1 |
|
2 |
///////////////////////////////////////////// |
3 |
// Solar Position Algorithm (SPA) // |
4 |
// for // |
5 |
// Solar Radiation Application // |
6 |
// // |
7 |
// May 12, 2003 // |
8 |
// // |
9 |
// Filename: SPA.C // |
10 |
// // |
11 |
// Afshin Michael Andreas // |
12 |
// Afshin.Andreas@NREL.gov (303)384-6383 // |
13 |
// // |
14 |
// Measurement & Instrumentation Team // |
15 |
// Solar Radiation Research Laboratory // |
16 |
// National Renewable Energy Laboratory // |
17 |
// 1617 Cole Blvd, Golden, CO 80401 // |
18 |
///////////////////////////////////////////// |
19 |
|
20 |
///////////////////////////////////////////// |
21 |
// See the SPA.H header file for usage // |
22 |
// // |
23 |
// This code is based on the NREL // |
24 |
// technical report "Solar Position // |
25 |
// Algorithm for Solar Radiation // |
26 |
// Application" by I. Reda & A. Andreas // |
27 |
///////////////////////////////////////////// |
28 |
|
29 |
/////////////////////////////////////////////////////////////////////////////////////////////// |
30 |
// |
31 |
// NOTICE |
32 |
// Copyright (C) 2008-2011 Alliance for Sustainable Energy, LLC, All Rights Reserved |
33 |
// |
34 |
//The Solar Position Algorithm ("Software") is code in development prepared by employees of the |
35 |
//Alliance for Sustainable Energy, LLC, (hereinafter the "Contractor"), under Contract No. |
36 |
//DE-AC36-08GO28308 ("Contract") with the U.S. Department of Energy (the "DOE"). The United |
37 |
//States Government has been granted for itself and others acting on its behalf a paid-up, non- |
38 |
//exclusive, irrevocable, worldwide license in the Software to reproduce, prepare derivative |
39 |
//works, and perform publicly and display publicly. Beginning five (5) years after the date |
40 |
//permission to assert copyright is obtained from the DOE, and subject to any subsequent five |
41 |
//(5) year renewals, the United States Government is granted for itself and others acting on |
42 |
//its behalf a paid-up, non-exclusive, irrevocable, worldwide license in the Software to |
43 |
//reproduce, prepare derivative works, distribute copies to the public, perform publicly and |
44 |
//display publicly, and to permit others to do so. If the Contractor ceases to make this |
45 |
//computer software available, it may be obtained from DOE's Office of Scientific and Technical |
46 |
//Information's Energy Science and Technology Software Center (ESTSC) at P.O. Box 1020, Oak |
47 |
//Ridge, TN 37831-1020. THIS SOFTWARE IS PROVIDED BY THE CONTRACTOR "AS IS" AND ANY EXPRESS OR |
48 |
//IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY |
49 |
//AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE CONTRACTOR OR THE |
50 |
//U.S. GOVERNMENT BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
51 |
//WHATSOEVER, INCLUDING BUT NOT LIMITED TO CLAIMS ASSOCIATED WITH THE LOSS OF DATA OR PROFITS, |
52 |
//WHICH MAY RESULT FROM AN ACTION IN CONTRACT, NEGLIGENCE OR OTHER TORTIOUS CLAIM THAT ARISES |
53 |
//OUT OF OR IN CONNECTION WITH THE ACCESS, USE OR PERFORMANCE OF THIS SOFTWARE. |
54 |
// |
55 |
//The Software is being provided for internal, noncommercial purposes only and shall not be |
56 |
//re-distributed. Please contact Anne Miller (Anne.Miller@nrel.gov) in the NREL |
57 |
//Commercialization and Technology Transfer Office for information concerning a commercial |
58 |
//license to use the Software. |
59 |
// |
60 |
//As a condition of using the Software in an application, the developer of the application |
61 |
//agrees to reference the use of the Software and make this Notice readily accessible to any |
62 |
//end-user in a Help|About screen or equivalent manner. |
63 |
// |
64 |
/////////////////////////////////////////////////////////////////////////////////////////////// |
65 |
|
66 |
/////////////////////////////////////////////////////////////////////////////////////////////// |
67 |
// Revised 27-FEB-2004 Andreas |
68 |
// Added bounds check on inputs and return value for spa_calculate(). |
69 |
// Revised 10-MAY-2004 Andreas |
70 |
// Changed temperature bound check minimum from -273.15 to -273 degrees C. |
71 |
// Revised 17-JUN-2004 Andreas |
72 |
// Corrected a problem that caused a bogus sunrise/set/transit on the equinox. |
73 |
// Revised 18-JUN-2004 Andreas |
74 |
// Added a "function" input variable that allows the selecting of desired outputs. |
75 |
// Revised 21-JUN-2004 Andreas |
76 |
// Added 3 new intermediate output values to SPA structure (srha, ssha, & sta). |
77 |
// Revised 23-JUN-2004 Andreas |
78 |
// Enumerations for "function" were renamed and 2 were added. |
79 |
// Prevented bound checks on inputs that are not used (based on function). |
80 |
// Revised 01-SEP-2004 Andreas |
81 |
// Changed a local variable from integer to double. |
82 |
// Revised 12-JUL-2005 Andreas |
83 |
// Put a limit on the EOT calculation, so that the result is between -20 and 20. |
