Parent Directory | Revision Log
Fixing GPL header, removing postal address (rpmlint incorrect-fsf-address)
1 | aw0a | 1 | REQUIRE "atoms.a4l"; |
2 | (* => atoms.a4l, measures.a4l, system.a4l, basemodel.a4l *) | ||
3 | PROVIDE "components.a4l"; | ||
4 | (* | ||
5 | * | ||
6 | * WARNINGS: | ||
7 | * - The contents of this file represent a physical | ||
8 | * properties database of minimal functionality. Such a | ||
9 | * database is just messy conceptually in a declarative language, | ||
10 | * so we do not apologize for the modeling style found in this | ||
11 | * file. | ||
12 | * | ||
13 | * - We, of course, would like to replace it with a small wrapper to a | ||
14 | * thermodynamic information database with a much wider range | ||
15 | * of chemical species. We are aware of no such database of | ||
16 | * significant size being placed in the public domain | ||
17 | * in source form which we can distribute to all our users. | ||
18 | * | ||
19 | * 1: | ||
20 | * Add species or new correlation coefficients as you need them. | ||
21 | * Models you create in the ASCEND IV language are Not subject to | ||
22 | * the GNU Public License (GPL) UNLESS you base those models on GNU Public | ||
23 | * Licensed ASCEND Libraries. All ASCEND libraries distributed from | ||
24 | * Carnegie Mellon are distributed under the GPL unless explicitly noted | ||
25 | * as being in the public domain in the distributed source code. | ||
26 | * | ||
27 | * In the interest of promoting research, we make an EXCEPTION to the | ||
28 | * above condition for proprietary physical property data integrated | ||
29 | * with ASCEND library models for non-commercial research purposes only. | ||
30 | * | ||
31 | * If you base a commercial application on GNU Public Licensed ASCEND IV | ||
32 | * libraries or modifications or extensions of those libraries, then the | ||
33 | * models you create must be released in source code form per the GPL. | ||
34 | * | ||
35 | * 2: If you have such a properties database to donate, please let us know. | ||
36 | * 3: | ||
37 | * If you create a wrapper to a proprietary database for use with | ||
38 | * ASCEND in a way that entangles your code with our sources, you | ||
39 | * are required under the terms of the ASCEND GPL | ||
40 | * to _give_ the wrapper code back to us and to make it otherwise | ||
41 | * available for public use. This does not require making the | ||
42 | * proprietary database public, just the interface. If releasing | ||
43 | * such an interface violates the proprietary licensing, then do not | ||
44 | * create it in an entangled fashion. | ||
45 | * 4: | ||
46 | * If you have questions about any of the above, please contact us | ||
47 | * ascend+developers@cs.cmu.edu and aw0a@cs.cmu.edu. We will consider | ||
48 | * alternative licensing arrangements on a case-by-case basis subject | ||
49 | * to keeping the lawyers and accountants on all sides happy. | ||
50 | *) | ||
51 | |||
52 | (* | ||
53 | * components.a4l | ||
54 | * by Joseph J. Zaher and Ben Allan | ||
55 | * Part of the ASCEND Library | ||
56 | * $Date: 1998/08/10 16:03:36 $ | ||
57 | * $Revision: 1.1 $ | ||
58 | * $Author: ballan $ | ||
59 | * $Source: /afs/cs.cmu.edu/project/ascend/Repository/models/small_components.a4l,v $ | ||
60 | * | ||
61 | * This file is part of the ASCEND Modeling Library. | ||
62 | * | ||
63 | * Copyright (C) 1994 Joseph J Zaher | ||
64 | * Copyright (C) 1997 Benjamin Andrew Allan | ||
65 | * | ||
66 | * The ASCEND Modeling Library is free software; you can redistribute | ||
67 | * it and/or modify it under the terms of the GNU General Public | ||
68 | * License as published by the Free Software Foundation; either | ||
69 | * version 2 of the License, or (at your option) any later version. | ||
70 | * | ||
71 | * The ASCEND Modeling Library is distributed in hope that it | ||
72 | * will be useful, but WITHOUT ANY WARRANTY; without even the implied | ||
73 | * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. | ||
74 | * See the GNU General Public License for more details. | ||
75 | * | ||
76 | * You should have received a copy of the GNU General Public License | ||
77 | jpye | 2651 | * along with this program. If not, see <http://www.gnu.org/licenses/>. |
78 | aw0a | 1 | *) |
79 | |||
80 | (** | ||
81 | ** | ||
82 | ** C O M P O N E N T S . A 4 L | ||
83 | ** ---------------------------------------- | ||
84 | ** | ||
85 | ** AUTHOR: Joseph J. Zaher | ||
86 | ** | ||
87 | ** DATES: 07/91 - Original code. | ||
88 | ** 02/92 - Made compatible with new set version of ASCEND. | ||
89 | ** Expanded data base, revised vapor pressure data, | ||
90 | ** and added UNIFAC group and subgroup sets with help | ||
91 | ** of Bob Huss. | ||
92 | ** 07/92 - Expanded data base with help of Kay C. Dee. | ||
93 | ** 08/92 - Replaced name attribute of each component with a | ||
94 | ** formula attribute. Component names are free to be | ||
95 | ** specified by the user. | ||
96 | ** 03/94 - Made compatible with gnu-ascend. | ||
97 | ** 08/94 - Made compatible with H,G or H,S thermo library, | ||
98 | ** and with Wilson models written by Boyd Safrit. | ||
99 | ** 02/96 - Made compatible with ASCEND IV. Ben Allan. | ||
100 | ** 01/97 - Addition OF td_component_constants by _____ | ||
101 | ** 01/97 - All constants checked by Jennifer Perry | ||
102 | ** 03/97 - Added container models for data groups. BAA. | ||
103 | ** 03/98 - 99% of the code in this file should be reduced | ||
104 | ** to a call on a database. | ||
105 | ** | ||
106 | ** | ||
107 | ** CONTENTS: ASCEND structure for component physical property constants. | ||
108 | ** All anticipated constants which may be used by the models | ||
109 | ** of "thermodynamics.a4l" are created in a general model where | ||
110 | ** a consistent reference state (298.15{K} and 1.0{atm}) is | ||
111 | ** chosen. Specific refinements to actual chemical species are | ||
112 | ** made UNIVERSAL to ensure only one instantiation of the | ||
113 | ** constants for each component is maintained throughout a | ||
114 | ** user's simulation. A reference enthalpy and entropy is | ||
115 | ** chosen by default to be those of formation of the component | ||
116 | ** from its elements at the reference state. | ||
117 | ** | ||
118 | ** | ||
119 | **) | ||
120 | |||
121 | (* Wilson pairs checked by Boyd | ||
122 | i_propanol-water | ||
123 | i_propanol-ethylene_glycol | ||
124 | ethylene_glycol-water | ||
125 | acetone-chloroform | ||
126 | acetone-benzene | ||
127 | acetone-methanol | ||
128 | methanol-water | ||
129 | benzene-chloroform | ||
130 | propadiene-propylene provided by Vince Verneulli OF Sim Sci | ||
131 | propadiene-propane provided by Vince Verneulli OF Sim Sci | ||
132 | propylene-propane provided by Vince Verneulli OF Sim Sci | ||
133 | *) | ||
134 | |||
135 | MODEL compmodel() REFINES cmumodel(); | ||
136 | METHODS | ||
137 | METHOD check_self; | ||
138 | END check_self; | ||
139 | METHOD check_all; | ||
140 | END check_all; | ||
141 | METHOD default_self; | ||
142 | END default_self; | ||
143 | METHOD default_all; | ||
144 | END default_all; | ||
145 | METHOD specify; | ||
146 | END specify; | ||
147 | METHOD scale_self; | ||
148 | END scale_self; | ||
149 | METHOD scale_all; | ||
150 | END scale_all; | ||
151 | METHOD bound_self; | ||
152 | END bound_self; | ||
153 | METHOD bound_all; | ||
154 | END bound_all; | ||
155 | END compmodel; | ||
156 | |||
157 | UNIVERSAL MODEL UNIFAC_constants() REFINES compmodel; | ||
158 | |||
159 | (* | ||
160 | REFERENCE: | ||
161 | The reference for the bulk of this MODEL is | ||
162 | Reid, Prausnitz & Poling, Properties of Gases and Liquids, | ||
163 | 1986, Chapter 8. | ||
164 | DISCLAIMER: DISCLAIMER: DISCLAIMER: DISCLAIMER: DISCLAIMER: DISCLAIMER: | ||
