1 |
/* ASCEND modelling environment |
2 |
Copyright (C) 1996-2007 Carnegie Mellon University |
3 |
|
4 |
This program is free software; you can redistribute it and/or modify |
5 |
it under the terms of the GNU General Public License as published by |
6 |
the Free Software Foundation; either version 2, or (at your option) |
7 |
any later version. |
8 |
|
9 |
This program is distributed in the hope that it will be useful, |
10 |
but WITHOUT ANY WARRANTY; without even the implied warranty of |
11 |
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
12 |
GNU General Public License for more details. |
13 |
|
14 |
You should have received a copy of the GNU General Public License |
15 |
along with this program; if not, write to the Free Software |
16 |
Foundation, Inc., 59 Temple Place - Suite 330, |
17 |
Boston, MA 02111-1307, USA. |
18 |
*//** @file |
19 |
|
20 |
This file attempts to implement the extraction of dy_dx from |
21 |
a system of equations. If one considers a black-box where x are |
22 |
the input variables, u are input parameters, y are the output |
23 |
variables, f(x,y,u) is the system of equations that will be solved |
24 |
for given x and u, then one can extract the sensitivity information |
25 |
of y wrt x. |
26 |
|
27 |
One crude but simple way of doing this is to finite-difference the |
28 |
given black box, i.e, perturb x, n_x times by delta x, resolve |
29 |
the system of equations at the new value of x, and compute |
30 |
|
31 |
dy/dx = (f(x_1) - f(x_2))/(x_1 - x_2). |
32 |
|
33 |
This is known to be very expensive. |
34 |
|
35 |
The solution that will be adopted here is to formulate the Jacobian J of |
36 |
the system, (or the system is already solved, to grab the jacobian at |
37 |
the solution. Develop the sensitivity matrix df/dx by exact numnerical |
38 |
differentiation; this will be a n x n_x matrix. Compute the LU factors |
39 |
for J, and to solve column by column to : LU dz/dx = df/dx. Here |
40 |
z, represents all the internal variables to the system and the strictly |
41 |
output variables y. In other words J = df/dz. |
42 |
|
43 |
Given the solution of the above problem we then simply extract the rows |
44 |
of dz/dx, that pertain to the y variables that we are interested in; |
45 |
this will give us dy/dx. |
46 |
|
47 |
@todo There is are files in tcltk called Sensitivity.[ch]. Do we need them? |
48 |
*/ |
49 |
|
50 |
#include <math.h> |
51 |
|
52 |
#include <packages/sensitivity.h> |
53 |
#include <compiler/instquery.h> |
54 |
#include <compiler/atomvalue.h> |
55 |
#include <utilities/ascMalloc.h> |
56 |
#include <compiler/extfunc.h> |
57 |
#include <general/mathmacros.h> |
58 |
|
59 |
/* #define SENSITIVITY_DEBUG */ |
60 |
|
61 |
ASC_EXPORT int sensitivity_register(void); |
62 |
|
63 |
ExtMethodRun do_solve_eval; |
64 |
ExtMethodRun do_finite_diff_eval; |
65 |
ExtMethodRun do_sensitivity_eval; |
66 |
ExtMethodRun do_sensitivity_eval_all; |
67 |
|
68 |
/** |
69 |
Build then presolve an instance |
70 |
*/ |
71 |
slv_system_t asc_sens_presolve(struct Instance *inst){ |
72 |
slv_system_t sys; |
73 |
slv_parameters_t parameters; |
74 |
int ind; |
75 |
#ifdef SENSITIVITY_DEBUG |
76 |
struct var_variable **vp; |
77 |
struct rel_relation **rp; |
78 |
int len; |
79 |
char *tmp=NULL; |
80 |
#endif |
81 |
sys = system_build(inst); |
82 |
if (sys==NULL) { |
83 |
ERROR_REPORTER_HERE(ASC_PROG_ERR, |
84 |
"Something radically wrong in creating solver."); |
85 |
return NULL; |
86 |
} |
87 |
if (g_SlvNumberOfRegisteredClients == 0) { |
88 |
return NULL; |
89 |
} |
90 |
ind = 0; |
91 |
while (strcmp(slv_solver_name(ind),"QRSlv")) { |
92 |
if (ind >= g_SlvNumberOfRegisteredClients) { |
93 |
ERROR_REPORTER_HERE(ASC_PROG_ERR, |
94 |
"QRSlv must be registered client."); |
95 |
return NULL; |
96 |
} |
97 |
++ind; |
98 |
} |
99 |
slv_select_solver(sys,ind); |
100 |
|
101 |
slv_get_parameters(sys,¶meters); |
102 |
parameters.partition = 0; |
103 |
slv_set_parameters(sys,¶meters); |
104 |
slv_presolve(sys); |
105 |
|
106 |
#ifdef SENSITIVITY_DEBUG |
107 |
vp = slv_get_solvers_var_list(sys); |
108 |
len = slv_get_num_solvers_vars(sys); |
109 |
for (ind=0 ; ind<len; ind++) { |
110 |
tmp = var_make_name(sys,vp[ind]); |
111 |
CONSOLE_DEBUG("%s %d\n",tmp,var_sindex(vp[ind])); |
112 |
if (tmp!=NULL) ascfree(tmp); |
113 |
} |
114 |
rp = slv_get_solvers_rel_list(sys); |
115 |
len = slv_get_num_solvers_rels(sys); |
116 |
for (ind=0 ; ind<len ; ind++) { |
117 |
tmp = rel_make_name(sys,rp[ind]); |
