 286.3 {K}; |
1277 | a[21][10] :== -47.51 {K}; |
1278 | a[21][11] :== 35.38 {K}; |
1279 | a[21][12] :== 0 {K}; |
1280 | a[21][13] :== 225.4 {K}; |
1281 | a[21][14] :== 0 {K}; |
1282 | a[21][15] :== 0 {K}; |
1283 | a[21][16] :== 0 {K}; |
1284 | a[21][17] :== 429.7 {K}; |
1285 | a[21][18] :== 0 {K}; |
1286 | a[21][19] :== -62.41 {K}; |
1287 | a[21][20] :== 326.4 {K}; |
1288 | a[21][21] :== 0 {K}; |
1289 | a[21][22] :== 108.3 {K}; |
1290 | a[21][23] :== 249.2 {K}; |
1291 | a[21][24] :== 62.42 {K}; |
1292 | a[21][25] :== 464.4 {K}; |
1293 | a[21][26] :== 32.75 {K}; |
1294 | a[21][27] :== 0 {K}; |
1295 | a[21][28] :== 450.1 {K}; |
1296 | a[21][29] :== 59.02 {K}; |
1297 | a[21][30] :== 0 {K}; |
1298 | a[21][31] :== 0 {K}; |
1299 | a[21][32] :== 0 {K}; |
1300 | a[21][33] :== -125.9 {K}; |
1301 | a[21][34] :== 0 {K}; |
1302 | a[21][35] :== 0 {K}; |
1303 | a[21][36] :== 0 {K}; |
1304 | a[21][37] :== -245.4 {K}; |
1305 | a[21][38] :== 0 {K}; |
1306 | a[21][39] :== 0 {K}; |
1307 | a[21][40] :== 0 {K}; |
1308 | a[21][41] :== 63.67 {K}; |
1309 | a[21][42] :== 0 {K}; |
1310 | a[21][43] :== 0 {K}; |
1311 | a[21][44] :== 0 {K}; |
1312 | a[21][45] :== 0 {K}; |
1313 | a[21][46] :== 0 {K}; |
1314 | a[21][47] :== 0 {K}; |
1315 | (* row 22 *) |
1316 | a[22][1] :== 34.01 {K}; |
1317 | a[22][2] :== 18.25 {K}; |
1318 | a[22][3] :== 121.3 {K}; |
1319 | a[22][4] :== 140.8 {K}; |
1320 | a[22][5] :== 747.7 {K}; |
1321 | a[22][6] :== 669.9 {K}; |
1322 | a[22][7] :== 708.7 {K}; |
1323 | a[22][8] :== 0 {K}; |
1324 | a[22][9] :== 423.2 {K}; |
1325 | a[22][10] :== 0 {K}; |
1326 | a[22][11] :== -132.9 {K}; |
1327 | a[22][12] :== 0 {K}; |
1328 | a[22][13] :== -197.7 {K}; |
1329 | a[22][14] :== 0 {K}; |
1330 | a[22][15] :== 0 {K}; |
1331 | a[22][16] :== -141.4 {K}; |
1332 | a[22][17] :== 0 {K}; |
1333 | a[22][18] :== 587.3 {K}; |
1334 | a[22][19] :== 258.6 {K}; |
1335 | a[22][20] :== 339.6 {K}; |
1336 | a[22][21] :== -84.53 {K}; |
1337 | a[22][22] :== 0 {K}; |
1338 | a[22][23] :== 0 {K}; |
1339 | a[22][24] :== 56.33 {K}; |
1340 | a[22][25] :== 0 {K}; |
1341 | a[22][26] :== 0 {K}; |
1342 | a[22][27] :== 0 {K}; |
1343 | a[22][28] :== 0 {K}; |
1344 | a[22][29] :== 0 {K}; |
1345 | a[22][30] :== 0 {K}; |
1346 | a[22][31] :== 0 {K}; |
1347 | a[22][32] :== 177.6 {K}; |
1348 | a[22][33] :== 0 {K}; |
1349 | a[22][34] :== 0 {K}; |
1350 | a[22][35] :== 215 {K}; |
1351 | a[22][36] :== 0 {K}; |
1352 | a[22][37] :== 0 {K}; |
1353 | a[22][38] :== 0 {K}; |
1354 | a[22][39] :== 0 {K}; |
1355 | a[22][40] :== 0 {K}; |
1356 | a[22][41] :== -96.87 {K}; |
1357 | a[22][42] :== 0 {K}; |
1358 | a[22][43] :== 0 {K}; |
1359 | a[22][44] :== 0 {K}; |
1360 | a[22][45] :== 0 {K}; |
1361 | a[22][46] :== 0 {K}; |
1362 | a[22][47] :== 0 {K}; |
1363 | (* row 23 *) |
1364 | a[23][1] :== 36.70 {K}; |
1365 | a[23][2] :== 51.060 {K}; |
1366 | a[23][3] :== 288.5 {K}; |
1367 | a[23][4] :== 33.61 {K}; |
1368 | a[23][5] :== 742.1 {K}; |
1369 | a[23][6] :== 649.1 {K}; |