165 | The authors of ASCEND and Carnegie Mellon University make | ||
166 | absolutely NO WARRANTY about the accuracy of this transcription | ||
167 | of the RPP data or of the original data itself, nor do they | ||
168 | provide any guarantee that the data here represented is | ||
169 | suitable for any purpose academic or commercial. | ||
170 | DISCLAIMER: DISCLAIMER: DISCLAIMER: DISCLAIMER: DISCLAIMER: DISCLAIMER: | ||
171 | NOTES: | ||
172 | The frontiers of group contribution methods have moved on | ||
173 | well past the data presented here and the correlations | ||
174 | it is used with. Users with a penchant for thermodynamic | ||
175 | detail are advised to MODEL their own favorite correlations. | ||
176 | COMMON USAGE: | ||
177 | The local name of every instance of this MODEL | ||
178 | (since it is UNIVERSAL) should always be uc. | ||
179 | In the comments that follow, we will use uc where applicable. | ||
180 | ANNOTATED: | ||
181 | 10/96 Ben Allan | ||
182 | *) | ||
183 | |||
184 | |||
185 | groups IS_A set OF integer_constant; | ||
186 | (* | ||
187 | * uc.groups is the main group list (the ones we support) from RPP | ||
188 | * Table 8.21 column 1. | ||
189 | * Currently supported groups are (in RPP Main index) | ||
190 | * 1,2,3,4,5,6,7,8,9,23, and 11 | ||
191 | *) | ||
192 | groups :== [1..47]; | ||
193 | (* fix a 10, 12-22, 24-47 | ||
194 | *) | ||
195 | |||
196 | (* | ||
197 | * uc.sub[i IN uc.groups] is the set of secondary groups for the ith | ||
198 | * main group. This is the column 2 data of RPP Table 8-21. | ||
199 | * The UNION of uc.sub[i] is uc.subgroups, basically the set of | ||
200 | * rows in Table 8-21 that we have entered. | ||
201 | *) | ||
202 | sub[groups] IS_A set OF symbol_constant; | ||
203 | sub[1] :== ['CH3', 'CH2', 'CH', 'C']; | ||
204 | sub[2] :== ['CH2=CH', 'CH=CH', 'CH2=C', 'CH=C', 'C=C']; | ||
205 | sub[3] :== ['ACH', 'AC']; | ||
206 | sub[4] :== ['ACCH3', 'ACCH2', 'ACCH']; | ||
207 | sub[5] :== ['OH']; | ||
208 | sub[6] :== ['CH3OH']; | ||
209 | sub[7] :== ['H2O']; | ||
210 | sub[8] :== ['ACOH']; | ||
211 | sub[9] :== ['CH3CO', 'CH2CO']; | ||
212 | sub[10] :== ['CHO']; | ||
213 | sub[11] :== ['CH3COO', 'CH2COO']; | ||
214 | sub[12] :== ['HCOO']; | ||
215 | sub[13] :== ['CH3O', 'CH2O', 'CH-O', 'FCH2O']; | ||
216 | sub[14] :== ['CH3NH2', 'CH2NH2', 'CHNH2']; | ||
217 | sub[15] :== ['CH3NH', 'CH2NH', 'CHNH']; | ||
218 | sub[16] :== ['CH3N', 'CH2N']; | ||
219 | sub[17] :== ['ACNH2']; | ||
220 | sub[18] :== ['C5H5N', 'C5H4N', 'C5H3N']; | ||
221 | sub[19] :== ['CH3CN', 'CH2CN']; | ||
222 | sub[20] :== ['COOH', 'HCOOH']; | ||
223 | sub[21] :== ['CH2Cl', 'CHCl', 'CCl']; | ||
224 | sub[22] :== ['CH2Cl2', 'CHCl2', 'CCl2']; | ||
225 | sub[23] :== ['CHCl3', 'CCl3']; | ||
226 | sub[24] :== ['CCl4']; | ||
227 | sub[25] :== ['ACCl']; | ||
228 | sub[26] :== ['CH3NO2', 'CH2NO2', 'CHNO2']; | ||
229 | sub[27] :== ['ACNO2']; | ||
230 | sub[28] :== ['CS2']; | ||
231 | sub[29] :== ['CH3SH', 'CH2SH']; | ||
232 | sub[30] :== ['Furfural']; | ||
233 | sub[31] :== ['(CH2OH)2']; | ||
234 | sub[32] :== ['I']; | ||
235 | sub[33] :== ['Br']; | ||
236 | sub[34] :== ['CH-trip-C', 'C-trip-C']; | ||
237 | sub[35] :== ['Me2SO']; | ||
238 | sub[36] :== ['Acry']; | ||
239 | sub[37] :== ['Cl(C=C)']; | ||
240 | sub[38] :== ['ACF']; | ||
241 | sub[39] :== ['DMF-1', 'DMF-2']; | ||
242 | sub[40] :== ['CF3', 'CF2', 'CF']; | ||
243 | sub[41] :== ['COO']; | ||
244 | sub[42] :== ['SiH3', 'SiH2', 'SiH', 'Si']; | ||
245 | sub[43] :== ['SiH2O', 'SiHO', 'SiO']; | ||
246 | sub[44] :== ['NMP']; | ||
247 | sub[45] :== ['tert-N']; | ||
248 | sub[46] :== ['Amide']; | ||
249 | sub[47] :== ['CON(Me)2', 'CONMeCH2', 'CON(CH2)2']; | ||
250 | subgroups IS_A set OF symbol_constant; | ||
251 | |||
252 | (* | ||
253 | * uc. subgroups is the total list of secondary groups we accomodate. | ||
254 | *) | ||
255 | subgroups :== UNION[sub[i] | i IN groups]; | ||
256 | group[subgroups] IS_A integer_constant; | ||
257 | (* | ||
258 | * Next we have a horribly named array, group, that lets us look up the | ||
259 | * main group given a particular subgroup. So, for example, | ||
260 | * if we want to know the main group of 'CHCl3', then | ||
261 | * group['CHCl3'] will give it to us: 'CCl3'. | ||
262 | * Note, then, that the assignments which follow in most | ||
263 | * cases expand to have several left-hand-sides. | ||
264 | *) | ||
265 | FOR i IN groups CREATE | ||
266 | group[sub[i]] :== i; | ||
267 | END FOR; | ||
268 | |||
269 | a[groups][groups] "binary group interaction parameters" IS_A UNIFAC_a; | ||
270 | (* | ||
271 | * Now we have uc.a[m][n], a portion of RPP Table 8-22, the main group | ||
272 | * interaction matrix which is asymmetric and in principle | ||
273 | * dense but in our practice rather sparse. | ||
274 | * Adding a main group to this MODEL means adding a row and | ||
275 | * column to uc.a, which is a non-trivial exercise until we | ||
276 | * get a proper tabular assignment syntax implemented. | ||
277 | * Note that such an syntax has been completely scoped but | ||
278 | * we've just not yet got round to implementation. | ||
279 | * When we do implement, this will be the first test MODEL. | ||
280 | * a[i][j] should have i and j being integer_constant! | ||
281 | *) | ||
282 | |||
283 | (* we would like the ascend TABLE syntax or a database | ||
284 | * external lookup to handle this data entry. | ||
285 | *) | ||
286 | (* row 1 *) | ||
287 | a[1][1] :== 0.0 {K}; | ||
288 | a[1][2] :== 86.020 {K}; | ||
289 | a[1][3] :== 61.13 {K}; | ||
290 | a[1][4] :== 76.50 {K}; | ||
291 | a[1][5] :== 986.5 {K}; | ||
292 | a[1][6] :== 697.2 {K}; | ||
293 | a[1][7] :== 1318.0 {K}; | ||
294 | a[1][8] :== 1333.0 {K}; | ||
295 | a[1][9] :== 476.4 {K}; | ||
296 | a[1][10] :== 677 {K}; | ||
297 | a[1][11] :== 232.1 {K}; | ||
298 | a[1][12] :== 741.4 {K}; | ||
299 | a[1][13] :== 251.5 {K}; | ||
300 | a[1][14] :== 391.5 {K}; | ||
301 | a[1][15] :== 225.7 {K}; | ||
302 | a[1][16] :== 206.6 {K}; | ||
303 | a[1][17] :== 920.7 {K}; | ||
304 | a[1][18] :== 287.7 {K}; | ||
305 | a[1][19] :== 597 {K}; | ||
306 | a[1][20] :== 663.5 {K}; | ||
307 | a[1][21] :== 35.93 {K}; | ||
308 | a[1][22] :== 53.76 {K}; | ||
309 | a[1][23] :== 24.90 {K}; | ||
310 | a[1][24] :== 104.3 {K}; | ||
311 | a[1][25] :== 321.5 {K}; | ||
312 | a[1][26] :== 661.5 {K}; | ||
313 | a[1][27] :== 543 {K}; | ||
314 | a[1][28] :== 153.6 {K}; | ||
315 | a[1][29] :== 184.4 {K}; | ||
316 | a[1][30] :== 354.5 {K}; | ||
317 | a[1][31] :== 3025 {K}; | ||
318 | a[1][32] :== 335.8 {K}; | ||
319 | a[1][33] :== 479.5 {K}; | ||
320 | a[1][34] :== 298.9 {K}; | ||
321 | a[1][35] :== 526.5 {K}; | ||
322 | a[1][36] :== 689 {K}; | ||
323 | a[1][37] :== -4.189 {K}; | ||
324 | a[1][38] :== 125.8 {K}; | ||
325 | a[1][39] :== 485.3 {K}; | ||
326 | a[1][40] :== -2.859 {K}; | ||
327 | a[1][41] :== 387.1 {K}; | ||
328 | a[1][42] :== -450.4 {K}; | ||
329 | a[1][43] :== 252.7 {K}; | ||
330 | a[1][44] :== 13.89 {K}; | ||
331 | a[1][45] :== 383 {K}; | ||
332 | a[1][46] :== -1380 {K}; | ||
333 | a[1][47] :== 729 {K}; | ||
334 | |||
335 | (* row 2 *) (* the ?!? numbers in group 2 are bogus. probably entered by ka. | ||
336 | * they have been replaced. part looks like a paste of row 4. | ||
337 | *) | ||
338 | (* old: | ||
339 | a[2][1] :== 2520 {K}; (*?!?*) | ||
340 | a[2][2] :== 0.0 {K}; (*?!?*) | ||
341 | a[2][3] :== 340.7 {K}; (*?!?*) | ||
342 | a[2][4] :== 4102 {K}; (*?!?*) | ||
343 | a[2][5] :== 693.9 {K}; (*?!?*) | ||
344 | a[2][6] :== 1509.0 {K}; (*?!?*) | ||
345 | a[2][7] :== 634.2 {K}; (*?!?*) | ||
346 | a[2][8] :== 547.4 {K}; (*?!?*) | ||
347 | a[2][9] :== 524.5 {K}; (*?!?*) | ||
348 | a[2][11] :== 71.23 {K}; (*?!?*) | ||
349 | END old *) | ||
350 | a[2][1] :== -35.36 {K}; | ||
351 | a[2][2] :== 0.0 {K}; | ||
352 | a[2][3] :== 38.81 {K}; | ||
353 | a[2][4] :== 74.15 {K}; | ||
