1 |
/* ASCEND modelling environment |
2 |
Copyright (C) 1996-2007 Carnegie Mellon University |
3 |
|
4 |
This program is free software; you can redistribute it and/or modify |
5 |
it under the terms of the GNU General Public License as published by |
6 |
the Free Software Foundation; either version 2, or (at your option) |
7 |
any later version. |
8 |
|
9 |
This program is distributed in the hope that it will be useful, |
10 |
but WITHOUT ANY WARRANTY; without even the implied warranty of |
11 |
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
12 |
GNU General Public License for more details. |
13 |
|
14 |
You should have received a copy of the GNU General Public License |
15 |
along with this program. If not, see <http://www.gnu.org/licenses/>. |
16 |
*//** @file |
17 |
|
18 |
The module permits sensitivity analysis in an ASCEND model. In your model |
19 |
file, you need to create some additional arrays like so: |
20 |
|
21 |
X[1..m] IS_A solver_var; (* outputs *) |
22 |
U[1..n] IS_A solver_var; (* inputs *) |
23 |
dx_du[1..m][1..n] IS_A solver_var; (* data space *) |
24 |
|
25 |
You must then 'ARE_THE_SAME' your problem variables into the spaces in the |
26 |
first two of the above arrays. |
27 |
|
28 |
Then, run EXTERNAL do_sensitivity(SELF,U[1..n],X[1..m],dx_du[1..m][1..n]); |
29 |
|
30 |
In the array dx_du[1..m][1..n], values of the corresponding sensitivity |
31 |
derivatives will be calculated. |
32 |
|
33 |
A test/example model is available in the models directory, called |
34 |
sensitivity_test.a4c. |
35 |
|
36 |
--- implementation notes --- |
37 |
|
38 |
This file attempts to implement the extraction of dy_dx from |
39 |
a system of equations. If one considers a black-box where x are |
40 |
the input variables, u are input parameters, y are the output |
41 |
variables, f(x,y,u) is the system of equations that will be solved |
42 |
for given x and u, then one can extract the sensitivity information |
43 |
of y wrt x. |
44 |
|
45 |
One crude but simple way of doing this is to finite-difference the |
46 |
given black box, i.e, perturb x, n_x times by delta x, resolve |
47 |
the system of equations at the new value of x, and compute |
48 |
|
49 |
dy/dx = (f(x_1) - f(x_2))/(x_1 - x_2). |
50 |
|
51 |
This is known to be very expensive. |
52 |
|
53 |
The solution that will be adopted here is to formulate the Jacobian J of |
54 |
the system, (or the system is already solved, to grab the jacobian at |
55 |
the solution. Develop the sensitivity matrix df/dx by exact numnerical |
56 |
differentiation; this will be a n x n_x matrix. Compute the LU factors |
57 |
for J, and to solve column by column to : LU dz/dx = df/dx. Here |
58 |
z, represents all the internal variables to the system and the strictly |
59 |
output variables y. In other words J = df/dz. |
60 |
|
61 |
Given the solution of the above problem we then simply extract the rows |
62 |
of dz/dx, that pertain to the y variables that we are interested in; |
63 |
this will give us dy/dx. |
64 |
|
65 |
@todo There are files in tcltk called Sensitivity.[ch]. Do we need them? |
66 |
*/ |
67 |
|
68 |
#include <math.h> |
69 |
|
70 |
#include <ascend/general/ascMalloc.h> |
71 |
#include <ascend/general/mathmacros.h> |
72 |
|
73 |
#include <ascend/compiler/instquery.h> |
74 |
#include <ascend/compiler/atomvalue.h> |
75 |
#include <ascend/compiler/extfunc.h> |
76 |
|
77 |
#include <ascend/linear/densemtx.h> |
78 |
|
79 |
#include <ascend/packages/sensitivity.h> |
80 |
#include <ascend/system/system.h> |
81 |
#include <ascend/solver/solver.h> |
82 |
|
83 |
#define SENSITIVITY_DEBUG |
84 |
|
85 |
ASC_EXPORT int sensitivity_register(void); |
86 |
|
87 |
ExtMethodRun do_sensitivity_eval; |
88 |
ExtMethodRun do_sensitivity_eval_all; |
89 |
|
90 |
/** |
91 |
Build then presolve an instance |
92 |
*/ |
93 |
slv_system_t sens_presolve(struct Instance *inst){ |
94 |
slv_system_t sys; |
