/[ascend]/trunk/models/johnpye/fprops/rankine_regen.a4c
ViewVC logotype

Annotation of /trunk/models/johnpye/fprops/rankine_regen.a4c

Parent Directory Parent Directory | Revision Log Revision Log


Revision 2302 - (hide annotations) (download) (as text)
Sat Aug 21 13:50:06 2010 UTC (12 years, 1 month ago) by jpye
File MIME type: text/x-ascend
File size: 9821 byte(s)
Add data table for Tc, pc, Tt, pt etc.
Add model of toluene and water regenerative rankine cycles.
1 jpye 2302 REQUIRE "johnpye/fprops/rankine_fprops.a4c";
2    
3     (*------------------------------------------------------------------------------
4     REGENERATIVE RANKINE CYCLE
5     *)
6     (*
7     Add a boiler feedwater heater and two-stage turbine.
8     *)
9     MODEL rankine_regen_water;
10    
11     BO IS_A boiler_simple;
12     TU1 IS_A turbine_simple;
13     BL IS_A tee; (* bleed *)
14     TU2 IS_A turbine_simple;
15     CO IS_A condenser_simple;
16     HE IS_A heater_open;
17     PU1 IS_A pump_simple;
18     PU2 IS_A pump_simple;
19    
20     BO.cd.component :== 'water';
21    
22     (* main loop *)
23     BO.outlet, TU1.inlet ARE_THE_SAME;
24     TU1.outlet, BL.inlet ARE_THE_SAME;
25     BL.outlet, TU2.inlet ARE_THE_SAME;
26     TU2.outlet, CO.inlet ARE_THE_SAME;
27     CO.outlet, PU1.inlet ARE_THE_SAME;
28     PU1.outlet, HE.inlet ARE_THE_SAME;
29     HE.outlet, PU2.inlet ARE_THE_SAME;
30     PU2.outlet, BO.inlet ARE_THE_SAME;
31    
32     (* bleed stream *)
33     BL.outlet_branch, HE.inlet_heat ARE_THE_SAME;
34     phi ALIASES BL.phi;
35     p_bleed ALIASES TU1.outlet.p;
36    
37     p_bleed_ratio IS_A fraction;
38     p_bleed_ratio * (TU1.inlet.p - TU2.outlet.p) = (TU1.outlet.p - TU2.outlet.p);
39    
40     mdot ALIASES BO.mdot;
41     cd ALIASES BO.inlet.cd;
42    
43     T_H ALIASES BO.outlet.T;
44     T_C ALIASES CO.outlet.T;
45    
46     eta IS_A fraction;
47     eta_eq:eta * (BO.Qdot_fuel) = TU1.Wdot + TU2.Wdot + PU1.Wdot + PU2.Wdot;
48    
49     Wdot_TU1 ALIASES TU1.Wdot;
50     Wdot_TU2 ALIASES TU2.Wdot;
51     Wdot_PU1 ALIASES PU1.Wdot;
52     Wdot_PU2 ALIASES PU2.Wdot;
53     Qdot_fuel ALIASES BO.Qdot_fuel;
54    
55     eta_carnot IS_A fraction;
56     eta_carnot_eq: eta_carnot = 1 - T_C / T_H;
57    
58     eta_turb_tot IS_A fraction;
59     TU_out_is IS_A stream_state;
60     TU_out_is.cd, TU1.inlet.cd ARE_THE_SAME;
61     TU_out_is.p, TU2.outlet.p ARE_THE_SAME;
62     TU_out_is.s, TU1.inlet.s ARE_THE_SAME;
63     eta_turb_eq:eta_turb_tot * (TU1.inlet.h - TU_out_is.h) = (TU1.inlet.h - TU2.outlet.h);
64    
65     (* some checking output... *)
66    
67     phi_weston IS_A fraction;
68     phi_weston_eq:phi_weston * (TU1.outlet.h - PU1.outlet.h) = (PU2.inlet.h - PU1.outlet.h);
69     phi_eq:phi_weston = phi;
70    
71     q_a IS_A specific_energy;
72     q_a_eq: q_a = TU1.inlet.h - PU2.outlet.h;
73    
74     Wdot IS_A energy_rate;
75     Wdot_eq: Wdot = TU1.Wdot + TU2.Wdot + PU1.Wdot + PU2.Wdot;
76    
77     cons_en: HE.inlet.mdot * HE.inlet.h + HE.inlet_heat.mdot * HE.inlet_heat.h = HE.outlet.mdot * HE.outlet.h;
78    
79     x_turb_out ALIASES TU2.outlet.x;
80     METHODS
81     METHOD default_self;
82     RUN BO.default_self;
83     RUN TU1.default_self;
84     RUN TU2.default_self;
85     RUN CO.default_self;
86     RUN PU1.default_self;