118 |
CONSOLE_DEBUG("%s %d\n",tmp,rel_sindex(rp[ind])); |
119 |
if (tmp) ascfree(tmp); |
120 |
} |
121 |
#endif |
122 |
return sys; |
123 |
} |
124 |
|
125 |
/* |
126 |
LU Factor Jacobian |
127 |
|
128 |
@note The RHS will have been will already have been added before |
129 |
calling this function. |
130 |
|
131 |
@NOTE there is another version of this floating around in packages/senstivity.c. The |
132 |
other one uses dense matrices so probably this one's better? |
133 |
*/ |
134 |
int LUFactorJacobian1(slv_system_t sys,int rank){ |
135 |
linsolqr_system_t lqr_sys; |
136 |
mtx_region_t region; |
137 |
enum factor_method fm; |
138 |
|
139 |
mtx_region(®ion,0,rank-1,0,rank-1); /* set the region */ |
140 |
lqr_sys = slv_get_linsolqr_sys(sys); /* get the linear system */ |
141 |
|
142 |
linsolqr_matrix_was_changed(lqr_sys); |
143 |
linsolqr_reorder(lqr_sys,®ion,natural); |
144 |
|
145 |
fm = linsolqr_fmethod(lqr_sys); |
146 |
if (fm == unknown_f) fm = ranki_kw2; /* make sure somebody set it */ |
147 |
linsolqr_factor(lqr_sys,fm); |
148 |
|
149 |
return 0; |
150 |
} |
151 |
|
152 |
|
153 |
int sensitivity_anal( |
154 |
struct Instance *inst, /* not used but will be */ |
155 |
struct gl_list_t *arglist |
156 |
){ |
157 |
struct Instance *which_instance,*tmp_inst, *atominst; |
158 |
struct gl_list_t *branch; |
159 |
struct var_variable **vlist = NULL; |
160 |
int *inputs_ndx_list = NULL, *outputs_ndx_list = NULL; |
161 |
real64 **dy_dx = NULL; |
162 |
slv_system_t sys = NULL; |
163 |
int c; |
164 |
int noutputs = 0; |
165 |
int ninputs; |
166 |
int i,j; |
167 |
int offset; |
168 |
dof_t *dof; |
169 |
int num_vars,ind,found; |
170 |
|
171 |
linsolqr_system_t lqr_sys; /* stuff for the linear system & matrix */ |
172 |
mtx_matrix_t mtx; |
173 |
int32 capacity; |
174 |
real64 *scratch_vector = NULL; |
175 |
int result=0; |
176 |
|
177 |
/* Ignore unused params */ |
178 |
(void) inst; |
179 |
|
180 |
(void)NumberFreeVars(NULL); /* used to re-init the system */ |
181 |
(void)NumberRels(NULL); /* used to re-init the system */ |
182 |
which_instance = FetchElement(arglist,1,1); |
183 |
sys = asc_sens_presolve(which_instance); |
184 |
if (!sys) { |
185 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"Early termination due to failure in Presolve\n"); |
186 |
result = 1; |
187 |
goto error; |
188 |
} |
189 |
|
190 |
dof = slv_get_dofdata(sys); |
191 |
if (!(dof->n_rows == dof->n_cols && |
192 |
dof->n_rows == dof->structural_rank)) { |
193 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"Early termination: non square system\n"); |
194 |
result = 1; |
195 |
goto error; |
196 |
} |
197 |
|
198 |
CONSOLE_DEBUG("Presolved, square"); |
199 |
|
200 |
/* |
201 |
prepare the inputs list |
202 |
*/ |
203 |
vlist = slv_get_solvers_var_list(sys); |
204 |
|
205 |
branch = gl_fetch(arglist,2); /* input args */ |
206 |
ninputs = gl_length(branch); |
207 |
inputs_ndx_list = ASC_NEW_ARRAY(int,ninputs); |
208 |
|
209 |
num_vars = slv_get_num_solvers_vars(sys); |
210 |
for (c=0;c<ninputs;c++) { |
211 |
atominst = (struct Instance *)gl_fetch(branch,c+1); |
212 |
found = 0; |
213 |
ind = num_vars - 1; |
214 |
/* search backwards because fixed vars are at the end of the |
215 |
var list */ |
216 |
while (!found && ind >= 0){ |
217 |
if (var_instance(vlist[ind]) == atominst) { |
218 |
inputs_ndx_list[c] = var_sindex(vlist[ind]); |
219 |
found = 1; |
220 |
} |
221 |
--ind; |
222 |
} |
223 |
if (!found) { |
224 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"Sensitivity input variable not found\n"); |
225 |
result = 1; |
226 |
goto error; |
227 |
} |
228 |
} |
229 |
|
230 |
CONSOLE_DEBUG("%d inputs",ninputs); |
231 |
|
232 |
/* |
233 |
prepare the outputs list |
234 |
*/ |
235 |
branch = gl_fetch(arglist,3); /* output args */ |
236 |
noutputs = gl_length(branch); |
237 |
outputs_ndx_list = ASC_NEW_ARRAY(int,noutputs); |
238 |
for (c=0;c<noutputs;c++) { |
239 |
atominst = (struct Instance *)gl_fetch(branch,c+1); |
240 |
found = 0; |
241 |
ind = 0; |
242 |
while (!found && ind < num_vars){ |
243 |
if (var_instance(vlist[ind]) == atominst) { |
244 |
outputs_ndx_list[c] = var_sindex(vlist[ind]); |
245 |
found = 1; |
246 |
} |
247 |
++ind; |
248 |
} |
249 |
if (!found) { |
250 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"Sensitivity ouput variable not found\n"); |
251 |
result = 1; |
252 |
goto error; |
253 |
} |
254 |
} |
255 |
|
256 |
CONSOLE_DEBUG("%d outputs",noutputs); |
257 |
|
258 |
/* |
259 |