1370 | a[23][7] :== 826.7 {K}; |
1371 | a[23][8] :== 0.0 {K}; |
1372 | a[23][9] :== 552.1 {K}; |
1373 | a[23][10] :== 242.8 {K}; |
1374 | a[23][11] :== 176.5 {K}; |
1375 | a[23][12] :== 488.9 {K}; |
1376 | a[23][13] :== -20.93 {K}; |
1377 | a[23][14] :== 0 {K}; |
1378 | a[23][15] :== 0 {K}; |
1379 | a[23][16] :== -293.7 {K}; |
1380 | a[23][17] :== 0 {K}; |
1381 | a[23][18] :== 18.98 {K}; |
1382 | a[23][19] :== 74.04 {K}; |
1383 | a[23][20] :== 1346 {K}; |
1384 | a[23][21] :== -157.1 {K}; |
1385 | a[23][22] :== 0 {K}; |
1386 | a[23][23] :== 0.0 {K}; |
1387 | a[23][24] :== -30.1 {K}; |
1388 | a[23][25] :== 0 {K}; |
1389 | a[23][26] :== 0 {K}; |
1390 | a[23][27] :== 0 {K}; |
1391 | a[23][28] :== 116.6 {K}; |
1392 | a[23][29] :== 0 {K}; |
1393 | a[23][30] :== -64.38 {K}; |
1394 | a[23][31] :== 0 {K}; |
1395 | a[23][32] :== 86.4 {K}; |
1396 | a[23][33] :== 0 {K}; |
1397 | a[23][34] :== 0 {K}; |
1398 | a[23][35] :== 363.7 {K}; |
1399 | a[23][36] :== 0 {K}; |
1400 | a[23][37] :== 111.2 {K}; |
1401 | a[23][38] :== 0 {K}; |
1402 | a[23][39] :== 0 {K}; |
1403 | a[23][40] :== 0 {K}; |
1404 | a[23][41] :== 255.8 {K}; |
1405 | a[23][42] :== 0 {K}; |
1406 | a[23][43] :== 0 {K}; |
1407 | a[23][44] :== 0 {K}; |
1408 | a[23][45] :== 0 {K}; |
1409 | a[23][46] :== 0 {K}; |
1410 | a[23][47] :== 0 {K}; |
1411 | |
1412 | (* fixme |
1413 | (* row 24 *) |
1414 | a[24][1] :== |
1415 | a[24][2] :== |
1416 | a[24][3] :== |
1417 | a[24][4] :== |
1418 | a[24][5] :== |
1419 | a[24][6] :== |
1420 | a[24][7] :== |
1421 | a[24][8] :== |
1422 | a[24][9] :== |
1423 | a[24][10] :== |
1424 | a[24][11] :== |
1425 | a[24][12] :== |
1426 | a[24][13] :== |
1427 | a[24][14] :== |
1428 | a[24][15] :== |
1429 | a[24][16] :== |
1430 | a[24][17] :== |
1431 | a[24][18] :== |
1432 | a[24][19] :== |
1433 | a[24][20] :== |
1434 | a[24][21] :== |
1435 | a[24][22] :== |
1436 | a[24][23] :== |
1437 | a[24][24] :== |
1438 | a[24][25] :== |
1439 | a[24][26] :== |
1440 | a[24][27] :== |
1441 | a[24][28] :== |
1442 | a[24][29] :== |
1443 | a[24][30] :== |
1444 | a[24][31] :== |
1445 | a[24][32] :== |
1446 | a[24][33] :== |
1447 | a[24][34] :== |
1448 | a[24][35] :== |
1449 | a[24][36] :== |
1450 | a[24][37] :== |
1451 | a[24][38] :== |
1452 | a[24][39] :== |
1453 | a[24][40] :== |
1454 | a[24][41] :== |
1455 | a[24][42] :== |
1456 | a[24][43] :== |
1457 | a[24][44] :== |
1458 | a[24][45] :== |
1459 | a[24][46] :== |
1460 | a[24][47] :== |
1461 | |
1462 | (* row 25 *) |
1463 | a[25][1] :== |
1464 | a[25][2] :== |
1465 | a[25][3] :== |
1466 | a[25][4] :== |
1467 | a[25][5] :== |
1468 | a[25][6] :== |
1469 | a[25][7] :== |
1470 | a[25][8] :== |
1471 | a[25][9] :== |
1472 | a[25][10] :== |
1473 | a[25][11] :== |
1474 | a[25][12] :== |
1475 | a[25][13] :== |
1476 | a[25][14] :== |
1477 | a[25][15] :== |
1478 | a[25][16] :== |
1479 | a[25][17] :== |
1480 | a[25][18] :== |
1481 | a[25][19] :== |
1482 | a[25][20] :== |
1483 | a[25][21] :== |
