/[ascend]/trunk/models/small_components.a4l
ViewVC logotype

Contents of /trunk/models/small_components.a4l

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1 - (show annotations) (download) (as text)
Fri Oct 29 20:54:12 2004 UTC (19 years, 11 months ago) by aw0a
File MIME type: text/x-ascend
File size: 97179 byte(s)
Setting up web subdirectory in repository
1 REQUIRE "atoms.a4l";
2 (* => atoms.a4l, measures.a4l, system.a4l, basemodel.a4l *)
3 PROVIDE "components.a4l";
4 (*
5 *
6 * WARNINGS:
7 * - The contents of this file represent a physical
8 * properties database of minimal functionality. Such a
9 * database is just messy conceptually in a declarative language,
10 * so we do not apologize for the modeling style found in this
11 * file.
12 *
13 * - We, of course, would like to replace it with a small wrapper to a
14 * thermodynamic information database with a much wider range
15 * of chemical species. We are aware of no such database of
16 * significant size being placed in the public domain
17 * in source form which we can distribute to all our users.
18 *
19 * 1:
20 * Add species or new correlation coefficients as you need them.
21 * Models you create in the ASCEND IV language are Not subject to
22 * the GNU Public License (GPL) UNLESS you base those models on GNU Public
23 * Licensed ASCEND Libraries. All ASCEND libraries distributed from
24 * Carnegie Mellon are distributed under the GPL unless explicitly noted
25 * as being in the public domain in the distributed source code.
26 *
27 * In the interest of promoting research, we make an EXCEPTION to the
28 * above condition for proprietary physical property data integrated
29 * with ASCEND library models for non-commercial research purposes only.
30 *
31 * If you base a commercial application on GNU Public Licensed ASCEND IV
32 * libraries or modifications or extensions of those libraries, then the
33 * models you create must be released in source code form per the GPL.
34 *
35 * 2: If you have such a properties database to donate, please let us know.
36 * 3:
37 * If you create a wrapper to a proprietary database for use with
38 * ASCEND in a way that entangles your code with our sources, you
39 * are required under the terms of the ASCEND GPL
40 * to _give_ the wrapper code back to us and to make it otherwise
41 * available for public use. This does not require making the
42 * proprietary database public, just the interface. If releasing
43 * such an interface violates the proprietary licensing, then do not
44 * create it in an entangled fashion.
45 * 4:
46 * If you have questions about any of the above, please contact us
47 * ascend+developers@cs.cmu.edu and aw0a@cs.cmu.edu. We will consider
48 * alternative licensing arrangements on a case-by-case basis subject
49 * to keeping the lawyers and accountants on all sides happy.
50 *)
51
52 (*
53 * components.a4l
54 * by Joseph J. Zaher and Ben Allan
55 * Part of the ASCEND Library
56 * $Date: 1998/08/10 16:03:36 $
57 * $Revision: 1.1 $
58 * $Author: ballan $
59 * $Source: /afs/cs.cmu.edu/project/ascend/Repository/models/small_components.a4l,v $
60 *
61 * This file is part of the ASCEND Modeling Library.
62 *
63 * Copyright (C) 1994 Joseph J Zaher
64 * Copyright (C) 1997 Benjamin Andrew Allan
65 *
66 * The ASCEND Modeling Library is free software; you can redistribute
67 * it and/or modify it under the terms of the GNU General Public
68 * License as published by the Free Software Foundation; either
69 * version 2 of the License, or (at your option) any later version.
70 *
71 * The ASCEND Modeling Library is distributed in hope that it
72 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
73 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
74 * See the GNU General Public License for more details.
75 *
76 * You should have received a copy of the GNU General Public License
77 * along with the program; if not, write to the Free Software
78 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139 USA. Check
79 * the file named COPYING.
80 *)
81
82 (**
83 **
84 ** C O M P O N E N T S . A 4 L
85 ** ----------------------------------------
86 **
87 ** AUTHOR: Joseph J. Zaher
88 **
89 ** DATES: 07/91 - Original code.
90 ** 02/92 - Made compatible with new set version of ASCEND.
91 ** Expanded data base, revised vapor pressure data,
92 ** and added UNIFAC group and subgroup sets with help
93 ** of Bob Huss.
94 ** 07/92 - Expanded data base with help of Kay C. Dee.
95 ** 08/92 - Replaced name attribute of each component with a
96 ** formula attribute. Component names are free to be
97 ** specified by the user.
98 ** 03/94 - Made compatible with gnu-ascend.
99 ** 08/94 - Made compatible with H,G or H,S thermo library,
100 ** and with Wilson models written by Boyd Safrit.
101 ** 02/96 - Made compatible with ASCEND IV. Ben Allan.
102 ** 01/97 - Addition OF td_component_constants by _____
103 ** 01/97 - All constants checked by Jennifer Perry
104 ** 03/97 - Added container models for data groups. BAA.
105 ** 03/98 - 99% of the code in this file should be reduced
106 ** to a call on a database.
107 **
108 **
109 ** CONTENTS: ASCEND structure for component physical property constants.
110 ** All anticipated constants which may be used by the models
111 ** of "thermodynamics.a4l" are created in a general model where
112 ** a consistent reference state (298.15{K} and 1.0{atm}) is
113 ** chosen. Specific refinements to actual chemical species are
114 ** made UNIVERSAL to ensure only one instantiation of the
115 ** constants for each component is maintained throughout a
116 ** user's simulation. A reference enthalpy and entropy is
117 ** chosen by default to be those of formation of the component
118 ** from its elements at the reference state.
119 **
120 **
121 **)
122
123 (* Wilson pairs checked by Boyd
124 i_propanol-water
125 i_propanol-ethylene_glycol
126 ethylene_glycol-water
127 acetone-chloroform
128 acetone-benzene
129 acetone-methanol
130 methanol-water
131 benzene-chloroform
132 propadiene-propylene provided by Vince Verneulli OF Sim Sci
133 propadiene-propane provided by Vince Verneulli OF Sim Sci
134 propylene-propane provided by Vince Verneulli OF Sim Sci
135 *)
136
137 MODEL compmodel() REFINES cmumodel();
138 METHODS
139 METHOD check_self;
140 END check_self;
141 METHOD check_all;
142 END check_all;
143 METHOD default_self;
144 END default_self;
145 METHOD default_all;
146 END default_all;
147 METHOD specify;
148 END specify;
149 METHOD scale_self;
150 END scale_self;
151 METHOD scale_all;
152 END scale_all;
153 METHOD bound_self;
154 END bound_self;
155 METHOD bound_all;
156 END bound_all;
157 END compmodel;
158
159 UNIVERSAL MODEL UNIFAC_constants() REFINES compmodel;
160
161 (*
162 REFERENCE:
163 The reference for the bulk of this MODEL is
164 Reid, Prausnitz & Poling, Properties of Gases and Liquids,
165 1986, Chapter 8.
166 DISCLAIMER: DISCLAIMER: DISCLAIMER: DISCLAIMER: DISCLAIMER: DISCLAIMER:
167 The authors of ASCEND and Carnegie Mellon University make
168 absolutely NO WARRANTY about the accuracy of this transcription
169 of the RPP data or of the original data itself, nor do they
170 provide any guarantee that the data here represented is
171 suitable for any purpose academic or commercial.
172 DISCLAIMER: DISCLAIMER: DISCLAIMER: DISCLAIMER: DISCLAIMER: DISCLAIMER:
173 NOTES:
174 The frontiers of group contribution methods have moved on
175 well past the data presented here and the correlations
176 it is used with. Users with a penchant for thermodynamic
177 detail are advised to MODEL their own favorite correlations.
178 COMMON USAGE:
179 The local name of every instance of this MODEL
180 (since it is UNIVERSAL) should always be uc.
181 In the comments that follow, we will use uc where applicable.
182 ANNOTATED:
183 10/96 Ben Allan
184 *)
185
186
187 groups IS_A set OF integer_constant;
188 (*
189 * uc.groups is the main group list (the ones we support) from RPP
190 * Table 8.21 column 1.
191 * Currently supported groups are (in RPP Main index)
192 * 1,2,3,4,5,6,7,8,9,23, and 11
193 *)
194 groups :== [1..47];
195 (* fix a 10, 12-22, 24-47
196 *)
197
198 (*
199 * uc.sub[i IN uc.groups] is the set of secondary groups for the ith
200 * main group. This is the column 2 data of RPP Table 8-21.
201 * The UNION of uc.sub[i] is uc.subgroups, basically the set of
202 * rows in Table 8-21 that we have entered.
203 *)
204 sub[groups] IS_A set OF symbol_constant;
205 sub[1] :== ['CH3', 'CH2', 'CH', 'C'];
206 sub[2] :== ['CH2=CH', 'CH=CH', 'CH2=C', 'CH=C', 'C=C'];
207 sub[3] :== ['ACH', 'AC'];
208 sub[4] :== ['ACCH3', 'ACCH2', 'ACCH'];
209 sub[5] :== ['OH'];
210 sub[6] :== ['CH3OH'];
211 sub[7] :== ['H2O'];
212 sub[8] :== ['ACOH'];
213 sub[9] :== ['CH3CO', 'CH2CO'];
214 sub[10] :== ['CHO'];
215 sub[11] :== ['CH3COO', 'CH2COO'];
216 sub[12] :== ['HCOO'];
217 sub[13] :== ['CH3O', 'CH2O', 'CH-O', 'FCH2O'];
218 sub[14] :== ['CH3NH2', 'CH2NH2', 'CHNH2'];
219 sub[15] :== ['CH3NH', 'CH2NH', 'CHNH'];
220 sub[16] :== ['CH3N', 'CH2N'];
221 sub[17] :== ['ACNH2'];
222 sub[18] :== ['C5H5N', 'C5H4N', 'C5H3N'];
223 sub[19] :== ['CH3CN', 'CH2CN'];
224 sub[20] :== ['COOH', 'HCOOH'];
225 sub[21] :== ['CH2Cl', 'CHCl', 'CCl'];
226 sub[22] :== ['CH2Cl2', 'CHCl2', 'CCl2'];
227 sub[23] :== ['CHCl3', 'CCl3'];
228 sub[24] :== ['CCl4'];
229 sub[25] :== ['ACCl'];
230 sub[26] :== ['CH3NO2', 'CH2NO2', 'CHNO2'];
231 sub[27] :== ['ACNO2'];
232 sub[28] :== ['CS2'];
233 sub[29] :== ['CH3SH', 'CH2SH'];
234 sub[30] :== ['Furfural'];
235 sub[31] :== ['(CH2OH)2'];
236 sub[32] :== ['I'];
237 sub[33] :== ['Br'];
238 sub[34] :== ['CH-trip-C', 'C-trip-C'];
239 sub[35] :== ['Me2SO'];
240 sub[36] :== ['Acry'];
241 sub[37] :== ['Cl(C=C)'];
242 sub[38] :== ['ACF'];
243 sub[39] :== ['DMF-1', 'DMF-2'];
244 sub[40] :== ['CF3', 'CF2', 'CF'];
245 sub[41] :== ['COO'];
246 sub[42] :== ['SiH3', 'SiH2', 'SiH', 'Si'];
247 sub[43] :== ['SiH2O', 'SiHO', 'SiO'];
248 sub[44] :== ['NMP'];
249 sub[45] :== ['tert-N'];
250 sub[46] :== ['Amide'];
251 sub[47] :== ['CON(Me)2', 'CONMeCH2', 'CON(CH2)2'];
252 subgroups IS_A set OF symbol_constant;
253
254 (*
255 * uc. subgroups is the total list of secondary groups we accomodate.