87     RUN PU2.default_self;
88     BO.outlet.h := 4000 {kJ/kg};
89     p_bleed := 37 {bar};
90     TU1.outlet.h := 2300 {kJ/kg};
91     BL.cons_mass.included := FALSE;
92     (*HE.cons_mass.included := FALSE;*)
93     HE.cons_en.included := FALSE;
94     cons_en.included := FALSE;
95     HE.inlet.v := 100 {m^3/kg};
96     HE.inlet.p.nominal := 40 {bar};
97     HE.inlet.v.nominal := 1 {L/kg};
98     HE.inlet.h.nominal := 100 {kJ/kg};
99     END default_self;
100     METHOD solarpaces2010;
101     RUN ClearAll;
102     RUN default_self;
103     (* component efficiencies *)
104     FIX BO.eta; BO.eta := 1.0;
105     FIX TU1.eta; TU1.eta := 0.85;
106     FIX TU2.eta; TU2.eta := 0.85;
107     FIX PU1.eta; PU1.eta := 0.8;
108     FIX PU2.eta; PU2.eta := 0.8;
109     FIX Wdot; Wdot := 100 {MW};
110     (*
111     (* FIX CO.outlet.p; CO.outlet.p := 10 {kPa};*)
112     FIX CO.outlet.T; CO.outlet.T := 40 {K} + 273.15 {K};
113     FIX CO.outlet.x; CO.outlet.x := 1e-6;
114     FIX PU1.outlet.p; PU1.outlet.p := 7 {bar};
115     FIX PU2.outlet.p; PU2.outlet.p := 150 {bar};
116     PU2.outlet.p.upper_bound := 150 {bar};
117     FIX BO.outlet.T; BO.outlet.T := 580 {K} + 273.15 {K};
118     *)
119     (* turbine conditions *)
120     FIX TU1.inlet.p; TU1.inlet.p := 150 {bar};
121     FIX TU1.inlet.T; TU1.inlet.T := 580 {K} + 273.15 {K};
122     FIX TU1.outlet.p; TU1.outlet.p := 7 {bar};
123     FIX CO.outlet.T; CO.outlet.T := 40 {K} + 273.15 {K};
124     (* heater conditions *)
125     TU2.outlet.p := 10 {kPa};
126     (* FIX HE.outlet.p; HE.outlet.p := 0.7 {MPa}; *)
127     FIX CO.outlet.x; CO.outlet.x := 1e-6;
128     FIX HE.outlet.x; HE.outlet.x := 1e-6;
129     END solarpaces2010;
130     METHOD on_load;
131     RUN solarpaces2010;
132     (*
133     This model needs to be solved using QRSlv with convopt set to 'RELNOMSCALE'.
134     *)
135     SOLVER QRSlv;
136     OPTION convopt 'RELNOM_SCALE';
137     OPTION iterationlimit 400;
138     END on_load;
139     METHOD set_x_limit;
140     FREE PU2.outlet.p;
141     PU2.outlet.p.upper_bound := 150 {bar};
142     FIX TU2.outlet.x; TU2.outlet.x := 0.9;
143     END set_x_limit;
144     METHOD cycle_plot;
145     EXTERNAL cycle_plot_rankine_regen2(SELF);
146     END cycle_plot;
147     METHOD moran_ex_8_5;
148     RUN default_self;
149     (*
150     This is Example 8.5 from Moran and Shapiro, 'Fundamentals of
151     Engineering Thermodynamics', 4th Ed.
152     *)
153     RUN ClearAll;
154     (* component efficiencies *)
155     FIX BO.eta; BO.eta := 1.0;
156     FIX TU1.eta; TU1.eta := 0.85;
157     FIX TU2.eta; TU2.eta := 0.85;
158     FIX PU1.eta; PU1.eta := 1.0;
159     FIX PU2.eta; PU2.eta := 1.0;
160     (* turbine conditions *)
161     FIX TU1.inlet.p; TU1.inlet.p := 8. {MPa};
162     FIX TU1.inlet.T; TU1.inlet.T := 480 {K} + 273.15 {K};
163     FIX TU1.outlet.p; TU1.outlet.p := 0.7 {MPa};
164     FIX TU2.outlet.p; TU2.outlet.p := 0.008 {MPa};
165     (* heater conditions *)
166     (* FIX HE.outlet.p; HE.outlet.p := 0.7 {MPa}; *)
167     FIX CO.outlet.x; CO.outlet.x := 0.0001;
168     FIX HE.outlet.x; HE.outlet.x := 0.0001;
169     FIX Wdot; Wdot := 100 {MW};
170     END moran_ex_8_5;
171     METHOD self_test;
172     (* solution values to the Moran & Shapiro example 8.5 problem *)