354 | a[2][5] :== 524.1 {K}; | ||
355 | a[2][6] :== 787.6 {K}; | ||
356 | a[2][7] :== 270.6 {K}; | ||
357 | a[2][8] :== 526.1 {K}; | ||
358 | a[2][9] :== 182.6 {K}; | ||
359 | a[2][10] :== 448.8 {K}; | ||
360 | a[2][11] :== 37.85 {K}; | ||
361 | a[2][12] :== 449.1 {K}; | ||
362 | a[2][13] :== 214.5 {K}; | ||
363 | a[2][14] :== 240.9 {K}; | ||
364 | a[2][15] :== 163.9 {K}; | ||
365 | a[2][16] :== 61.11 {K}; | ||
366 | a[2][17] :== 749.3 {K}; | ||
367 | a[2][18] :== 0 {K}; | ||
368 | a[2][19] :== 336.9 {K}; | ||
369 | a[2][20] :== 318.9 {K}; | ||
370 | a[2][21] :== 204.6 {K}; | ||
371 | a[2][22] :== 5.892 {K}; | ||
372 | (* old | ||
373 | a[2][23] :== 4584.0 {K}; (*?!?*) | ||
374 | END old *) | ||
375 | |||
376 | a[2][23] :== -13.99 {K}; | ||
377 | a[2][24] :== -109.7 {K}; | ||
378 | a[2][25] :== 393.1 {K}; | ||
379 | a[2][26] :== 357.5 {K}; | ||
380 | a[2][27] :== 0 {K}; | ||
381 | a[2][28] :== 76.3 {K}; | ||
382 | a[2][29] :== 0 {K}; | ||
383 | a[2][30] :== 0 {K}; | ||
384 | a[2][31] :== 0 {K}; | ||
385 | a[2][32] :== 0 {K}; | ||
386 | a[2][33] :== 0 {K}; | ||
387 | a[2][34] :== 31.14 {K}; | ||
388 | a[2][35] :== -137.4 {K}; | ||
389 | a[2][36] :== 0 {K}; | ||
390 | a[2][37] :== -66.46 {K}; | ||
391 | a[2][38] :== 0 {K}; | ||
392 | a[2][39] :== -70.45 {K}; | ||
393 | a[2][40] :== 0 {K}; | ||
394 | a[2][41] :== 48.33 {K}; | ||
395 | a[2][42] :== 0 {K}; | ||
396 | a[2][43] :== 0 {K}; | ||
397 | a[2][44] :== 0 {K}; | ||
398 | a[2][45] :== 0 {K}; | ||
399 | a[2][46] :== 2340 {K}; | ||
400 | a[2][47] :== 0 {K}; | ||
401 | (* row 3 *) | ||
402 | a[3][1] :== -11.12 {K}; | ||
403 | a[3][2] :== 3.446 {K}; | ||
404 | a[3][3] :== 0.0 {K}; | ||
405 | a[3][4] :== 167.0 {K}; | ||
406 | a[3][5] :== 636.10 {K}; | ||
407 | a[3][6] :== 637.3 {K}; | ||
408 | a[3][7] :== 903.8 {K}; | ||
409 | a[3][8] :== 1329.0 {K}; | ||
410 | a[3][9] :== 25.77 {K}; | ||
411 | a[3][11] :== 5.994 {K}; | ||
412 | a[3][10] :== 347.3 {K}; | ||
413 | a[3][12] :== -92.55 {K}; | ||
414 | a[3][13] :== 32.14 {K}; | ||
415 | a[3][14] :== 161.7 {K}; | ||
416 | a[3][15] :== 122.8 {K}; | ||
417 | a[3][16] :== 90.49 {K}; | ||
418 | a[3][17] :== 648.2 {K}; | ||
419 | a[3][18] :== -4.449 {K}; | ||
420 | a[3][19] :== 212.5 {K}; | ||
421 | a[3][20] :== 537.4 {K}; | ||
422 | a[3][21] :== -18.81 {K}; | ||
423 | a[3][22] :== -144.4 {K}; | ||
424 | a[3][23] :== -231.9 {K}; | ||
425 | a[3][24] :== 3 {K}; | ||
426 | a[3][25] :== 538.2 {K}; | ||
427 | a[3][26] :== 168 {K}; | ||
428 | a[3][27] :== 194.9 {K}; | ||
429 | a[3][28] :== 52.07 {K}; | ||
430 | a[3][29] :== -10.43 {K}; | ||
431 | a[3][30] :== -64.69 {K}; | ||
432 | a[3][31] :== 210.4 {K}; | ||
433 | a[3][32] :== 113.3 {K}; | ||
434 | a[3][33] :== -13.59 {K}; | ||
435 | a[3][34] :== 0 {K}; | ||
436 | a[3][35] :== 169.9 {K}; | ||
437 | a[3][36] :== 0 {K}; | ||
438 | a[3][37] :== -259.1 {K}; | ||
439 | a[3][38] :== 389.3 {K}; | ||
440 | a[3][39] :== 245.6 {K}; | ||
441 | a[3][40] :== 0 {K}; | ||
442 | a[3][41] :== 103.5 {K}; | ||
443 | a[3][42] :== -432.3 {K}; | ||
444 | a[3][43] :== 238.9 {K}; | ||
445 | a[3][44] :== -23.88 {K}; | ||
446 | a[3][45] :== 109 {K}; | ||
447 | a[3][46] :== 75.9 {K}; | ||
448 | a[3][47] :== 784 {K}; | ||
449 | (* row 4 *) | ||
450 | a[4][1] :== -69.70 {K}; | ||
451 | a[4][2] :== -113.6 {K}; | ||
452 | a[4][3] :== -146.80 {K}; | ||
453 | a[4][4] :== 0.0 {K}; | ||
454 | a[4][5] :== 803.20 {K}; | ||
455 | a[4][6] :== 603.2 {K}; | ||
456 | a[4][7] :== 5695.00 {K}; | ||
457 | a[4][8] :== 547.4 {K}; | ||
458 | a[4][9] :== -52.10 {K}; | ||
459 | a[4][10] :== 586.6 {K}; | ||
460 | a[4][11] :== 5688.0 {K}; | ||
461 | |||
462 | a[4][12] :== 115.2 {K}; | ||
463 | a[4][13] :== 213.1 {K}; | ||
464 | a[4][14] :== 0 {K}; | ||
465 | a[4][15] :== 49.29 {K}; | ||
466 | a[4][16] :== 23.5 {K}; | ||
467 | a[4][17] :== 664.2 {K}; | ||
468 | a[4][18] :== 52.8 {K}; | ||
469 | a[4][19] :== 6096 {K}; | ||
470 | a[4][20] :== 603.8 {K}; | ||
471 | a[4][21] :== -114.1 {K}; | ||
472 | a[4][22] :== -111 {K}; | ||
473 | a[4][23] :== -12.14 {K}; | ||
474 | a[4][24] :== -141.3 {K}; | ||
475 | a[4][25] :== -126.9 {K}; | ||
476 | a[4][26] :== 3629 {K}; | ||
477 | a[4][27] :== 4448 {K}; | ||
478 | a[4][28] :== -9.451 {K}; | ||
479 | a[4][29] :== 0 {K}; | ||
480 | a[4][30] :== -20.36 {K}; | ||
481 | a[4][31] :== 4975 {K}; | ||
482 | a[4][32] :== 0 {K}; | ||
483 | a[4][33] :== -171.3 {K}; | ||
484 | a[4][34] :== 0 {K}; | ||
485 | a[4][35] :== 4284 {K}; | ||
486 | a[4][36] :== 0 {K}; | ||
487 | a[4][37] :== 0 {K}; | ||
488 | a[4][38] :== 101.4 {K}; | ||
489 | a[4][39] :== 5629 {K}; | ||
490 | a[4][40] :== 0 {K}; | ||
491 | a[4][41] :== 69.26 {K}; | ||
492 | a[4][42] :== 683.3 {K}; | ||
493 | a[4][43] :== 355.5 {K}; | ||
494 | a[4][44] :== 6.214 {K}; | ||
495 | a[4][45] :== 1320 {K}; | ||
496 | a[4][46] :== 482 {K}; | ||
497 | a[4][47] :== 386 {K}; | ||
498 | (* row 5 *) | ||
499 | a[5][1] :== 156.40 {K}; | ||
500 | a[5][2] :== 475.000 {K}; | ||
501 | a[5][3] :== 89.60 {K}; | ||
502 | a[5][4] :== 25.82 {K}; | ||
503 | a[5][5] :== 0.0 {K}; | ||
504 | a[5][6] :== -137.1 {K}; | ||
505 | a[5][7] :== 353.50 {K}; | ||
506 | a[5][8] :== -259.7 {K}; | ||
507 | a[5][9] :== 84.0 {K}; | ||
508 | a[5][10] :== 441.8 {K}; | ||
509 | a[5][11] :== 101.1 {K}; | ||
510 | a[5][12] :== 193.1 {K}; | ||
511 | a[5][13] :== 28.06 {K}; | ||
512 | a[5][14] :== 83.02 {K}; | ||
513 | a[5][15] :== 42.7 {K}; | ||
514 | a[5][16] :== -323 {K}; | ||
515 | a[5][17] :== -52.39 {K}; | ||
516 | a[5][18] :== 170 {K}; | ||
517 | a[5][19] :== 6.712 {K}; | ||
518 | a[5][20] :== 199 {K}; | ||
519 | a[5][21] :== 75.62 {K}; | ||
520 | a[5][22] :== -112.1 {K}; | ||
521 | a[5][23] :== -98.12 {K}; | ||
522 | a[5][24] :== 143.1 {K}; | ||
523 | a[5][25] :== 287.8 {K}; | ||
524 | a[5][26] :== 256.5 {K}; | ||
525 | a[5][27] :== 157.1 {K}; | ||
526 | a[5][28] :== 477 {K}; | ||
527 | a[5][29] :== 147.5 {K}; | ||
528 | a[5][30] :== -120.5 {K}; | ||
529 | a[5][31] :== -318.9 {K}; | ||
530 | a[5][32] :== 313.5 {K}; | ||
531 | a[5][33] :== 133.4 {K}; | ||
532 | a[5][34] :== 0 {K}; | ||
533 | a[5][35] :== -202.1 {K}; | ||
534 | a[5][36] :== 0 {K}; | ||
535 | a[5][37] :== 225.8 {K}; | ||
536 | a[5][38] :== 44.78 {K}; | ||
537 | a[5][39] :== -143.9 {K}; | ||
538 | a[5][40] :== 0 {K}; | ||
539 | a[5][41] :== 190.3 {K}; | ||
540 | a[5][42] :== -817.7 {K}; | ||
541 | a[5][43] :== 202.7 {K}; | ||
542 | a[5][44] :== 796.9 {K}; | ||
543 | a[5][45] :== 0 {K}; | ||
544 | a[5][46] :== 0 {K}; | ||
545 | a[5][47] :== 0 {K}; | ||
546 | (* row 6 *) | ||
547 | a[6][1] :== 16.51 {K}; | ||
548 | a[6][2] :== -12.520 {K}; | ||
549 | a[6][3] :== -50.00 {K}; | ||
550 | a[6][4] :== -44.50 {K}; | ||
551 | a[6][5] :== 249.1 {K}; | ||
552 | a[6][6] :== 0.0 {K}; | ||
553 | a[6][7] :== -181.0 {K}; | ||
554 | a[6][8] :== -101.7 {K}; | ||
555 | a[6][9] :== 23.39 {K}; | ||
556 | a[6][10] :== 306.4 {K}; | ||
557 | a[6][11] :== -10.72 {K}; | ||
558 | a[6][12] :== 193.4 {K}; | ||
559 | a[6][13] :== -128.6 {K}; | ||
560 | a[6][14] :== 359.3 {K}; | ||
561 | a[6][15] :== 266 {K}; | ||
562 | a[6][16] :== 53.9 {K}; | ||
563 | a[6][17] :== 489.7 {K}; | ||
564 | a[6][18] :== 580.5 {K}; | ||
565 | a[6][19] :== 36.23 {K}; | ||
566 | a[6][20] :== -289.5 {K}; | ||
567 | a[6][21] :== -38.32 {K}; | ||
568 | a[6][22] :== -102.5 {K}; | ||
569 | a[6][23] :== -139.4 {K}; | ||
570 | a[6][24] :== -67.8 {K}; | ||
571 | a[6][25] :== 17.12 {K}; | ||
572 | a[6][26] :== 75.14 {K}; | ||
573 | a[6][27] :== 0 {K}; | ||
574 | a[6][28] :== -31.09 {K}; | ||
575 | a[6][29] :== 37.84 {K}; | ||
576 | a[6][30] :== 0 {K}; | ||
577 | a[6][31] :== 0 {K}; | ||
578 | a[6][32] :== 0 {K}; | ||
579 | a[6][33] :== 106.3 {K}; | ||
580 | a[6][34] :== 0 {K}; | ||
581 | a[6][35] :== -399.3 {K}; | ||
582 | a[6][36] :== 0 {K}; | ||
583 | a[6][37] :== 33.47 {K}; | ||
584 | a[6][38] :== -48.25 {K}; | ||