prepare the results dy_dx. |
260 |
*/ |
261 |
dy_dx = make_matrix(noutputs,ninputs); |
262 |
|
263 |
result = Compute_J(sys); |
264 |
if (result) { |
265 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"Early termination due to failure in calc Jacobian\n"); |
266 |
goto error; |
267 |
} |
268 |
|
269 |
CONSOLE_DEBUG("Computed Jacobian"); |
270 |
|
271 |
/* |
272 |
Note: the RHS *has* to added here. We will construct the vector |
273 |
of size matrix capacity and add it. It will be removed after |
274 |
we finish computing dy_dx. |
275 |
*/ |
276 |
lqr_sys = slv_get_linsolqr_sys(sys); /* get the linear system */ |
277 |
mtx = linsolqr_get_matrix(lqr_sys); /* get the matrix */ |
278 |
capacity = mtx_capacity(mtx); |
279 |
scratch_vector = ASC_NEW_ARRAY_CLEAR(real64,capacity); |
280 |
linsolqr_add_rhs(lqr_sys,scratch_vector,FALSE); |
281 |
result = LUFactorJacobian1(sys,dof->structural_rank); |
282 |
if(result){ |
283 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"Early termination due to failure in LUFactorJacobian\n"); |
284 |
goto error; |
285 |
} |
286 |
result = Compute_dy_dx_smart(sys, scratch_vector, dy_dx, |
287 |
inputs_ndx_list, ninputs, |
288 |
outputs_ndx_list, noutputs |
289 |
); |
290 |
|
291 |
linsolqr_remove_rhs(lqr_sys,scratch_vector); |
292 |
if (result) { |
293 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"Early termination due to failure in Compute_dy_dx\n"); |
294 |
goto error; |
295 |
} |
296 |
|
297 |
CONSOLE_DEBUG("Computed dy/dx"); |
298 |
|
299 |
/* |
300 |
Write the results back to the partials array in the |
301 |
instance tree |
302 |
*/ |
303 |
offset = 0; |
304 |
for (i=0;i<noutputs;i++) { |
305 |
for (j=0;j<ninputs;j++) { |
306 |
tmp_inst = FetchElement(arglist,4,offset+j+1); |
307 |
SetRealAtomValue(tmp_inst,dy_dx[i][j],(unsigned)0); |
308 |
#ifdef SENSITIVITY_DEBUG |
309 |
CONSOLE_DEBUG("%12.8f i%d j%d",dy_dx[i][j],i,j); |
310 |
#endif |
311 |
} |
312 |
#ifdef SENSITIVITY_DEBUG |
313 |
CONSOLE_DEBUG("\n"); |
314 |
#endif |
315 |
offset += ninputs; |
316 |
} |
317 |
#ifdef SENSITIVITY_DEBUG |
318 |
CONSOLE_DEBUG("\n"); |
319 |
#endif |
320 |
|
321 |
ERROR_REPORTER_HERE(ASC_USER_SUCCESS |
322 |
,"Sensitivity results for %d vars were written back to the model" |
323 |
,noutputs |
324 |
); |
325 |
|
326 |
error: |
327 |
if (inputs_ndx_list) ascfree((char *)inputs_ndx_list); |
328 |
if (outputs_ndx_list) ascfree((char *)outputs_ndx_list); |
329 |
if (dy_dx) free_matrix(dy_dx,noutputs); |
330 |
if (scratch_vector) ascfree((char *)scratch_vector); |
331 |
if (sys) system_destroy(sys); |
332 |
return result; |
333 |
} |
334 |
|
335 |
/** |
336 |
Finite-difference Check Arguments...? |
337 |
|
338 |
@param arglist list of arguments |
339 |
|
340 |
Argument list contains |
341 |
. arg1 - model inst to be solved |
342 |
. arg2 - array of input instances |
343 |
. arg3 - array of output instances |
344 |
. arg4 - matrix of partials to be written to |
345 |
*/ |
346 |
static int FiniteDiffCheckArgs(struct gl_list_t *arglist) |
347 |
{ |
348 |
struct Instance *inst; |
349 |
unsigned long len; |
350 |
unsigned long ninputs, noutputs; |
351 |
|
352 |
len = gl_length(arglist); |
353 |
if (len != 4) { |
354 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"wrong number of args -- 4 expected\n"); |
355 |
return 1; |
356 |
} |
357 |
inst = FetchElement(arglist,1,1); |
358 |
if (InstanceKind(inst)!=MODEL_INST) { |
359 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"Arg #1 is not a model instance\n"); |
360 |
return 1; |
361 |
} |
362 |
ninputs = gl_length((struct gl_list_t *)gl_fetch(arglist,2)); |
363 |
/* input args */ |
364 |
noutputs = gl_length((struct gl_list_t *)gl_fetch(arglist,3)); |
365 |
/* output args */ |
366 |
len = gl_length((struct gl_list_t *)gl_fetch(arglist,4)); |
367 |
/* partials matrix */ |
368 |
if (len != (ninputs*noutputs)) { |
369 |
ERROR_REPORTER_HERE(ASC_PROG_ERR, |
370 |
"The array of partials is inconsistent with the args given." |
371 |
); |
372 |
return 1; |
373 |
} |
374 |
return 0; |
375 |
} |
376 |
|
377 |
|
378 |
|
379 |
/*------------------------------------------------- |
380 |
SENSITIVITY ANALYSIS CODE |
381 |
*/ |
382 |
|
383 |
/** |
384 |
Sensitivity Analysis |
385 |
|
386 |
@param arglist List of arguments |
387 |
|
388 |
Argument list contains the following: |
389 |
. arg1 - model inst for which the sensitivity analysis is to be done. |
390 |
. arg2 - array of input instances. |
391 |
. arg3 - array of output instances. |