1484 | a[25][22] :== |
1485 | a[25][23] :== |
1486 | a[25][24] :== |
1487 | a[25][25] :== |
1488 | a[25][26] :== |
1489 | a[25][27] :== |
1490 | a[25][28] :== |
1491 | a[25][29] :== |
1492 | a[25][30] :== |
1493 | a[25][31] :== |
1494 | a[25][32] :== |
1495 | a[25][33] :== |
1496 | a[25][34] :== |
1497 | a[25][35] :== |
1498 | a[25][36] :== |
1499 | a[25][37] :== |
1500 | a[25][38] :== |
1501 | a[25][39] :== |
1502 | a[25][40] :== |
1503 | a[25][41] :== |
1504 | a[25][42] :== |
1505 | a[25][43] :== |
1506 | a[25][44] :== |
1507 | a[25][45] :== |
1508 | a[25][46] :== |
1509 | a[25][47] :== |
1510 | |
1511 | (* row 26 *) |
1512 | a[26][1] :== |
1513 | a[26][2] :== |
1514 | a[26][3] :== |
1515 | a[26][4] :== |
1516 | a[26][5] :== |
1517 | a[26][6] :== |
1518 | a[26][7] :== |
1519 | a[26][8] :== |
1520 | a[26][9] :== |
1521 | a[26][10] :== |
1522 | a[26][11] :== |
1523 | a[26][12] :== |
1524 | a[26][13] :== |
1525 | a[26][14] :== |
1526 | a[26][15] :== |
1527 | a[26][16] :== |
1528 | a[26][17] :== |
1529 | a[26][18] :== |
1530 | a[26][19] :== |
1531 | a[26][20] :== |
1532 | a[26][21] :== |
1533 | a[26][22] :== |
1534 | a[26][23] :== |
1535 | a[26][24] :== |
1536 | a[26][25] :== |
1537 | a[26][26] :== |
1538 | a[26][27] :== |
1539 | a[26][28] :== |
1540 | a[26][29] :== |
1541 | a[26][30] :== |
1542 | a[26][31] :== |
1543 | a[26][32] :== |
1544 | a[26][33] :== |
1545 | a[26][34] :== |
1546 | a[26][35] :== |
1547 | a[26][36] :== |
1548 | a[26][37] :== |
1549 | a[26][38] :== |
1550 | a[26][39] :== |
1551 | a[26][40] :== |
1552 | a[26][41] :== |
1553 | a[26][42] :== |
1554 | a[26][43] :== |
1555 | a[26][44] :== |
1556 | a[26][45] :== |
1557 | a[26][46] :== |
1558 | a[26][47] :== |
1559 | |
1560 | (* row 27 *) |
1561 | a[27][1] :== |
1562 | a[27][2] :== |
1563 | a[27][3] :== |
1564 | a[27][4] :== |
1565 | a[27][5] :== |
1566 | a[27][6] :== |
1567 | a[27][7] :== |
1568 | a[27][8] :== |
1569 | a[27][9] :== |
1570 | a[27][10] :== |
1571 | a[27][11] :== |
1572 | a[27][12] :== |
1573 | a[27][13] :== |
1574 | a[27][14] :== |
1575 | a[27][15] :== |
1576 | a[27][16] :== |
1577 | a[27][17] :== |
1578 | a[27][18] :== |
1579 | a[27][19] :== |
1580 | a[27][20] :== |
1581 | a[27][21] :== |
1582 | a[27][22] :== |
1583 | a[27][23] :== |
1584 | a[27][24] :== |
1585 | a[27][25] :== |
1586 | a[27][26] :== |
1587 | a[27][27] :== |
1588 | a[27][28] :== |
1589 | a[27][29] :== |
1590 | a[27][30] :== |
1591 | a[27][31] :== |
1592 | a[27][32] :== |
1593 | a[27][33] :== |
1594 | a[27][34] :== |
1595 | a[27][35] :== |
1596 | a[27][36] :== |
1597 | a[27][37] :== |
1598 | a[27][38] :== |
1599 | a[27][39] :== |
1600 | a[27][40] :== |
1601 | a[27][41] :== |
1602 | a[27][42] :== |
1603 | a[27][43] :== |
1604 | a[27][44] :== |
1605 | a[27][45] :== |
1606 | a[27][46] :== |
1607 | a[27][47] :== |
1608 | |
1609 | (* row 28 *) |
1610 | a[28][1] :== |
1611 | a[28][2] :== |
1612 | a[28][3] :== |
1613 | a[28][4] :== |