95 |
slv_parameters_t parameters; |
96 |
const SlvFunctionsT *S; |
97 |
#ifdef SENSITIVITY_DEBUG |
98 |
struct var_variable **vp; |
99 |
struct rel_relation **rp; |
100 |
int len, ind; |
101 |
char *tmp=NULL; |
102 |
#endif |
103 |
sys = system_build(inst); |
104 |
if (sys==NULL) { |
105 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"Failed to build system."); |
106 |
return NULL; |
107 |
} |
108 |
S = solver_engine_named("QRSlv"); |
109 |
if(!S){ |
110 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"QRSlv solver not found (required for sensitivity)"); |
111 |
return NULL; |
112 |
} |
113 |
slv_select_solver(sys,S->number); |
114 |
|
115 |
slv_get_parameters(sys,¶meters); |
116 |
parameters.partition = 0; |
117 |
slv_set_parameters(sys,¶meters); |
118 |
slv_presolve(sys); |
119 |
|
120 |
#ifdef SENSITIVITY_DEBUG |
121 |
vp = slv_get_solvers_var_list(sys); |
122 |
len = slv_get_num_solvers_vars(sys); |
123 |
for (ind=0 ; ind<len; ind++) { |
124 |
tmp = var_make_name(sys,vp[ind]); |
125 |
CONSOLE_DEBUG("%s %d\n",tmp,var_sindex(vp[ind])); |
126 |
if (tmp!=NULL) ascfree(tmp); |
127 |
} |
128 |
rp = slv_get_solvers_rel_list(sys); |
129 |
len = slv_get_num_solvers_rels(sys); |
130 |
for (ind=0 ; ind<len ; ind++) { |
131 |
tmp = rel_make_name(sys,rp[ind]); |
132 |
CONSOLE_DEBUG("%s %d\n",tmp,rel_sindex(rp[ind])); |
133 |
if (tmp) ascfree(tmp); |
134 |
} |
135 |
#endif |
136 |
return sys; |
137 |
} |
138 |
|
139 |
/* |
140 |
LU Factor Jacobian |
141 |
|
142 |
@note The RHS will have been will already have been added before |
143 |
calling this function. |
144 |
|
145 |
@NOTE there is another version of this floating around in packages/senstivity.c. The |
146 |
other one uses dense matrices so probably this one's better? |
147 |
*/ |
148 |
int LUFactorJacobian1(slv_system_t sys,int rank){ |
149 |
linsolqr_system_t lqr_sys; |
150 |
mtx_region_t region; |
151 |
enum factor_method fm; |
152 |
|
153 |
mtx_region(®ion,0,rank-1,0,rank-1); /* set the region */ |
154 |
lqr_sys = slv_get_linsolqr_sys(sys); /* get the linear system */ |
155 |
|
156 |
linsolqr_matrix_was_changed(lqr_sys); |
157 |
linsolqr_reorder(lqr_sys,®ion,natural); |
158 |
|
159 |
fm = linsolqr_fmethod(lqr_sys); |
160 |
if (fm == unknown_f) fm = ranki_kw2; /* make sure somebody set it */ |
161 |
linsolqr_factor(lqr_sys,fm); |
162 |
|
163 |
return 0; |
164 |
} |
165 |
|
166 |
int sensitivity_anal( |
167 |
struct Instance *inst, /* not used but will be */ |
168 |
struct gl_list_t *arglist |
169 |
){ |
170 |
struct Instance *which_instance,*tmp_inst, *atominst; |
171 |
struct gl_list_t *branch; |
172 |
struct var_variable **vlist = NULL; |
173 |
int *inputs_ndx_list = NULL, *outputs_ndx_list = NULL; |
174 |
DenseMatrix dy_dx = densematrix_create_empty(); |
175 |
slv_system_t sys = NULL; |
176 |
int c; |
177 |
int noutputs = 0; |
178 |
int ninputs; |
179 |
int i,j; |
180 |
int offset; |
181 |
dof_t *dof; |
182 |
int num_vars,ind,found; |
183 |
|
184 |
linsolqr_system_t lqr_sys; /* stuff for the linear system & matrix */ |
185 |
mtx_matrix_t mtx; |
186 |
int32 capacity; |
187 |
real64 *scratch_vector = NULL; |
188 |
int result=0; |
189 |
|
190 |
/* Ignore unused params */ |
191 |
(void) inst; |
192 |
|
193 |
(void)NumberFreeVars(NULL); /* used to re-init the system */ |
194 |
(void)NumberRels(NULL); /* used to re-init the system */ |
195 |
which_instance = FetchElement(arglist,1,1); |
196 |
sys = sens_presolve(which_instance); |
197 |
if (!sys) { |
198 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"Failed to presolve"); |
199 |
result = 1; |
200 |
goto finish; |
201 |
} |
202 |
|
203 |
dof = slv_get_dofdata(sys); |
204 |
if (!(dof->n_rows == dof->n_cols && |
205 |
dof->n_rows == dof->structural_rank)) { |
206 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"System is not square"); |
207 |
result = 1; |
208 |
goto finish; |
209 |
} |
210 |
|