392 |
. arg4 matrix of partials to be written to. |
393 |
*/ |
394 |
int SensitivityCheckArgs(struct gl_list_t *arglist){ |
395 |
struct Instance *inst; |
396 |
unsigned long len; |
397 |
unsigned long ninputs, noutputs; |
398 |
|
399 |
len = gl_length(arglist); |
400 |
if (len != 4) { |
401 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"wrong number of args -- 4 expected\n"); |
402 |
return 1; |
403 |
} |
404 |
inst = FetchElement(arglist,1,1); |
405 |
if (InstanceKind(inst)!=MODEL_INST) { |
406 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"Arg #1 is not a model instance\n"); |
407 |
return 1; |
408 |
} |
409 |
ninputs = gl_length((struct gl_list_t *)gl_fetch(arglist,2)); |
410 |
/* input args */ |
411 |
noutputs = gl_length((struct gl_list_t *)gl_fetch(arglist,3)); |
412 |
/* output args */ |
413 |
len = gl_length((struct gl_list_t *)gl_fetch(arglist,4)); |
414 |
/* partials matrix */ |
415 |
if (len != (ninputs*noutputs)) { |
416 |
ERROR_REPORTER_HERE(ASC_PROG_ERR, |
417 |
"The array of partials is inconsistent with the args given\n"); |
418 |
return 1; |
419 |
} |
420 |
return 0; |
421 |
} |
422 |
|
423 |
|
424 |
/** |
425 |
@param arglist List of arguments |
426 |
@param step_length ...? |
427 |
|
428 |
The list of arguments should chontain |
429 |
|
430 |
. arg1 - model inst for which the sensitivity analysis is to be done. |
431 |
. arg2 - array of input instances. |
432 |
. arg3 - new_input instances, for variable projection. |
433 |
. arg4 - instance representing the step_length for projection. |
434 |
|
435 |
The result will be written to standard out. |
436 |
*/ |
437 |
int SensitivityAllCheckArgs(struct gl_list_t *arglist, double *step_length) |
438 |
{ |
439 |
struct Instance *inst; |
440 |
unsigned long len; |
441 |
|
442 |
len = gl_length(arglist); |
443 |
if (len != 4) { |
444 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"wrong number of args -- 4 expected\n"); |
445 |
return 1; |
446 |
} |
447 |
inst = FetchElement(arglist,1,1); |
448 |
if (InstanceKind(inst)!=MODEL_INST) { |
449 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"Arg #1 is not a model instance\n"); |
450 |
return 1; |
451 |
} |
452 |
/* |
453 |
* we should be checking that arg2 list contains solver vars |
454 |
* and that they are fixed. The same applies to arglist 3... later. |
455 |
* We will check and return the steplength though. 0 means dont do |
456 |
* the variable projection. |
457 |
*/ |
458 |
inst = FetchElement(arglist,4,1); |
459 |
*step_length = RealAtomValue(inst); |
460 |
if (fabs(*step_length) < 1e-08) |
461 |
*step_length = 0.0; |
462 |
return 0; |
463 |
} |
464 |
|
465 |
/** |
466 |
Do Data Analysis |
467 |
*/ |
468 |
int DoDataAnalysis(struct var_variable **inputs, |
469 |
struct var_variable **outputs, |
470 |
int ninputs, int noutputs, |
471 |
real64 **dy_dx) |
472 |
{ |
473 |
FILE *fp; |
474 |
double *norm_2, *norm_1; |
475 |
double input_nominal,maxvalue,sum; |
476 |
int i,j; |
477 |
|
478 |
norm_1 = ASC_NEW_ARRAY_CLEAR(double,ninputs); |
479 |
norm_2 = ASC_NEW_ARRAY_CLEAR(double,ninputs); |
480 |
|
481 |
fp = fopen("sensitivity.out","w+"); |
482 |
if (!fp) return 0; |
483 |
|
484 |
/* |
485 |
* calculate the 1 and 2 norms; cache them away so that we |
486 |
* can pretty print them. Style is everything !. |
487 |
* |
488 |
*/ |
489 |
for (j=0;j<ninputs;j++) { |
490 |
input_nominal = var_nominal(inputs[j]); |
491 |
maxvalue = sum = 0; |
492 |
for (i=0;i<noutputs;i++) { |
493 |
dy_dx[i][j] *= input_nominal/var_nominal(outputs[i]); |
494 |
maxvalue = MAX(fabs(dy_dx[i][j]),maxvalue); |
495 |
sum += dy_dx[i][j]*dy_dx[i][j]; |
496 |
} |
497 |
norm_1[j] = maxvalue; |
498 |
norm_2[j] = sum; |
499 |
} |
500 |
|
501 |
for (j=0;j<ninputs;j++) { /* print the var_index */ |
502 |
fprintf(fp,"%8d ",var_mindex(inputs[j])); |
503 |
} |
504 |
fprintf(fp,"\n"); |
505 |
|
506 |
for (j=0;j<ninputs;j++) { /* print the 1 norms */ |
507 |
fprintf(fp,"%-#18.8f ",norm_1[j]); |
508 |
} |
509 |
fprintf(fp,"\n"); |
510 |
|
511 |
for (j=0;j<ninputs;j++) { /* print the 2 norms */ |
512 |
fprintf(fp,"%-#18.8f ",norm_2[j]); |
513 |
} |
514 |
fprintf(fp,"\n\n"); |
515 |
ascfree((char *)norm_1); |
516 |
ascfree((char *)norm_2); |
517 |
|
518 |
for (i=0;i<noutputs;i++) { /* print the scaled data */ |
519 |
for (j=0;j<ninputs;j++) { |
520 |
fprintf(fp,"%-#18.8f %-4d",dy_dx[i][j],i); |
521 |
} |
522 |
if (var_fixed(outputs[i])) |
523 |
fprintf(fp," **fixed*** \n"); |
524 |