1614 | a[28][5] :== |
1615 | a[28][6] :== |
1616 | a[28][7] :== |
1617 | a[28][8] :== |
1618 | a[28][9] :== |
1619 | a[28][10] :== |
1620 | a[28][11] :== |
1621 | a[28][12] :== |
1622 | a[28][13] :== |
1623 | a[28][14] :== |
1624 | a[28][15] :== |
1625 | a[28][16] :== |
1626 | a[28][17] :== |
1627 | a[28][18] :== |
1628 | a[28][19] :== |
1629 | a[28][20] :== |
1630 | a[28][21] :== |
1631 | a[28][22] :== |
1632 | a[28][23] :== |
1633 | a[28][24] :== |
1634 | a[28][25] :== |
1635 | a[28][26] :== |
1636 | a[28][27] :== |
1637 | a[28][28] :== |
1638 | a[28][29] :== |
1639 | a[28][30] :== |
1640 | a[28][31] :== |
1641 | a[28][32] :== |
1642 | a[28][33] :== |
1643 | a[28][34] :== |
1644 | a[28][35] :== |
1645 | a[28][36] :== |
1646 | a[28][37] :== |
1647 | a[28][38] :== |
1648 | a[28][39] :== |
1649 | a[28][40] :== |
1650 | a[28][41] :== |
1651 | a[28][42] :== |
1652 | a[28][43] :== |
1653 | a[28][44] :== |
1654 | a[28][45] :== |
1655 | a[28][46] :== |
1656 | a[28][47] :== |
1657 | |
1658 | (* row 29 *) |
1659 | a[29][1] :== |
1660 | a[29][2] :== |
1661 | a[29][3] :== |
1662 | a[29][4] :== |
1663 | a[29][5] :== |
1664 | a[29][6] :== |
1665 | a[29][7] :== |
1666 | a[29][8] :== |
1667 | a[29][9] :== |
1668 | a[29][10] :== |
1669 | a[29][11] :== |
1670 | a[29][12] :== |
1671 | a[29][13] :== |
1672 | a[29][14] :== |
1673 | a[29][15] :== |
1674 | a[29][16] :== |
1675 | a[29][17] :== |
1676 | a[29][18] :== |
1677 | a[29][19] :== |
1678 | a[29][20] :== |
1679 | a[29][21] :== |
1680 | a[29][22] :== |
1681 | a[29][23] :== |
1682 | a[29][24] :== |
1683 | a[29][25] :== |
1684 | a[29][26] :== |
1685 | a[29][27] :== |
1686 | a[29][28] :== |
1687 | a[29][29] :== |
1688 | a[29][30] :== |
1689 | a[29][31] :== |
1690 | a[29][32] :== |
1691 | a[29][33] :== |
1692 | a[29][34] :== |
1693 | a[29][35] :== |
1694 | a[29][36] :== |
1695 | a[29][37] :== |
1696 | a[29][38] :== |
1697 | a[29][39] :== |
1698 | a[29][40] :== |
1699 | a[29][41] :== |
1700 | a[29][42] :== |
1701 | a[29][43] :== |
1702 | a[29][44] :== |
1703 | a[29][45] :== |
1704 | a[29][46] :== |
1705 | a[29][47] :== |
1706 | |
1707 | (* row 30 *) |
1708 | a[30][1] :== |
1709 | a[30][2] :== |
1710 | a[30][3] :== |
1711 | a[30][4] :== |
1712 | a[30][5] :== |
1713 | a[30][6] :== |
1714 | a[30][7] :== |
1715 | a[30][8] :== |
1716 | a[30][9] :== |
1717 | a[30][10] :== |
1718 | a[30][11] :== |
1719 | a[30][12] :== |
1720 | a[30][13] :== |
1721 | a[30][14] :== |
1722 | a[30][15] :== |
1723 | a[30][16] :== |
1724 | a[30][17] :== |
1725 | a[30][18] :== |
1726 | a[30][19] :== |
1727 | a[30][20] :== |
1728 | a[30][21] :== |
1729 | a[30][22] :== |
1730 | a[30][23] :== |
1731 | a[30][24] :== |
1732 | a[30][25] :== |
1733 | a[30][26] :== |
1734 | a[30][27] :== |
1735 | a[30][28] :== |
1736 | a[30][29] :== |
1737 | a[30][30] :== |
1738 | a[30][31] :== |
1739 | a[30][32] :== |
1740 | a[30][33] :== |
1741 | a[30][34] :== |
1742 | a[30][35] :== |
1743 | a[30][36] :== |