211 |
CONSOLE_DEBUG("Presolved, square"); |
212 |
|
213 |
/* |
214 |
prepare the inputs list |
215 |
*/ |
216 |
vlist = slv_get_solvers_var_list(sys); |
217 |
|
218 |
branch = gl_fetch(arglist,2); /* input args */ |
219 |
ninputs = gl_length(branch); |
220 |
inputs_ndx_list = ASC_NEW_ARRAY(int,ninputs); |
221 |
|
222 |
num_vars = slv_get_num_solvers_vars(sys); |
223 |
for (c=0;c<ninputs;c++) { |
224 |
atominst = (struct Instance *)gl_fetch(branch,c+1); |
225 |
found = 0; |
226 |
ind = num_vars - 1; |
227 |
/* search backwards because fixed vars are at the end of the |
228 |
var list */ |
229 |
while (!found && ind >= 0){ |
230 |
if (var_instance(vlist[ind]) == atominst) { |
231 |
inputs_ndx_list[c] = var_sindex(vlist[ind]); |
232 |
found = 1; |
233 |
} |
234 |
--ind; |
235 |
} |
236 |
if(!found){ |
237 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"Unable to find sensitivity input variable"); |
238 |
result = 1; |
239 |
goto finish; |
240 |
} |
241 |
} |
242 |
|
243 |
CONSOLE_DEBUG("%d inputs",ninputs); |
244 |
|
245 |
/* |
246 |
prepare the outputs list |
247 |
*/ |
248 |
branch = gl_fetch(arglist,3); /* output args */ |
249 |
noutputs = gl_length(branch); |
250 |
outputs_ndx_list = ASC_NEW_ARRAY(int,noutputs); |
251 |
for (c=0;c<noutputs;c++) { |
252 |
atominst = (struct Instance *)gl_fetch(branch,c+1); |
253 |
found = 0; |
254 |
ind = 0; |
255 |
while (!found && ind < num_vars){ |
256 |
if (var_instance(vlist[ind]) == atominst) { |
257 |
outputs_ndx_list[c] = var_sindex(vlist[ind]); |
258 |
found = 1; |
259 |
} |
260 |
++ind; |
261 |
} |
262 |
if (!found) { |
263 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"Unable to find sensitivity ouput variable"); |
264 |
result = 1; |
265 |
goto finish; |
266 |
} |
267 |
} |
268 |
|
269 |
CONSOLE_DEBUG("%d outputs",noutputs); |
270 |
|
271 |
/* |
272 |
prepare the results dy_dx. |
273 |
*/ |
274 |
dy_dx = densematrix_create(noutputs,ninputs); |
275 |
|
276 |
result = Compute_J(sys); |
277 |
if (result) { |
278 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"Failed to calculate Jacobian failure in calc Jacobian\n"); |
279 |
goto finish; |
280 |
} |
281 |
|
282 |
CONSOLE_DEBUG("Computed Jacobian"); |
283 |
|
284 |
/* |
285 |
Note: the RHS *has* to added here. We will construct the vector |
286 |
of size matrix capacity and add it. It will be removed after |
287 |
we finish computing dy_dx. |
288 |
*/ |
289 |
lqr_sys = slv_get_linsolqr_sys(sys); /* get the linear system */ |
290 |
mtx = linsolqr_get_matrix(lqr_sys); /* get the matrix */ |
291 |
capacity = mtx_capacity(mtx); |
292 |
scratch_vector = ASC_NEW_ARRAY_CLEAR(real64,capacity); |
293 |
linsolqr_add_rhs(lqr_sys,scratch_vector,FALSE); |
294 |
result = LUFactorJacobian1(sys,dof->structural_rank); |
295 |
if(result){ |
296 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"Failed to calculate LUFactorJacobian"); |
297 |
goto finish; |
298 |
} |
299 |
result = Compute_dy_dx_smart(sys, scratch_vector, dy_dx, |
300 |
inputs_ndx_list, ninputs, |
301 |
outputs_ndx_list, noutputs |
302 |
); |
303 |
|
304 |
linsolqr_remove_rhs(lqr_sys,scratch_vector); |
305 |
if (result) { |
306 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"Failed Compute_dy_dx"); |
307 |
goto finish; |
308 |
} |
309 |
|
310 |
CONSOLE_DEBUG("Computed dy/dx"); |
311 |
|
312 |
/* |
313 |
Write the results back to the partials array in the |
314 |
instance tree |
315 |
*/ |
316 |
offset = 0; |
317 |
for (i=0;i<noutputs;i++) { |
318 |
for (j=0;j<ninputs;j++) { |
319 |
tmp_inst = FetchElement(arglist,4,offset+j+1); |
320 |
SetRealAtomValue(tmp_inst,DENSEMATRIX_ELEM(dy_dx,i,j),(unsigned)0); |
321 |
#ifdef SENSITIVITY_DEBUG |
322 |
CONSOLE_DEBUG("%12.8f i%d j%d",DENSEMATRIX_ELEM(dy_dx,i,j),i,j); |
323 |
#endif |
324 |
} |
325 |
#ifdef SENSITIVITY_DEBUG |
326 |
CONSOLE_DEBUG("\n"); |
327 |
#endif |
328 |
offset += ninputs; |
329 |
} |
330 |