256 *)
257 subgroups :== UNION[sub[i] | i IN groups];
258 group[subgroups] IS_A integer_constant;
259 (*
260 * Next we have a horribly named array, group, that lets us look up the
261 * main group given a particular subgroup. So, for example,
262 * if we want to know the main group of 'CHCl3', then
263 * group['CHCl3'] will give it to us: 'CCl3'.
264 * Note, then, that the assignments which follow in most
265 * cases expand to have several left-hand-sides.
266 *)
267 FOR i IN groups CREATE
268 group[sub[i]] :== i;
269 END FOR;
270
271 a[groups][groups] "binary group interaction parameters" IS_A UNIFAC_a;
272 (*
273 * Now we have uc.a[m][n], a portion of RPP Table 8-22, the main group
274 * interaction matrix which is asymmetric and in principle
275 * dense but in our practice rather sparse.
276 * Adding a main group to this MODEL means adding a row and
277 * column to uc.a, which is a non-trivial exercise until we
278 * get a proper tabular assignment syntax implemented.
279 * Note that such an syntax has been completely scoped but
280 * we've just not yet got round to implementation.
281 * When we do implement, this will be the first test MODEL.
282 * a[i][j] should have i and j being integer_constant!
283 *)
284
285 (* we would like the ascend TABLE syntax or a database
286 * external lookup to handle this data entry.
287 *)
288 (* row 1 *)
289 a[1][1] :== 0.0 {K};
290 a[1][2] :== 86.020 {K};
291 a[1][3] :== 61.13 {K};
292 a[1][4] :== 76.50 {K};
293 a[1][5] :== 986.5 {K};
294 a[1][6] :== 697.2 {K};
295 a[1][7] :== 1318.0 {K};
296 a[1][8] :== 1333.0 {K};
297 a[1][9] :== 476.4 {K};
298 a[1][10] :== 677 {K};
299 a[1][11] :== 232.1 {K};
300 a[1][12] :== 741.4 {K};
301 a[1][13] :== 251.5 {K};
302 a[1][14] :== 391.5 {K};
303 a[1][15] :== 225.7 {K};
304 a[1][16] :== 206.6 {K};
305 a[1][17] :== 920.7 {K};
306 a[1][18] :== 287.7 {K};
307 a[1][19] :== 597 {K};
308 a[1][20] :== 663.5 {K};
309 a[1][21] :== 35.93 {K};
310 a[1][22] :== 53.76 {K};
311 a[1][23] :== 24.90 {K};
312 a[1][24] :== 104.3 {K};
313 a[1][25] :== 321.5 {K};
314 a[1][26] :== 661.5 {K};
315 a[1][27] :== 543 {K};
316 a[1][28] :== 153.6 {K};
317 a[1][29] :== 184.4 {K};
318 a[1][30] :== 354.5 {K};
319 a[1][31] :== 3025 {K};
320 a[1][32] :== 335.8 {K};
321 a[1][33] :== 479.5 {K};
322 a[1][34] :== 298.9 {K};
323 a[1][35] :== 526.5 {K};
324 a[1][36] :== 689 {K};
325 a[1][37] :== -4.189 {K};
326 a[1][38] :== 125.8 {K};
327 a[1][39] :== 485.3 {K};
328 a[1][40] :== -2.859 {K};
329 a[1][41] :== 387.1 {K};
330 a[1][42] :== -450.4 {K};
331 a[1][43] :== 252.7 {K};
332 a[1][44] :== 13.89 {K};
333 a[1][45] :== 383 {K};
334 a[1][46] :== -1380 {K};
335 a[1][47] :== 729 {K};
336
337 (* row 2 *) (* the ?!? numbers in group 2 are bogus. probably entered by ka.
338 * they have been replaced. part looks like a paste of row 4.
339 *)
340 (* old:
341 a[2][1] :== 2520 {K}; (*?!?*)
342 a[2][2] :== 0.0 {K}; (*?!?*)
343 a[2][3] :== 340.7 {K}; (*?!?*)
344 a[2][4] :== 4102 {K}; (*?!?*)
345 a[2][5] :== 693.9 {K}; (*?!?*)
346 a[2][6] :== 1509.0 {K}; (*?!?*)
347 a[2][7] :== 634.2 {K}; (*?!?*)
348 a[2][8] :== 547.4 {K}; (*?!?*)
349 a[2][9] :== 524.5 {K}; (*?!?*)
350 a[2][11] :== 71.23 {K}; (*?!?*)
351 END old *)
352 a[2][1] :== -35.36 {K};
353 a[2][2] :== 0.0 {K};
354 a[2][3] :== 38.81 {K};
355 a[2][4] :== 74.15 {K};
356 a[2][5] :== 524.1 {K};
357 a[2][6] :== 787.6 {K};
358 a[2][7] :== 270.6 {K};
359 a[2][8] :== 526.1 {K};
360 a[2][9] :== 182.6 {K};
361 a[2][10] :== 448.8 {K};
362 a[2][11] :== 37.85 {K};
363 a[2][12] :== 449.1 {K};
364 a[2][13] :== 214.5 {K};
365 a[2][14] :== 240.9 {K};
366 a[2][15] :== 163.9 {K};
367 a[2][16] :== 61.11 {K};
368 a[2][17] :== 749.3 {K};
369 a[2][18] :== 0 {K};
370 a[2][19] :== 336.9 {K};
371 a[2][20] :== 318.9 {K};
372 a[2][21] :== 204.6 {K};
373 a[2][22] :== 5.892 {K};
374 (* old
375 a[2][23] :== 4584.0 {K}; (*?!?*)
376 END old *)
377
378 a[2][23] :== -13.99 {K};
379 a[2][24] :== -109.7 {K};
380 a[2][25] :== 393.1 {K};
381 a[2][26] :== 357.5 {K};
382 a[2][27] :== 0 {K};
383 a[2][28] :== 76.3 {K};
384 a[2][29] :== 0 {K};
385 a[2][30] :== 0 {K};
386 a[2][31] :== 0 {K};
387 a[2][32] :== 0 {K};
388 a[2][33] :== 0 {K};
389 a[2][34] :== 31.14 {K};
390 a[2][35] :== -137.4 {K};
391 a[2][36] :== 0 {K};
392 a[2][37] :== -66.46 {K};
393 a[2][38] :== 0 {K};
394 a[2][39] :== -70.45 {K};
395 a[2][40] :== 0 {K};
396 a[2][41] :== 48.33 {K};
397 a[2][42] :== 0 {K};
398 a[2][43] :== 0 {K};
399 a[2][44] :== 0 {K};
400 a[2][45] :== 0 {K};
401 a[2][46] :== 2340 {K};
402 a[2][47] :== 0 {K};
403 (* row 3 *)
404 a[3][1] :== -11.12 {K};
405 a[3][2] :== 3.446 {K};
406 a[3][3] :== 0.0 {K};
407 a[3][4] :== 167.0 {K};
408 a[3][5] :== 636.10 {K};
409 a[3][6] :== 637.3 {K};
410 a[3][7] :== 903.8 {K};
411 a[3][8] :== 1329.0 {K};
412 a[3][9] :== 25.77 {K};
413 a[3][11] :== 5.994 {K};
414 a[3][10] :== 347.3 {K};
415 a[3][12] :== -92.55 {K};
416 a[3][13] :== 32.14 {K};
417 a[3][14] :== 161.7 {K};
418 a[3][15] :== 122.8 {K};
419 a[3][16] :== 90.49 {K};
420 a[3][17] :== 648.2 {K};
421 a[3][18] :== -4.449 {K};
422 a[3][19] :== 212.5 {K};
423 a[3][20] :== 537.4 {K};
424 a[3][21] :== -18.81 {K};
425 a[3][22] :== -144.4 {K};
426 a[3][23] :== -231.9 {K};
427 a[3][24] :== 3 {K};
428 a[3][25] :== 538.2 {K};
429 a[3][26] :== 168 {K};
430 a[3][27] :== 194.9 {K};
431 a[3][28] :== 52.07 {K};
432 a[3][29] :== -10.43 {K};
433 a[3][30] :== -64.69 {K};
434 a[3][31] :== 210.4 {K};
435 a[3][32] :== 113.3 {K};
436 a[3][33] :== -13.59 {K};
437 a[3][34] :== 0 {K};
438 a[3][35] :== 169.9 {K};
439 a[3][36] :== 0 {K};
440 a[3][37] :== -259.1 {K};
441 a[3][38] :== 389.3 {K};
442 a[3][39] :== 245.6 {K};
443 a[3][40] :== 0 {K};
444 a[3][41] :== 103.5 {K};
445 a[3][42] :== -432.3 {K};
446 a[3][43] :== 238.9 {K};
447 a[3][44] :== -23.88 {K};
448 a[3][45] :== 109 {K};
449 a[3][46] :== 75.9 {K};
450 a[3][47] :== 784 {K};
451 (* row 4 *)
452 a[4][1] :== -69.70 {K};
453 a[4][2] :== -113.6 {K};
454 a[4][3] :== -146.80 {K};
455 a[4][4] :== 0.0 {K};
456 a[4][5] :== 803.20 {K};
457 a[4][6] :== 603.2 {K};
458 a[4][7] :== 5695.00 {K};
459 a[4][8] :== 547.4 {K};
460 a[4][9] :== -52.10 {K};
461 a[4][10] :== 586.6 {K};
462 a[4][11] :== 5688.0 {K};
463
464 a[4][12] :== 115.2 {K};
465 a[4][13] :== 213.1 {K};
466 a[4][14] :== 0 {K};
467 a[4][15] :== 49.29 {K};
468 a[4][16] :== 23.5 {K};
469 a[4][17] :== 664.2 {K};
470 a[4][18] :== 52.8 {K};
471 a[4][19] :== 6096 {K};
472 a[4][20] :== 603.8 {K};
473 a[4][21] :== -114.1 {K};
474 a[4][22] :== -111 {K};
475 a[4][23] :== -12.14 {K};
476 a[4][24] :== -141.3 {K};
477 a[4][25] :== -126.9 {K};
478 a[4][26] :== 3629 {K};
479 a[4][27] :== 4448 {K};
480 a[4][28] :== -9.451 {K};
481 a[4][29] :== 0 {K};
482 a[4][30] :== -20.36 {K};
483 a[4][31] :== 4975 {K};
484 a[4][32] :== 0 {K};
485 a[4][33] :== -171.3 {K};
486 a[4][34] :== 0 {K};