else |
525 |
PUTC('\n',fp); |
526 |
} |
527 |
fprintf(fp,"\n"); |
528 |
fclose(fp); |
529 |
return 0; |
530 |
} |
531 |
|
532 |
|
533 |
|
534 |
/** |
535 |
This function is very similar to sensitivity_anal, execept, |
536 |
that it perform the analysis on the entire system, based on |
537 |
the given inputs. Nothing is returned. As such the call from |
538 |
ASCEND is: |
539 |
|
540 |
<pre> |
541 |
EXTERN sensitivity_anal_all( |
542 |
this_instance, |
543 |
u_old[1..n_inputs], |
544 |
u_new[1..n_inputs], |
545 |
step_length |
546 |
);</pre> |
547 |
|
548 |
The results will be witten to standard out. |
549 |
This function is more expensive from a a memory point of view, |
550 |
as we keep around a dense matrix n_outputs * n_inputs, but here |
551 |
n_outputs may be *much* larger depending on problem size. |
552 |
*/ |
553 |
int sensitivity_anal_all( struct Instance *inst, /* not used but will be */ |
554 |
struct gl_list_t *arglist, |
555 |
real64 step_length |
556 |
){ |
557 |
struct Instance *which_instance; |
558 |
struct gl_list_t *branch2, *branch3; |
559 |
dof_t *dof; |
560 |
struct var_variable **inputs = NULL, **outputs = NULL; |
561 |
int *inputs_ndx_list = NULL, *outputs_ndx_list = NULL; |
562 |
real64 **dy_dx = NULL; |
563 |
struct var_variable **vp,**ptr; |
564 |
slv_system_t sys = NULL; |
565 |
long c; |
566 |
int noutputs=0, ninputs; |
567 |
var_filter_t vfilter; |
568 |
|
569 |
struct var_variable **new_inputs = NULL; /* optional stuff for variable |
570 |
* projection */ |
571 |
|
572 |
linsolqr_system_t lqr_sys; /* stuff for the linear system & matrix */ |
573 |
mtx_matrix_t mtx; |
574 |
int32 capacity; |
575 |
real64 *scratch_vector = NULL; |
576 |
int result=0; |
577 |
|
578 |
/* Ignore unused params */ |
579 |
(void)inst; (void)step_length; |
580 |
|
581 |
/* |
582 |
* Call the presolve for the system. This should number variables |
583 |
* and relations as well create and order the main Jacobian. The |
584 |
* only potential problem that I see here is that presolve using |
585 |
* the slv0 solver *only* recognizes solver vars. So that if one |
586 |
* wanted to see the sensitivity of a *parameter*, it would not |
587 |
* be possible. We will have to trap this in CheckArgs. |
588 |
* |
589 |
* Also the current version of ascend is fucked in how the var module |
590 |
* handles variables and their numbering through the interface ptr |
591 |
* crap. |
592 |
*/ |
593 |
|
594 |
(void)NumberFreeVars(NULL); /* used to re-init the system */ |
595 |
(void)NumberRels(NULL); /* used to re-init the system */ |
596 |
which_instance = FetchElement(arglist,1,1); |
597 |
sys = asc_sens_presolve(which_instance); |
598 |
if (!sys) { |
599 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"Early termination due to failure in asc_sens_presolve\n"); |
600 |
result = 1; |
601 |
goto error; |
602 |
} |
603 |
dof = slv_get_dofdata(sys); |
604 |
|
605 |
/* |
606 |
* prepare the inputs list. We dont need the index of the new_inputs |
607 |
* list. We will grab them later if necessary. |
608 |
*/ |
609 |
branch2 = gl_fetch(arglist,2); /* input args -- old u_values */ |
610 |
branch3 = gl_fetch(arglist,3); /* input args -- new u_values */ |
611 |
ninputs = gl_length(branch2); |
612 |
inputs = ASC_NEW_ARRAY(struct var_variable *,ninputs+1); |
613 |
new_inputs = ASC_NEW_ARRAY(struct var_variable *,ninputs+1); |
614 |
|
615 |
inputs_ndx_list = ASC_NEW_ARRAY(int,ninputs); |
616 |
for (c=0;c<ninputs;c++) { |
617 |
inputs[c] = (struct var_variable *)gl_fetch(branch2,c+1); |
618 |
inputs_ndx_list[c] = var_mindex(inputs[c]); |
619 |
new_inputs[c] = (struct var_variable *)gl_fetch(branch3,c+1); |
620 |
} |
621 |
inputs[ninputs] = NULL; /* null terminate the list */ |
622 |
new_inputs[ninputs] = NULL; /* null terminate the list */ |
623 |
|
624 |
/* |
625 |
* prepare the outputs list. This is where we differ from |
626 |
* the other function. The noutputs, and the indexes of these |
627 |
* outputs is obtained from the entire solve system. |
628 |
*/ |
629 |
vfilter.matchbits = 0; |
630 |
noutputs = slv_count_solvers_vars(sys,&vfilter); |
631 |
outputs = ASC_NEW_ARRAY(struct var_variable *,noutputs+1); |
632 |
outputs_ndx_list = ASC_NEW_ARRAY(int,noutputs); |
633 |
ptr = vp = slv_get_solvers_var_list(sys); |
634 |
for (c=0;c<noutputs;c++) { |
635 |
outputs[c] = *ptr; |
636 |
outputs_ndx_list[c] = var_sindex(*ptr); |
637 |
ptr++; |
638 |
} |
639 |
outputs[noutputs] = NULL; /* null terminate the list */ |
640 |