#ifdef SENSITIVITY_DEBUG |
331 |
CONSOLE_DEBUG("\n"); |
332 |
#endif |
333 |
|
334 |
ERROR_REPORTER_HERE(ASC_USER_SUCCESS |
335 |
,"Sensitivity results for %d vars were written back to the model" |
336 |
,noutputs |
337 |
); |
338 |
|
339 |
finish: |
340 |
if (inputs_ndx_list) ascfree((char *)inputs_ndx_list); |
341 |
if (outputs_ndx_list) ascfree((char *)outputs_ndx_list); |
342 |
densematrix_destroy(dy_dx); |
343 |
if (scratch_vector) ascfree((char *)scratch_vector); |
344 |
if (sys) system_destroy(sys); |
345 |
return result; |
346 |
} |
347 |
|
348 |
/** |
349 |
Do Data Analysis. Used by sensitivity_anal_all. |
350 |
*/ |
351 |
int DoDataAnalysis(struct var_variable **inputs, |
352 |
struct var_variable **outputs, |
353 |
int ninputs, int noutputs, |
354 |
DenseMatrix dy_dx) |
355 |
{ |
356 |
FILE *fp; |
357 |
double *norm_2, *norm_1; |
358 |
double input_nominal,maxvalue,sum; |
359 |
int i,j; |
360 |
|
361 |
norm_1 = ASC_NEW_ARRAY_CLEAR(double,ninputs); |
362 |
norm_2 = ASC_NEW_ARRAY_CLEAR(double,ninputs); |
363 |
|
364 |
fp = fopen("sensitivity.out","w+"); |
365 |
if (!fp) return 0; |
366 |
|
367 |
/* |
368 |
* calculate the 1 and 2 norms; cache them away so that we |
369 |
* can pretty print them. Style is everything !. |
370 |
* |
371 |
*/ |
372 |
for (j=0;j<ninputs;j++) { |
373 |
input_nominal = var_nominal(inputs[j]); |
374 |
maxvalue = sum = 0; |
375 |
for (i=0;i<noutputs;i++) { |
376 |
DENSEMATRIX_ELEM(dy_dx,i,j) *= input_nominal/var_nominal(outputs[i]); |
377 |
maxvalue = MAX(fabs(DENSEMATRIX_ELEM(dy_dx,i,j)),maxvalue); |
378 |
sum += DENSEMATRIX_ELEM(dy_dx,i,j)*DENSEMATRIX_ELEM(dy_dx,i,j); |
379 |
} |
380 |
norm_1[j] = maxvalue; |
381 |
norm_2[j] = sum; |
382 |
} |
383 |
|
384 |
for (j=0;j<ninputs;j++) { /* print the var_index */ |
385 |
fprintf(fp,"%8d ",var_mindex(inputs[j])); |
386 |
} |
387 |
fprintf(fp,"\n"); |
388 |
|
389 |
for (j=0;j<ninputs;j++) { /* print the 1 norms */ |
390 |
fprintf(fp,"%-#18.8f ",norm_1[j]); |
391 |
} |
392 |
fprintf(fp,"\n"); |
393 |
|
394 |
for (j=0;j<ninputs;j++) { /* print the 2 norms */ |
395 |
fprintf(fp,"%-#18.8f ",norm_2[j]); |
396 |
} |
397 |
fprintf(fp,"\n\n"); |
398 |
ascfree((char *)norm_1); |
399 |
ascfree((char *)norm_2); |
400 |
|
401 |
for (i=0;i<noutputs;i++) { /* print the scaled data */ |
402 |
for (j=0;j<ninputs;j++) { |
403 |
fprintf(fp,"%-#18.8f %-4d",DENSEMATRIX_ELEM(dy_dx,i,j),i); |
404 |
} |
405 |
if (var_fixed(outputs[i])) |
406 |
fprintf(fp," **fixed*** \n"); |
407 |
else |
408 |
PUTC('\n',fp); |
409 |
} |
410 |
fprintf(fp,"\n"); |
411 |
fclose(fp); |
412 |
return 0; |
413 |
} |
414 |
|
415 |
|
416 |
/** |
417 |
This function is very similar to sensitivity_anal, execept, |
418 |
that it perform the analysis on the entire system, based on |
419 |
the given inputs. Nothing is returned. As such the call from |
420 |
ASCEND is: |
421 |
|
422 |
<pre> |
423 |
EXTERN sensitivity_anal_all( |
424 |
this_instance, |
425 |
u_old[1..n_inputs], |
426 |
u_new[1..n_inputs], |
427 |
step_length |
428 |
);</pre> |
429 |
|
430 |
The results will be witten to standard out. |
431 |
This function is more expensive from a a memory point of view, |
432 |
as we keep around a dense matrix n_outputs * n_inputs, but here |
433 |
n_outputs may be *much* larger depending on problem size. |
434 |
*/ |
435 |
int sensitivity_anal_all( struct Instance *inst, /* not used but will be */ |
436 |
struct gl_list_t *arglist, |
437 |
real64 step_length |
438 |
){ |
439 |
struct Instance *which_instance; |
440 |
struct gl_list_t *branch2, *branch3; |
441 |
dof_t *dof; |
442 |
struct var_variable **inputs = NULL, **outputs = NULL; |
443 |
int *inputs_ndx_list = NULL, *outputs_ndx_list = NULL; |
444 |
DenseMatrix dy_dx; |
445 |
struct var_variable **vp,**ptr; |
446 |
slv_system_t sys = NULL; |
447 |
long c; |
448 |
int noutputs=0, ninputs; |
449 |
var_filter_t vfilter; |
450 |
|
451 |