487 a[4][35] :== 4284 {K};
488 a[4][36] :== 0 {K};
489 a[4][37] :== 0 {K};
490 a[4][38] :== 101.4 {K};
491 a[4][39] :== 5629 {K};
492 a[4][40] :== 0 {K};
493 a[4][41] :== 69.26 {K};
494 a[4][42] :== 683.3 {K};
495 a[4][43] :== 355.5 {K};
496 a[4][44] :== 6.214 {K};
497 a[4][45] :== 1320 {K};
498 a[4][46] :== 482 {K};
499 a[4][47] :== 386 {K};
500 (* row 5 *)
501 a[5][1] :== 156.40 {K};
502 a[5][2] :== 475.000 {K};
503 a[5][3] :== 89.60 {K};
504 a[5][4] :== 25.82 {K};
505 a[5][5] :== 0.0 {K};
506 a[5][6] :== -137.1 {K};
507 a[5][7] :== 353.50 {K};
508 a[5][8] :== -259.7 {K};
509 a[5][9] :== 84.0 {K};
510 a[5][10] :== 441.8 {K};
511 a[5][11] :== 101.1 {K};
512 a[5][12] :== 193.1 {K};
513 a[5][13] :== 28.06 {K};
514 a[5][14] :== 83.02 {K};
515 a[5][15] :== 42.7 {K};
516 a[5][16] :== -323 {K};
517 a[5][17] :== -52.39 {K};
518 a[5][18] :== 170 {K};
519 a[5][19] :== 6.712 {K};
520 a[5][20] :== 199 {K};
521 a[5][21] :== 75.62 {K};
522 a[5][22] :== -112.1 {K};
523 a[5][23] :== -98.12 {K};
524 a[5][24] :== 143.1 {K};
525 a[5][25] :== 287.8 {K};
526 a[5][26] :== 256.5 {K};
527 a[5][27] :== 157.1 {K};
528 a[5][28] :== 477 {K};
529 a[5][29] :== 147.5 {K};
530 a[5][30] :== -120.5 {K};
531 a[5][31] :== -318.9 {K};
532 a[5][32] :== 313.5 {K};
533 a[5][33] :== 133.4 {K};
534 a[5][34] :== 0 {K};
535 a[5][35] :== -202.1 {K};
536 a[5][36] :== 0 {K};
537 a[5][37] :== 225.8 {K};
538 a[5][38] :== 44.78 {K};
539 a[5][39] :== -143.9 {K};
540 a[5][40] :== 0 {K};
541 a[5][41] :== 190.3 {K};
542 a[5][42] :== -817.7 {K};
543 a[5][43] :== 202.7 {K};
544 a[5][44] :== 796.9 {K};
545 a[5][45] :== 0 {K};
546 a[5][46] :== 0 {K};
547 a[5][47] :== 0 {K};
548 (* row 6 *)
549 a[6][1] :== 16.51 {K};
550 a[6][2] :== -12.520 {K};
551 a[6][3] :== -50.00 {K};
552 a[6][4] :== -44.50 {K};
553 a[6][5] :== 249.1 {K};
554 a[6][6] :== 0.0 {K};
555 a[6][7] :== -181.0 {K};
556 a[6][8] :== -101.7 {K};
557 a[6][9] :== 23.39 {K};
558 a[6][10] :== 306.4 {K};
559 a[6][11] :== -10.72 {K};
560 a[6][12] :== 193.4 {K};
561 a[6][13] :== -128.6 {K};
562 a[6][14] :== 359.3 {K};
563 a[6][15] :== 266 {K};
564 a[6][16] :== 53.9 {K};
565 a[6][17] :== 489.7 {K};
566 a[6][18] :== 580.5 {K};
567 a[6][19] :== 36.23 {K};
568 a[6][20] :== -289.5 {K};
569 a[6][21] :== -38.32 {K};
570 a[6][22] :== -102.5 {K};
571 a[6][23] :== -139.4 {K};
572 a[6][24] :== -67.8 {K};
573 a[6][25] :== 17.12 {K};
574 a[6][26] :== 75.14 {K};
575 a[6][27] :== 0 {K};
576 a[6][28] :== -31.09 {K};
577 a[6][29] :== 37.84 {K};
578 a[6][30] :== 0 {K};
579 a[6][31] :== 0 {K};
580 a[6][32] :== 0 {K};
581 a[6][33] :== 106.3 {K};
582 a[6][34] :== 0 {K};
583 a[6][35] :== -399.3 {K};
584 a[6][36] :== 0 {K};
585 a[6][37] :== 33.47 {K};
586 a[6][38] :== -48.25 {K};
587 a[6][39] :== -172.4 {K};
588 a[6][40] :== 0 {K};
589 a[6][41] :== 165.7 {K};
590 a[6][42] :== 0 {K};
591 a[6][43] :== 0 {K};
592 a[6][44] :== 0 {K};
593 a[6][45] :== 214 {K};
594 a[6][46] :== 0 {K};
595 a[6][47] :== 0 {K};
596 (* row 7 *)
597 a[7][1] :== 300.00 {K};
598 a[7][2] :== 496.100 {K};
599 a[7][3] :== 362.30 {K};
600 a[7][4] :== 377.60 {K};
601 a[7][5] :== -229.10 {K};
602 a[7][6] :== 289.6 {K};
603 a[7][7] :== 0.0 {K};
604 a[7][8] :== 324.5 {K};
605 a[7][9] :== -195.40 {K};
606 a[7][10] :== -257.3 {K};
607 (* a[7][11] :== 14.42 {K}; ?!?*)
608 a[7][11] :== 72.87 {K};
609 a[7][12] :== 0 {K};
610 a[7][13] :== 540.5 {K};
611 a[7][14] :== 48.89 {K};
612 a[7][15] :== 168 {K};
613 a[7][16] :== 304 {K};
614 a[7][17] :== -59.29 {K};
615 a[7][18] :== 459 {K};
616 a[7][19] :== 112.6 {K};
617 a[7][20] :== -14.09 {K};
618 a[7][21] :== 325.4 {K};
619 a[7][22] :== 370.4 {K};
620 a[7][23] :== 353.7 {K};
621 a[7][24] :== 497.5 {K};
622 a[7][25] :== 678.2 {K};
623 a[7][26] :== 220.6 {K};
624 a[7][27] :== 399.5 {K};
625 a[7][28] :== 887.1 {K};
626 a[7][29] :== 0 {K};
627 a[7][30] :== 188 {K};
628 a[7][31] :== 13.53 {K};
629 a[7][32] :== 0 {K};
630 a[7][33] :== 0 {K};
631 a[7][34] :== 0 {K};
632 a[7][35] :== -139 {K};
633 a[7][36] :== 160.8 {K};
634 a[7][37] :== 0 {K};
635 a[7][38] :== 0 {K};
636 a[7][39] :== 319 {K};
637 a[7][40] :== 0 {K};
638 a[7][41] :== -197.5 {K};
639 a[7][42] :== 0 {K};
640 a[7][43] :== 0 {K};
641 a[7][44] :== 832.2 {K};
642 a[7][45] :== 365 {K};
643 a[7][46] :== 0 {K};
644 a[7][47] :== 0 {K};
645 (* row 8 *)
646 a[8][1] :== 275.8 {K};
647 a[8][2] :== 217.5 {K};
648 a[8][3] :== 25.34 {K};
649 a[8][4] :== 244.2 {K};
650 a[8][5] :== -451.6 {K};
651 a[8][6] :== -265.2 {K};
652 a[8][7] :== -601.8 {K};
653 a[8][8] :== 0.0 {K};
654 a[8][9] :== -356.1 {K};
655 a[8][10] :== 0 {K};
656 a[8][11] :== -449.4 {K};
657 a[8][12] :== 0 {K};
658 a[8][13] :== 0 {K};
659 a[8][14] :== 0 {K};
660 a[8][15] :== 0 {K};
661 a[8][16] :== 0 {K};
662 a[8][17] :== 119.9 {K};
663 a[8][18] :== -305.5 {K};
664 a[8][19] :== 0 {K};
665 a[8][20] :== 0 {K};
666 a[8][21] :== 0 {K};
667 a[8][22] :== 0 {K};
668 a[8][23] :== 0.0 {K};
669 a[8][24] :== 1827 {K};
670 a[8][25] :== 0 {K};
671 a[8][26] :== 0 {K};
672 a[8][27] :== 0 {K};
673 a[8][28] :== 0 {K};
674 a[8][29] :== 0 {K};
675 a[8][30] :== 0 {K};
676 a[8][31] :== -687.1 {K};
677 a[8][32] :== 0 {K};
678 a[8][33] :== 0 {K};
679 a[8][34] :== 0 {K};
680 a[8][35] :== 0 {K};
681 a[8][36] :== 0 {K};
682 a[8][37] :== 0 {K};
683 a[8][38] :== 0 {K};
684 a[8][39] :== 0 {K};
685 a[8][40] :== 0 {K};
686 a[8][41] :== -494.2 {K};
687 (* a[8][42] :== undefined in book. *)
688 a[8][43] :== 0 {K};
689 a[8][44] :== 0 {K};
690 a[8][45] :== 0 {K};
691 a[8][46] :== 0 {K};
692 a[8][47] :== 0 {K};
693 (* row 9 *)
694 a[9][1] :== 26.76 {K};
695 a[9][2] :== 42.920 {K};
696 a[9][3] :== 140.10 {K};
697 a[9][4] :== 365.80 {K};
698 a[9][5] :== 164.5 {K};
699 a[9][6] :== 108.7 {K};
700 a[9][7] :== 472.5 {K};
701 a[9][8] :== -133.1 {K};
702 a[9][9] :== 0.0 {K};
703 a[9][10] :== -37.36 {K};
704 a[9][11] :== -213.7 {K};
705 a[9][12] :== -38.47 {K};
706 a[9][13] :== -103.6 {K};
707 a[9][14] :== 0 {K};
708 a[9][15] :== 0 {K};
709 a[9][16] :== -169 {K};
710 a[9][17] :== 6201 {K};
711 a[9][18] :== 165.1 {K};
712 a[9][19] :== 481.7 {K};
713 a[9][20] :== 669.4 {K};
714 a[9][21] :== -191.7 {K};
715 a[9][22] :== -284 {K};
716 a[9][23] :== -354.6 {K};
717 a[9][24] :== -39.2 {K};
718 a[9][25] :== 174.5 {K};
719 a[9][26] :== 137.5 {K};
720 a[9][27] :== 0 {K};
721 a[9][28] :== 216.1 {K};
722 a[9][29] :== -46.28 {K};
723 a[9][30] :== -163.7 {K};
724 a[9][31] :== 0 {K};
725 a[9][32] :== 53.59 {K};
726 a[9][33] :== 245.2 {K};
727 a[9][34] :== -246.2 {K};
728 a[9][35] :== -44.58 {K};
729 a[9][36] :== 0 {K};
730 a[9][37] :== -34.57 {K};
731 a[9][38] :== 0 {K};
732 a[9][39] :== -61.7 {K};
733 a[9][40] :== 0 {K};
734 a[9][41] :== -18.8 {K};
735 a[9][42] :== 0 {K};
736 a[9][43] :== 0 {K};
737 a[9][44] :== 0 {K};
738 a[9][45] :== 135 {K};
739 a[9][46] :== -1680 {K};
740 a[9][47] :== -58 {K};
741 (* row 10 *)