585 | a[6][39] :== -172.4 {K}; | ||
586 | a[6][40] :== 0 {K}; | ||
587 | a[6][41] :== 165.7 {K}; | ||
588 | a[6][42] :== 0 {K}; | ||
589 | a[6][43] :== 0 {K}; | ||
590 | a[6][44] :== 0 {K}; | ||
591 | a[6][45] :== 214 {K}; | ||
592 | a[6][46] :== 0 {K}; | ||
593 | a[6][47] :== 0 {K}; | ||
594 | (* row 7 *) | ||
595 | a[7][1] :== 300.00 {K}; | ||
596 | a[7][2] :== 496.100 {K}; | ||
597 | a[7][3] :== 362.30 {K}; | ||
598 | a[7][4] :== 377.60 {K}; | ||
599 | a[7][5] :== -229.10 {K}; | ||
600 | a[7][6] :== 289.6 {K}; | ||
601 | a[7][7] :== 0.0 {K}; | ||
602 | a[7][8] :== 324.5 {K}; | ||
603 | a[7][9] :== -195.40 {K}; | ||
604 | a[7][10] :== -257.3 {K}; | ||
605 | (* a[7][11] :== 14.42 {K}; ?!?*) | ||
606 | a[7][11] :== 72.87 {K}; | ||
607 | a[7][12] :== 0 {K}; | ||
608 | a[7][13] :== 540.5 {K}; | ||
609 | a[7][14] :== 48.89 {K}; | ||
610 | a[7][15] :== 168 {K}; | ||
611 | a[7][16] :== 304 {K}; | ||
612 | a[7][17] :== -59.29 {K}; | ||
613 | a[7][18] :== 459 {K}; | ||
614 | a[7][19] :== 112.6 {K}; | ||
615 | a[7][20] :== -14.09 {K}; | ||
616 | a[7][21] :== 325.4 {K}; | ||
617 | a[7][22] :== 370.4 {K}; | ||
618 | a[7][23] :== 353.7 {K}; | ||
619 | a[7][24] :== 497.5 {K}; | ||
620 | a[7][25] :== 678.2 {K}; | ||
621 | a[7][26] :== 220.6 {K}; | ||
622 | a[7][27] :== 399.5 {K}; | ||
623 | a[7][28] :== 887.1 {K}; | ||
624 | a[7][29] :== 0 {K}; | ||
625 | a[7][30] :== 188 {K}; | ||
626 | a[7][31] :== 13.53 {K}; | ||
627 | a[7][32] :== 0 {K}; | ||
628 | a[7][33] :== 0 {K}; | ||
629 | a[7][34] :== 0 {K}; | ||
630 | a[7][35] :== -139 {K}; | ||
631 | a[7][36] :== 160.8 {K}; | ||
632 | a[7][37] :== 0 {K}; | ||
633 | a[7][38] :== 0 {K}; | ||
634 | a[7][39] :== 319 {K}; | ||
635 | a[7][40] :== 0 {K}; | ||
636 | a[7][41] :== -197.5 {K}; | ||
637 | a[7][42] :== 0 {K}; | ||
638 | a[7][43] :== 0 {K}; | ||
639 | a[7][44] :== 832.2 {K}; | ||
640 | a[7][45] :== 365 {K}; | ||
641 | a[7][46] :== 0 {K}; | ||
642 | a[7][47] :== 0 {K}; | ||
643 | (* row 8 *) | ||
644 | a[8][1] :== 275.8 {K}; | ||
645 | a[8][2] :== 217.5 {K}; | ||
646 | a[8][3] :== 25.34 {K}; | ||
647 | a[8][4] :== 244.2 {K}; | ||
648 | a[8][5] :== -451.6 {K}; | ||
649 | a[8][6] :== -265.2 {K}; | ||
650 | a[8][7] :== -601.8 {K}; | ||
651 | a[8][8] :== 0.0 {K}; | ||
652 | a[8][9] :== -356.1 {K}; | ||
653 | a[8][10] :== 0 {K}; | ||
654 | a[8][11] :== -449.4 {K}; | ||
655 | a[8][12] :== 0 {K}; | ||
656 | a[8][13] :== 0 {K}; | ||
657 | a[8][14] :== 0 {K}; | ||
658 | a[8][15] :== 0 {K}; | ||
659 | a[8][16] :== 0 {K}; | ||
660 | a[8][17] :== 119.9 {K}; | ||
661 | a[8][18] :== -305.5 {K}; | ||
662 | a[8][19] :== 0 {K}; | ||
663 | a[8][20] :== 0 {K}; | ||
664 | a[8][21] :== 0 {K}; | ||
665 | a[8][22] :== 0 {K}; | ||
666 | a[8][23] :== 0.0 {K}; | ||
667 | a[8][24] :== 1827 {K}; | ||
668 | a[8][25] :== 0 {K}; | ||
669 | a[8][26] :== 0 {K}; | ||
670 | a[8][27] :== 0 {K}; | ||
671 | a[8][28] :== 0 {K}; | ||
672 | a[8][29] :== 0 {K}; | ||
673 | a[8][30] :== 0 {K}; | ||
674 | a[8][31] :== -687.1 {K}; | ||
675 | a[8][32] :== 0 {K}; | ||
676 | a[8][33] :== 0 {K}; | ||
677 | a[8][34] :== 0 {K}; | ||
678 | a[8][35] :== 0 {K}; | ||
679 | a[8][36] :== 0 {K}; | ||
680 | a[8][37] :== 0 {K}; | ||
681 | a[8][38] :== 0 {K}; | ||
682 | a[8][39] :== 0 {K}; | ||
683 | a[8][40] :== 0 {K}; | ||
684 | a[8][41] :== -494.2 {K}; | ||
685 | (* a[8][42] :== undefined in book. *) | ||
686 | a[8][43] :== 0 {K}; | ||
687 | a[8][44] :== 0 {K}; | ||
688 | a[8][45] :== 0 {K}; | ||
689 | a[8][46] :== 0 {K}; | ||
690 | a[8][47] :== 0 {K}; | ||
691 | (* row 9 *) | ||
692 | a[9][1] :== 26.76 {K}; | ||
693 | a[9][2] :== 42.920 {K}; | ||
694 | a[9][3] :== 140.10 {K}; | ||
695 | a[9][4] :== 365.80 {K}; | ||
696 | a[9][5] :== 164.5 {K}; | ||
697 | a[9][6] :== 108.7 {K}; | ||
698 | a[9][7] :== 472.5 {K}; | ||
699 | a[9][8] :== -133.1 {K}; | ||
700 | a[9][9] :== 0.0 {K}; | ||
701 | a[9][10] :== -37.36 {K}; | ||
702 | a[9][11] :== -213.7 {K}; | ||
703 | a[9][12] :== -38.47 {K}; | ||
704 | a[9][13] :== -103.6 {K}; | ||
705 | a[9][14] :== 0 {K}; | ||
706 | a[9][15] :== 0 {K}; | ||
707 | a[9][16] :== -169 {K}; | ||
708 | a[9][17] :== 6201 {K}; | ||
709 | a[9][18] :== 165.1 {K}; | ||
710 | a[9][19] :== 481.7 {K}; | ||
711 | a[9][20] :== 669.4 {K}; | ||
712 | a[9][21] :== -191.7 {K}; | ||
713 | a[9][22] :== -284 {K}; | ||
714 | a[9][23] :== -354.6 {K}; | ||
715 | a[9][24] :== -39.2 {K}; | ||
716 | a[9][25] :== 174.5 {K}; | ||
717 | a[9][26] :== 137.5 {K}; | ||
718 | a[9][27] :== 0 {K}; | ||
719 | a[9][28] :== 216.1 {K}; | ||
720 | a[9][29] :== -46.28 {K}; | ||
721 | a[9][30] :== -163.7 {K}; | ||
722 | a[9][31] :== 0 {K}; | ||
723 | a[9][32] :== 53.59 {K}; | ||
724 | a[9][33] :== 245.2 {K}; | ||
725 | a[9][34] :== -246.2 {K}; | ||
726 | a[9][35] :== -44.58 {K}; | ||
727 | a[9][36] :== 0 {K}; | ||
728 | a[9][37] :== -34.57 {K}; | ||
729 | a[9][38] :== 0 {K}; | ||
730 | a[9][39] :== -61.7 {K}; | ||
731 | a[9][40] :== 0 {K}; | ||
732 | a[9][41] :== -18.8 {K}; | ||
733 | a[9][42] :== 0 {K}; | ||
734 | a[9][43] :== 0 {K}; | ||
735 | a[9][44] :== 0 {K}; | ||
736 | a[9][45] :== 135 {K}; | ||
737 | a[9][46] :== -1680 {K}; | ||
738 | a[9][47] :== -58 {K}; | ||
739 | (* row 10 *) | ||
740 | a[10][1] :== 505.7 {K}; | ||
741 | a[10][2] :== 56.3 {K}; | ||
742 | a[10][3] :== 23.39 {K}; | ||
743 | a[10][4] :== 106.6 {K}; | ||
744 | a[10][5] :== -404.8 {K}; | ||
745 | a[10][6] :== -340.2 {K}; | ||
746 | a[10][7] :== 232.7 {K}; | ||
747 | a[10][8] :== 0 {K}; | ||
748 | a[10][9] :== 128 {K}; | ||
749 | a[10][10] :== 0 {K}; | ||
750 | a[10][11] :== -110.3 {K}; | ||
751 | a[10][12] :== 11.31 {K}; | ||
752 | a[10][13] :== 304.1 {K}; | ||
753 | a[10][14] :== 0 {K}; | ||
754 | a[10][15] :== 0 {K}; | ||
755 | a[10][16] :== 0 {K}; | ||
756 | a[10][17] :== 0 {K}; | ||
757 | a[10][18] :== 0 {K}; | ||
758 | a[10][19] :== 0 {K}; | ||
759 | a[10][20] :== 0 {K}; | ||
760 | a[10][21] :== 751.9 {K}; | ||
761 | a[10][22] :== 0 {K}; | ||
762 | a[10][23] :== -483.7 {K}; | ||
763 | a[10][24] :== 0 {K}; | ||
764 | a[10][25] :== 0 {K}; | ||
765 | a[10][26] :== 0 {K}; | ||
766 | a[10][27] :== 0 {K}; | ||
767 | a[10][28] :== 0 {K}; | ||
768 | a[10][29] :== 0 {K}; | ||
769 | a[10][30] :== 0 {K}; | ||
770 | a[10][31] :== 0 {K}; | ||
771 | a[10][32] :== 0 {K}; | ||
772 | a[10][33] :== 0 {K}; | ||
773 | a[10][34] :== 0 {K}; | ||
774 | a[10][35] :== 0 {K}; | ||
775 | a[10][36] :== 0 {K}; | ||
776 | a[10][37] :== 0 {K}; | ||
777 | a[10][38] :== 0 {K}; | ||
778 | a[10][39] :== 0 {K}; | ||
779 | a[10][40] :== 0 {K}; | ||
780 | a[10][41] :== 0 {K}; | ||
781 | a[10][42] :== 0 {K}; | ||
782 | a[10][43] :== 0 {K}; | ||
783 | a[10][44] :== 0 {K}; | ||
784 | a[10][45] :== -7.18 {K}; | ||
785 | a[10][46] :== 333 {K}; | ||
786 | a[10][47] :== 6810 {K}; | ||
787 | (* row 11 *) | ||
788 | a[11][1] :== 114.8 {K}; | ||
789 | a[11][2] :== 132.1 {K}; | ||
790 | a[11][3] :== 85.84 {K}; | ||
791 | a[11][4] :== -170.0 {K}; | ||
792 | a[11][5] :== 245.4 {K}; | ||
793 | a[11][6] :== 249.6 {K}; | ||
794 | a[11][7] :== 10000.0 {K}; | ||
795 | a[11][8] :== -36.72 {K}; | ||
796 | a[11][9] :== 372.2 {K}; | ||
797 | a[11][10] :== 185.1 {K}; | ||
798 | a[11][11] :== 0.0 {K}; | ||
799 | a[11][12] :== 372.9 {K}; | ||
800 | a[11][13] :== -235.7 {K}; | ||
801 | a[11][14] :== 0 {K}; | ||
802 | a[11][15] :== -73.5 {K}; | ||
803 | a[11][16] :== 0 {K}; | ||
804 | a[11][17] :== 475.5 {K}; | ||
805 | a[11][18] :== 0 {K}; | ||
806 | a[11][19] :== 494.6 {K}; | ||
807 | a[11][20] :== 660.2 {K}; | ||
808 | a[11][21] :== -34.74 {K}; | ||
809 | a[11][22] :== 108.9 {K}; | ||
810 | a[11][23] :== -209.7 {K}; | ||
811 | a[11][24] :== 54.47 {K}; | ||
812 | a[11][25] :== 629 {K}; | ||
813 | a[11][26] :== -81.13 {K}; | ||
814 | a[11][27] :== 0 {K}; | ||
815 | a[11][28] :== 183 {K}; | ||
816 | a[11][29] :== 0 {K}; | ||
817 | a[11][30] :== 202.3 {K}; | ||
