1 |
|
/* ASCEND modelling environment |
2 |
|
Copyright (C) 2008 Carnegie Mellon University |
3 |
|
|
4 |
|
This program is free software; you can redistribute it and/or modify |
5 |
|
it under the terms of the GNU General Public License as published by |
6 |
|
the Free Software Foundation; either version 2, or (at your option) |
7 |
|
any later version. |
8 |
|
|
9 |
|
This program is distributed in the hope that it will be useful, |
10 |
|
but WITHOUT ANY WARRANTY; without even the implied warranty of |
11 |
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
12 |
|
GNU General Public License for more details. |
13 |
|
|
14 |
|
You should have received a copy of the GNU General Public License |
15 |
|
along with this program; if not, write to the Free Software |
16 |
|
Foundation, Inc., 59 Temple Place - Suite 330, |
17 |
|
Boston, MA 02111-1307, USA. |
18 |
|
*/ |
19 |
|
|
20 |
#include <math.h> |
#include <math.h> |
21 |
|
|
22 |
#include "ideal.h" |
#include "ideal.h" |
31 |
IDEAL COMPONENT RELATIONS |
IDEAL COMPONENT RELATIONS |
32 |
*/ |
*/ |
33 |
|
|
34 |
|
/* |
35 |
|
Hypothesis: |
36 |
|
in calculating the ideal component relations, we have some integration |
37 |
|
constants that ultimately allow the arbitrary scales of h and s to |
38 |
|
be specified. Hence we can ignore components of helm_ideal that |
39 |
|
are either constant or linear in tau, and work them out later when we |
40 |
|
stick in the values of data->c and data->m. |
41 |
|
*/ |
42 |
|
|
43 |
/** |
/** |
44 |
Ideal component of helmholtz function |
Ideal component of helmholtz function |
45 |
*/ |
*/ |
49 |
const IdealExpTerm *et; |
const IdealExpTerm *et; |
50 |
|
|
51 |
unsigned i; |
unsigned i; |
52 |
double sum = log(delta) + data->c + data->m * tau - log(tau); |
double sum = log(delta) - log(tau) + data->c + data->m * tau; |
53 |
double term; |
double term; |
54 |
|
|
55 |
//fprintf(stderr,"constant = %f, linear = %f", data->c, data->m); |
//fprintf(stderr,"constant = %f, linear = %f", data->c, data->m); |
56 |
//fprintf(stderr,"initial terms = %f\n",sum); |
//fprintf(stderr,"initial terms = %f\n",sum); |
57 |
pt = &(data->pt[0]); |
pt = &(data->pt[0]); |
58 |
for(i = 0; i<data->np; ++i, ++pt){ |
for(i = 0; i<data->np; ++i, ++pt){ |
59 |
term = pt->a0 * pow(tau, pt->t0); |
double a = pt->a0; |
60 |
|
double t = pt->t0; |
61 |
|
if(t == 0){ |
62 |
|
term = a*log(tau) /* + a */; /* term ignored, see above */ |
63 |
|
}else if(t == 1){ |
64 |
|
term = /* a * tau */ - a * tau * log(tau); /* term ignored, see above */ |
65 |
|
}else{ |
66 |
|
term = a * pow(tau,t) / ((t - 1) * t); |
67 |
|
} |
68 |
//fprintf(stderr,"i = %d: a0 = %f, t0 = %f, term = %f\n",i,pt->a0, pt->t0, term); |
//fprintf(stderr,"i = %d: a0 = %f, t0 = %f, term = %f\n",i,pt->a0, pt->t0, term); |
69 |
sum += pt->a0 * pow(tau, pt->t0); |
sum += pt->a0 * pow(tau, pt->t0); |
70 |
} |
} |
71 |
|
|
72 |
#if 1 |
/* 'exponential' terms */ |
73 |
et = &(data->et[0]); |
et = &(data->et[0]); |
74 |
for(i=0; i<data->ne; ++i, ++et){ |
for(i=0; i<data->ne; ++i, ++et){ |
75 |
sum += et->b * log( 1 - exp(- et->B * tau)); |
sum += et->b * log( 1 - exp(-et->B * tau)); |
76 |
} |
} |
|
#endif |
|
77 |
|
|
78 |
return sum; |
return sum; |
79 |
} |
} |
87 |
const IdealExpTerm *et; |
const IdealExpTerm *et; |
88 |
|
|
89 |
unsigned i; |
unsigned i; |
90 |
|
double term; |
91 |
double sum = -1./tau + data->m; |
double sum = -1./tau + data->m; |
92 |
|
|
93 |
pt = &(data->pt[0]); |
pt = &(data->pt[0]); |
94 |
for(i = 0; i<data->np; ++i, ++pt){ |
for(i = 0; i<data->np; ++i, ++pt){ |
95 |
sum += pt->a0 * pt->t0 * pow(tau, pt->t0 - 1); |
double a = pt->a0; |
96 |
|
double t = pt->t0; |
97 |
|
if(t==0){ |
98 |
|
term = a / tau - a*t*pow(tau,t-1)/(t-1); |
99 |
|
}else if(t==1){ |
100 |
|
term = -a*log(tau); |
101 |
|
}else{ |
102 |
|
term = a*t*pow(tau,t-1)/(t-1); |
103 |
|
} |
104 |
|
sum += term; |
105 |
} |
} |
106 |
|
|
107 |
#if 1 |
/* 'exponential' terms */ |
|
/* FIXME we're missing the '2.5' in the alpha0 expression for Nitrogen... */ |
|
108 |
et = &(data->et[0]); |
et = &(data->et[0]); |
109 |
for(i=0; i<data->ne; ++i, ++et){ |
for(i=0; i<data->ne; ++i, ++et){ |
110 |
sum += et->b * log( 1 - exp(- et->B * tau)); |
sum += et->b * et->B / (1 - exp(-tau*et->B)); |
111 |
} |
} |
|
#endif |
|
112 |
return sum; |
return sum; |
113 |
} |
} |