742 a[10][1] :== 505.7 {K};
743 a[10][2] :== 56.3 {K};
744 a[10][3] :== 23.39 {K};
745 a[10][4] :== 106.6 {K};
746 a[10][5] :== -404.8 {K};
747 a[10][6] :== -340.2 {K};
748 a[10][7] :== 232.7 {K};
749 a[10][8] :== 0 {K};
750 a[10][9] :== 128 {K};
751 a[10][10] :== 0 {K};
752 a[10][11] :== -110.3 {K};
753 a[10][12] :== 11.31 {K};
754 a[10][13] :== 304.1 {K};
755 a[10][14] :== 0 {K};
756 a[10][15] :== 0 {K};
757 a[10][16] :== 0 {K};
758 a[10][17] :== 0 {K};
759 a[10][18] :== 0 {K};
760 a[10][19] :== 0 {K};
761 a[10][20] :== 0 {K};
762 a[10][21] :== 751.9 {K};
763 a[10][22] :== 0 {K};
764 a[10][23] :== -483.7 {K};
765 a[10][24] :== 0 {K};
766 a[10][25] :== 0 {K};
767 a[10][26] :== 0 {K};
768 a[10][27] :== 0 {K};
769 a[10][28] :== 0 {K};
770 a[10][29] :== 0 {K};
771 a[10][30] :== 0 {K};
772 a[10][31] :== 0 {K};
773 a[10][32] :== 0 {K};
774 a[10][33] :== 0 {K};
775 a[10][34] :== 0 {K};
776 a[10][35] :== 0 {K};
777 a[10][36] :== 0 {K};
778 a[10][37] :== 0 {K};
779 a[10][38] :== 0 {K};
780 a[10][39] :== 0 {K};
781 a[10][40] :== 0 {K};
782 a[10][41] :== 0 {K};
783 a[10][42] :== 0 {K};
784 a[10][43] :== 0 {K};
785 a[10][44] :== 0 {K};
786 a[10][45] :== -7.18 {K};
787 a[10][46] :== 333 {K};
788 a[10][47] :== 6810 {K};
789 (* row 11 *)
790 a[11][1] :== 114.8 {K};
791 a[11][2] :== 132.1 {K};
792 a[11][3] :== 85.84 {K};
793 a[11][4] :== -170.0 {K};
794 a[11][5] :== 245.4 {K};
795 a[11][6] :== 249.6 {K};
796 a[11][7] :== 10000.0 {K};
797 a[11][8] :== -36.72 {K};
798 a[11][9] :== 372.2 {K};
799 a[11][10] :== 185.1 {K};
800 a[11][11] :== 0.0 {K};
801 a[11][12] :== 372.9 {K};
802 a[11][13] :== -235.7 {K};
803 a[11][14] :== 0 {K};
804 a[11][15] :== -73.5 {K};
805 a[11][16] :== 0 {K};
806 a[11][17] :== 475.5 {K};
807 a[11][18] :== 0 {K};
808 a[11][19] :== 494.6 {K};
809 a[11][20] :== 660.2 {K};
810 a[11][21] :== -34.74 {K};
811 a[11][22] :== 108.9 {K};
812 a[11][23] :== -209.7 {K};
813 a[11][24] :== 54.47 {K};
814 a[11][25] :== 629 {K};
815 a[11][26] :== -81.13 {K};
816 a[11][27] :== 0 {K};
817 a[11][28] :== 183 {K};
818 a[11][29] :== 0 {K};
819 a[11][30] :== 202.3 {K};
820 a[11][31] :== -101.7 {K};
821 a[11][32] :== 148.3 {K};
822 a[11][33] :== 18.88 {K};
823 a[11][34] :== 0 {K};
824 a[11][35] :== 52.08 {K};
825 a[11][36] :== -28.61 {K};
826 a[11][37] :== -83.3 {K};
827 a[11][38] :== 0 {K};
828 a[11][39] :== 0 {K};
829 a[11][40] :== 0 {K};
830 a[11][41] :== 560.2 {K};
831 a[11][42] :== 0 {K};
832 a[11][43] :== 0 {K};
833 a[11][44] :== 0 {K};
834 a[11][45] :== -54.6 {K};
835 a[11][46] :== 0 {K};
836 a[11][47] :== 6960 {K};
837 (* row 12 *)
838 a[12][1] :== 90.49 {K};
839 a[12][2] :== -62.55 {K};
840 a[12][3] :== 1967 {K};
841 a[12][4] :== 2347 {K};
842 a[12][5] :== 191.2 {K};
843 a[12][6] :== 155.7 {K};
844 a[12][7] :== 0 {K};
845 a[12][8] :== 0 {K};
846 a[12][9] :== 70.42 {K};
847 a[12][10] :== 35.35 {K};
848 a[12][11] :== -261.1 {K};
849 a[12][12] :== 0 {K};
850 a[12][13] :== 0 {K};
851 a[12][14] :== 0 {K};
852 a[12][15] :== 0 {K};
853 a[12][16] :== 0 {K};
854 a[12][17] :== 0 {K};
855 a[12][18] :== 0 {K};
856 a[12][19] :== 0 {K};
857 a[12][20] :== -356.3 {K};
858 a[12][21] :== 0 {K};
859 a[12][22] :== 0 {K};
860 a[12][23] :== -287.2 {K};
861 a[12][24] :== 36.84 {K};
862 a[12][25] :== 0 {K};
863 a[12][26] :== 0 {K};
864 a[12][27] :== 0 {K};
865 a[12][28] :== 0 {K};
866 a[12][29] :== 4.339 {K};
867 a[12][30] :== 0 {K};
868 a[12][31] :== 0 {K};
869 a[12][32] :== 0 {K};
870 a[12][33] :== 0 {K};
871 a[12][34] :== 0 {K};
872 a[12][35] :== 0 {K};
873 a[12][36] :== 0 {K};
874 a[12][37] :== 0 {K};
875 a[12][38] :== 0 {K};
876 a[12][39] :== 0 {K};
877 a[12][40] :== 0 {K};
878 a[12][41] :== -70.24 {K};
879 a[12][42] :== 0 {K};
880 a[12][43] :== 0 {K};
881 a[12][44] :== 0 {K};
882 a[12][45] :== 0 {K};
883 a[12][46] :== 0 {K};
884 a[12][47] :== 0 {K};
885 (* row 13 *)
886 a[13][1] :== 83.36 {K};
887 a[13][2] :== 26.51 {K};
888 a[13][3] :== 52.13 {K};
889 a[13][4] :== 65.69 {K};
890 a[13][5] :== 237.7 {K};
891 a[13][6] :== 238.4 {K};
892 a[13][7] :== -314.7 {K};
893 a[13][8] :== 0 {K};
894 a[13][9] :== 191.1 {K};
895 a[13][10] :== -7.838 {K};
896 a[13][11] :== 461.3 {K};
897 a[13][12] :== 0 {K};
898 a[13][13] :== 0 {K};
899 a[13][14] :== 0 {K};
900 a[13][15] :== 141.7 {K};
901 a[13][16] :== 0 {K};
902 a[13][17] :== 0 {K};
903 a[13][18] :== 0 {K};
904 a[13][19] :== -18.51 {K};
905 a[13][20] :== 664.6 {K};
906 a[13][21] :== 301.1 {K};
907 a[13][22] :== 137.8 {K};
908 a[13][23] :== -154.3 {K};
909 a[13][24] :== 47.67 {K};
910 a[13][25] :== 66.15 {K};
911 a[13][26] :== 95.18 {K};
912 a[13][27] :== 0 {K};
913 a[13][28] :== 140.9 {K};
914 a[13][29] :== -8.538 {K};
915 a[13][30] :== 0 {K};
916 a[13][31] :== -20.11 {K};
917 a[13][32] :== -149.5 {K};
918 a[13][33] :== -202.3 {K};
919 a[13][34] :== 0 {K};
920 a[13][35] :== 172.1 {K};
921 a[13][36] :== 0 {K};
922 a[13][37] :== 240.2 {K};
923 a[13][38] :== -273.9 {K};
924 a[13][39] :== 254.8 {K};
925 a[13][40] :== 0 {K};
926 a[13][41] :== 417 {K};
927 a[13][42] :== 0 {K};
928 a[13][43] :== 0 {K};
929 a[13][44] :== 0 {K};
930 a[13][45] :== 5780 {K};
931 a[13][46] :== 131 {K};
932 a[13][47] :== 0 {K};
933 (* row 14 *)
934 a[14][1] :== -30.48 {K};
935 a[14][2] :== 1.163 {K};
936 a[14][3] :== -44.850 {K};
937 a[14][4] :== 0 {K};
938 a[14][5] :== -164 {K};
939 a[14][6] :== -481.7 {K};
940 a[14][7] :== -330.4 {K};
941 a[14][8] :== 0 {K};
942 a[14][9] :== 0 {K};
943 a[14][10] :== 0 {K};
944 a[14][11] :== 0 {K};
945 a[14][12] :== 0 {K};
946 a[14][13] :== 0 {K};
947 a[14][14] :== 0 {K};
948 a[14][15] :== 63.72 {K};
949 a[14][16] :== -41.11 {K};
950 a[14][17] :== -200.7 {K};
951 a[14][18] :== 0 {K};
952 a[14][19] :== 0 {K};
953 a[14][20] :== 0 {K};
954 a[14][21] :== 0 {K};
955 a[14][22] :== 0 {K};
956 a[14][23] :== 0 {K};
957 a[14][24] :== -99.81 {K};
958 a[14][25] :== 68.81 {K};
959 a[14][26] :== 0 {K};
960 a[14][27] :== 0 {K};
961 a[14][28] :== 0 {K};
962 a[14][29] :== -70.14 {K};
963 a[14][30] :== 0 {K};
964 a[14][31] :== 0 {K};
965 a[14][32] :== 0 {K};
966 a[14][33] :== 0 {K};
967 a[14][34] :== 0 {K};
968 a[14][35] :== 0 {K};
969 a[14][36] :== 0 {K};
970 a[14][37] :== 0 {K};
971 a[14][38] :== 0 {K};
972 a[14][39] :== 0 {K};
973 a[14][40] :== 0 {K};
974 a[14][41] :== 0 {K};
975 a[14][42] :== 0 {K};
976 a[14][43] :== 0 {K};
977 a[14][44] :== 0 {K};
978 a[14][45] :== 0 {K};
979 a[14][46] :== 0 {K};
980 a[14][47] :== 0 {K};
981 (* row 15 *)
982 a[15][1] :== 65.33 {K};
983 a[15][2] :== -28.7 {K};
984 a[15][3] :== -22.31 {K};
985 a[15][4] :== 223 {K};
986 a[15][5] :== -150 {K};
987 a[15][6] :== -500 {K};
988 a[15][7] :== -448.2 {K};
989 a[15][8] :== 0 {K};
990 a[15][9] :== 0 {K};
991 a[15][10] :== 0 {K};
992 a[15][11] :== 136 {K};
993 a[15][12] :== 0 {K};
994 a[15][13] :== -49.3 {K};
995 a[15][14] :== 108.8 {K};
996 a[15][15] :== 0 {K};
997 a[15][16] :== -189.2 {K};