84 |
// Revised 26-OCT-2005 Andreas |
85 |
// Set the atmos. refraction correction to zero, when sun is below horizon. |
86 |
// Made atmos_refract input a requirement for all "functions". |
87 |
// Changed atmos_refract bound check from +/- 10 to +/- 5 degrees. |
88 |
// Revised 07-NOV-2006 Andreas |
89 |
// Corrected 3 earth periodic terms in the L_TERMS array. |
90 |
// Corrected 2 earth periodic terms in the R_TERMS array. |
91 |
// Revised 10-NOV-2006 Andreas |
92 |
// Corrected a constant used to calculate topocentric sun declination. |
93 |
// Put a limit on observer hour angle, so result is between 0 and 360. |
94 |
// Revised 13-NOV-2006 Andreas |
95 |
// Corrected calculation of topocentric sun declination. |
96 |
// Converted all floating point inputs in spa structure to doubles. |
97 |
// Revised 27-FEB-2007 Andreas |
98 |
// Minor correction made as to when atmos. refraction correction is set to zero. |
99 |
// Revised 21-JAN-2008 Andreas |
100 |
// Minor change to two variable declarations. |
101 |
// Revised 12-JAN-2009 Andreas |
102 |
// Changed timezone bound check from +/-12 to +/-18 hours. |
103 |
// Revised 14-JAN-2009 Andreas |
104 |
// Corrected a constant used to calculate ecliptic mean obliquity. |
105 |
/////////////////////////////////////////////////////////////////////////////////////////////// |
106 |
|
107 |
#include <math.h> |
108 |
#include "spa.h" |
109 |
|
110 |
#define PI 3.1415926535897932384626433832795028841971 |
111 |
#define SUN_RADIUS 0.26667 |
112 |
|
113 |
#define L_COUNT 6 |
114 |
#define B_COUNT 2 |
115 |
#define R_COUNT 5 |
116 |
#define Y_COUNT 63 |
117 |
|
118 |
#define L_MAX_SUBCOUNT 64 |
119 |
#define B_MAX_SUBCOUNT 5 |
120 |
#define R_MAX_SUBCOUNT 40 |
121 |
|
122 |
enum {TERM_A, TERM_B, TERM_C, TERM_COUNT}; |
123 |
enum {TERM_X0, TERM_X1, TERM_X2, TERM_X3, TERM_X4, TERM_X_COUNT}; |
124 |
enum {TERM_PSI_A, TERM_PSI_B, TERM_EPS_C, TERM_EPS_D, TERM_PE_COUNT}; |
125 |
enum {JD_MINUS, JD_ZERO, JD_PLUS, JD_COUNT}; |
126 |
enum {SUN_TRANSIT, SUN_RISE, SUN_SET, SUN_COUNT}; |
127 |
|
128 |
#define TERM_Y_COUNT TERM_X_COUNT |
129 |
|
130 |
const int l_subcount[L_COUNT] = {64,34,20,7,3,1}; |
131 |
const int b_subcount[B_COUNT] = {5,2}; |
132 |
const int r_subcount[R_COUNT] = {40,10,6,2,1}; |
133 |
|
134 |
/////////////////////////////////////////////////// |
135 |
/// Earth Periodic Terms |
136 |
/////////////////////////////////////////////////// |
137 |
const double L_TERMS[L_COUNT][L_MAX_SUBCOUNT][TERM_COUNT]= |
138 |
{ |
139 |
{ |
140 |
{175347046.0,0,0}, |
141 |
{3341656.0,4.6692568,6283.07585}, |
142 |
{34894.0,4.6261,12566.1517}, |
143 |
{3497.0,2.7441,5753.3849}, |
144 |
{3418.0,2.8289,3.5231}, |
145 |
{3136.0,3.6277,77713.7715}, |
146 |
{2676.0,4.4181,7860.4194}, |
147 |
{2343.0,6.1352,3930.2097}, |
148 |
{1324.0,0.7425,11506.7698}, |
149 |
{1273.0,2.0371,529.691}, |
150 |
{1199.0,1.1096,1577.3435}, |
151 |
{990,5.233,5884.927}, |
152 |
{902,2.045,26.298}, |
153 |
{857,3.508,398.149}, |
154 |
{780,1.179,5223.694}, |
155 |
{753,2.533,5507.553}, |
156 |
{505,4.583,18849.228}, |
157 |
{492,4.205,775.523}, |
158 |
{357,2.92,0.067}, |
159 |
{317,5.849,11790.629}, |
160 |
{284,1.899,796.298}, |
161 |
{271,0.315,10977.079}, |
162 |
{243,0.345,5486.778}, |
163 |
{206,4.806,2544.314}, |
164 |
{205,1.869,5573.143}, |
165 |
{202,2.458,6069.777}, |
166 |
{156,0.833,213.299}, |
167 |
{132,3.411,2942.463}, |
168 |
{126,1.083,20.775}, |
169 |
{115,0.645,0.98}, |
170 |
{103,0.636,4694.003}, |
171 |
{102,0.976,15720.839}, |
172 |
{102,4.267,7.114}, |
173 |
{99,6.21,2146.17}, |
174 |
{98,0.68,155.42}, |
175 |
{86,5.98,161000.69}, |
176 |
{85,1.3,6275.96}, |
177 |
{85,3.67,71430.7}, |
178 |
{80,1.81,17260.15}, |
179 |
{79,3.04,12036.46}, |
180 |
{75,1.76,5088.63}, |
181 |
{74,3.5,3154.69}, |
182 |
{74,4.68,801.82}, |
183 |
{70,0.83,9437.76}, |
184 |
{62,3.98,8827.39}, |
185 |
{61,1.82,7084.9}, |
186 |
{57,2.78,6286.6}, |
187 |
{56,4.39,14143.5}, |
188 |
{56,3.47,6279.55}, |
189 |
{52,0.19,12139.55}, |
190 |
{52,1.33,1748.02}, |
191 |
{51,0.28,5856.48}, |
192 |
{49,0.49,1194.45}, |
193 |
{41,5.37,8429.24}, |
194 |
{41,2.4,19651.05}, |
195 |
{39,6.17,10447.39}, |
196 |
{37,6.04,10213.29}, |
197 |
{37,2.57,1059.38}, |
198 |
{36,1.71,2352.87}, |
199 |
{36,1.78,6812.77}, |
200 |
{33,0.59,17789.85}, |
201 |
{30,0.44,83996.85}, |
202 |
{30,2.74,1349.87}, |
203 |
{25,3.16,4690.48} |
204 |
}, |
205 |
{ |
206 |
{628331966747.0,0,0}, |
207 |
{206059.0,2.678235,6283.07585}, |
208 |
{4303.0,2.6351,12566.1517}, |
209 |
{425.0,1.59,3.523}, |
210 |
{119.0,5.796,26.298}, |
211 |
{109.0,2.966,1577.344}, |
212 |
{93,2.59,18849.23}, |
213 |
{72,1.14,529.69}, |
214 |
{68,1.87,398.15}, |
215 |
{67,4.41,5507.55}, |
216 |
{59,2.89,5223.69}, |
217 |
{56,2.17,155.42}, |
218 |
{45,0.4,796.3}, |
219 |
{36,0.47,775.52}, |
220 |
{29,2.65,7.11}, |
221 |
{21,5.34,0.98}, |
222 |
{19,1.85,5486.78}, |
223 |
{19,4.97,213.3}, |
224 |
{17,2.99,6275.96}, |
225 |
