1 |
johnpye |
611 |
(* ASCEND model library |
2 |
|
|
Copyright (c) 2006 Carnegie Mellon University |
3 |
|
|
|
4 |
|
|
This program is free software; you can redistribute it |
5 |
|
|
and/or modify it under the terms of the GNU General Public |
6 |
|
|
License as published by the Free Software Foundation; either |
7 |
|
|
version 2 of the License, or (at your option) any later |
8 |
|
|
version. |
9 |
|
|
|
10 |
|
|
This program is distributed in the hope that it will be |
11 |
|
|
useful, but WITHOUT ANY WARRANTY; without even the implied |
12 |
|
|
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR |
13 |
|
|
PURPOSE. See the GNU General Public License for more |
14 |
|
|
details. |
15 |
|
|
|
16 |
jpye |
2649 |
You should have received a copy of the GNU General Public License |
17 |
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. |
18 |
johnpye |
611 |
*)(** |
19 |
|
|
This is a simple model for computing the |
20 |
|
|
steady-state temperature and heat loss profile |
21 |
|
|
of a multi-layered pipe-plus-insulation |
22 |
|
|
|
23 |
|
|
by John Pye |
24 |
|
|
*) |
25 |
|
|
|
26 |
|
|
REQUIRE "atoms.a4l"; |
27 |
|
|
REQUIRE "johnpye/thermo_types.a4c"; |
28 |
|
|
|
29 |
|
|
MODEL radial_loss; |
30 |
|
|
D_1 IS_A distance; |
31 |
|
|
D_2 IS_A distance; |
32 |
|
|
q IS_A energy_rate; |
33 |
|
|
L IS_A distance; |
34 |
|
|
T_1, T_2 IS_A temperature; |
35 |
|
|
METHODS |
36 |
|
|
METHOD specify; |
37 |
|
|
FIX D_1, D_2; |
38 |
|
|
END specify; |
39 |
|
|
END radial_loss; |
40 |
|
|
|
41 |
|
|
(* |
42 |
|
|
Wall conduction |
43 |
|
|
*) |
44 |
|
|
MODEL wall_conduction REFINES radial_loss; |
45 |
|
|
k IS_A thermal_conductivity; |
46 |
|
|
|
47 |
johnpye |
617 |
q = 2 * 1{PI} * L * k * (T_1 - T_2) / ln(D_2/D_1); |
48 |
johnpye |
611 |
|
49 |
|
|
END wall_conduction; |
50 |
|
|
|
51 |
|
|
(* |
52 |
|
|
Convection boundary |
53 |
|
|
*) |
54 |
|
|
MODEL convection_boundary REFINES radial_loss; |
55 |
|
|
h IS_A heat_transfer_coefficient; |
56 |
|
|
D_1, D_2 ARE_THE_SAME; |
57 |
johnpye |
617 |
|
58 |
|
|
(* heat loss is positive if T_1 > T_2 *) |
59 |
johnpye |
611 |
q = h * 1{PI} * D_1 * (T_1 - T_2); |
60 |
|
|
|
61 |
|
|
END convection_boundary; |
62 |
johnpye |
612 |
|
63 |
johnpye |
617 |
(** |
64 |
|
|
This modes a thick pipe with internal flow, surrounded by 100mm of |
65 |
|
|
insulation and a thin external metal shell. In other words, a fairly |
66 |
|
|
typical lagged high-temperature pipe as used in power and chemical plant |
67 |
|
|
applications. |
68 |
|
|
|
69 |
|
|
Solve the model, then examine the values of T_1 and T_2 for each layer. |
70 |
|
|
|
71 |
|
|
@TODO add ability to plot the temperature versus radial distance... |
72 |
|
|
*) |
73 |