173     ASSERT abs(eta - 0.369) < 0.001;
174     ASSERT abs((TU1.Wdot+TU2.Wdot)/mdot - 984.4{kJ/kg}) < 1 {kJ/kg};
175     ASSERT abs(mdot - 3.69e5 {kg/h}) < 0.05e5 {kg/h};
176     ASSERT abs(CO.inlet.h - 2249.3 {kJ/kg}) < 1.0 {kJ/kg};
177     END self_test;
178     METHOD weston_ex_2_6;
179     (*
180     The scenario here is example 2.6 from K Weston (op. cit.), p. 55.
181     *)
182     RUN ClearAll;
183    
184     (* all ideal components *)
185     FIX BO.eta; BO.eta := 1.0;
186     FIX TU1.eta; TU1.eta := 1.0;
187     FIX TU2.eta; TU2.eta := 1.0;
188     FIX PU1.eta; PU1.eta := 1.0;
189     FIX PU2.eta; PU2.eta := 1.0;
190    
191     (* mass flow rate is arbitrary *)
192     FIX mdot;
193     mdot := 10 {kg/s};
194    
195     (* max pressure constraint *)
196     FIX PU2.outlet.p;
197     PU2.outlet.p := 2000 {psi};
198     PU2.outlet.h := 1400 {btu/lbm}; (* guess *)
199    
200     (* boiler max temp *)
201     FIX BO.outlet.T;
202     BO.outlet.T := 1460 {R};
203     BO.outlet.h := 1400 {btu/lbm}; (* guess *)
204    
205     (* intermediate temperature setting *)
206     FIX TU1.outlet.p;
207     TU1.outlet.p := 200 {psi};
208     (* FIX TU1.outlet.T;
209     TU1.outlet.T := 860 {R}; (* 400 °F *)
210     TU1.outlet.h := 3000 {kJ/kg}; (* guess *) *)
211    
212     (* minimum pressure constraint *)
213     FIX CO.outlet.p;
214     CO.outlet.p := 1 {psi};
215    
216     (* condenser outlet is saturated liquid *)
217     FIX CO.outlet.h;
218     CO.outlet.h := 69.73 {btu/lbm};
219    
220     (* remove the redundant balance equations *)
221     HE.cons_mass.included := TRUE;
222     HE.cons_en.included := TRUE;
223     BL.cons_mass.included := FALSE;
224     phi_weston_eq.included := TRUE;
225     phi_eq.included := FALSE;
226     cons_en.included := FALSE;
227    
228     (* fix the bleed ratio *)
229     FIX BL.phi;
230     BL.phi := 0.251;
231    
232     (* FIX BL.outlet.h;
233     BL.outlet.h := 355.5 {btu/lbm}; *)
234    
235     (**
236     these values seem to be from another problem, need to check which ...
237     ASSERT abs(TU1.inlet.s - 1.5603 {btu/lbm/R}) < 0.01 {btu/lbm/R};
238     ASSERT abs(TU1.outlet.s - 1.5603 {btu/lbm/R}) < 0.01 {btu/lbm/R};
239     ASSERT abs(TU2.outlet.s - 1.5603 {btu/lbm/R}) < 0.01 {btu/lbm/R};
240     ASSERT abs(PU1.inlet.s - 0.1326 {btu/lbm/R}) < 0.001 {btu/lbm/R};
241     ASSERT abs(PU1.outlet.s - 0.1326 {btu/lbm/R}) < 0.002 {btu/lbm/R};
242     ASSERT abs(PU2.inlet.s - 0.5438 {btu/lbm/R}) < 0.002 {btu/lbm/R};
243     ASSERT abs(PU2.outlet.s - 0.5438 {btu/lbm/R}) < 0.002 {btu/lbm/R};
244    
245     ASSERT abs(TU1.inlet.h - 1474.1 {btu/lbm}) < 1.5 {btu/lbm};
246     ASSERT abs(TU1.outlet.h - 1210.0 {btu/lbm}) < 1.5 {btu/lbm};
247     ASSERT abs(TU2.outlet.h - 871.0 {btu/lbm}) < 1.5 {btu/lbm};
248     ASSERT abs(PU1.inlet.h - 69.73 {btu/lbm}) < 0.001 {btu/lbm};
249     ASSERT abs(PU1.outlet.h - 69.73 {btu/lbm}) < 1.0 {btu/lbm};
250     ASSERT abs(PU2.inlet.h - 355.5 {btu/lbm}) < 1.5 {btu/lbm};
251     ASSERT abs(PU2.outlet.h - 355.5 {btu/lbm}) < 8 {btu/lbm};
252    