{16,0.03,2544.31}, |
226 |
{16,1.43,2146.17}, |
227 |
{15,1.21,10977.08}, |
228 |
{12,2.83,1748.02}, |
229 |
{12,3.26,5088.63}, |
230 |
{12,5.27,1194.45}, |
231 |
{12,2.08,4694}, |
232 |
{11,0.77,553.57}, |
233 |
{10,1.3,6286.6}, |
234 |
{10,4.24,1349.87}, |
235 |
{9,2.7,242.73}, |
236 |
{9,5.64,951.72}, |
237 |
{8,5.3,2352.87}, |
238 |
{6,2.65,9437.76}, |
239 |
{6,4.67,4690.48} |
240 |
}, |
241 |
{ |
242 |
{52919.0,0,0}, |
243 |
{8720.0,1.0721,6283.0758}, |
244 |
{309.0,0.867,12566.152}, |
245 |
{27,0.05,3.52}, |
246 |
{16,5.19,26.3}, |
247 |
{16,3.68,155.42}, |
248 |
{10,0.76,18849.23}, |
249 |
{9,2.06,77713.77}, |
250 |
{7,0.83,775.52}, |
251 |
{5,4.66,1577.34}, |
252 |
{4,1.03,7.11}, |
253 |
{4,3.44,5573.14}, |
254 |
{3,5.14,796.3}, |
255 |
{3,6.05,5507.55}, |
256 |
{3,1.19,242.73}, |
257 |
{3,6.12,529.69}, |
258 |
{3,0.31,398.15}, |
259 |
{3,2.28,553.57}, |
260 |
{2,4.38,5223.69}, |
261 |
{2,3.75,0.98} |
262 |
}, |
263 |
{ |
264 |
{289.0,5.844,6283.076}, |
265 |
{35,0,0}, |
266 |
{17,5.49,12566.15}, |
267 |
{3,5.2,155.42}, |
268 |
{1,4.72,3.52}, |
269 |
{1,5.3,18849.23}, |
270 |
{1,5.97,242.73} |
271 |
}, |
272 |
{ |
273 |
{114.0,3.142,0}, |
274 |
{8,4.13,6283.08}, |
275 |
{1,3.84,12566.15} |
276 |
}, |
277 |
{ |
278 |
{1,3.14,0} |
279 |
} |
280 |
}; |
281 |
|
282 |
const double B_TERMS[B_COUNT][B_MAX_SUBCOUNT][TERM_COUNT]= |
283 |
{ |
284 |
{ |
285 |
{280.0,3.199,84334.662}, |
286 |
{102.0,5.422,5507.553}, |
287 |
{80,3.88,5223.69}, |
288 |
{44,3.7,2352.87}, |
289 |
{32,4,1577.34} |
290 |
}, |
291 |
{ |
292 |
{9,3.9,5507.55}, |
293 |
{6,1.73,5223.69} |
294 |
} |
295 |
}; |
296 |
|
297 |
const double R_TERMS[R_COUNT][R_MAX_SUBCOUNT][TERM_COUNT]= |
298 |
{ |
299 |
{ |
300 |
{100013989.0,0,0}, |
301 |
{1670700.0,3.0984635,6283.07585}, |
302 |
{13956.0,3.05525,12566.1517}, |
303 |
{3084.0,5.1985,77713.7715}, |
304 |
{1628.0,1.1739,5753.3849}, |
305 |
{1576.0,2.8469,7860.4194}, |
306 |
{925.0,5.453,11506.77}, |
307 |
{542.0,4.564,3930.21}, |
308 |
{472.0,3.661,5884.927}, |
309 |
{346.0,0.964,5507.553}, |
310 |
{329.0,5.9,5223.694}, |
311 |
{307.0,0.299,5573.143}, |
312 |
{243.0,4.273,11790.629}, |
313 |
{212.0,5.847,1577.344}, |
314 |
{186.0,5.022,10977.079}, |
315 |
{175.0,3.012,18849.228}, |
316 |
{110.0,5.055,5486.778}, |
317 |
{98,0.89,6069.78}, |
318 |
{86,5.69,15720.84}, |
319 |
{86,1.27,161000.69}, |
320 |
{65,0.27,17260.15}, |
321 |
{63,0.92,529.69}, |
322 |
{57,2.01,83996.85}, |
323 |
{56,5.24,71430.7}, |
324 |
{49,3.25,2544.31}, |
325 |
{47,2.58,775.52}, |
326 |
{45,5.54,9437.76}, |
327 |
{43,6.01,6275.96}, |
328 |
{39,5.36,4694}, |
329 |
{38,2.39,8827.39}, |
330 |
{37,0.83,19651.05}, |
331 |
{37,4.9,12139.55}, |
332 |
{36,1.67,12036.46}, |
333 |
{35,1.84,2942.46}, |
334 |
{33,0.24,7084.9}, |
335 |
{32,0.18,5088.63}, |
336 |
{32,1.78,398.15}, |
337 |
{28,1.21,6286.6}, |
338 |
{28,1.9,6279.55}, |
339 |
{26,4.59,10447.39} |
340 |
}, |
341 |
{ |
342 |
{103019.0,1.10749,6283.07585}, |
343 |
{1721.0,1.0644,12566.1517}, |
344 |
{702.0,3.142,0}, |
345 |
{32,1.02,18849.23}, |
346 |
{31,2.84,5507.55}, |
347 |
{25,1.32,5223.69}, |
348 |
{18,1.42,1577.34}, |
349 |
{10,5.91,10977.08}, |
350 |
{9,1.42,6275.96}, |
351 |
{9,0.27,5486.78} |
352 |
}, |
353 |
{ |
354 |
{4359.0,5.7846,6283.0758}, |
355 |
{124.0,5.579,12566.152}, |
356 |
{12,3.14,0}, |
357 |
{9,3.63,77713.77}, |
358 |
{6,1.87,5573.14}, |
359 |
{3,5.47,18849.23} |
360 |
}, |
361 |
{ |
362 |
{145.0,4.273,6283.076}, |
363 |
{7,3.92,12566.15} |
364 |
}, |
365 |
{ |
366 |
{4,2.56,6283.08} |
367 |
} |
368 |
}; |
369 |
|
370 |
//////////////////////////////////////////////////////////////// |
371 |
/// Periodic Terms for the nutation in longitude and obliquity |
372 |
//////////////////////////////////////////////////////////////// |
373 |
|
374 |
const int Y_TERMS[Y_COUNT][TERM_Y_COUNT]= |
375 |
{ |
376 |
{0,0,0,0,1}, |
377 |
{-2,0,0,2,2}, |
378 |
{0,0,0,2,2}, |
379 |
{0,0,0,0,2}, |
380 |
{0,1,0,0,0}, |
381 |
{0,0,1,0,0}, |
382 |
{-2,1,0,2,2}, |
383 |
{0,0,0,2,1}, |
384 |
{0,0,1,2,2}, |
385 |
{-2,-1,0,2,2}, |
386 |
{-2,0,1,0,0}, |
387 |
{-2,0,0,2,1}, |
388 |
{0,0,-1,2,2}, |
389 |
{2,0,0,0,0}, |
390 |
{0,0,1,0,1}, |
391 |
{2,0,-1,2,2}, |
392 |
{0,0,-1,0,1}, |
393 |
{0,0,1,2,1}, |
394 |
{-2,0,2,0,0}, |
395 |
{0,0,-2,2,1}, |
396 |
{2,0,0,2,2}, |
397 |
{0,0,2,2,2}, |
398 |
{0,0,2,0,0}, |
399 |
{-2,0,1,2,2}, |
400 |
{0,0,0,2,0}, |
401 |
{-2,0,0,2,0}, |
402 |
{0,0,-1,2,1}, |
403 |
{0,2,0,0,0}, |
404 |
{2,0,-1,0,1}, |
405 |
{-2,2,0,2,2}, |
406 |
{0,1,0,0,1}, |
407 |
{-2,0,1,0,1}, |
408 |
{0,-1,0,0,1}, |
409 |
{0,0,2,-2,0}, |
410 |
{2,0,-1,2,1}, |
411 |
{2,0,1,2,2}, |
412 |
{0,1,0,2,2}, |
413 |
{-2,1,1,0,0}, |
414 |
{0,-1,0,2,2}, |
415 |
{2,0,0,2,1}, |
416 |
{2,0,1,0,0}, |
417 |
{-2,0,2,2,2}, |
418 |
{-2,0,1,2,1}, |
419 |
{2,0,-2,0,1}, |
420 |
{2,0,0,0,1}, |
421 |
{0,-1,1,0,0}, |
422 |
{-2,-1,0,2,1}, |
423 |
{-2,0,0,0,1}, |
424 |
{0,0,2,2,1}, |
425 |
{-2,0,2,0,1}, |
426 |
{-2,1,0,2,1}, |
427 |
{0,0,1,-2,0}, |
428 |