johnpye |
612 |
MODEL pipe_test REFINES radial_loss; |
74 |
|
|
|
75 |
|
|
n IS_A integer_constant; |
76 |
|
|
n:==5; |
77 |
|
|
|
78 |
johnpye |
617 |
U IS_A heat_transfer_coefficient; |
79 |
|
|
q = U * (1{PI} * D_1) * (loss[1].T_2 - T_2); |
80 |
|
|
|
81 |
johnpye |
612 |
loss[1..5] IS_A radial_loss; |
82 |
|
|
|
83 |
|
|
loss[1] IS_REFINED_TO convection_boundary; |
84 |
|
|
loss[2] IS_REFINED_TO wall_conduction; |
85 |
|
|
loss[3] IS_REFINED_TO wall_conduction; |
86 |
|
|
loss[4] IS_REFINED_TO wall_conduction; |
87 |
|
|
loss[5] IS_REFINED_TO convection_boundary; |
88 |
|
|
|
89 |
|
|
L, loss[1..5].L ARE_THE_SAME; |
90 |
|
|
|
91 |
johnpye |
615 |
FOR i IN [2..n] CREATE |
92 |
johnpye |
611 |
(* layers are touching *) |
93 |
|
|
loss[i].D_1, loss[i-1].D_2 ARE_THE_SAME; |
94 |
johnpye |
612 |
|
95 |
|
|
(* steady state: heat rate is uniform *) |
96 |
johnpye |
615 |
loss[i].q,loss[i-1].q ARE_THE_SAME; |
97 |
|
|
|
98 |
johnpye |
616 |
loss[i].T_1, loss[i-1].T_2 ARE_THE_SAME; |
99 |
|
|
|
100 |
johnpye |
612 |
END FOR; |
101 |
|
|
|
102 |
johnpye |
616 |
loss[1].D_1, D_1 ARE_THE_SAME; |
103 |
johnpye |
615 |
loss[n].D_2, D_2 ARE_THE_SAME; |
104 |
|
|
|
105 |
johnpye |
616 |
loss[1].T_1, T_1 ARE_THE_SAME; |
106 |
|
|
loss[n].T_2, T_2 ARE_THE_SAME; |
107 |
johnpye |
615 |
|
108 |
johnpye |
616 |
loss[1].q, q ARE_THE_SAME; |
109 |
johnpye |
615 |
|
110 |
johnpye |
612 |
METHODS |
111 |
|
|
METHOD default_self; |
112 |
|
|
RUN reset; RUN values; |
113 |
|
|
END default_self; |
114 |
johnpye |
611 |
|
115 |
|
|
METHOD specify; |
116 |
|
|
FIX loss[1].h; |
117 |
|
|
FIX loss[2..4].k; |
118 |
johnpye |
616 |
FIX loss[5].h; |
119 |
|
|
FIX L; |
120 |
|
|
FIX T_1, T_2; |
121 |
johnpye |
611 |
|
122 |
johnpye |
615 |
FIX loss[2].D_1, loss[2].D_2; |
123 |
|
|
FIX loss[4].D_1, loss[4].D_2; |
124 |
johnpye |
611 |
END specify; |
125 |
|
|
|
126 |
johnpye |
615 |
METHOD values; |
127 |
johnpye |
616 |
L := 1 {m}; |
128 |
|
|
T_1 := 250 {K} + 273.15 {K}; |
129 |
|
|
T_2 := 25 {K} + 273.15 {K}; |
130 |
johnpye |
615 |
|
131 |
johnpye |
611 |
loss[1].h := 1000 {W/m^2/K}; |
132 |
|
|
loss[2].k := 40 {W/m/K}; (* 'alloy steel', Ashby & Jones, Eng Matls 2, p.11 *) |
133 |
|
|
loss[3].k := 0.05 {W/m/K}; (* Masud's figure for lagging *) |
134 |
|
|
loss[4].k := 240 {W/m/K}; (* aluminium, Ashby & Jones, Eng Matls 2, p.11 *) |
135 |
|
|
loss[5].h := 50 {W/m^2/K}; |
136 |
|
|
|
137 |
johnpye |
617 |
loss[2].D_1 := 0.05 {m}; (* pipe interior *) |
138 |
|
|
loss[2].D_2 := 0.07 {m}; (* pipe exterior *) |
139 |
johnpye |
611 |
loss[4].D_1 := 0.17 {m}; (* cover interior *) |
140 |
|
|
loss[4].D_2 := 0.19 {m}; (* cover exterior *) |
141 |
|
|
END values; |
142 |
johnpye |
612 |
END pipe_test; |