|
641 |
/* |
642 |
* prepare the results dy_dx. This is the expensive part from a |
643 |
* memory point of view. However I would like to have the entire |
644 |
* noutputs * ninputs matrix even for a short while so that I |
645 |
* can compute a number of different types of norms. |
646 |
*/ |
647 |
dy_dx = make_matrix(noutputs,ninputs); |
648 |
|
649 |
result = Compute_J(sys); |
650 |
if (result) { |
651 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"Early termination due to failure in calc Jacobian\n"); |
652 |
goto error; |
653 |
} |
654 |
|
655 |
/* |
656 |
Note: the RHS *has* to added here. We will construct the vector |
657 |
of size matrix capacity and add it. It will be removed after |
658 |
we finish computing dy_dx. |
659 |
*/ |
660 |
lqr_sys = slv_get_linsolqr_sys(sys); /* get the linear system */ |
661 |
mtx = linsolqr_get_matrix(lqr_sys); /* get the matrix */ |
662 |
capacity = mtx_capacity(mtx); |
663 |
scratch_vector = ASC_NEW_ARRAY_CLEAR(real64,capacity); |
664 |
linsolqr_add_rhs(lqr_sys,scratch_vector,FALSE); |
665 |
result = LUFactorJacobian1(sys,dof->structural_rank); |
666 |
|
667 |
if (result) { |
668 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"Early termination due to failure in LUFactorJacobian\n"); |
669 |
goto error; |
670 |
} |
671 |
|
672 |
result = Compute_dy_dx_smart(sys, scratch_vector, dy_dx, |
673 |
inputs_ndx_list, ninputs, |
674 |
outputs_ndx_list, noutputs |
675 |
); |
676 |
|
677 |
linsolqr_remove_rhs(lqr_sys,scratch_vector); |
678 |
if (result) { |
679 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"Early termination due to failure in Compute_dy_dx\n"); |
680 |
goto error; |
681 |
} |
682 |
|
683 |
/* |
684 |
* Do some analysis on the results, inclusive of |
685 |
* writing them to someplace useful. |
686 |
*/ |
687 |
if(DoDataAnalysis(inputs, outputs, ninputs, noutputs, dy_dx)){ |
688 |
result = 1; |
689 |
} |
690 |
/* |
691 |
* Some experimental projection stuff -- not used now. |
692 |
* if (DoProject_X(inputs, new_inputs, step_length, |
693 |
* outputs, ninputs, noutputs, dy_dx)) |
694 |
* result = 1; |
695 |
*/ |
696 |
|
697 |
error: |
698 |
if (inputs) ascfree((char *)inputs); |
699 |
if (new_inputs) ascfree((char *)new_inputs); |
700 |
if (inputs_ndx_list) ascfree((char *)inputs_ndx_list); |
701 |
if (outputs) ascfree((char *)outputs); |
702 |
if (outputs_ndx_list) ascfree((char *)outputs_ndx_list); |
703 |
if (dy_dx) free_matrix(dy_dx,noutputs); |
704 |
if (scratch_vector) ascfree((char *)scratch_vector); |
705 |
if (sys) system_destroy(sys); |
706 |
return result; |
707 |
} |
708 |
|
709 |
|
710 |
|
711 |
|
712 |
#if 0 |
713 |
static int ComputeInverse(slv_system_t sys, |
714 |
real64 *rhs) |
715 |
{ |
716 |
linsolqr_system_t lqr_sys; |
717 |
mtx_matrix_t mtx; |
718 |
int capacity,order; |
719 |
real64 *solution = NULL; |
720 |
int j,k; |
721 |
|
722 |
lqr_sys = slv_get_linsolqr_sys(sys); /* get the linear system */ |
723 |
mtx = linsolqr_get_matrix(lqr_sys); /* get the matrix */ |
724 |
|
725 |
capacity = mtx_capacity(mtx); |
726 |
zero_vector(rhs,capacity); /* zero the rhs */ |
727 |
solution = ASC_NEW_ARRAY_CLEAR(real64,capacity); |
728 |
|
729 |
order = mtx_order(mtx); |
730 |
for (j=0;j<order;j++) { |
731 |
rhs[j] = 1.0; |
732 |
linsolqr_rhs_was_changed(lqr_sys,rhs); |
733 |
linsolqr_solve(lqr_sys,rhs); /* solve */ |
734 |
linsolqr_copy_solution(lqr_sys,rhs,solution); /* get the solution */ |
735 |
|
736 |
CONSOLE_DEBUG("This is the rhs and solution for rhs #%d\n",j); |
737 |
for (k=0;k<order;k++) { |
738 |
CONSOLE_DEBUG("%12.8g %12.8g\n",rhs[k],solution[k]); |
739 |
} |
740 |
rhs[j] = 0.0; |
741 |
} |
742 |
if (solution) ascfree((char *)solution); |
743 |
return 0; |
744 |
} |
745 |
#endif |
746 |
|
747 |
#if 0 |
748 |
static int DoProject_X(struct var_variable **old_inputs, |
749 |
struct var_variable **new_inputs, /* new values of u */ |
750 |
double step_length, |
751 |
struct var_variable **outputs, |
752 |
int ninputs, int noutputs, |
753 |
real64 **dy_dx) |
754 |
{ |
755 |
struct var_variable *var; |
756 |
real64 old_y, new_y, tmp; |
757 |
real64 *delta_x; |
758 |
int i,j; |
759 |
|
760 |
delta_x = ASC_NEW_ARRAY_CLEAR(real64,ninputs); |
761 |
|
762 |
for (j=0;j<ninputs;j++) { |
763 |
delta_x[j] = var_value(new_inputs[j]) - var_value(old_inputs[j]); |
764 |
/* delta_x[j] = RealAtomValue(new_inputs[j]) - RealAtomValue(old_inputs[j]); */ |
765 |
} |
766 |
|
767 |
for (i=0;i<noutputs;i++) { |
768 |
var = outputs[i]; |