1744 | a[30][37] :== |
1745 | a[30][38] :== |
1746 | a[30][39] :== |
1747 | a[30][40] :== |
1748 | a[30][41] :== |
1749 | a[30][42] :== |
1750 | a[30][43] :== |
1751 | a[30][44] :== |
1752 | a[30][45] :== |
1753 | a[30][46] :== |
1754 | a[30][47] :== |
1755 | |
1756 | (* row 31 *) |
1757 | a[31][1] :== |
1758 | a[31][2] :== |
1759 | a[31][3] :== |
1760 | a[31][4] :== |
1761 | a[31][5] :== |
1762 | a[31][6] :== |
1763 | a[31][7] :== |
1764 | a[31][8] :== |
1765 | a[31][9] :== |
1766 | a[31][10] :== |
1767 | a[31][11] :== |
1768 | a[31][12] :== |
1769 | a[31][13] :== |
1770 | a[31][14] :== |
1771 | a[31][15] :== |
1772 | a[31][16] :== |
1773 | a[31][17] :== |
1774 | a[31][18] :== |
1775 | a[31][19] :== |
1776 | a[31][20] :== |
1777 | a[31][21] :== |
1778 | a[31][22] :== |
1779 | a[31][23] :== |
1780 | a[31][24] :== |
1781 | a[31][25] :== |
1782 | a[31][26] :== |
1783 | a[31][27] :== |
1784 | a[31][28] :== |
1785 | a[31][29] :== |
1786 | a[31][30] :== |
1787 | a[31][31] :== |
1788 | a[31][32] :== |
1789 | a[31][33] :== |
1790 | a[31][34] :== |
1791 | a[31][35] :== |
1792 | a[31][36] :== |
1793 | a[31][37] :== |
1794 | a[31][38] :== |
1795 | a[31][39] :== |
1796 | a[31][40] :== |
1797 | a[31][41] :== |
1798 | a[31][42] :== |
1799 | a[31][43] :== |
1800 | a[31][44] :== |
1801 | a[31][45] :== |
1802 | a[31][46] :== |
1803 | a[31][47] :== |
1804 | |
1805 | (* row 32 *) |
1806 | a[32][1] :== |
1807 | a[32][2] :== |
1808 | a[32][3] :== |
1809 | a[32][4] :== |
1810 | a[32][5] :== |
1811 | a[32][6] :== |
1812 | a[32][7] :== |
1813 | a[32][8] :== |
1814 | a[32][9] :== |
1815 | a[32][10] :== |
1816 | a[32][11] :== |
1817 | a[32][12] :== |
1818 | a[32][13] :== |
1819 | a[32][14] :== |
1820 | a[32][15] :== |
1821 | a[32][16] :== |
1822 | a[32][17] :== |
1823 | a[32][18] :== |
1824 | a[32][19] :== |
1825 | a[32][20] :== |
1826 | a[32][21] :== |
1827 | a[32][22] :== |
1828 | a[32][23] :== |
1829 | a[32][24] :== |
1830 | a[32][25] :== |
1831 | a[32][26] :== |
1832 | a[32][27] :== |
1833 | a[32][28] :== |
1834 | a[32][29] :== |
1835 | a[32][30] :== |
1836 | a[32][31] :== |
1837 | a[32][32] :== |
1838 | a[32][33] :== |
1839 | a[32][34] :== |
1840 | a[32][35] :== |
1841 | a[32][36] :== |
1842 | a[32][37] :== |
1843 | a[32][38] :== |
1844 | a[32][39] :== |
1845 | a[32][40] :== |
1846 | a[32][41] :== |
1847 | a[32][42] :== |
1848 | a[32][43] :== |
1849 | a[32][44] :== |
1850 | a[32][45] :== |
1851 | a[32][46] :== |
1852 | a[32][47] :== |
1853 | |
1854 | (* row 33 *) |
1855 | a[33][1] :== |
1856 | a[33][2] :== |
1857 | a[33][3] :== |
1858 | a[33][4] :== |
1859 | a[33][5] :== |
1860 | a[33][6] :== |
1861 | a[33][7] :== |
1862 | a[33][8] :== |
1863 | a[33][9] :== |
1864 | a[33][10] :== |
1865 | a[33][11] :== |
1866 | a[33][12] :== |
1867 | a[33][13] :== |
1868 | a[33][14] :== |
1869 | a[33][15] :== |
1870 | a[33][16] :== |
1871 | a[33][17] :== |
1872 | a[33][18] :== |
1873 | a[33][19] :== |
1874 | a[33][20] :== |