{-1,0,1,0,0}, |
429 |
{-2,1,0,0,0}, |
430 |
{1,0,0,0,0}, |
431 |
{0,0,1,2,0}, |
432 |
{0,0,-2,2,2}, |
433 |
{-1,-1,1,0,0}, |
434 |
{0,1,1,0,0}, |
435 |
{0,-1,1,2,2}, |
436 |
{2,-1,-1,2,2}, |
437 |
{0,0,3,2,2}, |
438 |
{2,-1,0,2,2}, |
439 |
}; |
440 |
|
441 |
const double PE_TERMS[Y_COUNT][TERM_PE_COUNT]={ |
442 |
{-171996,-174.2,92025,8.9}, |
443 |
{-13187,-1.6,5736,-3.1}, |
444 |
{-2274,-0.2,977,-0.5}, |
445 |
{2062,0.2,-895,0.5}, |
446 |
{1426,-3.4,54,-0.1}, |
447 |
{712,0.1,-7,0}, |
448 |
{-517,1.2,224,-0.6}, |
449 |
{-386,-0.4,200,0}, |
450 |
{-301,0,129,-0.1}, |
451 |
{217,-0.5,-95,0.3}, |
452 |
{-158,0,0,0}, |
453 |
{129,0.1,-70,0}, |
454 |
{123,0,-53,0}, |
455 |
{63,0,0,0}, |
456 |
{63,0.1,-33,0}, |
457 |
{-59,0,26,0}, |
458 |
{-58,-0.1,32,0}, |
459 |
{-51,0,27,0}, |
460 |
{48,0,0,0}, |
461 |
{46,0,-24,0}, |
462 |
{-38,0,16,0}, |
463 |
{-31,0,13,0}, |
464 |
{29,0,0,0}, |
465 |
{29,0,-12,0}, |
466 |
{26,0,0,0}, |
467 |
{-22,0,0,0}, |
468 |
{21,0,-10,0}, |
469 |
{17,-0.1,0,0}, |
470 |
{16,0,-8,0}, |
471 |
{-16,0.1,7,0}, |
472 |
{-15,0,9,0}, |
473 |
{-13,0,7,0}, |
474 |
{-12,0,6,0}, |
475 |
{11,0,0,0}, |
476 |
{-10,0,5,0}, |
477 |
{-8,0,3,0}, |
478 |
{7,0,-3,0}, |
479 |
{-7,0,0,0}, |
480 |
{-7,0,3,0}, |
481 |
{-7,0,3,0}, |
482 |
{6,0,0,0}, |
483 |
{6,0,-3,0}, |
484 |
{6,0,-3,0}, |
485 |
{-6,0,3,0}, |
486 |
{-6,0,3,0}, |
487 |
{5,0,0,0}, |
488 |
{-5,0,3,0}, |
489 |
{-5,0,3,0}, |
490 |
{-5,0,3,0}, |
491 |
{4,0,0,0}, |
492 |
{4,0,0,0}, |
493 |
{4,0,0,0}, |
494 |
{-4,0,0,0}, |
495 |
{-4,0,0,0}, |
496 |
{-4,0,0,0}, |
497 |
{3,0,0,0}, |
498 |
{-3,0,0,0}, |
499 |
{-3,0,0,0}, |
500 |
{-3,0,0,0}, |
501 |
{-3,0,0,0}, |
502 |
{-3,0,0,0}, |
503 |
{-3,0,0,0}, |
504 |
{-3,0,0,0}, |
505 |
}; |
506 |
|
507 |
/////////////////////////////////////////////// |
508 |
|
509 |
double rad2deg(double radians) |
510 |
{ |
511 |
return (180.0/PI)*radians; |
512 |
} |
513 |
|
514 |
double deg2rad(double degrees) |
515 |
{ |
516 |
return (PI/180.0)*degrees; |
517 |
} |
518 |
|
519 |
double limit_degrees(double degrees) |
520 |
{ |
521 |
double limited; |
522 |
|
523 |
degrees /= 360.0; |
524 |
limited = 360.0*(degrees-floor(degrees)); |
525 |
if (limited < 0) limited += 360.0; |
526 |
|
527 |
return limited; |
528 |
} |
529 |
|
530 |
double limit_degrees180pm(double degrees) |
531 |
{ |
532 |
double limited; |
533 |
|
534 |
degrees /= 360.0; |
535 |
limited = 360.0*(degrees-floor(degrees)); |
536 |
if (limited < -180.0) limited += 360.0; |
537 |
else if (limited > 180.0) limited -= 360.0; |
538 |
|
539 |
return limited; |
540 |
} |
541 |
|
542 |
double limit_degrees180(double degrees) |
543 |
{ |
544 |
double limited; |
545 |
|
546 |
degrees /= 180.0; |
547 |
limited = 180.0*(degrees-floor(degrees)); |
548 |
if (limited < 0) limited += 180.0; |
549 |
|
550 |
return limited; |
551 |
} |
552 |
|
553 |
double limit_zero2one(double value) |
554 |
{ |
555 |
double limited; |
556 |
|
557 |
limited = value - floor(value); |
558 |
if (limited < 0) limited += 1.0; |
559 |
|
560 |
return limited; |
561 |
} |
562 |
|
563 |
double limit_minutes(double minutes) |
564 |
{ |
565 |
double limited=minutes; |
566 |
|
567 |
if (limited < -20.0) limited += 1440.0; |
568 |
else if (limited > 20.0) limited -= 1440.0; |
569 |
|
570 |
return limited; |
571 |
} |
572 |
|
573 |
double dayfrac_to_local_hr(double dayfrac, double timezone) |
574 |
{ |
575 |
return 24.0*limit_zero2one(dayfrac + timezone/24.0); |
576 |
} |
577 |
|
578 |
double third_order_polynomial(double a, double b, double c, double d, double x) |
579 |
{ |
580 |
return ((a*x + b)*x + c)*x + d; |
581 |
} |
582 |
|
583 |
/////////////////////////////////////////////////////////////////////////////////////////////// |
584 |
int validate_inputs(spa_data *spa) |
585 |
{ |
586 |
if ((spa->year < -2000) || (spa->year > 6000)) return 1; |
587 |
if ((spa->month < 1 ) || (spa->month > 12 )) return 2; |
588 |
if ((spa->day < 1 ) || (spa->day > 31 )) return 3; |
589 |
if ((spa->hour < 0 ) || (spa->hour > 24 )) return 4; |
590 |
if ((spa->minute < 0 ) || (spa->minute > 59 )) return 5; |
591 |
if ((spa->second < 0 ) || (spa->second > 59 )) return 6; |
592 |
if ((spa->pressure < 0 ) || (spa->pressure > 5000)) return 12; |
593 |
if ((spa->temperature <= -273) || (spa->temperature > 6000)) return 13; |
594 |
if ((spa->hour == 24 ) && (spa->minute > 0 )) return 5; |
595 |
if ((spa->hour == 24 ) && (spa->second > 0 )) return 6; |
596 |
|
597 |
if (fabs(spa->delta_t) > 8000 ) return 7; |
598 |
if (fabs(spa->timezone) > 18 ) return 8; |
599 |
if (fabs(spa->longitude) > 180 ) return 9; |
600 |
if (fabs(spa->latitude) > 90 ) return 10; |
601 |
if (fabs(spa->atmos_refract) > 5 ) return 16; |
602 |
if ( spa->elevation < -6500000) return 11; |
603 |
|
604 |
if ((spa->function == SPA_ZA_INC) || (spa->function == SPA_ALL)) |
605 |
{ |
606 |
if (fabs(spa->slope) > 360) return 14; |
607 |
if (fabs(spa->azm_rotation) > 360) return 15; |
608 |
} |
609 |
|
610 |
return 0; |
611 |