818 | a[11][31] :== -101.7 {K}; | ||
819 | a[11][32] :== 148.3 {K}; | ||
820 | a[11][33] :== 18.88 {K}; | ||
821 | a[11][34] :== 0 {K}; | ||
822 | a[11][35] :== 52.08 {K}; | ||
823 | a[11][36] :== -28.61 {K}; | ||
824 | a[11][37] :== -83.3 {K}; | ||
825 | a[11][38] :== 0 {K}; | ||
826 | a[11][39] :== 0 {K}; | ||
827 | a[11][40] :== 0 {K}; | ||
828 | a[11][41] :== 560.2 {K}; | ||
829 | a[11][42] :== 0 {K}; | ||
830 | a[11][43] :== 0 {K}; | ||
831 | a[11][44] :== 0 {K}; | ||
832 | a[11][45] :== -54.6 {K}; | ||
833 | a[11][46] :== 0 {K}; | ||
834 | a[11][47] :== 6960 {K}; | ||
835 | (* row 12 *) | ||
836 | a[12][1] :== 90.49 {K}; | ||
837 | a[12][2] :== -62.55 {K}; | ||
838 | a[12][3] :== 1967 {K}; | ||
839 | a[12][4] :== 2347 {K}; | ||
840 | a[12][5] :== 191.2 {K}; | ||
841 | a[12][6] :== 155.7 {K}; | ||
842 | a[12][7] :== 0 {K}; | ||
843 | a[12][8] :== 0 {K}; | ||
844 | a[12][9] :== 70.42 {K}; | ||
845 | a[12][10] :== 35.35 {K}; | ||
846 | a[12][11] :== -261.1 {K}; | ||
847 | a[12][12] :== 0 {K}; | ||
848 | a[12][13] :== 0 {K}; | ||
849 | a[12][14] :== 0 {K}; | ||
850 | a[12][15] :== 0 {K}; | ||
851 | a[12][16] :== 0 {K}; | ||
852 | a[12][17] :== 0 {K}; | ||
853 | a[12][18] :== 0 {K}; | ||
854 | a[12][19] :== 0 {K}; | ||
855 | a[12][20] :== -356.3 {K}; | ||
856 | a[12][21] :== 0 {K}; | ||
857 | a[12][22] :== 0 {K}; | ||
858 | a[12][23] :== -287.2 {K}; | ||
859 | a[12][24] :== 36.84 {K}; | ||
860 | a[12][25] :== 0 {K}; | ||
861 | a[12][26] :== 0 {K}; | ||
862 | a[12][27] :== 0 {K}; | ||
863 | a[12][28] :== 0 {K}; | ||
864 | a[12][29] :== 4.339 {K}; | ||
865 | a[12][30] :== 0 {K}; | ||
866 | a[12][31] :== 0 {K}; | ||
867 | a[12][32] :== 0 {K}; | ||
868 | a[12][33] :== 0 {K}; | ||
869 | a[12][34] :== 0 {K}; | ||
870 | a[12][35] :== 0 {K}; | ||
871 | a[12][36] :== 0 {K}; | ||
872 | a[12][37] :== 0 {K}; | ||
873 | a[12][38] :== 0 {K}; | ||
874 | a[12][39] :== 0 {K}; | ||
875 | a[12][40] :== 0 {K}; | ||
876 | a[12][41] :== -70.24 {K}; | ||
877 | a[12][42] :== 0 {K}; | ||
878 | a[12][43] :== 0 {K}; | ||
879 | a[12][44] :== 0 {K}; | ||
880 | a[12][45] :== 0 {K}; | ||
881 | a[12][46] :== 0 {K}; | ||
882 | a[12][47] :== 0 {K}; | ||
883 | (* row 13 *) | ||
884 | a[13][1] :== 83.36 {K}; | ||
885 | a[13][2] :== 26.51 {K}; | ||
886 | a[13][3] :== 52.13 {K}; | ||
887 | a[13][4] :== 65.69 {K}; | ||
888 | a[13][5] :== 237.7 {K}; | ||
889 | a[13][6] :== 238.4 {K}; | ||
890 | a[13][7] :== -314.7 {K}; | ||
891 | a[13][8] :== 0 {K}; | ||
892 | a[13][9] :== 191.1 {K}; | ||
893 | a[13][10] :== -7.838 {K}; | ||
894 | a[13][11] :== 461.3 {K}; | ||
895 | a[13][12] :== 0 {K}; | ||
896 | a[13][13] :== 0 {K}; | ||
897 | a[13][14] :== 0 {K}; | ||
898 | a[13][15] :== 141.7 {K}; | ||
899 | a[13][16] :== 0 {K}; | ||
900 | a[13][17] :== 0 {K}; | ||
901 | a[13][18] :== 0 {K}; | ||
902 | a[13][19] :== -18.51 {K}; | ||
903 | a[13][20] :== 664.6 {K}; | ||
904 | a[13][21] :== 301.1 {K}; | ||
905 | a[13][22] :== 137.8 {K}; | ||
906 | a[13][23] :== -154.3 {K}; | ||
907 | a[13][24] :== 47.67 {K}; | ||
908 | a[13][25] :== 66.15 {K}; | ||
909 | a[13][26] :== 95.18 {K}; | ||
910 | a[13][27] :== 0 {K}; | ||
911 | a[13][28] :== 140.9 {K}; | ||
912 | a[13][29] :== -8.538 {K}; | ||
913 | a[13][30] :== 0 {K}; | ||
914 | a[13][31] :== -20.11 {K}; | ||
915 | a[13][32] :== -149.5 {K}; | ||
916 | a[13][33] :== -202.3 {K}; | ||
917 | a[13][34] :== 0 {K}; | ||
918 | a[13][35] :== 172.1 {K}; | ||
919 | a[13][36] :== 0 {K}; | ||
920 | a[13][37] :== 240.2 {K}; | ||
921 | a[13][38] :== -273.9 {K}; | ||
922 | a[13][39] :== 254.8 {K}; | ||
923 | a[13][40] :== 0 {K}; | ||
924 | a[13][41] :== 417 {K}; | ||
925 | a[13][42] :== 0 {K}; | ||
926 | a[13][43] :== 0 {K}; | ||
927 | a[13][44] :== 0 {K}; | ||
928 | a[13][45] :== 5780 {K}; | ||
929 | a[13][46] :== 131 {K}; | ||
930 | a[13][47] :== 0 {K}; | ||
931 | (* row 14 *) | ||
932 | a[14][1] :== -30.48 {K}; | ||
933 | a[14][2] :== 1.163 {K}; | ||
934 | a[14][3] :== -44.850 {K}; | ||
935 | a[14][4] :== 0 {K}; | ||
936 | a[14][5] :== -164 {K}; | ||
937 | a[14][6] :== -481.7 {K}; | ||
938 | a[14][7] :== -330.4 {K}; | ||
939 | a[14][8] :== 0 {K}; | ||
940 | a[14][9] :== 0 {K}; | ||
941 | a[14][10] :== 0 {K}; | ||
942 | a[14][11] :== 0 {K}; | ||
943 | a[14][12] :== 0 {K}; | ||
944 | a[14][13] :== 0 {K}; | ||
945 | a[14][14] :== 0 {K}; | ||
946 | a[14][15] :== 63.72 {K}; | ||
947 | a[14][16] :== -41.11 {K}; | ||
948 | a[14][17] :== -200.7 {K}; | ||
949 | a[14][18] :== 0 {K}; | ||
950 | a[14][19] :== 0 {K}; | ||
951 | a[14][20] :== 0 {K}; | ||
952 | a[14][21] :== 0 {K}; | ||
953 | a[14][22] :== 0 {K}; | ||
954 | a[14][23] :== 0 {K}; | ||
955 | a[14][24] :== -99.81 {K}; | ||
956 | a[14][25] :== 68.81 {K}; | ||
957 | a[14][26] :== 0 {K}; | ||
958 | a[14][27] :== 0 {K}; | ||
959 | a[14][28] :== 0 {K}; | ||
960 | a[14][29] :== -70.14 {K}; | ||
961 | a[14][30] :== 0 {K}; | ||
962 | a[14][31] :== 0 {K}; | ||
963 | a[14][32] :== 0 {K}; | ||
964 | a[14][33] :== 0 {K}; | ||
965 | a[14][34] :== 0 {K}; | ||
966 | a[14][35] :== 0 {K}; | ||
967 | a[14][36] :== 0 {K}; | ||
968 | a[14][37] :== 0 {K}; | ||
969 | a[14][38] :== 0 {K}; | ||
970 | a[14][39] :== 0 {K}; | ||
971 | a[14][40] :== 0 {K}; | ||
972 | a[14][41] :== 0 {K}; | ||
973 | a[14][42] :== 0 {K}; | ||
974 | a[14][43] :== 0 {K}; | ||
975 | a[14][44] :== 0 {K}; | ||
976 | a[14][45] :== 0 {K}; | ||
977 | a[14][46] :== 0 {K}; | ||
978 | a[14][47] :== 0 {K}; | ||
979 | (* row 15 *) | ||
980 | a[15][1] :== 65.33 {K}; | ||
981 | a[15][2] :== -28.7 {K}; | ||
982 | a[15][3] :== -22.31 {K}; | ||
983 | a[15][4] :== 223 {K}; | ||
984 | a[15][5] :== -150 {K}; | ||
985 | a[15][6] :== -500 {K}; | ||
986 | a[15][7] :== -448.2 {K}; | ||
987 | a[15][8] :== 0 {K}; | ||
988 | a[15][9] :== 0 {K}; | ||
989 | a[15][10] :== 0 {K}; | ||
990 | a[15][11] :== 136 {K}; | ||
991 | a[15][12] :== 0 {K}; | ||
992 | a[15][13] :== -49.3 {K}; | ||
993 | a[15][14] :== 108.8 {K}; | ||
994 | a[15][15] :== 0 {K}; | ||
995 | a[15][16] :== -189.2 {K}; | ||
996 | a[15][17] :== 0 {K}; | ||
997 | a[15][18] :== 0 {K}; | ||
998 | a[15][19] :== 0 {K}; | ||
999 | a[15][20] :== 0 {K}; | ||
1000 | a[15][21] :== 0 {K}; | ||
1001 | a[15][22] :== 0 {K}; | ||
1002 | a[15][23] :== 0 {K}; | ||
1003 | a[15][24] :== 71.23 {K}; | ||
1004 | a[15][25] :== 4350 {K}; | ||
1005 | a[15][26] :== 0 {K}; | ||
1006 | a[15][27] :== 0 {K}; | ||
1007 | a[15][28] :== 0 {K}; | ||
1008 | a[15][29] :== 0 {K}; | ||
1009 | a[15][30] :== 0 {K}; | ||
1010 | a[15][31] :== 0 {K}; | ||
1011 | a[15][32] :== 0 {K}; | ||
1012 | a[15][33] :== 0 {K}; | ||
1013 | a[15][34] :== 0 {K}; | ||
1014 | a[15][35] :== 0 {K}; | ||
1015 | a[15][36] :== 0 {K}; | ||
1016 | a[15][37] :== 0 {K}; | ||
1017 | a[15][38] :== 0 {K}; | ||
1018 | a[15][39] :== 0 {K}; | ||
1019 | a[15][40] :== 0 {K}; | ||
1020 | a[15][41] :== -38.77 {K}; | ||
1021 | a[15][42] :== 0 {K}; | ||
1022 | a[15][43] :== 0 {K}; | ||
1023 | a[15][44] :== 0 {K}; | ||
1024 | a[15][45] :== 0 {K}; | ||
1025 | a[15][46] :== 0 {K}; | ||
1026 | a[15][47] :== 0 {K}; | ||
1027 | (* row 16 *) | ||
1028 | a[16][1] :== -83.98 {K}; | ||
1029 | a[16][2] :== -25.38 {K}; | ||
1030 | a[16][3] :== -223.9 {K}; | ||
1031 | a[16][4] :== 109.9 {K}; | ||
1032 | a[16][5] :== 28.6 {K}; | ||
1033 | a[16][6] :== -406.8 {K}; | ||
1034 | a[16][7] :== -598.8 {K}; | ||
1035 | a[16][8] :== 0 {K}; | ||
1036 | a[16][9] :== 225.3 {K}; | ||
1037 | a[16][10] :== 0 {K}; | ||
1038 | a[16][11] :== 0 {K}; | ||
1039 | a[16][12] :== 0 {K}; | ||
1040 | a[16][13] :== 0 {K}; | ||
1041 | a[16][14] :== 38.89 {K}; | ||
1042 | a[16][15] :== 865.9 {K}; | ||
1043 | a[16][16] :== 0 {K}; | ||
1044 | a[16][17] :== 0 {K}; | ||
1045 | a[16][18] :== 0 {K}; | ||
1046 | a[16][19] :== 0 {K}; | ||
1047 | a[16][20] :== 0 {K}; | ||
1048 | a[16][21] :== 0 {K}; | ||
1049 | a[16][22] :== -73.85 {K}; | ||
1050 | a[16][23] :== -352.9 {K}; | ||