1875 | a[33][21] :== |
1876 | a[33][22] :== |
1877 | a[33][23] :== |
1878 | a[33][24] :== |
1879 | a[33][25] :== |
1880 | a[33][26] :== |
1881 | a[33][27] :== |
1882 | a[33][28] :== |
1883 | a[33][29] :== |
1884 | a[33][30] :== |
1885 | a[33][31] :== |
1886 | a[33][32] :== |
1887 | a[33][33] :== |
1888 | a[33][34] :== |
1889 | a[33][35] :== |
1890 | a[33][36] :== |
1891 | a[33][37] :== |
1892 | a[33][38] :== |
1893 | a[33][39] :== |
1894 | a[33][40] :== |
1895 | a[33][41] :== |
1896 | a[33][42] :== |
1897 | a[33][43] :== |
1898 | a[33][44] :== |
1899 | a[33][45] :== |
1900 | a[33][46] :== |
1901 | a[33][47] :== |
1902 | |
1903 | (* row 34 *) |
1904 | a[34][1] :== |
1905 | a[34][2] :== |
1906 | a[34][3] :== |
1907 | a[34][4] :== |
1908 | a[34][5] :== |
1909 | a[34][6] :== |
1910 | a[34][7] :== |
1911 | a[34][8] :== |
1912 | a[34][9] :== |
1913 | a[34][10] :== |
1914 | a[34][11] :== |
1915 | a[34][12] :== |
1916 | a[34][13] :== |
1917 | a[34][14] :== |
1918 | a[34][15] :== |
1919 | a[34][16] :== |
1920 | a[34][17] :== |
1921 | a[34][18] :== |
1922 | a[34][19] :== |
1923 | a[34][20] :== |
1924 | a[34][21] :== |
1925 | a[34][22] :== |
1926 | a[34][23] :== |
1927 | a[34][24] :== |
1928 | a[34][25] :== |
1929 | a[34][26] :== |
1930 | a[34][27] :== |
1931 | a[34][28] :== |
1932 | a[34][29] :== |
1933 | a[34][30] :== |
1934 | a[34][31] :== |
1935 | a[34][32] :== |
1936 | a[34][33] :== |
1937 | a[34][34] :== |
1938 | a[34][35] :== |
1939 | a[34][36] :== |
1940 | a[34][37] :== |
1941 | a[34][38] :== |
1942 | a[34][39] :== |
1943 | a[34][40] :== |
1944 | a[34][41] :== |
1945 | a[34][42] :== |
1946 | a[34][43] :== |
1947 | a[34][44] :== |
1948 | a[34][45] :== |
1949 | a[34][46] :== |
1950 | a[34][47] :== |
1951 | |
1952 | (* row 35 *) |
1953 | a[35][1] :== |
1954 | a[35][2] :== |
1955 | a[35][3] :== |
1956 | a[35][4] :== |
1957 | a[35][5] :== |
1958 | a[35][6] :== |
1959 | a[35][7] :== |
1960 | a[35][8] :== |
1961 | a[35][9] :== |
1962 | a[35][10] :== |
1963 | a[35][11] :== |
1964 | a[35][12] :== |
1965 | a[35][13] :== |
1966 | a[35][14] :== |
1967 | a[35][15] :== |
1968 | a[35][16] :== |
1969 | a[35][17] :== |
1970 | a[35][18] :== |
1971 | a[35][19] :== |
1972 | a[35][20] :== |
1973 | a[35][21] :== |
1974 | a[35][22] :== |
1975 | a[35][23] :== |
1976 | a[35][24] :== |
1977 | a[35][25] :== |
1978 | a[35][26] :== |
1979 | a[35][27] :== |
1980 | a[35][28] :== |
1981 | a[35][29] :== |
1982 | a[35][30] :== |
1983 | a[35][31] :== |
1984 | a[35][32] :== |
1985 | a[35][33] :== |
1986 | a[35][34] :== |
1987 | a[35][35] :== |
1988 | a[35][36] :== |
1989 | a[35][37] :== |
1990 | a[35][38] :== |
1991 | a[35][39] :== |
1992 | a[35][40] :== |
1993 | a[35][41] :== |
1994 | a[35][42] :== |
1995 | a[35][43] :== |
1996 | a[35][44] :== |
1997 | a[35][45] :== |
1998 | a[35][46] :== |
1999 | a[35][47] :== |
2000 | |
2001 | (* row 36 *) |
2002 | a[36][1] :== |
2003 | a[36][2] :== |
2004 | a[36][3] :== |
2005 | a[36][4] :== |