struct var_variable **new_inputs = NULL; /* optional stuff for variable |
452 |
* projection */ |
453 |
|
454 |
linsolqr_system_t lqr_sys; /* stuff for the linear system & matrix */ |
455 |
mtx_matrix_t mtx; |
456 |
int32 capacity; |
457 |
real64 *scratch_vector = NULL; |
458 |
int result=0; |
459 |
|
460 |
/* Ignore unused params */ |
461 |
(void)inst; (void)step_length; |
462 |
|
463 |
/* |
464 |
* Call the presolve for the system. This should number variables |
465 |
* and relations as well create and order the main Jacobian. The |
466 |
* only potential problem that I see here is that presolve using |
467 |
* the slv0 solver *only* recognizes solver vars. So that if one |
468 |
* wanted to see the sensitivity of a *parameter*, it would not |
469 |
* be possible. We will have to trap this in CheckArgs. |
470 |
* |
471 |
* Also the current version of ascend is fucked in how the var module |
472 |
* handles variables and their numbering through the interface ptr |
473 |
* crap. |
474 |
*/ |
475 |
|
476 |
(void)NumberFreeVars(NULL); /* used to re-init the system */ |
477 |
(void)NumberRels(NULL); /* used to re-init the system */ |
478 |
which_instance = FetchElement(arglist,1,1); |
479 |
sys = sens_presolve(which_instance); |
480 |
if (!sys) { |
481 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"Failed to presolve"); |
482 |
result = 1; |
483 |
goto finish; |
484 |
} |
485 |
dof = slv_get_dofdata(sys); |
486 |
|
487 |
/* |
488 |
* prepare the inputs list. We dont need the index of the new_inputs |
489 |
* list. We will grab them later if necessary. |
490 |
*/ |
491 |
branch2 = gl_fetch(arglist,2); /* input args -- old u_values */ |
492 |
branch3 = gl_fetch(arglist,3); /* input args -- new u_values */ |
493 |
ninputs = gl_length(branch2); |
494 |
inputs = ASC_NEW_ARRAY(struct var_variable *,ninputs+1); |
495 |
new_inputs = ASC_NEW_ARRAY(struct var_variable *,ninputs+1); |
496 |
|
497 |
inputs_ndx_list = ASC_NEW_ARRAY(int,ninputs); |
498 |
for (c=0;c<ninputs;c++) { |
499 |
inputs[c] = (struct var_variable *)gl_fetch(branch2,c+1); |
500 |
inputs_ndx_list[c] = var_mindex(inputs[c]); |
501 |
new_inputs[c] = (struct var_variable *)gl_fetch(branch3,c+1); |
502 |
} |
503 |
inputs[ninputs] = NULL; /* null terminate the list */ |
504 |
new_inputs[ninputs] = NULL; /* null terminate the list */ |
505 |
|
506 |
/* |
507 |
* prepare the outputs list. This is where we differ from |
508 |
* the other function. The noutputs, and the indexes of these |
509 |
* outputs is obtained from the entire solve system. |
510 |
*/ |
511 |
vfilter.matchbits = 0; |
512 |
noutputs = slv_count_solvers_vars(sys,&vfilter); |
513 |
outputs = ASC_NEW_ARRAY(struct var_variable *,noutputs+1); |
514 |
outputs_ndx_list = ASC_NEW_ARRAY(int,noutputs); |
515 |
ptr = vp = slv_get_solvers_var_list(sys); |
516 |
for (c=0;c<noutputs;c++) { |
517 |
outputs[c] = *ptr; |
518 |
outputs_ndx_list[c] = var_sindex(*ptr); |
519 |
ptr++; |
520 |
} |
521 |
outputs[noutputs] = NULL; /* null terminate the list */ |
522 |
|
523 |
/* |
524 |
* prepare the results dy_dx. This is the expensive part from a |
525 |
* memory point of view. However I would like to have the entire |
526 |
* noutputs * ninputs matrix even for a short while so that I |
527 |
* can compute a number of different types of norms. |
528 |
*/ |
529 |
dy_dx = densematrix_create(noutputs,ninputs); |
530 |
|
531 |
result = Compute_J(sys); |
532 |
if (result) { |
533 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"Failed to compute Jacobian"); |
534 |
goto finish; |
535 |
} |
536 |
|
537 |
/* |
538 |
Note: the RHS *has* to added here. We will construct the vector |
539 |
of size matrix capacity and add it. It will be removed after |
540 |
we finish computing dy_dx. |
541 |
*/ |
542 |
lqr_sys = slv_get_linsolqr_sys(sys); /* get the linear system */ |
543 |
mtx = linsolqr_get_matrix(lqr_sys); /* get the matrix */ |
544 |