1051 | a[16][24] :== -8.238 {K}; | ||
1052 | a[16][25] :== -86.36 {K}; | ||
1053 | a[16][26] :== 0 {K}; | ||
1054 | a[16][27] :== 0 {K}; | ||
1055 | a[16][28] :== 0 {K}; | ||
1056 | a[16][29] :== 0 {K}; | ||
1057 | a[16][30] :== 0 {K}; | ||
1058 | a[16][31] :== 0 {K}; | ||
1059 | a[16][32] :== 0 {K}; | ||
1060 | a[16][33] :== 0 {K}; | ||
1061 | a[16][34] :== 0 {K}; | ||
1062 | a[16][35] :== 243.1 {K}; | ||
1063 | a[16][36] :== 0 {K}; | ||
1064 | a[16][37] :== 0 {K}; | ||
1065 | a[16][38] :== -196.3 {K}; | ||
1066 | a[16][39] :== 0 {K}; | ||
1067 | a[16][40] :== 0 {K}; | ||
1068 | a[16][41] :== 0 {K}; | ||
1069 | a[16][42] :== 0 {K}; | ||
1070 | a[16][43] :== 0 {K}; | ||
1071 | a[16][44] :== 0 {K}; | ||
1072 | a[16][45] :== 0 {K}; | ||
1073 | a[16][46] :== 0 {K}; | ||
1074 | a[16][47] :== 0 {K}; | ||
1075 | (* row 17 *) | ||
1076 | a[17][1] :== 1139 {K}; | ||
1077 | a[17][2] :== 2000 {K}; | ||
1078 | a[17][3] :== 247.5 {K}; | ||
1079 | a[17][4] :== 762.8 {K}; | ||
1080 | a[17][5] :== -17.4 {K}; | ||
1081 | a[17][6] :== -118.1 {K}; | ||
1082 | a[17][7] :== -367.8 {K}; | ||
1083 | a[17][8] :== -253.1 {K}; | ||
1084 | a[17][9] :== -450.3 {K}; | ||
1085 | a[17][10] :== 0 {K}; | ||
1086 | a[17][11] :== -294.8 {K}; | ||
1087 | a[17][12] :== 0 {K}; | ||
1088 | a[17][13] :== 0 {K}; | ||
1089 | a[17][14] :== -15.07 {K}; | ||
1090 | a[17][15] :== 0 {K}; | ||
1091 | a[17][16] :== 0 {K}; | ||
1092 | a[17][17] :== 0 {K}; | ||
1093 | a[17][18] :== 0 {K}; | ||
1094 | a[17][19] :== -281.6 {K}; | ||
1095 | a[17][20] :== 0 {K}; | ||
1096 | a[17][21] :== 287 {K}; | ||
1097 | a[17][22] :== 0 {K}; | ||
1098 | a[17][23] :== 0 {K}; | ||
1099 | a[17][24] :== 882 {K}; | ||
1100 | a[17][25] :== 287.9 {K}; | ||
1101 | a[17][26] :== 0 {K}; | ||
1102 | a[17][27] :== -139.3 {K}; | ||
1103 | a[17][28] :== 0 {K}; | ||
1104 | a[17][29] :== 0 {K}; | ||
1105 | a[17][30] :== 0 {K}; | ||
1106 | a[17][31] :== -136.9 {K}; | ||
1107 | a[17][32] :== 0 {K}; | ||
1108 | a[17][33] :== 0 {K}; | ||
1109 | a[17][34] :== 0 {K}; | ||
1110 | a[17][35] :== 0 {K}; | ||
1111 | a[17][36] :== 0 {K}; | ||
1112 | a[17][37] :== 0 {K}; | ||
1113 | a[17][38] :== 0 {K}; | ||
1114 | a[17][39] :== -334.4 {K}; | ||
1115 | a[17][40] :== 0 {K}; | ||
1116 | a[17][41] :== -89.42 {K}; | ||
1117 | a[17][42] :== 0 {K}; | ||
1118 | a[17][43] :== 0 {K}; | ||
1119 | a[17][44] :== 0 {K}; | ||
1120 | a[17][45] :== 0 {K}; | ||
1121 | a[17][46] :== 0 {K}; | ||
1122 | a[17][47] :== 0 {K}; | ||
1123 | (* row 18 *) | ||
1124 | a[18][1] :== -101.6 {K}; | ||
1125 | a[18][2] :== 0 {K}; | ||
1126 | a[18][3] :== 31.87 {K}; | ||
1127 | a[18][4] :== 49.8 {K}; | ||
1128 | a[18][5] :== -132.3 {K}; | ||
1129 | a[18][6] :== 378.2 {K}; | ||
1130 | a[18][7] :== -332.9 {K}; | ||
1131 | a[18][8] :== -341.6 {K}; | ||
1132 | a[18][9] :== -51.54 {K}; | ||
1133 | a[18][10] :== 0 {K}; | ||
1134 | a[18][11] :== 0 {K}; | ||
1135 | a[18][12] :== 0 {K}; | ||
1136 | a[18][13] :== 0 {K}; | ||
1137 | a[18][14] :== 0 {K}; | ||
1138 | a[18][15] :== 0 {K}; | ||
1139 | a[18][16] :== 0 {K}; | ||
1140 | a[18][17] :== 0 {K}; | ||
1141 | a[18][18] :== 0 {K}; | ||
1142 | a[18][19] :== -169.7 {K}; | ||
1143 | a[18][20] :== -153.7 {K}; | ||
1144 | a[18][21] :== 0 {K}; | ||
1145 | a[18][22] :== -351.6 {K}; | ||
1146 | a[18][23] :== -114.7 {K}; | ||
1147 | a[18][24] :== -165.1 {K}; | ||
1148 | a[18][25] :== 0 {K}; | ||
1149 | a[18][26] :== 0 {K}; | ||
1150 | a[18][27] :== 0 {K}; | ||
1151 | a[18][28] :== 0 {K}; | ||
1152 | a[18][29] :== 0 {K}; | ||
1153 | a[18][30] :== 0 {K}; | ||
1154 | a[18][31] :== 0 {K}; | ||
1155 | a[18][32] :== 0 {K}; | ||
1156 | a[18][33] :== 0 {K}; | ||
1157 | a[18][34] :== 0 {K}; | ||
1158 | a[18][35] :== 0 {K}; | ||
1159 | a[18][36] :== 0 {K}; | ||
1160 | a[18][37] :== 0 {K}; | ||
1161 | a[18][38] :== 0 {K}; | ||
1162 | a[18][39] :== 0 {K}; | ||
1163 | a[18][40] :== 0 {K}; | ||
1164 | a[18][41] :== 0 {K}; | ||
1165 | a[18][42] :== 0 {K}; | ||
1166 | a[18][43] :== 0 {K}; | ||
1167 | a[18][44] :== 0 {K}; | ||
1168 | a[18][45] :== 0 {K}; | ||
1169 | a[18][46] :== 0 {K}; | ||
1170 | a[18][47] :== 0 {K}; | ||
1171 | (* row 19 *) | ||
1172 | a[19][1] :== 24.82 {K}; | ||
1173 | a[19][2] :== -40.62 {K}; | ||
1174 | a[19][3] :== -22.97 {K}; | ||
1175 | a[19][4] :== -138.4 {K}; | ||
1176 | a[19][5] :== -185.4 {K}; | ||
1177 | a[19][6] :== 157.8 {K}; | ||
1178 | a[19][7] :== 242.8 {K}; | ||
1179 | a[19][8] :== 0 {K}; | ||
1180 | a[19][9] :== -287.5 {K}; | ||
1181 | a[19][10] :== 0 {K}; | ||
1182 | a[19][11] :== -266.6 {K}; | ||
1183 | a[19][12] :== 0 {K}; | ||
1184 | a[19][13] :== 38.81 {K}; | ||
1185 | a[19][14] :== 0 {K}; | ||
1186 | a[19][15] :== 0 {K}; | ||
1187 | a[19][16] :== 0 {K}; | ||
1188 | a[19][17] :== 777.4 {K}; | ||
1189 | a[19][18] :== 134.3 {K}; | ||
1190 | a[19][19] :== 0 {K}; | ||
1191 | a[19][20] :== 0 {K}; | ||
1192 | a[19][21] :== 88.75 {K}; | ||
1193 | a[19][22] :== -152.7 {K}; | ||
1194 | a[19][23] :== -15.62 {K}; | ||
1195 | a[19][24] :== -54.86 {K}; | ||
1196 | a[19][25] :== 52.31 {K}; | ||
1197 | a[19][26] :== -0.515 {K}; | ||
1198 | a[19][27] :== 0 {K}; | ||
1199 | a[19][28] :== 230.9 {K}; | ||
1200 | a[19][29] :== 21.37 {K}; | ||
1201 | a[19][30] :== 0 {K}; | ||
1202 | a[19][31] :== 0 {K}; | ||
1203 | a[19][32] :== 0 {K}; | ||
1204 | a[19][33] :== 0 {K}; | ||
1205 | a[19][34] :== -203 {K}; | ||
1206 | a[19][35] :== 0 {K}; | ||
1207 | a[19][36] :== 81.57 {K}; | ||
1208 | a[19][37] :== 3.509 {K}; | ||
1209 | a[19][38] :== 0 {K}; | ||
1210 | a[19][39] :== 0 {K}; | ||
1211 | a[19][40] :== 0 {K}; | ||
1212 | a[19][41] :== 120.3 {K}; | ||
1213 | a[19][42] :== 0 {K}; | ||
1214 | a[19][43] :== 0 {K}; | ||
1215 | a[19][44] :== 0 {K}; | ||
1216 | a[19][45] :== 0 {K}; | ||
1217 | a[19][46] :== 0 {K}; | ||
1218 | a[19][47] :== 0 {K}; | ||
1219 | (* row 20 *) | ||
1220 | a[20][1] :== 315.3 {K}; | ||
1221 | a[20][2] :== 1264 {K}; | ||
1222 | a[20][3] :== 62.32 {K}; | ||
1223 | a[20][4] :== 268.2 {K}; | ||
1224 | a[20][5] :== -151 {K}; | ||
1225 | a[20][6] :== 1020 {K}; | ||
1226 | a[20][7] :== -66.17 {K}; | ||
1227 | a[20][8] :== 0 {K}; | ||
1228 | a[20][9] :== -297.8 {K}; | ||
1229 | a[20][10] :== 0 {K}; | ||
1230 | a[20][11] :== -256.3 {K}; | ||
1231 | a[20][12] :== 312.5 {K}; | ||
1232 | a[20][13] :== -338.5 {K}; | ||
1233 | a[20][14] :== 0 {K}; | ||
1234 | a[20][15] :== 0 {K}; | ||
1235 | a[20][16] :== 0 {K}; | ||
1236 | a[20][17] :== 0 {K}; | ||
1237 | a[20][18] :== -313.5 {K}; | ||
1238 | a[20][19] :== 0 {K}; | ||
1239 | a[20][20] :== 0 {K}; | ||
1240 | a[20][21] :== 44.42 {K}; | ||
1241 | a[20][22] :== 120.2 {K}; | ||
1242 | a[20][23] :== 76.75 {K}; | ||
1243 | a[20][24] :== 212.7 {K}; | ||
1244 | a[20][25] :== 0 {K}; | ||
1245 | a[20][26] :== 0 {K}; | ||
1246 | a[20][27] :== 0 {K}; | ||
1247 | a[20][28] :== 0 {K}; | ||
1248 | a[20][29] :== 0 {K}; | ||
1249 | a[20][30] :== 0 {K}; | ||
1250 | a[20][31] :== 0 {K}; | ||
1251 | a[20][32] :== 0 {K}; | ||
1252 | a[20][33] :== -95 {K}; | ||
1253 | a[20][34] :== 0 {K}; | ||
1254 | a[20][35] :== -561.2 {K}; | ||
1255 | a[20][36] :== 0 {K}; | ||
1256 | a[20][37] :== -11.16 {K}; | ||
1257 | a[20][38] :== 0 {K}; | ||
1258 | a[20][39] :== -246.5 {K}; | ||
1259 | a[20][40] :== 0 {K}; | ||
1260 | a[20][41] :== -337 {K}; | ||
1261 | a[20][42] :== 169.3 {K}; | ||
1262 | a[20][43] :== 127.2 {K}; | ||
1263 | a[20][44] :== 0 {K}; | ||
1264 | a[20][45] :== 0 {K}; | ||
1265 | a[20][46] :== 0 {K}; | ||
1266 | a[20][47] :== 0 {K}; | ||
1267 | (* row 21 *) | ||
1268 | a[21][1] :== 91.46 {K}; | ||
1269 | a[21][2] :== 97.51 {K}; | ||
1270 | a[21][3] :== 4.68 {K}; | ||
1271 | a[21][4] :== 122.9 {K}; | ||
1272 | a[21][5] :== 562.2 {K}; | ||
1273 | a[21][6] :== 529 {K}; | ||
1274 | a[21][7] :== 698.2 {K}; | ||
1275 | a[21][8] :== 0 {K}; | ||
1276 | a[21][9] :== 286.3 {K}; | ||
1277 | a[21][10] :== -47.51 {K}; | ||