253     ASSERT abs(w_net - 518.1 {btu/lbm}) < 0.3 {btu/lbm};
254    
255     ASSERT abs(w_net * mdot - (TU1.Wdot + TU2.Wdot)) < 1 {W};
256    
257     ASSERT abs(q_a - 1118.6 {btu/lbm}) < 7 {btu/lbm};
258    
259     ASSERT abs(eta - 0.463) < 0.003;
260    
261     ASSERT abs(phi - 0.251) < 0.001;
262     *)
263     END weston_ex_2_6;
264     END rankine_regen_water;
265    
266    
267     MODEL rankine_regen_common;
268     BO IS_A boiler_simple;
269     TU IS_A turbine_simple;
270     CO IS_A condenser_simple;
271     HE IS_A heater_closed;
272     PU IS_A pump_simple;
273    
274     (* main loop *)
275     BO.outlet, TU.inlet ARE_THE_SAME;
276     TU.outlet, HE.inlet_heat ARE_THE_SAME;
277     HE.outlet_heat, CO.inlet ARE_THE_SAME;
278     CO.outlet, PU.inlet ARE_THE_SAME;
279     PU.outlet, HE.inlet ARE_THE_SAME;
280     HE.outlet, BO.inlet ARE_THE_SAME;
281    
282     mdot ALIASES BO.mdot;
283     cd ALIASES BO.inlet.cd;
284    
285     T_H ALIASES BO.outlet.T;
286     T_C ALIASES CO.outlet.T;
287    
288     eta IS_A fraction;
289     eta_eq:eta * (BO.Qdot_fuel) = TU.Wdot + PU.Wdot;
290    
291     Wdot_TU ALIASES TU.Wdot;
292     Wdot_PU ALIASES PU.Wdot;
293     Qdot_fuel ALIASES BO.Qdot_fuel;
294    
295     eta_carnot IS_A fraction;
296     eta_carnot_eq: eta_carnot = 1 - T_C / T_H;
297    
298     Wdot IS_A energy_rate;
299     Wdot_eq: Wdot = TU.Wdot + PU.Wdot;
300    
301     DE_cycle "cycle energy balance, should be zero" IS_A energy_rate;
302     DE_cycle = BO.Qdot + CO.Qdot - TU.Wdot - PU.Wdot;
303    
304     x_turb_out ALIASES TU.outlet.x;
305     METHODS
306     METHOD default_self;
307     RUN BO.default_self;
308     RUN TU.default_self;
309     RUN CO.default_self;
310     RUN PU.default_self;
311     RUN HE.default_self;
312     BL.cons_mass.included := FALSE;
313     HE.cons_en.included := FALSE;
314     END default_self;
315     METHOD cycle_plot;
316     EXTERNAL cycle_plot_rankine_regen1(SELF);
317     END cycle_plot;
318     END rankine_regen_common;
319    
320     MODEL rankine_regen_toluene REFINES rankine_regen_common;
321    
322     BO.cd.component :== 'toluene';
323    
324     METHODS
325     METHOD on_load;
326     FIX BO.outlet.T; BO.outlet.T := 580 {K} + 273.15 {K};
327     FIX PU.outlet.p; PU.outlet.p := 150 {bar};
328     FIX CO.outlet.T; CO.outlet.T := 40 {K} + 273.15 {K};
329     FIX CO.outlet.x; CO.outlet.x := 1e-6;
330     FIX HE.outlet.T; HE.outlet.T := 300 {K} + 273.15 {K};
331    
332     FIX BO.eta; BO.eta := 1.0;
333     FIX TU.eta; TU.eta := 0.85;
334     FIX PU.eta; PU.eta := 0.8;
335    
336     SOLVER QRSlv;
337     OPTION convopt 'RELNOM_SCALE';
338     OPTION iterationlimit 200;
339     END on_load;
340     METHOD default_self;
341     RUN rankine_regen_common::default_self;
342     PU.inlet.h := 400 {kJ/kg};
343     BO.outlet.h := 400 {kJ/kg};
344     CO.outlet.h := 400 {kJ/kg};
345     CO.outlet.p := 10 {kPa};
346     END default_self;
347     END rankine_regen_toluene;
348    
349    
350    
351    

john.pye@anu.edu.au
ViewVC Help
Powered by ViewVC 1.1.22