capacity = mtx_capacity(mtx); |
545 |
scratch_vector = ASC_NEW_ARRAY_CLEAR(real64,capacity); |
546 |
linsolqr_add_rhs(lqr_sys,scratch_vector,FALSE); |
547 |
result = LUFactorJacobian1(sys,dof->structural_rank); |
548 |
|
549 |
if (result) { |
550 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"Failure in LUFactorJacobian"); |
551 |
goto finish; |
552 |
} |
553 |
|
554 |
result = Compute_dy_dx_smart(sys, scratch_vector, dy_dx, |
555 |
inputs_ndx_list, ninputs, |
556 |
outputs_ndx_list, noutputs |
557 |
); |
558 |
|
559 |
linsolqr_remove_rhs(lqr_sys,scratch_vector); |
560 |
if (result) { |
561 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"Failure in Compute_dy_dx"); |
562 |
goto finish; |
563 |
} |
564 |
|
565 |
/* |
566 |
* Do some analysis on the results, inclusive of |
567 |
* writing them to someplace useful. |
568 |
*/ |
569 |
if(DoDataAnalysis(inputs, outputs, ninputs, noutputs, dy_dx)){ |
570 |
result = 1; |
571 |
} |
572 |
/* |
573 |
* Some experimental projection stuff -- not used now. |
574 |
* if (DoProject_X(inputs, new_inputs, step_length, |
575 |
* outputs, ninputs, noutputs, dy_dx)) |
576 |
* result = 1; |
577 |
*/ |
578 |
|
579 |
finish: |
580 |
if (inputs) ascfree((char *)inputs); |
581 |
if (new_inputs) ascfree((char *)new_inputs); |
582 |
if (inputs_ndx_list) ascfree((char *)inputs_ndx_list); |
583 |
if (outputs) ascfree((char *)outputs); |
584 |
if (outputs_ndx_list) ascfree((char *)outputs_ndx_list); |
585 |
densematrix_destroy(dy_dx);; |
586 |
if (scratch_vector) ascfree((char *)scratch_vector); |
587 |
if (sys) system_destroy(sys); |
588 |
return result; |
589 |
} |
590 |
|
591 |
|
592 |
|
593 |
|
594 |
#if 0 |
595 |
static int ComputeInverse(slv_system_t sys, |
596 |
real64 *rhs) |
597 |
{ |
598 |
linsolqr_system_t lqr_sys; |
599 |
mtx_matrix_t mtx; |
600 |
int capacity,order; |
601 |
real64 *solution = NULL; |
602 |
int j,k; |
603 |
|
604 |
lqr_sys = slv_get_linsolqr_sys(sys); /* get the linear system */ |
605 |
mtx = linsolqr_get_matrix(lqr_sys); /* get the matrix */ |
606 |
|
607 |
capacity = mtx_capacity(mtx); |
608 |
zero_vector(rhs,capacity); /* zero the rhs */ |
609 |
solution = ASC_NEW_ARRAY_CLEAR(real64,capacity); |
610 |
|
611 |
order = mtx_order(mtx); |
612 |
for (j=0;j<order;j++) { |
613 |
rhs[j] = 1.0; |
614 |
linsolqr_rhs_was_changed(lqr_sys,rhs); |
615 |
linsolqr_solve(lqr_sys,rhs); /* solve */ |
616 |
linsolqr_copy_solution(lqr_sys,rhs,solution); /* get the solution */ |
617 |
|
618 |
CONSOLE_DEBUG("This is the rhs and solution for rhs #%d\n",j); |
619 |
for (k=0;k<order;k++) { |
620 |
CONSOLE_DEBUG("%12.8g %12.8g\n",rhs[k],solution[k]); |
621 |
} |
622 |
rhs[j] = 0.0; |
623 |
} |
624 |
if (solution) ascfree((char *)solution); |
625 |
return 0; |
626 |
} |
627 |
#endif |
628 |
|
629 |
#if 0 |
630 |
static int DoProject_X(struct var_variable **old_inputs, |
631 |
struct var_variable **new_inputs, /* new values of u */ |
632 |
double step_length, |
633 |
struct var_variable **outputs, |
634 |
int ninputs, int noutputs, |
635 |
DenseMatrix dy_dx) |
636 |
{ |
637 |
struct var_variable *var; |
638 |
real64 old_y, new_y, tmp; |
639 |
real64 *delta_x; |
640 |
int i,j; |
641 |
|
642 |
delta_x = ASC_NEW_ARRAY_CLEAR(real64,ninputs); |
643 |
|
644 |
for (j=0;j<ninputs;j++) { |
645 |
delta_x[j] = var_value(new_inputs[j]) - var_value(old_inputs[j]); |
646 |
/* delta_x[j] = RealAtomValue(new_inputs[j]) - RealAtomValue(old_inputs[j]); */ |
647 |
} |
648 |
|
649 |
for (i=0;i<noutputs;i++) { |
650 |
var = outputs[i]; |
651 |
if (var_fixed(var) || !var_active(var)) /* project only the free vars */ |
652 |
continue; |
653 |
tmp = 0.0; |
654 |
for (j=0;j<ninputs;j++) { |
655 |
tmp += (DENSEMATRIX_ELEM(dy_dx,i,j)* delta_x[j]); |
656 |
} |
657 |
/* old_y = RealAtomValue(var); */ |
658 |
old_y = var_value(var); |
659 |
new_y = old_y + step_length*tmp; |
660 |
/* SetRealAtomValue(var,new_y,(unsigned)0); */ |