1278 | a[21][11] :== 35.38 {K}; | ||
1279 | a[21][12] :== 0 {K}; | ||
1280 | a[21][13] :== 225.4 {K}; | ||
1281 | a[21][14] :== 0 {K}; | ||
1282 | a[21][15] :== 0 {K}; | ||
1283 | a[21][16] :== 0 {K}; | ||
1284 | a[21][17] :== 429.7 {K}; | ||
1285 | a[21][18] :== 0 {K}; | ||
1286 | a[21][19] :== -62.41 {K}; | ||
1287 | a[21][20] :== 326.4 {K}; | ||
1288 | a[21][21] :== 0 {K}; | ||
1289 | a[21][22] :== 108.3 {K}; | ||
1290 | a[21][23] :== 249.2 {K}; | ||
1291 | a[21][24] :== 62.42 {K}; | ||
1292 | a[21][25] :== 464.4 {K}; | ||
1293 | a[21][26] :== 32.75 {K}; | ||
1294 | a[21][27] :== 0 {K}; | ||
1295 | a[21][28] :== 450.1 {K}; | ||
1296 | a[21][29] :== 59.02 {K}; | ||
1297 | a[21][30] :== 0 {K}; | ||
1298 | a[21][31] :== 0 {K}; | ||
1299 | a[21][32] :== 0 {K}; | ||
1300 | a[21][33] :== -125.9 {K}; | ||
1301 | a[21][34] :== 0 {K}; | ||
1302 | a[21][35] :== 0 {K}; | ||
1303 | a[21][36] :== 0 {K}; | ||
1304 | a[21][37] :== -245.4 {K}; | ||
1305 | a[21][38] :== 0 {K}; | ||
1306 | a[21][39] :== 0 {K}; | ||
1307 | a[21][40] :== 0 {K}; | ||
1308 | a[21][41] :== 63.67 {K}; | ||
1309 | a[21][42] :== 0 {K}; | ||
1310 | a[21][43] :== 0 {K}; | ||
1311 | a[21][44] :== 0 {K}; | ||
1312 | a[21][45] :== 0 {K}; | ||
1313 | a[21][46] :== 0 {K}; | ||
1314 | a[21][47] :== 0 {K}; | ||
1315 | (* row 22 *) | ||
1316 | a[22][1] :== 34.01 {K}; | ||
1317 | a[22][2] :== 18.25 {K}; | ||
1318 | a[22][3] :== 121.3 {K}; | ||
1319 | a[22][4] :== 140.8 {K}; | ||
1320 | a[22][5] :== 747.7 {K}; | ||
1321 | a[22][6] :== 669.9 {K}; | ||
1322 | a[22][7] :== 708.7 {K}; | ||
1323 | a[22][8] :== 0 {K}; | ||
1324 | a[22][9] :== 423.2 {K}; | ||
1325 | a[22][10] :== 0 {K}; | ||
1326 | a[22][11] :== -132.9 {K}; | ||
1327 | a[22][12] :== 0 {K}; | ||
1328 | a[22][13] :== -197.7 {K}; | ||
1329 | a[22][14] :== 0 {K}; | ||
1330 | a[22][15] :== 0 {K}; | ||
1331 | a[22][16] :== -141.4 {K}; | ||
1332 | a[22][17] :== 0 {K}; | ||
1333 | a[22][18] :== 587.3 {K}; | ||
1334 | a[22][19] :== 258.6 {K}; | ||
1335 | a[22][20] :== 339.6 {K}; | ||
1336 | a[22][21] :== -84.53 {K}; | ||
1337 | a[22][22] :== 0 {K}; | ||
1338 | a[22][23] :== 0 {K}; | ||
1339 | a[22][24] :== 56.33 {K}; | ||
1340 | a[22][25] :== 0 {K}; | ||
1341 | a[22][26] :== 0 {K}; | ||
1342 | a[22][27] :== 0 {K}; | ||
1343 | a[22][28] :== 0 {K}; | ||
1344 | a[22][29] :== 0 {K}; | ||
1345 | a[22][30] :== 0 {K}; | ||
1346 | a[22][31] :== 0 {K}; | ||
1347 | a[22][32] :== 177.6 {K}; | ||
1348 | a[22][33] :== 0 {K}; | ||
1349 | a[22][34] :== 0 {K}; | ||
1350 | a[22][35] :== 215 {K}; | ||
1351 | a[22][36] :== 0 {K}; | ||
1352 | a[22][37] :== 0 {K}; | ||
1353 | a[22][38] :== 0 {K}; | ||
1354 | a[22][39] :== 0 {K}; | ||
1355 | a[22][40] :== 0 {K}; | ||
1356 | a[22][41] :== -96.87 {K}; | ||
1357 | a[22][42] :== 0 {K}; | ||
1358 | a[22][43] :== 0 {K}; | ||
1359 | a[22][44] :== 0 {K}; | ||
1360 | a[22][45] :== 0 {K}; | ||
1361 | a[22][46] :== 0 {K}; | ||
1362 | a[22][47] :== 0 {K}; | ||
1363 | (* row 23 *) | ||
1364 | a[23][1] :== 36.70 {K}; | ||
1365 | a[23][2] :== 51.060 {K}; | ||
1366 | a[23][3] :== 288.5 {K}; | ||
1367 | a[23][4] :== 33.61 {K}; | ||
1368 | a[23][5] :== 742.1 {K}; | ||
1369 | a[23][6] :== 649.1 {K}; | ||
1370 | a[23][7] :== 826.7 {K}; | ||
1371 | a[23][8] :== 0.0 {K}; | ||
1372 | a[23][9] :== 552.1 {K}; | ||
1373 | a[23][10] :== 242.8 {K}; | ||
1374 | a[23][11] :== 176.5 {K}; | ||
1375 | a[23][12] :== 488.9 {K}; | ||
1376 | a[23][13] :== -20.93 {K}; | ||
1377 | a[23][14] :== 0 {K}; | ||
1378 | a[23][15] :== 0 {K}; | ||
1379 | a[23][16] :== -293.7 {K}; | ||
1380 | a[23][17] :== 0 {K}; | ||
1381 | a[23][18] :== 18.98 {K}; | ||
1382 | a[23][19] :== 74.04 {K}; | ||
1383 | a[23][20] :== 1346 {K}; | ||
1384 | a[23][21] :== -157.1 {K}; | ||
1385 | a[23][22] :== 0 {K}; | ||
1386 | a[23][23] :== 0.0 {K}; | ||
1387 | a[23][24] :== -30.1 {K}; | ||
1388 | a[23][25] :== 0 {K}; | ||
1389 | a[23][26] :== 0 {K}; | ||
1390 | a[23][27] :== 0 {K}; | ||
1391 | a[23][28] :== 116.6 {K}; | ||
1392 | a[23][29] :== 0 {K}; | ||
1393 | a[23][30] :== -64.38 {K}; | ||
1394 | a[23][31] :== 0 {K}; | ||
1395 | a[23][32] :== 86.4 {K}; | ||
1396 | a[23][33] :== 0 {K}; | ||
1397 | a[23][34] :== 0 {K}; | ||
1398 | a[23][35] :== 363.7 {K}; | ||
1399 | a[23][36] :== 0 {K}; | ||
1400 | a[23][37] :== 111.2 {K}; | ||
1401 | a[23][38] :== 0 {K}; | ||
1402 | a[23][39] :== 0 {K}; | ||
1403 | a[23][40] :== 0 {K}; | ||
1404 | a[23][41] :== 255.8 {K}; | ||
1405 | a[23][42] :== 0 {K}; | ||
1406 | a[23][43] :== 0 {K}; | ||
1407 | a[23][44] :== 0 {K}; | ||
1408 | a[23][45] :== 0 {K}; | ||
1409 | a[23][46] :== 0 {K}; | ||
1410 | a[23][47] :== 0 {K}; | ||
1411 | |||
1412 | (* fixme | ||
1413 | (* row 24 *) | ||
1414 | a[24][1] :== | ||
1415 | a[24][2] :== | ||
1416 | a[24][3] :== | ||
1417 | a[24][4] :== | ||
1418 | a[24][5] :== | ||
1419 | a[24][6] :== | ||
1420 | a[24][7] :== | ||
1421 | a[24][8] :== | ||
1422 | a[24][9] :== | ||
1423 | a[24][10] :== | ||
1424 | a[24][11] :== | ||
1425 | a[24][12] :== | ||
1426 | a[24][13] :== | ||
1427 | a[24][14] :== | ||
1428 | a[24][15] :== | ||
1429 | a[24][16] :== | ||
1430 | a[24][17] :== | ||
1431 | a[24][18] :== | ||
1432 | a[24][19] :== | ||
1433 | a[24][20] :== | ||
1434 | a[24][21] :== | ||
1435 | a[24][22] :== | ||
1436 | a[24][23] :== | ||
1437 | a[24][24] :== | ||
1438 | a[24][25] :== | ||
1439 | a[24][26] :== | ||
1440 | a[24][27] :== | ||
1441 | a[24][28] :== | ||
1442 | a[24][29] :== | ||
1443 | a[24][30] :== | ||
1444 | a[24][31] :== | ||
1445 | a[24][32] :== | ||
1446 | a[24][33] :== | ||
1447 | a[24][34] :== | ||
1448 | a[24][35] :== | ||
1449 | a[24][36] :== | ||
1450 | a[24][37] :== | ||
1451 | a[24][38] :== | ||
1452 | a[24][39] :== | ||
1453 | a[24][40] :== | ||
1454 | a[24][41] :== | ||
1455 | a[24][42] :== | ||
1456 | a[24][43] :== | ||
1457 | a[24][44] :== | ||
1458 | a[24][45] :== | ||
1459 | a[24][46] :== | ||
1460 | a[24][47] :== | ||
1461 | |||
1462 | (* row 25 *) | ||
1463 | a[25][1] :== | ||
1464 | a[25][2] :== | ||
1465 | a[25][3] :== | ||
1466 | a[25][4] :== | ||
1467 | a[25][5] :== | ||
1468 | a[25][6] :== | ||
1469 | a[25][7] :== | ||
1470 | a[25][8] :== | ||
1471 | a[25][9] :== | ||
1472 | a[25][10] :== | ||
1473 | a[25][11] :== | ||
1474 | a[25][12] :== | ||
1475 | a[25][13] :== | ||
1476 | a[25][14] :== | ||
1477 | a[25][15] :== | ||
1478 | a[25][16] :== | ||
1479 | a[25][17] :== | ||
1480 | a[25][18] :== | ||
1481 | a[25][19] :== | ||
1482 | a[25][20] :== | ||
1483 | a[25][21] :== | ||
1484 | a[25][22] :== | ||
1485 | a[25][23] :== | ||
1486 | a[25][24] :== | ||
1487 | a[25][25] :== | ||
1488 | a[25][26] :== | ||
1489 | a[25][27] :== | ||
1490 | a[25][28] :== | ||
1491 | a[25][29] :== | ||
1492 | a[25][30] :== | ||
1493 | a[25][31] :== | ||
1494 | a[25][32] :== | ||
1495 | a[25][33] :== | ||
1496 | a[25][34] :== | ||
1497 | a[25][35] :== | ||
1498 | a[25][36] :== | ||
1499 | a[25][37] :== | ||
1500 | a[25][38] :== | ||
1501 | a[25][39] :== | ||
1502 | a[25][40] :== | ||
1503 | a[25][41] :== | ||
1504 | a[25][42] :== | ||
1505 | a[25][43] :== | ||
1506 | a[25][44] :== | ||
1507 | a[25][45] :== | ||
1508 | a[25][46] :== | ||
1509 | a[25][47] :== | ||
1510 | |||
1511 | (* row 26 *) | ||
1512 | a[26][1] :== | ||
1513 | a[26][2] :== | ||
1514 | a[26][3] :== | ||
1515 | a[26][4] :== | ||
1516 | a[26][5] :== | ||
1517 | a[26][6] :== | ||
1518 | a[26][7] :== | ||
1519 | a[26][8] :== | ||
1520 | a[26][9] :== | ||
1521 | a[26][10] :== | ||
1522 | a[26][11] :== | ||
1523 | a[26][12] :== | ||
1524 | a[26][13] :== | ||
1525 | a[26][14] :== | ||
1526 | a[26][15] :== | ||
1527 | a[26][16] :== | ||
1528 | a[26][17] :== | ||
1529 | a[26][18] :== | ||
1530 | a[26][19] :== | ||
1531 | a[26][20] :== | ||
1532 | a[26][21] :== | ||
1533 | a[26][22] :== | ||
1534 | a[26][23] :== | ||
1535 | a[26][24] :== | ||
1536 | a[26][25] :== | ||
1537 | a[26][26] :== | ||