} |
612 |
/////////////////////////////////////////////////////////////////////////////////////////////// |
613 |
double julian_day (int year, int month, int day, int hour, int minute, int second, double tz) |
614 |
{ |
615 |
double day_decimal, julian_day, a; |
616 |
|
617 |
day_decimal = day + (hour - tz + (minute + second/60.0)/60.0)/24.0; |
618 |
|
619 |
if (month < 3) { |
620 |
month += 12; |
621 |
year--; |
622 |
} |
623 |
|
624 |
julian_day = floor(365.25*(year+4716.0)) + floor(30.6001*(month+1)) + day_decimal - 1524.5; |
625 |
|
626 |
if (julian_day > 2299160.0) { |
627 |
a = floor(year/100); |
628 |
julian_day += (2 - a + floor(a/4)); |
629 |
} |
630 |
|
631 |
return julian_day; |
632 |
} |
633 |
|
634 |
double julian_century(double jd) |
635 |
{ |
636 |
return (jd-2451545.0)/36525.0; |
637 |
} |
638 |
|
639 |
double julian_ephemeris_day(double jd, double delta_t) |
640 |
{ |
641 |
return jd+delta_t/86400.0; |
642 |
} |
643 |
|
644 |
double julian_ephemeris_century(double jde) |
645 |
{ |
646 |
return (jde - 2451545.0)/36525.0; |
647 |
} |
648 |
|
649 |
double julian_ephemeris_millennium(double jce) |
650 |
{ |
651 |
return (jce/10.0); |
652 |
} |
653 |
|
654 |
double earth_periodic_term_summation(const double terms[][TERM_COUNT], int count, double jme) |
655 |
{ |
656 |
int i; |
657 |
double sum=0; |
658 |
|
659 |
for (i = 0; i < count; i++) |
660 |
sum += terms[i][TERM_A]*cos(terms[i][TERM_B]+terms[i][TERM_C]*jme); |
661 |
|
662 |
return sum; |
663 |
} |
664 |
|
665 |
double earth_values(double term_sum[], int count, double jme) |
666 |
{ |
667 |
int i; |
668 |
double sum=0; |
669 |
|
670 |
for (i = 0; i < count; i++) |
671 |
sum += term_sum[i]*pow(jme, i); |
672 |
|
673 |
sum /= 1.0e8; |
674 |
|
675 |
return sum; |
676 |
} |
677 |
|
678 |
double earth_heliocentric_longitude(double jme) |
679 |
{ |
680 |
double sum[L_COUNT]; |
681 |
int i; |
682 |
|
683 |
for (i = 0; i < L_COUNT; i++) |
684 |
sum[i] = earth_periodic_term_summation(L_TERMS[i], l_subcount[i], jme); |
685 |
|
686 |
return limit_degrees(rad2deg(earth_values(sum, L_COUNT, jme))); |
687 |
|
688 |
} |
689 |
|
690 |
double earth_heliocentric_latitude(double jme) |
691 |
{ |
692 |
double sum[B_COUNT]; |
693 |
int i; |
694 |
|
695 |
for (i = 0; i < B_COUNT; i++) |
696 |
sum[i] = earth_periodic_term_summation(B_TERMS[i], b_subcount[i], jme); |
697 |
|
698 |
return rad2deg(earth_values(sum, B_COUNT, jme)); |
699 |
|
700 |
} |
701 |
|
702 |
double earth_radius_vector(double jme) |
703 |
{ |
704 |
double sum[R_COUNT]; |
705 |
int i; |
706 |
|
707 |
for (i = 0; i < R_COUNT; i++) |
708 |
sum[i] = earth_periodic_term_summation(R_TERMS[i], r_subcount[i], jme); |
709 |
|
710 |
return earth_values(sum, R_COUNT, jme); |
711 |
|
712 |
} |
713 |
|
714 |
double geocentric_longitude(double l) |
715 |
{ |
716 |
double theta = l + 180.0; |
717 |
|
718 |
if (theta >= 360.0) theta -= 360.0; |
719 |
|
720 |
return theta; |
721 |
} |
722 |
|
723 |
double geocentric_latitude(double b) |
724 |
{ |
725 |
return -b; |
726 |
} |
727 |
|
728 |
double mean_elongation_moon_sun(double jce) |
729 |
{ |
730 |
return third_order_polynomial(1.0/189474.0, -0.0019142, 445267.11148, 297.85036, jce); |
731 |
} |
732 |
|
733 |
double mean_anomaly_sun(double jce) |
734 |
{ |
735 |
return third_order_polynomial(-1.0/300000.0, -0.0001603, 35999.05034, 357.52772, jce); |
736 |
} |
737 |
|
738 |
double mean_anomaly_moon(double jce) |
739 |
{ |
740 |
return third_order_polynomial(1.0/56250.0, 0.0086972, 477198.867398, 134.96298, jce); |
741 |
} |
742 |
|
743 |
double argument_latitude_moon(double jce) |
744 |
{ |
745 |
return third_order_polynomial(1.0/327270.0, -0.0036825, 483202.017538, 93.27191, jce); |
746 |
} |
747 |
|
748 |
double ascending_longitude_moon(double jce) |
749 |
{ |
750 |
return third_order_polynomial(1.0/450000.0, 0.0020708, -1934.136261, 125.04452, jce); |
751 |
} |
752 |
|
753 |
double xy_term_summation(int i, double x[TERM_X_COUNT]) |
754 |
{ |
755 |
int j; |
756 |
double sum=0; |
757 |
|
758 |
for (j = 0; j < TERM_Y_COUNT; j++) |
759 |
sum += x[j]*Y_TERMS[i][j]; |
760 |
|
761 |
return sum; |
762 |
} |
763 |
|
764 |
void nutation_longitude_and_obliquity(double jce, double x[TERM_X_COUNT], double *del_psi, |
765 |
double *del_epsilon) |
766 |
{ |
767 |
int i; |
768 |
double xy_term_sum, sum_psi=0, sum_epsilon=0; |
769 |
|
770 |
for (i = 0; i < Y_COUNT; i++) { |
771 |
xy_term_sum = deg2rad(xy_term_summation(i, x)); |
772 |
sum_psi += (PE_TERMS[i][TERM_PSI_A] + jce*PE_TERMS[i][TERM_PSI_B])*sin(xy_term_sum); |
773 |
sum_epsilon += (PE_TERMS[i][TERM_EPS_C] + jce*PE_TERMS[i][TERM_EPS_D])*cos(xy_term_sum); |
774 |
} |
775 |
|
776 |
*del_psi = sum_psi / 36000000.0; |
777 |
*del_epsilon = sum_epsilon / 36000000.0; |
778 |
} |
779 |
|
780 |
double ecliptic_mean_obliquity(double jme) |
781 |
{ |
782 |
double u = jme/10.0; |
783 |
|
784 |
return 84381.448 + u*(-4680.93 + u*(-1.55 + u*(1999.25 + u*(-51.38 + u*(-249.67 + |
785 |
