1 |
johnpye |
611 |
(* ASCEND model library |
2 |
|
|
Copyright (c) 2006 Carnegie Mellon University |
3 |
|
|
|
4 |
|
|
This program is free software; you can redistribute it |
5 |
|
|
and/or modify it under the terms of the GNU General Public |
6 |
|
|
License as published by the Free Software Foundation; either |
7 |
|
|
version 2 of the License, or (at your option) any later |
8 |
|
|
version. |
9 |
|
|
|
10 |
|
|
This program is distributed in the hope that it will be |
11 |
|
|
useful, but WITHOUT ANY WARRANTY; without even the implied |
12 |
|
|
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR |
13 |
|
|
PURPOSE. See the GNU General Public License for more |
14 |
|
|
details. |
15 |
|
|
|
16 |
|
|
You should have received a copy of the GNU General Public |
17 |
|
|
License along with this program; if not, write to the Free |
18 |
|
|
Software Foundation, Inc., 59 Temple Place, Suite 330, |
19 |
|
|
Boston, MA 02111-1307 USA |
20 |
|
|
*)(** |
21 |
|
|
This is a simple model for computing the |
22 |
|
|
steady-state temperature and heat loss profile |
23 |
|
|
of a multi-layered pipe-plus-insulation |
24 |
|
|
|
25 |
|
|
by John Pye |
26 |
|
|
*) |
27 |
|
|
|
28 |
|
|
REQUIRE "atoms.a4l"; |
29 |
|
|
REQUIRE "johnpye/thermo_types.a4c"; |
30 |
|
|
|
31 |
|
|
MODEL radial_loss; |
32 |
|
|
D_1 IS_A distance; |
33 |
|
|
D_2 IS_A distance; |
34 |
|
|
q IS_A energy_rate; |
35 |
|
|
L IS_A distance; |
36 |
|
|
T_1, T_2 IS_A temperature; |
37 |
|
|
METHODS |
38 |
|
|
METHOD specify; |
39 |
|
|
FIX D_1, D_2; |
40 |
|
|
END specify; |
41 |
|
|
END radial_loss; |
42 |
|
|
|
43 |
|
|
(* |
44 |
|
|
Wall conduction |
45 |
|
|
*) |
46 |
|
|
MODEL wall_conduction REFINES radial_loss; |
47 |
|
|
k IS_A thermal_conductivity; |
48 |
|
|
|
49 |
|
|
q = 2 * 1{PI} * L * k *(T_1 - T_2) / ln(D_2/D_1); |
50 |
|
|
|
51 |
|
|
END wall_conduction; |
52 |
|
|
|
53 |
|
|
(* |
54 |
|
|
Convection boundary |
55 |
|
|
*) |
56 |
|
|
MODEL convection_boundary REFINES radial_loss; |
57 |
|
|
h IS_A heat_transfer_coefficient; |
58 |
|
|
D_1, D_2 ARE_THE_SAME; |
59 |
|
|
|
60 |
|
|
q = h * 1{PI} * D_1 * (T_1 - T_2); |
61 |
|
|
|
62 |
|
|
END convection_boundary; |
63 |
johnpye |
612 |
|
64 |
|
|
MODEL pipe_test REFINES radial_loss; |
65 |
|
|
|
66 |
|
|
n IS_A integer_constant; |
67 |
|
|
n:==5; |
68 |
|
|
|
69 |
|
|
loss[1..5] IS_A radial_loss; |
70 |
|
|
|
71 |
|
|
loss[1] IS_REFINED_TO convection_boundary; |
72 |
|
|
loss[2] IS_REFINED_TO wall_conduction; |
73 |
|
|
loss[3] IS_REFINED_TO wall_conduction; |
74 |
|
|
loss[4] IS_REFINED_TO wall_conduction; |
75 |
|
|
loss[5] IS_REFINED_TO convection_boundary; |
76 |
|
|
|
77 |
|
|
L, loss[1..5].L ARE_THE_SAME; |
78 |
|
|
|
79 |
johnpye |
611 |
FOR i IN [1..n] CREATE |
80 |
|
|
(* layers are touching *) |
81 |
|
|
loss[i].D_1, loss[i-1].D_2 ARE_THE_SAME; |
82 |
johnpye |
612 |
|
83 |
|
|
(* steady state: heat rate is uniform *) |
84 |
johnpye |
611 |
loss[i].q,loss[i-1].q ARE_THE_SAME; |
85 |
johnpye |
612 |
END FOR; |
86 |
|
|
|
87 |
|
|
METHODS |
88 |
|
|
METHOD default_self; |
89 |
|
|
RUN reset; RUN values; |
90 |
|
|
END default_self; |
91 |
johnpye |
611 |
|
92 |
|
|
METHOD specify; |
93 |
|
|
FIX loss[1].h; |
94 |
|
|
FIX loss[2..4].k; |
95 |
|
|
FIX loss[5].h; |
96 |
|
|
|
97 |
|
|
FIX loss[1,3,5].D_1; |
98 |
|
|
END specify; |
99 |
|
|
|
100 |
|
|
METHOD values; |
101 |
|
|
loss[1].h := 1000 {W/m^2/K}; |
102 |
|
|
loss[2].k := 40 {W/m/K}; (* 'alloy steel', Ashby & Jones, Eng Matls 2, p.11 *) |
103 |
|
|
loss[3].k := 0.05 {W/m/K}; (* Masud's figure for lagging *) |
104 |
|
|
loss[4].k := 240 {W/m/K}; (* aluminium, Ashby & Jones, Eng Matls 2, p.11 *) |
105 |
|
|
loss[5].h := 50 {W/m^2/K}; |
106 |
|
|
|
107 |
|
|
loss[1].D_1 := 0.05 {m}; (* pipe interior *) |
108 |
|
|
loss[1].D_2 := 0.07 {m}; (* pipe exterior *) |
109 |
|
|
loss[4].D_1 := 0.17 {m}; (* cover interior *) |
110 |
|
|
loss[4].D_2 := 0.19 {m}; (* cover exterior *) |
111 |
|
|
END values; |
112 |
johnpye |
612 |
END pipe_test; |