998 a[15][17] :== 0 {K};
999 a[15][18] :== 0 {K};
1000 a[15][19] :== 0 {K};
1001 a[15][20] :== 0 {K};
1002 a[15][21] :== 0 {K};
1003 a[15][22] :== 0 {K};
1004 a[15][23] :== 0 {K};
1005 a[15][24] :== 71.23 {K};
1006 a[15][25] :== 4350 {K};
1007 a[15][26] :== 0 {K};
1008 a[15][27] :== 0 {K};
1009 a[15][28] :== 0 {K};
1010 a[15][29] :== 0 {K};
1011 a[15][30] :== 0 {K};
1012 a[15][31] :== 0 {K};
1013 a[15][32] :== 0 {K};
1014 a[15][33] :== 0 {K};
1015 a[15][34] :== 0 {K};
1016 a[15][35] :== 0 {K};
1017 a[15][36] :== 0 {K};
1018 a[15][37] :== 0 {K};
1019 a[15][38] :== 0 {K};
1020 a[15][39] :== 0 {K};
1021 a[15][40] :== 0 {K};
1022 a[15][41] :== -38.77 {K};
1023 a[15][42] :== 0 {K};
1024 a[15][43] :== 0 {K};
1025 a[15][44] :== 0 {K};
1026 a[15][45] :== 0 {K};
1027 a[15][46] :== 0 {K};
1028 a[15][47] :== 0 {K};
1029 (* row 16 *)
1030 a[16][1] :== -83.98 {K};
1031 a[16][2] :== -25.38 {K};
1032 a[16][3] :== -223.9 {K};
1033 a[16][4] :== 109.9 {K};
1034 a[16][5] :== 28.6 {K};
1035 a[16][6] :== -406.8 {K};
1036 a[16][7] :== -598.8 {K};
1037 a[16][8] :== 0 {K};
1038 a[16][9] :== 225.3 {K};
1039 a[16][10] :== 0 {K};
1040 a[16][11] :== 0 {K};
1041 a[16][12] :== 0 {K};
1042 a[16][13] :== 0 {K};
1043 a[16][14] :== 38.89 {K};
1044 a[16][15] :== 865.9 {K};
1045 a[16][16] :== 0 {K};
1046 a[16][17] :== 0 {K};
1047 a[16][18] :== 0 {K};
1048 a[16][19] :== 0 {K};
1049 a[16][20] :== 0 {K};
1050 a[16][21] :== 0 {K};
1051 a[16][22] :== -73.85 {K};
1052 a[16][23] :== -352.9 {K};
1053 a[16][24] :== -8.238 {K};
1054 a[16][25] :== -86.36 {K};
1055 a[16][26] :== 0 {K};
1056 a[16][27] :== 0 {K};
1057 a[16][28] :== 0 {K};
1058 a[16][29] :== 0 {K};
1059 a[16][30] :== 0 {K};
1060 a[16][31] :== 0 {K};
1061 a[16][32] :== 0 {K};
1062 a[16][33] :== 0 {K};
1063 a[16][34] :== 0 {K};
1064 a[16][35] :== 243.1 {K};
1065 a[16][36] :== 0 {K};
1066 a[16][37] :== 0 {K};
1067 a[16][38] :== -196.3 {K};
1068 a[16][39] :== 0 {K};
1069 a[16][40] :== 0 {K};
1070 a[16][41] :== 0 {K};
1071 a[16][42] :== 0 {K};
1072 a[16][43] :== 0 {K};
1073 a[16][44] :== 0 {K};
1074 a[16][45] :== 0 {K};
1075 a[16][46] :== 0 {K};
1076 a[16][47] :== 0 {K};
1077 (* row 17 *)
1078 a[17][1] :== 1139 {K};
1079 a[17][2] :== 2000 {K};
1080 a[17][3] :== 247.5 {K};
1081 a[17][4] :== 762.8 {K};
1082 a[17][5] :== -17.4 {K};
1083 a[17][6] :== -118.1 {K};
1084 a[17][7] :== -367.8 {K};
1085 a[17][8] :== -253.1 {K};
1086 a[17][9] :== -450.3 {K};
1087 a[17][10] :== 0 {K};
1088 a[17][11] :== -294.8 {K};
1089 a[17][12] :== 0 {K};
1090 a[17][13] :== 0 {K};
1091 a[17][14] :== -15.07 {K};
1092 a[17][15] :== 0 {K};
1093 a[17][16] :== 0 {K};
1094 a[17][17] :== 0 {K};
1095 a[17][18] :== 0 {K};
1096 a[17][19] :== -281.6 {K};
1097 a[17][20] :== 0 {K};
1098 a[17][21] :== 287 {K};
1099 a[17][22] :== 0 {K};
1100 a[17][23] :== 0 {K};
1101 a[17][24] :== 882 {K};
1102 a[17][25] :== 287.9 {K};
1103 a[17][26] :== 0 {K};
1104 a[17][27] :== -139.3 {K};
1105 a[17][28] :== 0 {K};
1106 a[17][29] :== 0 {K};
1107 a[17][30] :== 0 {K};
1108 a[17][31] :== -136.9 {K};
1109 a[17][32] :== 0 {K};
1110 a[17][33] :== 0 {K};
1111 a[17][34] :== 0 {K};
1112 a[17][35] :== 0 {K};
1113 a[17][36] :== 0 {K};
1114 a[17][37] :== 0 {K};
1115 a[17][38] :== 0 {K};
1116 a[17][39] :== -334.4 {K};
1117 a[17][40] :== 0 {K};
1118 a[17][41] :== -89.42 {K};
1119 a[17][42] :== 0 {K};
1120 a[17][43] :== 0 {K};
1121 a[17][44] :== 0 {K};
1122 a[17][45] :== 0 {K};
1123 a[17][46] :== 0 {K};
1124 a[17][47] :== 0 {K};
1125 (* row 18 *)
1126 a[18][1] :== -101.6 {K};
1127 a[18][2] :== 0 {K};
1128 a[18][3] :== 31.87 {K};
1129 a[18][4] :== 49.8 {K};
1130 a[18][5] :== -132.3 {K};
1131 a[18][6] :== 378.2 {K};
1132 a[18][7] :== -332.9 {K};
1133 a[18][8] :== -341.6 {K};
1134 a[18][9] :== -51.54 {K};
1135 a[18][10] :== 0 {K};
1136 a[18][11] :== 0 {K};
1137 a[18][12] :== 0 {K};
1138 a[18][13] :== 0 {K};
1139 a[18][14] :== 0 {K};
1140 a[18][15] :== 0 {K};
1141 a[18][16] :== 0 {K};
1142 a[18][17] :== 0 {K};
1143 a[18][18] :== 0 {K};
1144 a[18][19] :== -169.7 {K};
1145 a[18][20] :== -153.7 {K};
1146 a[18][21] :== 0 {K};
1147 a[18][22] :== -351.6 {K};
1148 a[18][23] :== -114.7 {K};
1149 a[18][24] :== -165.1 {K};
1150 a[18][25] :== 0 {K};
1151 a[18][26] :== 0 {K};
1152 a[18][27] :== 0 {K};
1153 a[18][28] :== 0 {K};
1154 a[18][29] :== 0 {K};
1155 a[18][30] :== 0 {K};
1156 a[18][31] :== 0 {K};
1157 a[18][32] :== 0 {K};
1158 a[18][33] :== 0 {K};
1159 a[18][34] :== 0 {K};
1160 a[18][35] :== 0 {K};
1161 a[18][36] :== 0 {K};
1162 a[18][37] :== 0 {K};
1163 a[18][38] :== 0 {K};
1164 a[18][39] :== 0 {K};
1165 a[18][40] :== 0 {K};
1166 a[18][41] :== 0 {K};
1167 a[18][42] :== 0 {K};
1168 a[18][43] :== 0 {K};
1169 a[18][44] :== 0 {K};
1170 a[18][45] :== 0 {K};
1171 a[18][46] :== 0 {K};
1172 a[18][47] :== 0 {K};
1173 (* row 19 *)
1174 a[19][1] :== 24.82 {K};
1175 a[19][2] :== -40.62 {K};
1176 a[19][3] :== -22.97 {K};
1177 a[19][4] :== -138.4 {K};
1178 a[19][5] :== -185.4 {K};
1179 a[19][6] :== 157.8 {K};
1180 a[19][7] :== 242.8 {K};
1181 a[19][8] :== 0 {K};
1182 a[19][9] :== -287.5 {K};
1183 a[19][10] :== 0 {K};
1184 a[19][11] :== -266.6 {K};
1185 a[19][12] :== 0 {K};
1186 a[19][13] :== 38.81 {K};
1187 a[19][14] :== 0 {K};
1188 a[19][15] :== 0 {K};
1189 a[19][16] :== 0 {K};
1190 a[19][17] :== 777.4 {K};
1191 a[19][18] :== 134.3 {K};
1192 a[19][19] :== 0 {K};
1193 a[19][20] :== 0 {K};
1194 a[19][21] :== 88.75 {K};
1195 a[19][22] :== -152.7 {K};
1196 a[19][23] :== -15.62 {K};
1197 a[19][24] :== -54.86 {K};
1198 a[19][25] :== 52.31 {K};
1199 a[19][26] :== -0.515 {K};
1200 a[19][27] :== 0 {K};
1201 a[19][28] :== 230.9 {K};
1202 a[19][29] :== 21.37 {K};
1203 a[19][30] :== 0 {K};
1204 a[19][31] :== 0 {K};
1205 a[19][32] :== 0 {K};
1206 a[19][33] :== 0 {K};
1207 a[19][34] :== -203 {K};
1208 a[19][35] :== 0 {K};
1209 a[19][36] :== 81.57 {K};
1210 a[19][37] :== 3.509 {K};
1211 a[19][38] :== 0 {K};
1212 a[19][39] :== 0 {K};
1213 a[19][40] :== 0 {K};
1214 a[19][41] :== 120.3 {K};
1215 a[19][42] :== 0 {K};
1216 a[19][43] :== 0 {K};
1217 a[19][44] :== 0 {K};
1218 a[19][45] :== 0 {K};
1219 a[19][46] :== 0 {K};
1220 a[19][47] :== 0 {K};
1221 (* row 20 *)
1222 a[20][1] :== 315.3 {K};
1223 a[20][2] :== 1264 {K};
1224 a[20][3] :== 62.32 {K};
1225 a[20][4] :== 268.2 {K};
1226 a[20][5] :== -151 {K};
1227 a[20][6] :== 1020 {K};
1228 a[20][7] :== -66.17 {K};
1229 a[20][8] :== 0 {K};
1230 a[20][9] :== -297.8 {K};
1231 a[20][10] :== 0 {K};
1232 a[20][11] :== -256.3 {K};
1233 a[20][12] :== 312.5 {K};
1234 a[20][13] :== -338.5 {K};
1235 a[20][14] :== 0 {K};
1236 a[20][15] :== 0 {K};
1237 a[20][16] :== 0 {K};
1238 a[20][17] :== 0 {K};
1239 a[20][18] :== -313.5 {K};
1240 a[20][19] :== 0 {K};
1241 a[20][20] :== 0 {K};
1242 a[20][21] :== 44.42 {K};
1243 a[20][22] :== 120.2 {K};
1244 a[20][23] :== 76.75 {K};
1245 a[20][24] :== 212.7 {K};
1246 a[20][25] :== 0 {K};