769 |
if (var_fixed(var) || !var_active(var)) /* project only the free vars */ |
770 |
continue; |
771 |
tmp = 0.0; |
772 |
for (j=0;j<ninputs;j++) { |
773 |
tmp += (dy_dx[i][j] * delta_x[j]); |
774 |
} |
775 |
/* old_y = RealAtomValue(var); */ |
776 |
old_y = var_value(var); |
777 |
new_y = old_y + step_length*tmp; |
778 |
/* SetRealAtomValue(var,new_y,(unsigned)0); */ |
779 |
var_set_value(var,new_y); |
780 |
# \if DEBUG |
781 |
CONSOLE_DEBUG("Old_y = %12.8g; Nex_y = %12.8g\n",old_y,new_y); |
782 |
# \endif |
783 |
} |
784 |
ascfree((char *)delta_x); |
785 |
return 0; |
786 |
} |
787 |
#endif |
788 |
|
789 |
|
790 |
#if 0 |
791 |
/** |
792 |
* At this point we should have an empty jacobian. We now |
793 |
* need to call relman_diff over the *entire* matrix. |
794 |
* Calculates the entire jacobian. It is initially unscaled. |
795 |
* |
796 |
* Note: this assumes the sys given is using one of the ascend solvers |
797 |
* with either linsol or linsolqr. Both are now allowed. baa 7/95 |
798 |
*/ |
799 |
#define SAFE_FIX_ME 0 |
800 |
static int Compute_J_OLD(slv_system_t sys) |
801 |
{ |
802 |
int32 row; |
803 |
var_filter_t vfilter; |
804 |
linsol_system_t lin_sys = NULL; |
805 |
linsolqr_system_t lqr_sys = NULL; |
806 |
mtx_matrix_t mtx; |
807 |
struct rel_relation **rlist; |
808 |
int nrows; |
809 |
int qr=0; |
810 |
#\if DOTIME |
811 |
double time1; |
812 |
#\endif |
813 |
|
814 |
#\if DOTIME |
815 |
time1 = tm_cpu_time(); |
816 |
#\endif |
817 |
/* |
818 |
* Get the linear system from the solve system. |
819 |
* Get the matrix from the linear system. |
820 |
* Get the relations list from the solve system. |
821 |
*/ |
822 |
lin_sys = slv_get_linsol_sys(sys); |
823 |
if (lin_sys==NULL) { |
824 |
qr=1; |
825 |
lqr_sys=slv_get_linsolqr_sys(sys); |
826 |
} |
827 |
mtx = slv_get_sys_mtx(sys); |
828 |
if (mtx==NULL || (lin_sys==NULL && lqr_sys==NULL)) { |
829 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"Compute_dy_dx: error, found NULL.\n"); |
830 |
return 1; |
831 |
} |
832 |
rlist = slv_get_solvers_rel_list(sys); |
833 |
nrows = NumberIncludedRels(sys); |
834 |
|
835 |
calc_ok = TRUE; |
836 |
vfilter.matchbits = VAR_SVAR; |
837 |
vfilter.matchvalue = VAR_SVAR; |
838 |
/* |
839 |
* Clear the entire matrix and then compute |
840 |
* the gradients at the current point. |
841 |
*/ |
842 |
mtx_clear_region(mtx,mtx_ENTIRE_MATRIX); |
843 |
for(row=0; row<nrows; row++) { |
844 |
struct rel_relation *rel; |
845 |
/* added */ |
846 |
double resid; |
847 |
|
848 |
rel = rlist[mtx_row_to_org(mtx,row)]; |
849 |
(void)relman_diffs(rel,&vfilter,mtx,&resid,SAFE_FIX_ME); |
850 |
|
851 |
/* added */ |
852 |
rel_set_residual(rel,resid); |
853 |
|
854 |
} |
855 |
if (qr) { |
856 |
linsolqr_matrix_was_changed(lqr_sys); |
857 |
} else { |
858 |
linsol_matrix_was_changed(lin_sys); |
859 |
} |
860 |
#\if DOTIME |
861 |
time1 = tm_cpu_time() - time1; |
862 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"Time taken for Compute_J = %g\n",time1); |
863 |
#\endif |
864 |
return(!calc_ok); |
865 |
} |
866 |
#endif |
867 |
|
868 |
|
869 |
#if 0 |
870 |
static int ReSolve(slv_system_t sys) |
871 |
{ |
872 |
if (!sys) |
873 |
return 1; |
874 |
slv_solve(sys); |
875 |
return 0; |
876 |
} |
877 |
#endif |
878 |
|
879 |
/** |
880 |
Build then presolve the solve an instance... |
881 |
*/ |
882 |
int DoSolve(struct Instance *inst){ |
883 |
slv_system_t sys; |
884 |
|
885 |
sys = system_build(inst); |
886 |
if (!sys) { |
887 |
ERROR_REPORTER_HERE(ASC_PROG_ERR, |
888 |
"Something radically wrong in creating solver."); |
889 |
return 1; |
890 |
} |
891 |
(void)slv_select_solver(sys,0); |
892 |
slv_presolve(sys); |
893 |
slv_solve(sys); |
894 |
system_destroy(sys); |
895 |
return 0; |
896 |
} |
897 |
|
898 |
/** |
899 |
Calls 'DoSolve' |
900 |
|
901 |
@see DoSolve |
902 |
*/ |
903 |
int do_solve_eval( struct Instance *i, |
904 |
struct gl_list_t *arglist, void *user_data |
905 |
){ |
906 |
unsigned long len; |
907 |
int result; |
908 |
struct Instance *inst; |
909 |
len = gl_length(arglist); |
910 |
|
911 |
(void)i; /* not used */ |
912 |
|
913 |
if (len!=2) { |
914 |
ERROR_REPORTER_HERE(ASC_USER_ERROR, |
915 |
"Wrong number of args to do_solve_eval."); |
916 |
return 1; |
917 |
} |
918 |
inst = FetchElement(arglist,1,1); |
919 |
if (!inst) |
920 |
return 1; |
921 |
result = DoSolve(inst); |
922 |
return result; |
923 |
} |
924 |
|
925 |
|
926 |
/** |
927 |
Finite difference... |
928 |
*/ |
929 |