u*( -39.05 + u*( 7.12 + u*( 27.87 + u*( 5.79 + u*2.45))))))))); |
786 |
} |
787 |
|
788 |
double ecliptic_true_obliquity(double delta_epsilon, double epsilon0) |
789 |
{ |
790 |
return delta_epsilon + epsilon0/3600.0; |
791 |
} |
792 |
|
793 |
double aberration_correction(double r) |
794 |
{ |
795 |
return -20.4898 / (3600.0*r); |
796 |
} |
797 |
|
798 |
double apparent_sun_longitude(double theta, double delta_psi, double delta_tau) |
799 |
{ |
800 |
return theta + delta_psi + delta_tau; |
801 |
} |
802 |
|
803 |
double greenwich_mean_sidereal_time (double jd, double jc) |
804 |
{ |
805 |
return limit_degrees(280.46061837 + 360.98564736629 * (jd - 2451545.0) + |
806 |
jc*jc*(0.000387933 - jc/38710000.0)); |
807 |
} |
808 |
|
809 |
double greenwich_sidereal_time (double nu0, double delta_psi, double epsilon) |
810 |
{ |
811 |
return nu0 + delta_psi*cos(deg2rad(epsilon)); |
812 |
} |
813 |
|
814 |
double geocentric_sun_right_ascension(double lamda, double epsilon, double beta) |
815 |
{ |
816 |
double lamda_rad = deg2rad(lamda); |
817 |
double epsilon_rad = deg2rad(epsilon); |
818 |
|
819 |
return limit_degrees(rad2deg(atan2(sin(lamda_rad)*cos(epsilon_rad) - |
820 |
tan(deg2rad(beta))*sin(epsilon_rad), cos(lamda_rad)))); |
821 |
} |
822 |
|
823 |
double geocentric_sun_declination(double beta, double epsilon, double lamda) |
824 |
{ |
825 |
double beta_rad = deg2rad(beta); |
826 |
double epsilon_rad = deg2rad(epsilon); |
827 |
|
828 |
return rad2deg(asin(sin(beta_rad)*cos(epsilon_rad) + |
829 |
cos(beta_rad)*sin(epsilon_rad)*sin(deg2rad(lamda)))); |
830 |
} |
831 |
|
832 |
double observer_hour_angle(double nu, double longitude, double alpha_deg) |
833 |
{ |
834 |
return limit_degrees(nu + longitude - alpha_deg); |
835 |
} |
836 |
|
837 |
double sun_equatorial_horizontal_parallax(double r) |
838 |
{ |
839 |
return 8.794 / (3600.0 * r); |
840 |
} |
841 |
|
842 |
void sun_right_ascension_parallax_and_topocentric_dec(double latitude, double elevation, |
843 |
double xi, double h, double delta, double *delta_alpha, double *delta_prime) |
844 |
{ |
845 |
double delta_alpha_rad; |
846 |
double lat_rad = deg2rad(latitude); |
847 |
double xi_rad = deg2rad(xi); |
848 |
double h_rad = deg2rad(h); |
849 |
double delta_rad = deg2rad(delta); |
850 |
double u = atan(0.99664719 * tan(lat_rad)); |
851 |
double y = 0.99664719 * sin(u) + elevation*sin(lat_rad)/6378140.0; |
852 |
double x = cos(u) + elevation*cos(lat_rad)/6378140.0; |
853 |
|
854 |
delta_alpha_rad = atan2( - x*sin(xi_rad) *sin(h_rad), |
855 |
cos(delta_rad) - x*sin(xi_rad) *cos(h_rad)); |
856 |
|
857 |
*delta_prime = rad2deg(atan2((sin(delta_rad) - y*sin(xi_rad))*cos(delta_alpha_rad), |
858 |
cos(delta_rad) - x*sin(xi_rad) *cos(h_rad))); |
859 |
|
860 |
*delta_alpha = rad2deg(delta_alpha_rad); |
861 |
} |
862 |
|
863 |
double topocentric_sun_right_ascension(double alpha_deg, double delta_alpha) |
864 |
{ |
865 |
return alpha_deg + delta_alpha; |
866 |
} |
867 |
|
868 |
double topocentric_local_hour_angle(double h, double delta_alpha) |
869 |
{ |
870 |
return h - delta_alpha; |
871 |
} |
872 |
|
873 |
double topocentric_elevation_angle(double latitude, double delta_prime, double h_prime) |
874 |
{ |
875 |
double lat_rad = deg2rad(latitude); |
876 |
double delta_prime_rad = deg2rad(delta_prime); |
877 |
|
878 |
return rad2deg(asin(sin(lat_rad)*sin(delta_prime_rad) + |
879 |
cos(lat_rad)*cos(delta_prime_rad) * cos(deg2rad(h_prime)))); |
880 |
} |
881 |
|
882 |
double atmospheric_refraction_correction(double pressure, double temperature, |
883 |
double atmos_refract, double e0) |
884 |
{ |
885 |
double del_e = 0; |
886 |
|
887 |
if (e0 >= -1*(SUN_RADIUS + atmos_refract)) |
888 |
del_e = (pressure / 1010.0) * (283.0 / (273.0 + temperature)) * |
889 |
1.02 / (60.0 * tan(deg2rad(e0 + 10.3/(e0 + 5.11)))); |
890 |
|
891 |
return del_e; |
892 |
} |
893 |
|
894 |
double topocentric_elevation_angle_corrected(double e0, double delta_e) |
895 |
{ |
896 |
return e0 + delta_e; |
897 |
} |
898 |
|
899 |
double topocentric_zenith_angle(double e) |
900 |
{ |
901 |
return 90.0 - e; |
902 |
} |
903 |
|
904 |
double topocentric_azimuth_angle_neg180_180(double h_prime, double latitude, double delta_prime) |
905 |
{ |
906 |
double h_prime_rad = deg2rad(h_prime); |
907 |
double lat_rad = deg2rad(latitude); |
908 |
|
909 |
return rad2deg(atan2(sin(h_prime_rad), |
910 |
cos(h_prime_rad)*sin(lat_rad) - tan(deg2rad(delta_prime))*cos(lat_rad))); |
911 |
} |
912 |
|
913 |
double topocentric_azimuth_angle_zero_360(double azimuth180) |
914 |
{ |
915 |
return azimuth180 + 180.0; |
916 |
} |
917 |
|
918 |
double surface_incidence_angle(double zenith, double azimuth180, double azm_rotation, |
919 |
double slope) |
920 |
{ |
921 |
double zenith_rad = deg2rad(zenith); |
922 |
double slope_rad = deg2rad(slope); |
923 |
|
924 |
return rad2deg(acos(cos(zenith_rad)*cos(slope_rad) + |
925 |
sin(slope_rad )*sin(zenith_rad) * cos(deg2rad(azimuth180 - azm_rotation)))); |