1247 a[20][26] :== 0 {K};
1248 a[20][27] :== 0 {K};
1249 a[20][28] :== 0 {K};
1250 a[20][29] :== 0 {K};
1251 a[20][30] :== 0 {K};
1252 a[20][31] :== 0 {K};
1253 a[20][32] :== 0 {K};
1254 a[20][33] :== -95 {K};
1255 a[20][34] :== 0 {K};
1256 a[20][35] :== -561.2 {K};
1257 a[20][36] :== 0 {K};
1258 a[20][37] :== -11.16 {K};
1259 a[20][38] :== 0 {K};
1260 a[20][39] :== -246.5 {K};
1261 a[20][40] :== 0 {K};
1262 a[20][41] :== -337 {K};
1263 a[20][42] :== 169.3 {K};
1264 a[20][43] :== 127.2 {K};
1265 a[20][44] :== 0 {K};
1266 a[20][45] :== 0 {K};
1267 a[20][46] :== 0 {K};
1268 a[20][47] :== 0 {K};
1269 (* row 21 *)
1270 a[21][1] :== 91.46 {K};
1271 a[21][2] :== 97.51 {K};
1272 a[21][3] :== 4.68 {K};
1273 a[21][4] :== 122.9 {K};
1274 a[21][5] :== 562.2 {K};
1275 a[21][6] :== 529 {K};
1276 a[21][7] :== 698.2 {K};
1277 a[21][8] :== 0 {K};
1278 a[21][9] :== 286.3 {K};
1279 a[21][10] :== -47.51 {K};
1280 a[21][11] :== 35.38 {K};
1281 a[21][12] :== 0 {K};
1282 a[21][13] :== 225.4 {K};
1283 a[21][14] :== 0 {K};
1284 a[21][15] :== 0 {K};
1285 a[21][16] :== 0 {K};
1286 a[21][17] :== 429.7 {K};
1287 a[21][18] :== 0 {K};
1288 a[21][19] :== -62.41 {K};
1289 a[21][20] :== 326.4 {K};
1290 a[21][21] :== 0 {K};
1291 a[21][22] :== 108.3 {K};
1292 a[21][23] :== 249.2 {K};
1293 a[21][24] :== 62.42 {K};
1294 a[21][25] :== 464.4 {K};
1295 a[21][26] :== 32.75 {K};
1296 a[21][27] :== 0 {K};
1297 a[21][28] :== 450.1 {K};
1298 a[21][29] :== 59.02 {K};
1299 a[21][30] :== 0 {K};
1300 a[21][31] :== 0 {K};
1301 a[21][32] :== 0 {K};
1302 a[21][33] :== -125.9 {K};
1303 a[21][34] :== 0 {K};
1304 a[21][35] :== 0 {K};
1305 a[21][36] :== 0 {K};
1306 a[21][37] :== -245.4 {K};
1307 a[21][38] :== 0 {K};
1308 a[21][39] :== 0 {K};
1309 a[21][40] :== 0 {K};
1310 a[21][41] :== 63.67 {K};
1311 a[21][42] :== 0 {K};
1312 a[21][43] :== 0 {K};
1313 a[21][44] :== 0 {K};
1314 a[21][45] :== 0 {K};
1315 a[21][46] :== 0 {K};
1316 a[21][47] :== 0 {K};
1317 (* row 22 *)
1318 a[22][1] :== 34.01 {K};
1319 a[22][2] :== 18.25 {K};
1320 a[22][3] :== 121.3 {K};
1321 a[22][4] :== 140.8 {K};
1322 a[22][5] :== 747.7 {K};
1323 a[22][6] :== 669.9 {K};
1324 a[22][7] :== 708.7 {K};
1325 a[22][8] :== 0 {K};
1326 a[22][9] :== 423.2 {K};
1327 a[22][10] :== 0 {K};
1328 a[22][11] :== -132.9 {K};
1329 a[22][12] :== 0 {K};
1330 a[22][13] :== -197.7 {K};
1331 a[22][14] :== 0 {K};
1332 a[22][15] :== 0 {K};
1333 a[22][16] :== -141.4 {K};
1334 a[22][17] :== 0 {K};
1335 a[22][18] :== 587.3 {K};
1336 a[22][19] :== 258.6 {K};
1337 a[22][20] :== 339.6 {K};
1338 a[22][21] :== -84.53 {K};
1339 a[22][22] :== 0 {K};
1340 a[22][23] :== 0 {K};
1341 a[22][24] :== 56.33 {K};
1342 a[22][25] :== 0 {K};
1343 a[22][26] :== 0 {K};
1344 a[22][27] :== 0 {K};
1345 a[22][28] :== 0 {K};
1346 a[22][29] :== 0 {K};
1347 a[22][30] :== 0 {K};
1348 a[22][31] :== 0 {K};
1349 a[22][32] :== 177.6 {K};
1350 a[22][33] :== 0 {K};
1351 a[22][34] :== 0 {K};
1352 a[22][35] :== 215 {K};
1353 a[22][36] :== 0 {K};
1354 a[22][37] :== 0 {K};
1355 a[22][38] :== 0 {K};
1356 a[22][39] :== 0 {K};
1357 a[22][40] :== 0 {K};
1358 a[22][41] :== -96.87 {K};
1359 a[22][42] :== 0 {K};
1360 a[22][43] :== 0 {K};
1361 a[22][44] :== 0 {K};
1362 a[22][45] :== 0 {K};
1363 a[22][46] :== 0 {K};
1364 a[22][47] :== 0 {K};
1365 (* row 23 *)
1366 a[23][1] :== 36.70 {K};
1367 a[23][2] :== 51.060 {K};
1368 a[23][3] :== 288.5 {K};
1369 a[23][4] :== 33.61 {K};
1370 a[23][5] :== 742.1 {K};
1371 a[23][6] :== 649.1 {K};
1372 a[23][7] :== 826.7 {K};
1373 a[23][8] :== 0.0 {K};
1374 a[23][9] :== 552.1 {K};
1375 a[23][10] :== 242.8 {K};
1376 a[23][11] :== 176.5 {K};
1377 a[23][12] :== 488.9 {K};
1378 a[23][13] :== -20.93 {K};
1379 a[23][14] :== 0 {K};
1380 a[23][15] :== 0 {K};
1381 a[23][16] :== -293.7 {K};
1382 a[23][17] :== 0 {K};
1383 a[23][18] :== 18.98 {K};
1384 a[23][19] :== 74.04 {K};
1385 a[23][20] :== 1346 {K};
1386 a[23][21] :== -157.1 {K};
1387 a[23][22] :== 0 {K};
1388 a[23][23] :== 0.0 {K};
1389 a[23][24] :== -30.1 {K};
1390 a[23][25] :== 0 {K};
1391 a[23][26] :== 0 {K};
1392 a[23][27] :== 0 {K};
1393 a[23][28] :== 116.6 {K};
1394 a[23][29] :== 0 {K};
1395 a[23][30] :== -64.38 {K};
1396 a[23][31] :== 0 {K};
1397 a[23][32] :== 86.4 {K};
1398 a[23][33] :== 0 {K};
1399 a[23][34] :== 0 {K};
1400 a[23][35] :== 363.7 {K};
1401 a[23][36] :== 0 {K};
1402 a[23][37] :== 111.2 {K};
1403 a[23][38] :== 0 {K};
1404 a[23][39] :== 0 {K};
1405 a[23][40] :== 0 {K};
1406 a[23][41] :== 255.8 {K};
1407 a[23][42] :== 0 {K};
1408 a[23][43] :== 0 {K};
1409 a[23][44] :== 0 {K};
1410 a[23][45] :== 0 {K};
1411 a[23][46] :== 0 {K};
1412 a[23][47] :== 0 {K};
1413
1414 (* fixme
1415 (* row 24 *)
1416 a[24][1] :==
1417 a[24][2] :==
1418 a[24][3] :==
1419 a[24][4] :==
1420 a[24][5] :==
1421 a[24][6] :==
1422 a[24][7] :==
1423 a[24][8] :==
1424 a[24][9] :==
1425 a[24][10] :==
1426 a[24][11] :==
1427 a[24][12] :==
1428 a[24][13] :==
1429 a[24][14] :==
1430 a[24][15] :==
1431 a[24][16] :==
1432 a[24][17] :==
1433 a[24][18] :==
1434 a[24][19] :==
1435 a[24][20] :==
1436 a[24][21] :==
1437 a[24][22] :==
1438 a[24][23] :==
1439 a[24][24] :==
1440 a[24][25] :==
1441 a[24][26] :==
1442 a[24][27] :==
1443 a[24][28] :==
1444 a[24][29] :==
1445 a[24][30] :==
1446 a[24][31] :==
1447 a[24][32] :==
1448 a[24][33] :==
1449 a[24][34] :==
1450 a[24][35] :==
1451 a[24][36] :==
1452 a[24][37] :==
1453 a[24][38] :==
1454 a[24][39] :==
1455 a[24][40] :==
1456 a[24][41] :==
1457 a[24][42] :==
1458 a[24][43] :==
1459 a[24][44] :==
1460 a[24][45] :==
1461 a[24][46] :==
1462 a[24][47] :==
1463
1464 (* row 25 *)
1465 a[25][1] :==
1466 a[25][2] :==
1467 a[25][3] :==
1468 a[25][4] :==
1469 a[25][5] :==
1470 a[25][6] :==
1471 a[25][7] :==
1472 a[25][8] :==
1473 a[25][9] :==
1474 a[25][10] :==
1475 a[25][11] :==
1476 a[25][12] :==
1477 a[25][13] :==
1478 a[25][14] :==
1479 a[25][15] :==
1480 a[25][16] :==
1481 a[25][17] :==
1482 a[25][18] :==
1483 a[25][19] :==
1484 a[25][20] :==
1485 a[25][21] :==
1486 a[25][22] :==
1487 a[25][23] :==
1488 a[25][24] :==
1489 a[25][25] :==
1490 a[25][26] :==
1491 a[25][27] :==
1492 a[25][28] :==
1493 a[25][29] :==
1494 a[25][30] :==
1495 a[25][31] :==
1496 a[25][32] :==
1497 a[25][33] :==
1498 a[25][34] :==
1499 a[25][35] :==
1500 a[25][36] :==
1501 a[25][37] :==
1502 a[25][38] :==
1503 a[25][39] :==
1504 a[25][40] :==
1505 a[25][41] :==
1506 a[25][42] :==
1507 a[25][43] :==
1508 a[25][44] :==
1509 a[25][45] :==
1510 a[25][46] :==
1511 a[25][47] :==
1512
1513 (* row 26 *)
1514 a[26][1] :==
1515 a[26][2] :==
1516 a[26][3] :==
1517 a[26][4] :==
1518 a[26][5] :==
1519 a[26][6] :==
1520 a[26][7] :==
1521 a[26][8] :==
1522 a[26][9] :==
1523 a[26][10] :==
1524 a[26][11] :==
1525 a[26][12] :==
1526 a[26][13] :==
1527 a[26][14] :==
1528 a[26][15] :==
1529 a[26][16] :==
1530 a[26][17] :==
1531 a[26][18] :==
1532 a[26][19] :==