int finite_difference(struct gl_list_t *arglist){ |
930 |
struct Instance *model_inst, *xinst, *inst; |
931 |
slv_system_t sys; |
932 |
int ninputs,noutputs; |
933 |
int i,j,offset; |
934 |
real64 **partials; |
935 |
real64 *y_old, *y_new; |
936 |
real64 x; |
937 |
real64 interval = 1e-6; |
938 |
int result=0; |
939 |
|
940 |
model_inst = FetchElement(arglist,1,1); |
941 |
sys = system_build(model_inst); |
942 |
if (!sys) { |
943 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"Something radically wrong in creating solver\n"); |
944 |
return 1; |
945 |
} |
946 |
(void)slv_select_solver(sys,0); |
947 |
slv_presolve(sys); |
948 |
slv_solve(sys); |
949 |
|
950 |
/* Make the necessary vectors */ |
951 |
|
952 |
ninputs = (int)gl_length((struct gl_list_t *)gl_fetch(arglist,2)); |
953 |
noutputs = (int)gl_length((struct gl_list_t *)gl_fetch(arglist,3)); |
954 |
y_old = (real64 *)calloc(noutputs,sizeof(real64)); |
955 |
y_new = (real64 *)calloc(noutputs,sizeof(real64)); |
956 |
partials = make_matrix(noutputs,ninputs); |
957 |
for (i=0;i<noutputs;i++) { /* get old yvalues */ |
958 |
inst = FetchElement(arglist,3,i+1); |
959 |
y_old[i] = RealAtomValue(inst); |
960 |
} |
961 |
for (j=0;j<ninputs;j++) { |
962 |
xinst = FetchElement(arglist,2,j+1); |
963 |
x = RealAtomValue(xinst); |
964 |
SetRealAtomValue(xinst,x+interval,(unsigned)0); /* perturb system */ |
965 |
slv_presolve(sys); |
966 |
slv_solve(sys); |
967 |
|
968 |
for (i=0;i<noutputs;i++) { /* get new yvalues */ |
969 |
inst = FetchElement(arglist,3,i+1); |
970 |
y_new[i] = RealAtomValue(inst); |
971 |
partials[i][j] = -1.0 * (y_old[i] - y_new[i])/interval; |
972 |
PRINTF("y_old = %20.12g y_new = %20.12g\n", y_old[i],y_new[i]); |
973 |
} |
974 |
SetRealAtomValue(xinst,x,(unsigned)0); /* unperturb system */ |
975 |
} |
976 |
offset = 0; |
977 |
for (i=0;i<noutputs;i++) { |
978 |
for (j=0;j<ninputs;j++) { |
979 |
inst = FetchElement(arglist,4,offset+j+1); |
980 |
SetRealAtomValue(inst,partials[i][j],(unsigned)0); |
981 |
PRINTF("%12.6f %s",partials[i][j], (j==(ninputs-1)) ? "\n" : " "); |
982 |
} |
983 |
offset += ninputs; |
984 |
} |
985 |
/* error: */ |
986 |
free(y_old); |
987 |
free(y_new); |
988 |
free_matrix(partials,noutputs); |
989 |
system_destroy(sys); |
990 |
return result; |
991 |
} |
992 |
|
993 |
|
994 |
|
995 |
/** |
996 |
Finite different evaluate... |
997 |
*/ |
998 |
int do_finite_diff_eval( struct Instance *i, |
999 |
struct gl_list_t *arglist, void *user_data |
1000 |
){ |
1001 |
int result; |
1002 |
(void)i; /* not used */ |
1003 |
|
1004 |
if(FiniteDiffCheckArgs(arglist)) |
1005 |
return 1; |
1006 |
result = finite_difference(arglist); |
1007 |
return result; |
1008 |
} |
1009 |
|
1010 |
|
1011 |
int do_sensitivity_eval( struct Instance *i, |
1012 |
struct gl_list_t *arglist, void *user_data |
1013 |
){ |
1014 |
CONSOLE_DEBUG("Starting sensitivity analysis..."); |
1015 |
if(SensitivityCheckArgs(arglist))return 1; |
1016 |
|
1017 |
return sensitivity_anal(i,arglist); |
1018 |
} |
1019 |
|
1020 |
int do_sensitivity_eval_all( struct Instance *i, |
1021 |
struct gl_list_t *arglist, void *user_data |
1022 |
){ |
1023 |
int result; |
1024 |
double step_length = 0.0; |
1025 |
if (SensitivityAllCheckArgs(arglist,&step_length)) { |
1026 |
return 1; |
1027 |
} |
1028 |
result = sensitivity_anal_all(i,arglist,step_length); |
1029 |
return result; |
1030 |
} |
1031 |
|
1032 |
|
1033 |
const char sensitivity_help[] = |
1034 |
"This function does sensitivity analysis dy/dx. It requires 4 args:\n" |
1035 |
" 1. name: name of a reference instance or SELF.\n" |
1036 |
" 2. x: x, where x is an array of > solver_var.\n" |
1037 |
" 3. y: where y is an array of > solver_var.\n" |
1038 |
" 4. dy/dx: which dy_dx[1..n_y][1..n_x]."; |
1039 |
|
1040 |
int sensitivity_register(void){ |
1041 |
int result=0; |
1042 |
|
1043 |
result = CreateUserFunctionMethod("do_solve", |
1044 |
do_solve_eval, |
1045 |
2,NULL,NULL,NULL |
1046 |
); |
1047 |
result += CreateUserFunctionMethod("do_finite_difference", |
1048 |
do_finite_diff_eval, |
1049 |
4,NULL,NULL,NULL |
1050 |
); |
1051 |
result += CreateUserFunctionMethod("do_sensitivity", |
1052 |
do_sensitivity_eval, |
1053 |
4,sensitivity_help,NULL,NULL |
1054 |
); |
1055 |
result += CreateUserFunctionMethod("do_sensitivity_all", |
1056 |
do_sensitivity_eval_all, |
1057 |
4,"See do_sensitivity_eval for details",NULL,NULL |
1058 |
); |
1059 |
|
1060 |
return result; |
1061 |
} |
1062 |
|
1063 |
/* :ex: set ts=4: */ |