661 |
var_set_value(var,new_y); |
662 |
# \if DEBUG |
663 |
CONSOLE_DEBUG("Old_y = %12.8g; Nex_y = %12.8g\n",old_y,new_y); |
664 |
# \endif |
665 |
} |
666 |
ascfree((char *)delta_x); |
667 |
return 0; |
668 |
} |
669 |
#endif |
670 |
|
671 |
|
672 |
#if 0 |
673 |
/** |
674 |
* At this point we should have an empty jacobian. We now |
675 |
* need to call relman_diff over the *entire* matrix. |
676 |
* Calculates the entire jacobian. It is initially unscaled. |
677 |
* |
678 |
* Note: this assumes the sys given is using one of the ascend solvers |
679 |
* with either linsol or linsolqr. Both are now allowed. baa 7/95 |
680 |
*/ |
681 |
#define SAFE_FIX_ME 0 |
682 |
static int Compute_J_OLD(slv_system_t sys) |
683 |
{ |
684 |
int32 row; |
685 |
var_filter_t vfilter; |
686 |
linsol_system_t lin_sys = NULL; |
687 |
linsolqr_system_t lqr_sys = NULL; |
688 |
mtx_matrix_t mtx; |
689 |
struct rel_relation **rlist; |
690 |
int nrows; |
691 |
int qr=0; |
692 |
#\if DOTIME |
693 |
double time1; |
694 |
#\endif |
695 |
|
696 |
#\if DOTIME |
697 |
time1 = tm_cpu_time(); |
698 |
#\endif |
699 |
/* |
700 |
* Get the linear system from the solve system. |
701 |
* Get the matrix from the linear system. |
702 |
* Get the relations list from the solve system. |
703 |
*/ |
704 |
lin_sys = slv_get_linsol_sys(sys); |
705 |
if (lin_sys==NULL) { |
706 |
qr=1; |
707 |
lqr_sys=slv_get_linsolqr_sys(sys); |
708 |
} |
709 |
mtx = slv_get_sys_mtx(sys); |
710 |
if (mtx==NULL || (lin_sys==NULL && lqr_sys==NULL)) { |
711 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"Compute_dy_dx: error, found NULL.\n"); |
712 |
return 1; |
713 |
} |
714 |
rlist = slv_get_solvers_rel_list(sys); |
715 |
nrows = NumberIncludedRels(sys); |
716 |
|
717 |
calc_ok = TRUE; |
718 |
vfilter.matchbits = VAR_SVAR; |
719 |
vfilter.matchvalue = VAR_SVAR; |
720 |
/* |
721 |
* Clear the entire matrix and then compute |
722 |
* the gradients at the current point. |
723 |
*/ |
724 |
mtx_clear_region(mtx,mtx_ENTIRE_MATRIX); |
725 |
for(row=0; row<nrows; row++) { |
726 |
struct rel_relation *rel; |
727 |
/* added */ |
728 |
double resid; |
729 |
|
730 |
rel = rlist[mtx_row_to_org(mtx,row)]; |
731 |
(void)relman_diffs(rel,&vfilter,mtx,&resid,SAFE_FIX_ME); |
732 |
|
733 |
/* added */ |
734 |
rel_set_residual(rel,resid); |
735 |
|
736 |
} |
737 |
if (qr) { |
738 |
linsolqr_matrix_was_changed(lqr_sys); |
739 |
} else { |
740 |
linsol_matrix_was_changed(lin_sys); |
741 |
} |
742 |
#\if DOTIME |
743 |
time1 = tm_cpu_time() - time1; |
744 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"Time taken for Compute_J = %g\n",time1); |
745 |
#\endif |
746 |
return(!calc_ok); |
747 |
} |
748 |
#endif |
749 |
|
750 |
|
751 |
/** |
752 |
Sensitivity Analysis |
753 |
|
754 |
@param arglist List of arguments |
755 |
|
756 |
Argument list contains the following: |
757 |
. arg1 - model inst for which the sensitivity analysis is to be done. |
758 |
. arg2 - array of input instances. |
759 |
. arg3 - array of output instances. |
760 |
. arg4 matrix of partials to be written to. |
761 |
*/ |
762 |
int SensitivityCheckArgs(struct gl_list_t *arglist){ |
763 |
struct Instance *inst; |
764 |
unsigned long len; |
765 |
unsigned long ninputs, noutputs; |
766 |
|
767 |
len = gl_length(arglist); |
768 |
if (len != 4) { |
769 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"wrong number of args -- 4 expected\n"); |
770 |
return 1; |
771 |
} |
772 |
inst = FetchElement(arglist,1,1); |
773 |
if (InstanceKind(inst)!=MODEL_INST) { |
774 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"Arg #1 is not a model instance\n"); |
775 |
return 1; |
776 |
} |
777 |
ninputs = gl_length((struct gl_list_t *)gl_fetch(arglist,2)); |
778 |
/* input args */ |
779 |
noutputs = gl_length((struct gl_list_t *)gl_fetch(arglist,3)); |
780 |
/* output args */ |
781 |
len = gl_length((struct gl_list_t *)gl_fetch(arglist,4)); |
