1 |
(* ASCEND model library |
2 |
Copyright (c) 2006 Carnegie Mellon University |
3 |
|
4 |
This program is free software; you can redistribute it |
5 |
and/or modify it under the terms of the GNU General Public |
6 |
License as published by the Free Software Foundation; either |
7 |
version 2 of the License, or (at your option) any later |
8 |
version. |
9 |
|
10 |
This program is distributed in the hope that it will be |
11 |
useful, but WITHOUT ANY WARRANTY; without even the implied |
12 |
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR |
13 |
PURPOSE. See the GNU General Public License for more |
14 |
details. |
15 |
|
16 |
You should have received a copy of the GNU General Public |
17 |
License along with this program; if not, write to the Free |
18 |
Software Foundation, Inc., 59 Temple Place, Suite 330, |
19 |
Boston, MA 02111-1307 USA |
20 |
*)(** |
21 |
This is a simple model for computing the |
22 |
steady-state temperature and heat loss profile |
23 |
of a multi-layered pipe-plus-insulation |
24 |
|
25 |
by John Pye |
26 |
*) |
27 |
|
28 |
REQUIRE "atoms.a4l"; |
29 |
REQUIRE "johnpye/thermo_types.a4c"; |
30 |
|
31 |
MODEL radial_loss; |
32 |
D_1 IS_A distance; |
33 |
D_2 IS_A distance; |
34 |
q IS_A energy_rate; |
35 |
L IS_A distance; |
36 |
T_1, T_2 IS_A temperature; |
37 |
METHODS |
38 |
METHOD specify; |
39 |
FIX D_1, D_2; |
40 |
END specify; |
41 |
END radial_loss; |
42 |
|
43 |
(* |
44 |
Wall conduction |
45 |
*) |
46 |
MODEL wall_conduction REFINES radial_loss; |
47 |
k IS_A thermal_conductivity; |
48 |
|
49 |
q = 2 * 1{PI} * L * k * (T_1 - T_2) / ln(D_2/D_1); |
50 |
|
51 |
END wall_conduction; |
52 |
|
53 |
(* |
54 |
Convection boundary |
55 |
*) |
56 |
MODEL convection_boundary REFINES radial_loss; |
57 |
h IS_A heat_transfer_coefficient; |
58 |
D_1, D_2 ARE_THE_SAME; |
59 |
|
60 |
(* heat loss is positive if T_1 > T_2 *) |
61 |
q = h * 1{PI} * D_1 * (T_1 - T_2); |
62 |
|
63 |
END convection_boundary; |
64 |
|
65 |
(** |
66 |
This modes a thick pipe with internal flow, surrounded by 100mm of |
67 |
insulation and a thin external metal shell. In other words, a fairly |
68 |
typical lagged high-temperature pipe as used in power and chemical plant |
69 |
applications. |
70 |
|
71 |
Solve the model, then examine the values of T_1 and T_2 for each layer. |
72 |
|
73 |
@TODO add ability to plot the temperature versus radial distance... |
74 |
*) |
75 |
MODEL pipe_test REFINES radial_loss; |
76 |
|
77 |
n IS_A integer_constant; |
78 |
n:==5; |
79 |
|
80 |
U IS_A heat_transfer_coefficient; |
81 |
q = U * (1{PI} * D_1) * (loss[1].T_2 - T_2); |
82 |
|
83 |
loss[1..5] IS_A radial_loss; |
84 |
|
85 |
loss[1] IS_REFINED_TO convection_boundary; |
86 |
loss[2] IS_REFINED_TO wall_conduction; |
87 |
loss[3] IS_REFINED_TO wall_conduction; |
88 |
loss[4] IS_REFINED_TO wall_conduction; |
89 |
loss[5] IS_REFINED_TO convection_boundary; |
90 |
|
91 |
L, loss[1..5].L ARE_THE_SAME; |
92 |
|
93 |
FOR i IN [2..n] CREATE |
94 |
(* layers are touching *) |
95 |
loss[i].D_1, loss[i-1].D_2 ARE_THE_SAME; |
96 |
|
97 |
(* steady state: heat rate is uniform *) |
98 |
loss[i].q,loss[i-1].q ARE_THE_SAME; |
99 |
|
100 |
loss[i].T_1, loss[i-1].T_2 ARE_THE_SAME; |
101 |
|
102 |
END FOR; |
103 |
|
104 |
loss[1].D_1, D_1 ARE_THE_SAME; |
105 |
loss[n].D_2, D_2 ARE_THE_SAME; |
106 |
|
107 |
loss[1].T_1, T_1 ARE_THE_SAME; |
108 |
loss[n].T_2, T_2 ARE_THE_SAME; |
109 |
|
110 |
loss[1].q, q ARE_THE_SAME; |
111 |
|
112 |
METHODS |
113 |
METHOD default_self; |
114 |
RUN reset; RUN values; |
115 |
END default_self; |
116 |
|
117 |
METHOD specify; |
118 |
FIX loss[1].h; |
119 |
FIX loss[2..4].k; |
120 |
FIX loss[5].h; |
121 |
FIX L; |
122 |
FIX T_1, T_2; |
123 |
|
124 |
FIX loss[2].D_1, loss[2].D_2; |
125 |
FIX loss[4].D_1, loss[4].D_2; |
126 |
END specify; |
127 |
|
128 |
METHOD values; |
129 |
L := 1 {m}; |
130 |
T_1 := 250 {K} + 273.15 {K}; |
131 |
T_2 := 25 {K} + 273.15 {K}; |
132 |
|
133 |
loss[1].h := 1000 {W/m^2/K}; |
134 |
loss[2].k := 40 {W/m/K}; (* 'alloy steel', Ashby & Jones, Eng Matls 2, p.11 *) |
135 |
loss[3].k := 0.05 {W/m/K}; (* Masud's figure for lagging *) |
136 |
loss[4].k := 240 {W/m/K}; (* aluminium, Ashby & Jones, Eng Matls 2, p.11 *) |
137 |
loss[5].h := 50 {W/m^2/K}; |
138 |
|
139 |
loss[2].D_1 := 0.05 {m}; (* pipe interior *) |
140 |
loss[2].D_2 := 0.07 {m}; (* pipe exterior *) |
141 |
loss[4].D_1 := 0.17 {m}; (* cover interior *) |
142 |
loss[4].D_2 := 0.19 {m}; (* cover exterior *) |
143 |
END values; |
144 |
END pipe_test; |