2006 | a[36][5] :== |
2007 | a[36][6] :== |
2008 | a[36][7] :== |
2009 | a[36][8] :== |
2010 | a[36][9] :== |
2011 | a[36][10] :== |
2012 | a[36][11] :== |
2013 | a[36][12] :== |
2014 | a[36][13] :== |
2015 | a[36][14] :== |
2016 | a[36][15] :== |
2017 | a[36][16] :== |
2018 | a[36][17] :== |
2019 | a[36][18] :== |
2020 | a[36][19] :== |
2021 | a[36][20] :== |
2022 | a[36][21] :== |
2023 | a[36][22] :== |
2024 | a[36][23] :== |
2025 | a[36][24] :== |
2026 | a[36][25] :== |
2027 | a[36][26] :== |
2028 | a[36][27] :== |
2029 | a[36][28] :== |
2030 | a[36][29] :== |
2031 | a[36][30] :== |
2032 | a[36][31] :== |
2033 | a[36][32] :== |
2034 | a[36][33] :== |
2035 | a[36][34] :== |
2036 | a[36][35] :== |
2037 | a[36][36] :== |
2038 | a[36][37] :== |
2039 | a[36][38] :== |
2040 | a[36][39] :== |
2041 | a[36][40] :== |
2042 | a[36][41] :== |
2043 | a[36][42] :== |
2044 | a[36][43] :== |
2045 | a[36][44] :== |
2046 | a[36][45] :== |
2047 | a[36][46] :== |
2048 | a[36][47] :== |
2049 | |
2050 | (* row 37 *) |
2051 | a[37][1] :== |
2052 | a[37][2] :== |
2053 | a[37][3] :== |
2054 | a[37][4] :== |
2055 | a[37][5] :== |
2056 | a[37][6] :== |
2057 | a[37][7] :== |
2058 | a[37][8] :== |
2059 | a[37][9] :== |
2060 | a[37][10] :== |
2061 | a[37][11] :== |
2062 | a[37][12] :== |
2063 | a[37][13] :== |
2064 | a[37][14] :== |
2065 | a[37][15] :== |
2066 | a[37][16] :== |
2067 | a[37][17] :== |
2068 | a[37][18] :== |
2069 | a[37][19] :== |
2070 | a[37][20] :== |
2071 | a[37][21] :== |
2072 | a[37][22] :== |
2073 | a[37][23] :== |
2074 | a[37][24] :== |
2075 | a[37][25] :== |
2076 | a[37][26] :== |
2077 | a[37][27] :== |
2078 | a[37][28] :== |
2079 | a[37][29] :== |
2080 | a[37][30] :== |
2081 | a[37][31] :== |
2082 | a[37][32] :== |
2083 | a[37][33] :== |
2084 | a[37][34] :== |
2085 | a[37][35] :== |
2086 | a[37][36] :== |
2087 | a[37][37] :== |
2088 | a[37][38] :== |
2089 | a[37][39] :== |
2090 | a[37][40] :== |
2091 | a[37][41] :== |
2092 | a[37][42] :== |
2093 | a[37][43] :== |
2094 | a[37][44] :== |
2095 | a[37][45] :== |
2096 | a[37][46] :== |
2097 | a[37][47] :== |
2098 | |
2099 | (* row 38 *) |
2100 | a[38][1] :== |
2101 | a[38][2] :== |
2102 | a[38][3] :== |
2103 | a[38][4] :== |
2104 | a[38][5] :== |
2105 | a[38][6] :== |
2106 | a[38][7] :== |
2107 | a[38][8] :== |
2108 | a[38][9] :== |
2109 | a[38][10] :== |
2110 | a[38][11] :== |
2111 | a[38][12] :== |
2112 | a[38][13] :== |
2113 | a[38][14] :== |
2114 | a[38][15] :== |
2115 | a[38][16] :== |
2116 | a[38][17] :== |
2117 | a[38][18] :== |
2118 | a[38][19] :== |
2119 | a[38][20] :== |
2120 | a[38][21] :== |
2121 | a[38][22] :== |
2122 | a[38][23] :== |
2123 | a[38][24] :== |
2124 | a[38][25] :== |
2125 | a[38][26] :== |
2126 | a[38][27] :== |
2127 | a[38][28] :== |
2128 | a[38][29] :== |
2129 | a[38][30] :== |
2130 | a[38][31] :== |
2131 | a[38][32] :== |
2132 | a[38][33] :== |
2133 | a[38][34] :== |
2134 | a[38][35] :== |
2135 | a[38][36] :== |