782 |
/* partials matrix */ |
783 |
if (len != (ninputs*noutputs)) { |
784 |
ERROR_REPORTER_HERE(ASC_PROG_ERR, |
785 |
"The array of partials is inconsistent with the args given\n"); |
786 |
return 1; |
787 |
} |
788 |
return 0; |
789 |
} |
790 |
|
791 |
|
792 |
int do_sensitivity_eval( struct Instance *i, |
793 |
struct gl_list_t *arglist, void *user_data |
794 |
){ |
795 |
CONSOLE_DEBUG("Starting sensitivity analysis..."); |
796 |
if(SensitivityCheckArgs(arglist))return 1; |
797 |
|
798 |
return sensitivity_anal(i,arglist); |
799 |
} |
800 |
|
801 |
|
802 |
/** |
803 |
@param arglist List of arguments |
804 |
@param step_length ...? |
805 |
|
806 |
The list of arguments should chontain |
807 |
|
808 |
. arg1 - model inst for which the sensitivity analysis is to be done. |
809 |
. arg2 - array of input instances. |
810 |
. arg3 - new_input instances, for variable projection. |
811 |
. arg4 - instance representing the step_length for projection. |
812 |
|
813 |
The result will be written to standard out. |
814 |
*/ |
815 |
int SensitivityAllCheckArgs(struct gl_list_t *arglist, double *step_length) |
816 |
{ |
817 |
struct Instance *inst; |
818 |
unsigned long len; |
819 |
|
820 |
len = gl_length(arglist); |
821 |
if (len != 4) { |
822 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"wrong number of args -- 4 expected\n"); |
823 |
return 1; |
824 |
} |
825 |
inst = FetchElement(arglist,1,1); |
826 |
if (InstanceKind(inst)!=MODEL_INST) { |
827 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"Arg #1 is not a model instance\n"); |
828 |
return 1; |
829 |
} |
830 |
/* |
831 |
* we should be checking that arg2 list contains solver vars |
832 |
* and that they are fixed. The same applies to arglist 3... later. |
833 |
* We will check and return the steplength though. 0 means dont do |
834 |
* the variable projection. |
835 |
*/ |
836 |
inst = FetchElement(arglist,4,1); |
837 |
*step_length = RealAtomValue(inst); |
838 |
if (fabs(*step_length) < 1e-08) |
839 |
*step_length = 0.0; |
840 |
return 0; |
841 |
} |
842 |
|
843 |
|
844 |
int do_sensitivity_eval_all( struct Instance *i, |
845 |
struct gl_list_t *arglist, void *user_data |
846 |
){ |
847 |
int result; |
848 |
double step_length = 0.0; |
849 |
if (SensitivityAllCheckArgs(arglist,&step_length)) { |
850 |
return 1; |
851 |
} |
852 |
result = sensitivity_anal_all(i,arglist,step_length); |
853 |
return result; |
854 |
} |
855 |
|
856 |
|
857 |
const char sensitivity_help[] = |
858 |
"This function does sensitivity analysis dy/dx. It requires 4 args:\n\n" |
859 |
" 1. name: name of a reference instance or SELF.\n" |
860 |
" 2. x: x, where x is an array of > solver_var.\n" |
861 |
" 3. y: where y is an array of > solver_var.\n" |
862 |
" 4. dy/dx: which dy_dx[1..n_y][1..n_x].\n\n" |
863 |
"See also sensitivity_anal_all."; |
864 |
|
865 |
/** @TODO document what 'u_new' is all about...? */ |
866 |
|
867 |
const char sensitivity_all_help[] = |
868 |
"Analyse the sensitivity of *all* variables in the system with respect\n" |
869 |
"to the specific set of inputs 'u'. Instead of returning values to a\n" |
870 |
"a special array inside the model, the results are written to the\n" |
871 |
"console. Usage example:\n\n" |
872 |
"EXTERN sensitivity_anal_all(\n" |
873 |
" this_instance,\n" |
874 |
" u_old[1..n_inputs],\n" |
875 |
" u_new[1..n_inputs],\n" |
876 |
" step_length\n" |
877 |
");\n\n" |
878 |
"See also sensitivity_anal."; |
879 |
|
880 |
int sensitivity_register(void){ |
881 |
int result=0; |
882 |
|
883 |
result += CreateUserFunctionMethod("do_sensitivity", |
884 |
do_sensitivity_eval, |
885 |
4,sensitivity_help,NULL,NULL |
886 |
); |
887 |
result += CreateUserFunctionMethod("do_sensitivity_all", |
888 |
do_sensitivity_eval_all, |
889 |
4,sensitivity_all_help,NULL,NULL |
890 |
); |
891 |
|
892 |
return result; |
893 |
} |
894 |
|
895 |
/* :ex: set ts=4: */ |