926 |
} |
927 |
|
928 |
double sun_mean_longitude(double jme) |
929 |
{ |
930 |
return limit_degrees(280.4664567 + jme*(360007.6982779 + jme*(0.03032028 + |
931 |
jme*(1/49931.0 + jme*(-1/15300.0 + jme*(-1/2000000.0)))))); |
932 |
} |
933 |
|
934 |
double eot(double m, double alpha, double del_psi, double epsilon) |
935 |
{ |
936 |
return limit_minutes(4.0*(m - 0.0057183 - alpha + del_psi*cos(deg2rad(epsilon)))); |
937 |
} |
938 |
|
939 |
double approx_sun_transit_time(double alpha_zero, double longitude, double nu) |
940 |
{ |
941 |
return (alpha_zero - longitude - nu) / 360.0; |
942 |
} |
943 |
|
944 |
double sun_hour_angle_at_rise_set(double latitude, double delta_zero, double h0_prime) |
945 |
{ |
946 |
double h0 = -99999; |
947 |
double latitude_rad = deg2rad(latitude); |
948 |
double delta_zero_rad = deg2rad(delta_zero); |
949 |
double argument = (sin(deg2rad(h0_prime)) - sin(latitude_rad)*sin(delta_zero_rad)) / |
950 |
(cos(latitude_rad)*cos(delta_zero_rad)); |
951 |
|
952 |
if (fabs(argument) <= 1) h0 = limit_degrees180(rad2deg(acos(argument))); |
953 |
|
954 |
return h0; |
955 |
} |
956 |
|
957 |
void approx_sun_rise_and_set(double *m_rts, double h0) |
958 |
{ |
959 |
double h0_dfrac = h0/360.0; |
960 |
|
961 |
m_rts[SUN_RISE] = limit_zero2one(m_rts[SUN_TRANSIT] - h0_dfrac); |
962 |
m_rts[SUN_SET] = limit_zero2one(m_rts[SUN_TRANSIT] + h0_dfrac); |
963 |
m_rts[SUN_TRANSIT] = limit_zero2one(m_rts[SUN_TRANSIT]); |
964 |
} |
965 |
|
966 |
double rts_alpha_delta_prime(double *ad, double n) |
967 |
{ |
968 |
double a = ad[JD_ZERO] - ad[JD_MINUS]; |
969 |
double b = ad[JD_PLUS] - ad[JD_ZERO]; |
970 |
|
971 |
if (fabs(a) >= 2.0) a = limit_zero2one(a); |
972 |
if (fabs(b) >= 2.0) b = limit_zero2one(b); |
973 |
|
974 |
return ad[JD_ZERO] + n * (a + b + (b-a)*n)/2.0; |
975 |
} |
976 |
|
977 |
double rts_sun_altitude(double latitude, double delta_prime, double h_prime) |
978 |
{ |
979 |
double latitude_rad = deg2rad(latitude); |
980 |
double delta_prime_rad = deg2rad(delta_prime); |
981 |
|
982 |
return rad2deg(asin(sin(latitude_rad)*sin(delta_prime_rad) + |
983 |
cos(latitude_rad)*cos(delta_prime_rad)*cos(deg2rad(h_prime)))); |
984 |
} |
985 |
|
986 |
double sun_rise_and_set(double *m_rts, double *h_rts, double *delta_prime, double latitude, |
987 |
double *h_prime, double h0_prime, int sun) |
988 |
{ |
989 |
return m_rts[sun] + (h_rts[sun] - h0_prime) / |
990 |
(360.0*cos(deg2rad(delta_prime[sun]))*cos(deg2rad(latitude))*sin(deg2rad(h_prime[sun]))); |
991 |
} |
992 |
|
993 |
//////////////////////////////////////////////////////////////////////////////////////////////// |
994 |
// Calculate required SPA parameters to get the right ascension (alpha) and declination (delta) |
995 |
// Note: JD must be already calculated and in structure |
996 |
//////////////////////////////////////////////////////////////////////////////////////////////// |
997 |
void calculate_geocentric_sun_right_ascension_and_declination(spa_data *spa) |
998 |
{ |
999 |
double x[TERM_X_COUNT]; |
1000 |
|
1001 |
spa->jc = julian_century(spa->jd); |
1002 |
|
1003 |
spa->jde = julian_ephemeris_day(spa->jd, spa->delta_t); |
1004 |
spa->jce = julian_ephemeris_century(spa->jde); |
1005 |
spa->jme = julian_ephemeris_millennium(spa->jce); |
1006 |
|
1007 |
spa->l = earth_heliocentric_longitude(spa->jme); |
1008 |
spa->b = earth_heliocentric_latitude(spa->jme); |
1009 |
spa->r = earth_radius_vector(spa->jme); |
1010 |
|
1011 |
spa->theta = geocentric_longitude(spa->l); |
1012 |
spa->beta = geocentric_latitude(spa->b); |
1013 |
|
1014 |
x[TERM_X0] = spa->x0 = mean_elongation_moon_sun(spa->jce); |
1015 |
x[TERM_X1] = spa->x1 = mean_anomaly_sun(spa->jce); |
1016 |
x[TERM_X2] = spa->x2 = mean_anomaly_moon(spa->jce); |
1017 |
x[TERM_X3] = spa->x3 = argument_latitude_moon(spa->jce); |
1018 |
x[TERM_X4] = spa->x4 = ascending_longitude_moon(spa->jce); |
1019 |
|
1020 |
nutation_longitude_and_obliquity(spa->jce, x, &(spa->del_psi), &(spa->del_epsilon)); |
1021 |
|
1022 |
spa->epsilon0 = ecliptic_mean_obliquity(spa->jme); |
1023 |
spa->epsilon = ecliptic_true_obliquity(spa->del_epsilon, spa->epsilon0); |
1024 |
|
1025 |
spa->del_tau = aberration_correction(spa->r); |
1026 |
spa->lamda = apparent_sun_longitude(spa->theta, spa->del_psi, spa->del_tau); |
1027 |
spa->nu0 = greenwich_mean_sidereal_time (spa->jd, spa->jc); |
1028 |
spa->nu = greenwich_sidereal_time (spa->nu0, spa->del_psi, spa->epsilon); |
1029 |
|
1030 |
spa->alpha = geocentric_sun_right_ascension(spa->lamda, spa->epsilon, spa->beta); |
1031 |
spa->delta = geocentric_sun_declination(spa->beta, spa->epsilon, spa->lamda); |
1032 |
} |
1033 |
|
1034 |
//////////////////////////////////////////////////////////////////////// |
1035 |
// Calculate Equation of Time (EOT) and Sun Rise, Transit, & Set (RTS) |
1036 |
//////////////////////////////////////////////////////////////////////// |
1037 |
|
1038 |
void calculate_eot_and_sun_rise_transit_set(spa_data *spa) |