2136 | a[38][37] :== |
2137 | a[38][38] :== |
2138 | a[38][39] :== |
2139 | a[38][40] :== |
2140 | a[38][41] :== |
2141 | a[38][42] :== |
2142 | a[38][43] :== |
2143 | a[38][44] :== |
2144 | a[38][45] :== |
2145 | a[38][46] :== |
2146 | a[38][47] :== |
2147 | |
2148 | (* row 39 *) |
2149 | a[39][1] :== |
2150 | a[39][2] :== |
2151 | a[39][3] :== |
2152 | a[39][4] :== |
2153 | a[39][5] :== |
2154 | a[39][6] :== |
2155 | a[39][7] :== |
2156 | a[39][8] :== |
2157 | a[39][9] :== |
2158 | a[39][10] :== |
2159 | a[39][11] :== |
2160 | a[39][12] :== |
2161 | a[39][13] :== |
2162 | a[39][14] :== |
2163 | a[39][15] :== |
2164 | a[39][16] :== |
2165 | a[39][17] :== |
2166 | a[39][18] :== |
2167 | a[39][19] :== |
2168 | a[39][20] :== |
2169 | a[39][21] :== |
2170 | a[39][22] :== |
2171 | a[39][23] :== |
2172 | a[39][24] :== |
2173 | a[39][25] :== |
2174 | a[39][26] :== |
2175 | a[39][27] :== |
2176 | a[39][28] :== |
2177 | a[39][29] :== |
2178 | a[39][30] :== |
2179 | a[39][31] :== |
2180 | a[39][32] :== |
2181 | a[39][33] :== |
2182 | a[39][34] :== |
2183 | a[39][35] :== |
2184 | a[39][36] :== |
2185 | a[39][37] :== |
2186 | a[39][38] :== |
2187 | a[39][39] :== |
2188 | a[39][40] :== |
2189 | a[39][41] :== |
2190 | a[39][42] :== |
2191 | a[39][43] :== |
2192 | a[39][44] :== |
2193 | a[39][45] :== |
2194 | a[39][46] :== |
2195 | a[39][47] :== |
2196 | |
2197 | (* row 40 *) |
2198 | a[40][1] :== |
2199 | a[40][2] :== |
2200 | a[40][3] :== |
2201 | a[40][4] :== |
2202 | a[40][5] :== |
2203 | a[40][6] :== |
2204 | a[40][7] :== |
2205 | a[40][8] :== |
2206 | a[40][9] :== |
2207 | a[40][10] :== |
2208 | a[40][11] :== |
2209 | a[40][12] :== |
2210 | a[40][13] :== |
2211 | a[40][14] :== |
2212 | a[40][15] :== |
2213 | a[40][16] :== |
2214 | a[40][17] :== |
2215 | a[40][18] :== |
2216 | a[40][19] :== |
2217 | a[40][20] :== |
2218 | a[40][21] :== |
2219 | a[40][22] :== |
2220 | a[40][23] :== |
2221 | a[40][24] :== |
2222 | a[40][25] :== |
2223 | a[40][26] :== |
2224 | a[40][27] :== |
2225 | a[40][28] :== |
2226 | a[40][29] :== |
2227 | a[40][30] :== |
2228 | a[40][31] :== |
2229 | a[40][32] :== |
2230 | a[40][33] :== |
2231 | a[40][34] :== |
2232 | a[40][35] :== |
2233 | a[40][36] :== |
2234 | a[40][37] :== |
2235 | a[40][38] :== |
2236 | a[40][39] :== |
2237 | a[40][40] :== |
2238 | a[40][41] :== |
2239 | a[40][42] :== |
2240 | a[40][43] :== |
2241 | a[40][44] :== |
2242 | a[40][45] :== |
2243 | a[40][46] :== |
2244 | a[40][47] :== |
2245 | |
2246 | (* row 41 *) |
2247 | a[41][1] :== |
2248 | a[41][2] :== |
2249 | a[41][3] :== |
2250 | a[41][4] :== |
2251 | a[41][5] :== |
2252 | a[41][6] :== |
2253 | a[41][7] :== |
2254 | a[41][8] :== |
2255 | a[41][9] :== |
2256 | a[41][10] :== |
2257 | a[41][11] :== |
2258 | a[41][12] :== |
2259 | a[41][13] :== |
2260 | a[41][14] :== |
2261 | a[41][15] :== |
2262 | a[41][16] :== |
2263 | a[41][17] :== |
2264 | a[41][18] :== |
2265 | a[41][19] :== |
2266 | a[41][ |