1533 a[26][20] :==
1534 a[26][21] :==
1535 a[26][22] :==
1536 a[26][23] :==
1537 a[26][24] :==
1538 a[26][25] :==
1539 a[26][26] :==
1540 a[26][27] :==
1541 a[26][28] :==
1542 a[26][29] :==
1543 a[26][30] :==
1544 a[26][31] :==
1545 a[26][32] :==
1546 a[26][33] :==
1547 a[26][34] :==
1548 a[26][35] :==
1549 a[26][36] :==
1550 a[26][37] :==
1551 a[26][38] :==
1552 a[26][39] :==
1553 a[26][40] :==
1554 a[26][41] :==
1555 a[26][42] :==
1556 a[26][43] :==
1557 a[26][44] :==
1558 a[26][45] :==
1559 a[26][46] :==
1560 a[26][47] :==
1561
1562 (* row 27 *)
1563 a[27][1] :==
1564 a[27][2] :==
1565 a[27][3] :==
1566 a[27][4] :==
1567 a[27][5] :==
1568 a[27][6] :==
1569 a[27][7] :==
1570 a[27][8] :==
1571 a[27][9] :==
1572 a[27][10] :==
1573 a[27][11] :==
1574 a[27][12] :==
1575 a[27][13] :==
1576 a[27][14] :==
1577 a[27][15] :==
1578 a[27][16] :==
1579 a[27][17] :==
1580 a[27][18] :==
1581 a[27][19] :==
1582 a[27][20] :==
1583 a[27][21] :==
1584 a[27][22] :==
1585 a[27][23] :==
1586 a[27][24] :==
1587 a[27][25] :==
1588 a[27][26] :==
1589 a[27][27] :==
1590 a[27][28] :==
1591 a[27][29] :==
1592 a[27][30] :==
1593 a[27][31] :==
1594 a[27][32] :==
1595 a[27][33] :==
1596 a[27][34] :==
1597 a[27][35] :==
1598 a[27][36] :==
1599 a[27][37] :==
1600 a[27][38] :==
1601 a[27][39] :==
1602 a[27][40] :==
1603 a[27][41] :==
1604 a[27][42] :==
1605 a[27][43] :==
1606 a[27][44] :==
1607 a[27][45] :==
1608 a[27][46] :==
1609 a[27][47] :==
1610
1611 (* row 28 *)
1612 a[28][1] :==
1613 a[28][2] :==
1614 a[28][3] :==
1615 a[28][4] :==
1616 a[28][5] :==
1617 a[28][6] :==
1618 a[28][7] :==
1619 a[28][8] :==
1620 a[28][9] :==
1621 a[28][10] :==
1622 a[28][11] :==
1623 a[28][12] :==
1624 a[28][13] :==
1625 a[28][14] :==
1626 a[28][15] :==
1627 a[28][16] :==
1628 a[28][17] :==
1629 a[28][18] :==
1630 a[28][19] :==
1631 a[28][20] :==
1632 a[28][21] :==
1633 a[28][22] :==
1634 a[28][23] :==
1635 a[28][24] :==
1636 a[28][25] :==
1637 a[28][26] :==
1638 a[28][27] :==
1639 a[28][28] :==
1640 a[28][29] :==
1641 a[28][30] :==
1642 a[28][31] :==
1643 a[28][32] :==
1644 a[28][33] :==
1645 a[28][34] :==
1646 a[28][35] :==
1647 a[28][36] :==
1648 a[28][37] :==
1649 a[28][38] :==
1650 a[28][39] :==
1651 a[28][40] :==
1652 a[28][41] :==
1653 a[28][42] :==
1654 a[28][43] :==
1655 a[28][44] :==
1656 a[28][45] :==
1657 a[28][46] :==
1658 a[28][47] :==
1659
1660 (* row 29 *)
1661 a[29][1] :==
1662 a[29][2] :==
1663 a[29][3] :==
1664 a[29][4] :==
1665 a[29][5] :==
1666 a[29][6] :==
1667 a[29][7] :==
1668 a[29][8] :==
1669 a[29][9] :==
1670 a[29][10] :==
1671 a[29][11] :==
1672 a[29][12] :==
1673 a[29][13] :==
1674 a[29][14] :==
1675 a[29][15] :==
1676 a[29][16] :==
1677 a[29][17] :==
1678 a[29][18] :==
1679 a[29][19] :==
1680 a[29][20] :==
1681 a[29][21] :==
1682 a[29][22] :==
1683 a[29][23] :==
1684 a[29][24] :==
1685 a[29][25] :==
1686 a[29][26] :==
1687 a[29][27] :==
1688 a[29][28] :==
1689 a[29][29] :==
1690 a[29][30] :==
1691 a[29][31] :==
1692 a[29][32] :==
1693 a[29][33] :==
1694 a[29][34] :==
1695 a[29][35] :==
1696 a[29][36] :==
1697 a[29][37] :==
1698 a[29][38] :==
1699 a[29][39] :==
1700 a[29][40] :==
1701 a[29][41] :==
1702 a[29][42] :==
1703 a[29][43] :==
1704 a[29][44] :==
1705 a[29][45] :==
1706 a[29][46] :==
1707 a[29][47] :==
1708
1709 (* row 30 *)
1710 a[30][1] :==
1711 a[30][2] :==
1712 a[30][3] :==
1713 a[30][4] :==
1714 a[30][5] :==
1715 a[30][6] :==
1716 a[30][7] :==
1717 a[30][8] :==
1718 a[30][9] :==
1719 a[30][10] :==
1720 a[30][11] :==
1721 a[30][12] :==
1722 a[30][13] :==
1723 a[30][14] :==
1724 a[30][15] :==
1725 a[30][16] :==
1726 a[30][17] :==
1727 a[30][18] :==
1728 a[30][19] :==
1729 a[30][20] :==
1730 a[30][21] :==
1731 a[30][22] :==
1732 a[30][23] :==
1733 a[30][24] :==
1734 a[30][25] :==
1735 a[30][26] :==
1736 a[30][27] :==
1737 a[30][28] :==
1738 a[30][29] :==
1739 a[30][30] :==
1740 a[30][31] :==
1741 a[30][32] :==
1742 a[30][33] :==
1743 a[30][34] :==
1744 a[30][35] :==
1745 a[30][36] :==
1746 a[30][37] :==
1747 a[30][38] :==
1748 a[30][39] :==
1749 a[30][40] :==
1750 a[30][41] :==
1751 a[30][42] :==
1752 a[30][43] :==
1753 a[30][44] :==
1754 a[30][45] :==
1755 a[30][46] :==
1756 a[30][47] :==
1757
1758 (* row 31 *)
1759 a[31][1] :==
1760 a[31][2] :==
1761 a[31][3] :==
1762 a[31][4] :==
1763 a[31][5] :==
1764 a[31][6] :==
1765 a[31][7] :==
1766 a[31][8] :==
1767 a[31][9] :==
1768 a[31][10] :==
1769 a[31][11] :==
1770 a[31][12] :==
1771 a[31][13] :==
1772 a[31][14] :==
1773 a[31][15] :==
1774 a[31][16] :==
1775 a[31][17] :==
1776 a[31][18] :==
1777 a[31][19] :==
1778 a[31][20] :==
1779 a[31][21] :==
1780 a[31][22] :==
1781 a[31][23] :==
1782 a[31][24] :==
1783 a[31][25] :==
1784 a[31][26] :==
1785 a[31][27] :==
1786 a[31][28] :==
1787 a[31][29] :==
1788 a[31][30] :==
1789 a[31][31] :==
1790 a[31][32] :==
1791 a[31][33] :==
1792 a[31][34] :==
1793 a[31][35] :==
1794 a[31][36] :==
1795 a[31][37] :==
1796 a[31][38] :==
1797 a[31][39] :==
1798 a[31][40] :==
1799 a[31][41] :==
1800 a[31][42] :==
1801 a[31][43] :==
1802 a[31][44] :==
1803 a[31][45] :==
1804 a[31][46] :==
1805 a[31][47] :==
1806
1807 (* row 32 *)
1808 a[32][1] :==
1809 a[32][2] :==
1810 a[32][3] :==
1811 a[32][4] :==
1812 a[32][5] :==
1813 a[32][6] :==
1814 a[32][7] :==
1815 a[32][8] :==
1816 a[32][9] :==
1817 a[32][10] :==
1818 a[32][11] :==
1819 a[32][12] :==
1820 a[32][13] :==
1821 a[32][14] :==
1822 a[32][15] :==
1823 a[32][16] :==
1824 a[32][17] :==
1825 a[32][18] :==
1826 a[32][19] :==
1827 a[32][20] :==
1828 a[32][21] :==
1829 a[32][22] :==
1830 a[32][23] :==
1831 a[32][24] :==
1832 a[32][25] :==
1833 a[32][26] :==
1834 a[32][27] :==
1835 a[32][28] :==
1836 a[32][29] :==
1837 a[32][30] :==
1838 a[32][31] :==
1839 a[32][32] :==
1840 a[32][33] :==
1841 a[32][34] :==
1842 a[32][35] :==
1843 a[32][36] :==
1844 a[32][37] :==
1845 a[32][38] :==
1846 a[32][39] :==
1847 a[32][40] :==
1848 a[32][41] :==
1849 a[32][42] :==
1850 a[32][43] :==
1851 a[32][44] :==
1852 a[32][45] :==
1853 a[32][46] :==
1854 a[32][47] :==
1855
1856 (* row 33 *)
1857 a[33][1] :==
1858 a[33][2] :==
1859 a[33][3] :==
1860 a[33][4] :==
1861 a[33][5] :==
1862 a[33][6] :==
1863 a[33][7] :==
1864 a[33][8] :==
1865 a[33][9] :==
1866 a[33][10] :==
1867 a[33][11] :==
1868 a[33][12] :==
1869 a[33][13] :==
1870 a[33][14] :==
1871 a[33][15] :==
1872 a[33][16] :==
1873 a[33][17] :==
1874 a[33][18] :==
1875 a[33][19] :==
1876 a[33][20] :==
1877 a[33][21] :==
1878 a[33][22] :==
1879 a[33][23] :==
1880 a[33][24] :==
1881 a[33][25] :==
1882 a[33][26] :==
1883 a[33][27] :==
1884 a[33][28] :==
1885 a[33][29] :==
1886 a[33][30] :==
1887 a[33][31] :==
1888 a[33][32] :==
1889 a[33][33] :==
1890 a[33][34] :==
1891 a[33][35] :==
1892 a[33][36] :==
1893 a[33][37] :==
1894 a[33][38] :==
1895 a[33][39] :==
1896 a[33][40] :==
1897 a[33][41] :==