1538 | a[26][27] :== | ||
1539 | a[26][28] :== | ||
1540 | a[26][29] :== | ||
1541 | a[26][30] :== | ||
1542 | a[26][31] :== | ||
1543 | a[26][32] :== | ||
1544 | a[26][33] :== | ||
1545 | a[26][34] :== | ||
1546 | a[26][35] :== | ||
1547 | a[26][36] :== | ||
1548 | a[26][37] :== | ||
1549 | a[26][38] :== | ||
1550 | a[26][39] :== | ||
1551 | a[26][40] :== | ||
1552 | a[26][41] :== | ||
1553 | a[26][42] :== | ||
1554 | a[26][43] :== | ||
1555 | a[26][44] :== | ||
1556 | a[26][45] :== | ||
1557 | a[26][46] :== | ||
1558 | a[26][47] :== | ||
1559 | |||
1560 | (* row 27 *) | ||
1561 | a[27][1] :== | ||
1562 | a[27][2] :== | ||
1563 | a[27][3] :== | ||
1564 | a[27][4] :== | ||
1565 | a[27][5] :== | ||
1566 | a[27][6] :== | ||
1567 | a[27][7] :== | ||
1568 | a[27][8] :== | ||
1569 | a[27][9] :== | ||
1570 | a[27][10] :== | ||
1571 | a[27][11] :== | ||
1572 | a[27][12] :== | ||
1573 | a[27][13] :== | ||
1574 | a[27][14] :== | ||
1575 | a[27][15] :== | ||
1576 | a[27][16] :== | ||
1577 | a[27][17] :== | ||
1578 | a[27][18] :== | ||
1579 | a[27][19] :== | ||
1580 | a[27][20] :== | ||
1581 | a[27][21] :== | ||
1582 | a[27][22] :== | ||
1583 | a[27][23] :== | ||
1584 | a[27][24] :== | ||
1585 | a[27][25] :== | ||
1586 | a[27][26] :== | ||
1587 | a[27][27] :== | ||
1588 | a[27][28] :== | ||
1589 | a[27][29] :== | ||
1590 | a[27][30] :== | ||
1591 | a[27][31] :== | ||
1592 | a[27][32] :== | ||
1593 | a[27][33] :== | ||
1594 | a[27][34] :== | ||
1595 | a[27][35] :== | ||
1596 | a[27][36] :== | ||
1597 | a[27][37] :== | ||
1598 | a[27][38] :== | ||
1599 | a[27][39] :== | ||
1600 | a[27][40] :== | ||
1601 | a[27][41] :== | ||
1602 | a[27][42] :== | ||
1603 | a[27][43] :== | ||
1604 | a[27][44] :== | ||
1605 | a[27][45] :== | ||
1606 | a[27][46] :== | ||
1607 | a[27][47] :== | ||
1608 | |||
1609 | (* row 28 *) | ||
1610 | a[28][1] :== | ||
1611 | a[28][2] :== | ||
1612 | a[28][3] :== | ||
1613 | a[28][4] :== | ||
1614 | a[28][5] :== | ||
1615 | a[28][6] :== | ||
1616 | a[28][7] :== | ||
1617 | a[28][8] :== | ||
1618 | a[28][9] :== | ||
1619 | a[28][10] :== | ||
1620 | a[28][11] :== | ||
1621 | a[28][12] :== | ||
1622 | a[28][13] :== | ||
1623 | a[28][14] :== | ||
1624 | a[28][15] :== | ||
1625 | a[28][16] :== | ||
1626 | a[28][17] :== | ||
1627 | a[28][18] :== | ||
1628 | a[28][19] :== | ||
1629 | a[28][20] :== | ||
1630 | a[28][21] :== | ||
1631 | a[28][22] :== | ||
1632 | a[28][23] :== | ||
1633 | a[28][24] :== | ||
1634 | a[28][25] :== | ||
1635 | a[28][26] :== | ||
1636 | a[28][27] :== | ||
1637 | a[28][28] :== | ||
1638 | a[28][29] :== | ||
1639 | a[28][30] :== | ||
1640 | a[28][31] :== | ||
1641 | a[28][32] :== | ||
1642 | a[28][33] :== | ||
1643 | a[28][34] :== | ||
1644 | a[28][35] :== | ||
1645 | a[28][36] :== | ||
1646 | a[28][37] :== | ||
1647 | a[28][38] :== | ||
1648 | a[28][39] :== | ||
1649 | a[28][40] :== | ||
1650 | a[28][41] :== | ||
1651 | a[28][42] :== | ||
1652 | a[28][43] :== | ||
1653 | a[28][44] :== | ||
1654 | a[28][45] :== | ||
1655 | a[28][46] :== | ||
1656 | a[28][47] :== | ||
1657 | |||
1658 | (* row 29 *) | ||
1659 | a[29][1] :== | ||
1660 | a[29][2] :== | ||
1661 | a[29][3] :== | ||
1662 | a[29][4] :== | ||
1663 | a[29][5] :== | ||
1664 | a[29][6] :== | ||
1665 | a[29][7] :== | ||
1666 | a[29][8] :== | ||
1667 | a[29][9] :== | ||
1668 | a[29][10] :== | ||
1669 | a[29][11] :== | ||
1670 | a[29][12] :== | ||
1671 | a[29][13] :== | ||
1672 | a[29][14] :== | ||
1673 | a[29][15] :== | ||
1674 | a[29][16] :== | ||
1675 | a[29][17] :== | ||
1676 | a[29][18] :== | ||
1677 | a[29][19] :== | ||
1678 | a[29][20] :== | ||
1679 | a[29][21] :== | ||
1680 | a[29][22] :== | ||
1681 | a[29][23] :== | ||
1682 | a[29][24] :== | ||
1683 | a[29][25] :== | ||
1684 | a[29][26] :== | ||
1685 | a[29][27] :== | ||
1686 | a[29][28] :== | ||
1687 | a[29][29] :== | ||
1688 | a[29][30] :== | ||
1689 | a[29][31] :== | ||
1690 | a[29][32] :== | ||
1691 | a[29][33] :== | ||
1692 | a[29][34] :== | ||
1693 | a[29][35] :== | ||
1694 | a[29][36] :== | ||
1695 | a[29][37] :== | ||
1696 | a[29][38] :== | ||
1697 | a[29][39] :== | ||
1698 | a[29][40] :== | ||
1699 | a[29][41] :== | ||
1700 | a[29][42] :== | ||
1701 | a[29][43] :== | ||
1702 | a[29][44] :== | ||
1703 | a[29][45] :== | ||
1704 | a[29][46] :== | ||
1705 | a[29][47] :== | ||
1706 | |||
1707 | (* row 30 *) | ||
1708 | a[30][1] :== | ||
1709 | a[30][2] :== | ||
1710 | a[30][3] :== | ||
1711 | a[30][4] :== | ||
1712 | a[30][5] :== | ||
1713 | a[30][6] :== | ||
1714 | a[30][7] :== | ||
1715 | a[30][8] :== | ||
1716 | a[30][9] :== | ||
1717 | a[30][10] :== | ||
1718 | a[30][11] :== | ||
1719 | a[30][12] :== | ||
1720 | a[30][13] :== | ||
1721 | a[30][14] :== | ||
1722 | a[30][15] :== | ||
1723 | a[30][16] :== | ||
1724 | a[30][17] :== | ||
1725 | a[30][18] :== | ||
1726 | a[30][19] :== | ||
1727 | a[30][20] :== | ||
1728 | a[30][21] :== | ||
1729 | a[30][22] :== | ||
1730 | a[30][23] :== | ||
1731 | a[30][24] :== | ||
1732 | a[30][25] :== | ||
1733 | a[30][26] :== | ||
1734 | a[30][27] :== | ||
1735 | a[30][28] :== | ||
1736 | a[30][29] :== | ||
1737 | a[30][30] :== | ||
1738 | a[30][31] :== | ||
1739 | a[30][32] :== | ||
1740 | a[30][33] :== | ||
1741 | a[30][34] :== | ||
1742 | a[30][35] :== | ||
1743 | a[30][36] :== | ||
1744 | a[30][37] :== | ||
1745 | a[30][38] :== | ||
1746 | a[30][39] :== | ||
1747 | a[30][40] :== | ||
1748 | a[30][41] :== | ||
1749 | a[30][42] :== | ||
1750 | a[30][43] :== | ||
1751 | a[30][44] :== | ||
1752 | a[30][45] :== | ||
1753 | a[30][46] :== | ||
1754 | a[30][47] :== | ||
1755 | |||
1756 | (* row 31 *) | ||
1757 | a[31][1] :== | ||
1758 | a[31][2] :== | ||
1759 | a[31][3] :== | ||
1760 | a[31][4] :== | ||
1761 | a[31][5] :== | ||
1762 | a[31][6] :== | ||
1763 | a[31][7] :== | ||
1764 | a[31][8] :== | ||
1765 | a[31][9] :== | ||
1766 | a[31][10] :== | ||
1767 | a[31][11] :== | ||
1768 | a[31][12] :== | ||
1769 | a[31][13] :== | ||
1770 | a[31][14] :== | ||
1771 | a[31][15] :== | ||
1772 | a[31][16] :== | ||
1773 | a[31][17] :== | ||
1774 | a[31][18] :== | ||
1775 | a[31][19] :== | ||
1776 | a[31][20] :== | ||
1777 | a[31][21] :== | ||
1778 | a[31][22] :== | ||
1779 | a[31][23] :== | ||
1780 | a[31][24] :== | ||
1781 | a[31][25] :== | ||
1782 | a[31][26] :== | ||
1783 | a[31][27] :== | ||
1784 | a[31][28] :== | ||
1785 | a[31][29] :== | ||
1786 | a[31][30] :== | ||
1787 | a[31][31] :== | ||
1788 | a[31][32] :== | ||
1789 | a[31][33] :== | ||
1790 | a[31][34] :== | ||
1791 | a[31][35] :== | ||
1792 | a[31][36] :== | ||
1793 | a[31][37] :== | ||
1794 | a[31][38] :== | ||
1795 | a[31][39] :== | ||
1796 | a[31][40] :== | ||
1797 | a[31][41] :== | ||
1798 | a[31][42] :== | ||
1799 | a[31][43] :== | ||
1800 | a[31][44] :== | ||
1801 | a[31][45] :== | ||
1802 | a[31][46] :== | ||
1803 | a[31][47] :== | ||
1804 | |||
1805 | (* row 32 *) | ||
1806 | a[32][1] :== | ||
1807 | a[32][2] :== | ||
1808 | a[32][3] :== | ||
1809 | a[32][4] :== | ||
1810 | a[32][5] :== | ||
1811 | a[32][6] :== | ||
1812 | a[32][7] :== | ||
1813 | a[32][8] :== | ||
1814 | a[32][9] :== | ||
1815 | a[32][10] :== | ||
1816 | a[32][11] :== | ||
1817 | a[32][12] :== | ||
1818 | a[32][13] :== | ||
1819 | a[32][14] :== | ||
1820 | a[32][15] :== | ||
1821 | a[32][16] :== | ||
1822 | a[32][17] :== | ||
1823 | a[32][18] :== | ||
1824 | a[32][19] :== | ||
1825 | a[32][20] :== | ||
1826 | a[32][21] :== | ||
1827 | a[32][22] :== | ||
1828 | a[32][23] :== | ||
1829 | a[32][24] :== | ||
1830 | a[32][25] :== | ||
1831 | a[32][26] :== | ||
1832 | a[32][27] :== | ||
1833 | a[32][28] :== | ||
1834 | a[32][29] :== | ||
1835 | a[32][30] :== | ||
1836 | a[32][31] :== | ||
1837 | a[32][32] :== | ||
1838 | a[32][33] :== | ||
1839 | a[32][34] :== | ||
1840 | a[32][35] :== | ||
1841 | a[32][36] :== | ||
1842 | a[32][37] :== | ||
1843 | a |