1039 |
{ |
1040 |
spa_data sun_rts; |
1041 |
double nu, m, h0, n; |
1042 |
double alpha[JD_COUNT], delta[JD_COUNT]; |
1043 |
double m_rts[SUN_COUNT], nu_rts[SUN_COUNT], h_rts[SUN_COUNT]; |
1044 |
double alpha_prime[SUN_COUNT], delta_prime[SUN_COUNT], h_prime[SUN_COUNT]; |
1045 |
double h0_prime = -1*(SUN_RADIUS + spa->atmos_refract); |
1046 |
int i; |
1047 |
|
1048 |
sun_rts = *spa; |
1049 |
m = sun_mean_longitude(spa->jme); |
1050 |
spa->eot = eot(m, spa->alpha, spa->del_psi, spa->epsilon); |
1051 |
|
1052 |
sun_rts.hour = sun_rts.minute = sun_rts.second = 0; |
1053 |
sun_rts.timezone = 0.0; |
1054 |
|
1055 |
sun_rts.jd = julian_day (sun_rts.year, sun_rts.month, sun_rts.day, |
1056 |
sun_rts.hour, sun_rts.minute, sun_rts.second, sun_rts.timezone); |
1057 |
|
1058 |
calculate_geocentric_sun_right_ascension_and_declination(&sun_rts); |
1059 |
nu = sun_rts.nu; |
1060 |
|
1061 |
sun_rts.delta_t = 0; |
1062 |
sun_rts.jd--; |
1063 |
for (i = 0; i < JD_COUNT; i++) { |
1064 |
calculate_geocentric_sun_right_ascension_and_declination(&sun_rts); |
1065 |
alpha[i] = sun_rts.alpha; |
1066 |
delta[i] = sun_rts.delta; |
1067 |
sun_rts.jd++; |
1068 |
} |
1069 |
|
1070 |
m_rts[SUN_TRANSIT] = approx_sun_transit_time(alpha[JD_ZERO], spa->longitude, nu); |
1071 |
h0 = sun_hour_angle_at_rise_set(spa->latitude, delta[JD_ZERO], h0_prime); |
1072 |
|
1073 |
if (h0 >= 0) { |
1074 |
|
1075 |
approx_sun_rise_and_set(m_rts, h0); |
1076 |
|
1077 |
for (i = 0; i < SUN_COUNT; i++) { |
1078 |
|
1079 |
nu_rts[i] = nu + 360.985647*m_rts[i]; |
1080 |
|
1081 |
n = m_rts[i] + spa->delta_t/86400.0; |
1082 |
alpha_prime[i] = rts_alpha_delta_prime(alpha, n); |
1083 |
delta_prime[i] = rts_alpha_delta_prime(delta, n); |
1084 |
|
1085 |
h_prime[i] = limit_degrees180pm(nu_rts[i] + spa->longitude - alpha_prime[i]); |
1086 |
|
1087 |
h_rts[i] = rts_sun_altitude(spa->latitude, delta_prime[i], h_prime[i]); |
1088 |
} |
1089 |
|
1090 |
spa->srha = h_prime[SUN_RISE]; |
1091 |
spa->ssha = h_prime[SUN_SET]; |
1092 |
spa->sta = h_rts[SUN_TRANSIT]; |
1093 |
|
1094 |
spa->suntransit = dayfrac_to_local_hr(m_rts[SUN_TRANSIT] - h_prime[SUN_TRANSIT] / 360.0, |
1095 |
spa->timezone); |
1096 |
|
1097 |
spa->sunrise = dayfrac_to_local_hr(sun_rise_and_set(m_rts, h_rts, delta_prime, |
1098 |
spa->latitude, h_prime, h0_prime, SUN_RISE), spa->timezone); |
1099 |
|
1100 |
spa->sunset = dayfrac_to_local_hr(sun_rise_and_set(m_rts, h_rts, delta_prime, |
1101 |
spa->latitude, h_prime, h0_prime, SUN_SET), spa->timezone); |
1102 |
|
1103 |
} else spa->srha= spa->ssha= spa->sta= spa->suntransit= spa->sunrise= spa->sunset= -99999; |
1104 |
|
1105 |
} |
1106 |
|
1107 |
/////////////////////////////////////////////////////////////////////////////////////////// |
1108 |
// Calculate all SPA parameters and put into structure |
1109 |
// Note: All inputs values (listed in header file) must already be in structure |
1110 |
/////////////////////////////////////////////////////////////////////////////////////////// |
1111 |
int spa_calculate(spa_data *spa) |
1112 |
{ |
1113 |
int result; |
1114 |
|
1115 |
result = validate_inputs(spa); |
1116 |
|
1117 |
if (result == 0) |
1118 |
{ |
1119 |
spa->jd = julian_day (spa->year, spa->month, spa->day, |
1120 |
spa->hour, spa->minute, spa->second, spa->timezone); |
1121 |
|
1122 |
calculate_geocentric_sun_right_ascension_and_declination(spa); |
1123 |
|
1124 |
spa->h = observer_hour_angle(spa->nu, spa->longitude, spa->alpha); |
1125 |
spa->xi = sun_equatorial_horizontal_parallax(spa->r); |
1126 |
|
1127 |
sun_right_ascension_parallax_and_topocentric_dec(spa->latitude, spa->elevation, spa->xi, |
1128 |
spa->h, spa->delta, &(spa->del_alpha), &(spa->delta_prime)); |
1129 |
|
1130 |
spa->alpha_prime = topocentric_sun_right_ascension(spa->alpha, spa->del_alpha); |
1131 |
spa->h_prime = topocentric_local_hour_angle(spa->h, spa->del_alpha); |
1132 |
|
1133 |
spa->e0 = topocentric_elevation_angle(spa->latitude, spa->delta_prime, spa->h_prime); |
1134 |
spa->del_e = atmospheric_refraction_correction(spa->pressure, spa->temperature, |
1135 |
spa->atmos_refract, spa->e0); |
1136 |
spa->e = topocentric_elevation_angle_corrected(spa->e0, spa->del_e); |
1137 |
|
1138 |
spa->zenith = topocentric_zenith_angle(spa->e); |
1139 |
spa->azimuth180 = topocentric_azimuth_angle_neg180_180(spa->h_prime, spa->latitude, |
1140 |
spa->delta_prime); |
1141 |
spa->azimuth = topocentric_azimuth_angle_zero_360(spa->azimuth180); |
1142 |
|
1143 |
if ((spa->function == SPA_ZA_INC) || (spa->function == SPA_ALL)) |
1144 |
spa->incidence = surface_incidence_angle(spa->zenith, spa->azimuth180, |
1145 |
spa->azm_rotation, spa->slope); |
1146 |
|
1147 |
if ((spa->function == SPA_ZA_RTS) || (spa->function == SPA_ALL)) |
1148 |
calculate_eot_and_sun_rise_transit_set(spa); |
1149 |
} |
1150 |
|
1151 |
return result; |
1152 |
} |
1153 |
/////////////////////////////////////////////////////////////////////////////////////////// |