1898 a[33][42] :==
1899 a[33][43] :==
1900 a[33][44] :==
1901 a[33][45] :==
1902 a[33][46] :==
1903 a[33][47] :==
1904
1905 (* row 34 *)
1906 a[34][1] :==
1907 a[34][2] :==
1908 a[34][3] :==
1909 a[34][4] :==
1910 a[34][5] :==
1911 a[34][6] :==
1912 a[34][7] :==
1913 a[34][8] :==
1914 a[34][9] :==
1915 a[34][10] :==
1916 a[34][11] :==
1917 a[34][12] :==
1918 a[34][13] :==
1919 a[34][14] :==
1920 a[34][15] :==
1921 a[34][16] :==
1922 a[34][17] :==
1923 a[34][18] :==
1924 a[34][19] :==
1925 a[34][20] :==
1926 a[34][21] :==
1927 a[34][22] :==
1928 a[34][23] :==
1929 a[34][24] :==
1930 a[34][25] :==
1931 a[34][26] :==
1932 a[34][27] :==
1933 a[34][28] :==
1934 a[34][29] :==
1935 a[34][30] :==
1936 a[34][31] :==
1937 a[34][32] :==
1938 a[34][33] :==
1939 a[34][34] :==
1940 a[34][35] :==
1941 a[34][36] :==
1942 a[34][37] :==
1943 a[34][38] :==
1944 a[34][39] :==
1945 a[34][40] :==
1946 a[34][41] :==
1947 a[34][42] :==
1948 a[34][43] :==
1949 a[34][44] :==
1950 a[34][45] :==
1951 a[34][46] :==
1952 a[34][47] :==
1953
1954 (* row 35 *)
1955 a[35][1] :==
1956 a[35][2] :==
1957 a[35][3] :==
1958 a[35][4] :==
1959 a[35][5] :==
1960 a[35][6] :==
1961 a[35][7] :==
1962 a[35][8] :==
1963 a[35][9] :==
1964 a[35][10] :==
1965 a[35][11] :==
1966 a[35][12] :==
1967 a[35][13] :==
1968 a[35][14] :==
1969 a[35][15] :==
1970 a[35][16] :==
1971 a[35][17] :==
1972 a[35][18] :==
1973 a[35][19] :==
1974 a[35][20] :==
1975 a[35][21] :==
1976 a[35][22] :==
1977 a[35][23] :==
1978 a[35][24] :==
1979 a[35][25] :==
1980 a[35][26] :==
1981 a[35][27] :==
1982 a[35][28] :==
1983 a[35][29] :==
1984 a[35][30] :==
1985 a[35][31] :==
1986 a[35][32] :==
1987 a[35][33] :==
1988 a[35][34] :==
1989 a[35][35] :==
1990 a[35][36] :==
1991 a[35][37] :==
1992 a[35][38] :==
1993 a[35][39] :==
1994 a[35][40] :==
1995 a[35][41] :==
1996 a[35][42] :==
1997 a[35][43] :==
1998 a[35][44] :==
1999 a[35][45] :==
2000 a[35][46] :==
2001 a[35][47] :==
2002
2003 (* row 36 *)
2004 a[36][1] :==
2005 a[36][2] :==
2006 a[36][3] :==
2007 a[36][4] :==
2008 a[36][5] :==
2009 a[36][6] :==
2010 a[36][7] :==
2011 a[36][8] :==
2012 a[36][9] :==
2013 a[36][10] :==
2014 a[36][11] :==
2015 a[36][12] :==
2016 a[36][13] :==
2017 a[36][14] :==
2018 a[36][15] :==
2019 a[36][16] :==
2020 a[36][17] :==
2021 a[36][18] :==
2022 a[36][19] :==
2023 a[36][20] :==
2024 a[36][21] :==
2025 a[36][22] :==
2026 a[36][23] :==
2027 a[36][24] :==
2028 a[36][25] :==
2029 a[36][26] :==
2030 a[36][27] :==
2031 a[36][28] :==
2032 a[36][29] :==
2033 a[36][30] :==
2034 a[36][31] :==
2035 a[36][32] :==
2036 a[36][33] :==
2037 a[36][34] :==
2038 a[36][35] :==
2039 a[36][36] :==
2040 a[36][37] :==
2041 a[36][38] :==
2042 a[36][39] :==
2043 a[36][40] :==
2044 a[36][41] :==
2045 a[36][42] :==
2046 a[36][43] :==
2047 a[36][44] :==
2048 a[36][45] :==
2049 a[36][46] :==
2050 a[36][47] :==
2051
2052 (* row 37 *)
2053 a[37][1] :==
2054 a[37][2] :==
2055 a[37][3] :==
2056 a[37][4] :==
2057 a[37][5] :==
2058 a[37][6] :==
2059 a[37][7] :==
2060 a[37][8] :==
2061 a[37][9] :==
2062 a[37][10] :==
2063 a[37][11] :==
2064 a[37][12] :==
2065 a[37][13] :==
2066 a[37][14] :==
2067 a[37][15] :==
2068 a[37][16] :==
2069 a[37][17] :==
2070 a[37][18] :==
2071 a[37][19] :==
2072 a[37][20] :==
2073 a[37][21] :==
2074 a[37][22] :==
2075 a[37][23] :==
2076 a[37][24] :==
2077 a[37][25] :==
2078 a[37][26] :==
2079 a[37][27] :==
2080 a[37][28] :==
2081 a[37][29] :==
2082 a[37][30] :==
2083 a[37][31] :==
2084 a[37][32] :==
2085 a[37][33] :==
2086 a[37][34] :==
2087 a[37][35] :==
2088 a[37][36] :==
2089 a[37][37] :==
2090 a[37][38] :==
2091 a[37][39] :==
2092 a[37][40] :==
2093 a[37][41] :==
2094 a[37][42] :==
2095 a[37][43] :==
2096 a[37][44] :==
2097 a[37][45] :==
2098 a[37][46] :==
2099 a[37][47] :==
2100
2101 (* row 38 *)
2102 a[38][1] :==
2103 a[38][2] :==
2104 a[38][3] :==
2105 a[38][4] :==
2106 a[38][5] :==
2107 a[38][6] :==
2108 a[38][7] :==
2109 a[38][8] :==
2110 a[38][9] :==
2111 a[38][10] :==
2112 a[38][11] :==
2113 a[38][12] :==
2114 a[38][13] :==
2115 a[38][14] :==
2116 a[38][15] :==
2117 a[38][16] :==
2118 a[38][17] :==
2119 a[38][18] :==
2120 a[38][19] :==
2121 a[38][20] :==
2122 a[38][21] :==
2123 a[38][22] :==
2124 a[38][23] :==
2125 a[38][24] :==
2126 a[38][25] :==
2127 a[38][26] :==
2128 a[38][27] :==
2129 a[38][28] :==
2130 a[38][29] :==
2131 a[38][30] :==
2132 a[38][31] :==
2133 a[38][32] :==
2134 a[38][33] :==
2135 a[38][34] :==
2136 a[38][35] :==
2137 a[38][36] :==
2138 a[38][37] :==
2139 a[38][38] :==
2140 a[38][39] :==
2141 a[38][40] :==
2142 a[38][41] :==
2143 a[38][42] :==
2144 a[38][43] :==
2145 a[38][44] :==
2146 a[38][45] :==
2147 a[38][46] :==
2148 a[38][47] :==
2149
2150 (* row 39 *)
2151 a[39][1] :==
2152 a[39][2] :==
2153 a[39][3] :==
2154 a[39][4] :==
2155 a[39][5] :==
2156 a[39][6] :==
2157 a[39][7] :==
2158 a[39][8] :==
2159 a[39][9] :==
2160 a[39][10] :==
2161 a[39][11] :==
2162 a[39][12] :==
2163 a[39][13] :==
2164 a[39][14] :==
2165 a[39][15] :==
2166 a[39][16] :==
2167 a[39][17] :==
2168 a[39][18] :==
2169 a[39][19] :==
2170 a[39][20] :==
2171 a[39][21] :==
2172 a[39][22] :==
2173 a[39][23] :==
2174 a[39][24] :==
2175 a[39][25] :==
2176 a[39][26] :==
2177 a[39][27] :==
2178 a[39][28] :==
2179 a[39][29] :==
2180 a[39][30] :==
2181 a[39][31] :==
2182 a[39][32] :==
2183 a[39][33] :==
2184 a[39][34] :==
2185 a[39][35] :==
2186 a[39][36] :==
2187 a[39][37] :==
2188 a[39][38] :==
2189 a[39][39] :==
2190 a[39][40] :==
2191 a[39][41] :==
2192 a[39][42] :==
2193 a[39][43] :==
2194 a[39][44] :==
2195 a[39][45] :==
2196 a[39][46] :==
2197 a[39][47] :==
2198
2199 (* row 40 *)
2200 a[40][1] :==
2201 a[40][2] :==
2202 a[40][3] :==
2203 a[40][4] :==
2204 a[40][5] :==
2205 a[40][6] :==
2206 a[40][7] :==
2207 a[40][8] :==
2208 a[40][9] :==
2209 a[40][10] :==
2210 a[40][11] :==
2211 a[40][12] :==
2212 a[40][13] :==
2213 a[40][14] :==
2214 a[40][15] :==
2215 a[40][16] :==
2216 a[40][17] :==
2217 a[40][18] :==
2218 a[40][19] :==
2219 a[40][20] :==
2220 a[40][21] :==
2221 a[40][22] :==
2222 a[40][23] :==
2223 a[40][24] :==
2224 a[40][25] :==
2225 a[40][26] :==
2226 a[40][27] :==
2227 a[40][28] :==
2228 a[40][29] :==
2229 a[40][30] :==
2230 a[40][31] :==
2231 a[40][32] :==
2232 a[40][33] :==
2233 a[40][34] :==
2234 a[40][35] :==
2235 a[40][36] :==
2236 a[40][37] :==
2237 a[40][38] :==
2238 a[40][39] :==
2239 a[40][40] :==
2240 a[40][41] :==
2241 a[40][42] :==
2242 a[40][43] :==
2243 a[40][44] :==
2244 a[40][45] :==
2245 a[40][46] :==
2246 a[40][47] :==
2247
2248 (* row 41 *)
2249 a[41][1] :==
2250 a[41][2] :==
2251 a[41][3] :==
2252 a[41][4] :==
2253 a[41][5] :==
2254 a[41][6] :==
2255 a[41][7] :==
2256 a[41][8] :==
2257 a[41][9] :==
2258 a[41][10] :==
2259 a[41][11] :==
2260 a[41][12] :==
2261 a[41][13] :==
2262 a[41][14] :==
2263 a[41][15] :==
2264 a[41][16] :==
2265 a[