1 |
/* ASCEND modelling environment |
2 |
Copyright (C) 2008 Carnegie Mellon University |
3 |
|
4 |
This program is free software; you can redistribute it and/or modify |
5 |
it under the terms of the GNU General Public License as published by |
6 |
the Free Software Foundation; either version 2, or (at your option) |
7 |
any later version. |
8 |
|
9 |
This program is distributed in the hope that it will be useful, |
10 |
but WITHOUT ANY WARRANTY; without even the implied warranty of |
11 |
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
12 |
GNU General Public License for more details. |
13 |
|
14 |
You should have received a copy of the GNU General Public License |
15 |
along with this program; if not, write to the Free Software |
16 |
Foundation, Inc., 59 Temple Place - Suite 330, |
17 |
Boston, MA 02111-1307, USA. |
18 |
*//** @file |
19 |
Implementation of the reduced molar Helmholtz free energy equation of state. |
20 |
|
21 |
For nomenclature see Tillner-Roth, Harms-Watzenberg and Baehr, Eine neue |
22 |
Fundamentalgleichung f端r Ammoniak. |
23 |
|
24 |
John Pye, 29 Jul 2008. |
25 |
*/ |
26 |
|
27 |
#include <math.h> |
28 |
|
29 |
#include "helmholtz.h" |
30 |
#include "ideal_impl.h" |
31 |
|
32 |
#ifdef TEST |
33 |
#include <assert.h> |
34 |
#include <stdlib.h> |
35 |
#include <stdio.h> |
36 |
#endif |
37 |
|
38 |
#define SQ(X) ((X)*(X)) |
39 |
|
40 |
/* forward decls */ |
41 |
|
42 |
static double helm_resid(double tau, double delta, const HelmholtzData *data); |
43 |
static double helm_resid_del(double tau, double delta, const HelmholtzData *data); |
44 |
static double helm_resid_tau(double tau, double delta, const HelmholtzData *data); |
45 |
static double helm_resid_deltau(double tau, double delta, const HelmholtzData *data); |
46 |
static double helm_resid_deldel(double tau, double delta, const HelmholtzData *data); |
47 |
|
48 |
/** |
49 |
Function to calculate pressure from Helmholtz free energy EOS, given temperature |
50 |
and mass density. |
51 |
|
52 |
@param T temperature in K |
53 |
@param rho mass density in kg/m続 |
54 |
@return pressure in Pa??? |
55 |
*/ |
56 |
double helmholtz_p(double T, double rho, const HelmholtzData *data){ |
57 |
|
58 |
double tau = data->T_star / T; |
59 |
double delta = rho / data->rho_star; |
60 |
|
61 |
#ifdef TEST |
62 |
assert(data->rho_star!=0); |
63 |
assert(T!=0); |
64 |
assert(!isnan(tau)); |
65 |
assert(!isnan(delta)); |
66 |
assert(!isnan(data->R)); |
67 |
|
68 |
//fprintf(stderr,"p calc: T = %f\n",T); |
69 |
//fprintf(stderr,"p calc: tau = %f\n",tau); |
70 |
//fprintf(stderr,"p calc: rho = %f\n",rho); |
71 |
//fprintf(stderr,"p calc: delta = %f\n",delta); |
72 |
//fprintf(stderr,"p calc: R*T*rho = %f\n",data->R * T * rho); |
73 |
|
74 |
//fprintf(stderr,"T = %f\n", T); |
75 |
//fprintf(stderr,"rhob = %f, rhob* = %f, delta = %f\n", rho/data->M, data->rho_star/data->M, delta); |
76 |
#endif |
77 |
|
78 |
return data->R * T * rho * (1 + delta * helm_resid_del(tau,delta,data)); |
79 |
} |
80 |
|
81 |
/** |
82 |
Function to calculate internal energy from Helmholtz free energy EOS, given |
83 |
temperature and mass density. |
84 |
|
85 |
@param T temperature in K |
86 |
@param rho mass density in kg/m続 |
87 |
@return internal energy in ??? |
88 |
*/ |
89 |
double helmholtz_u(double T, double rho, const HelmholtzData *data){ |
90 |
|
91 |
double tau = data->T_star / T; |
92 |
double delta = rho / data->rho_star; |
93 |
|
94 |
#ifdef TEST |
95 |
assert(data->rho_star!=0); |
96 |
assert(T!=0); |
97 |
assert(!isnan(tau)); |
98 |
assert(!isnan(delta)); |
99 |
assert(!isnan(data->R)); |
100 |
#endif |
101 |
|
102 |
#if 0 |
103 |
fprintf(stderr,"ideal_tau = %f\n",helm_ideal_tau(tau,delta,data->ideal)); |
104 |
fprintf(stderr,"resid_tau = %f\n",helm_resid_tau(tau,delta,data)); |
105 |
fprintf(stderr,"R T = %f\n",data->R * data->T_star); |
106 |
#endif |
107 |
|
108 |
return data->R * data->T_star * (helm_ideal_tau(tau,delta,data->ideal) + helm_resid_tau(tau,delta,data)); |
109 |
} |
110 |
|
111 |
/** |
112 |
Function to calculate enthalpy from Helmholtz free energy EOS, given |
113 |
temperature and mass density. |
114 |
|
115 |
@param T temperature in K |
116 |
@param rho mass density in kg/m続 |
117 |
@return enthalpy in J/kg |
118 |
*/ |
119 |
double helmholtz_h(double T, double rho, const HelmholtzData *data){ |
120 |
|
121 |
double tau = data->T_star / T; |
122 |
double delta = rho / data->rho_star; |
123 |
|
124 |
#ifdef TEST |
125 |
assert(data->rho_star!=0); |
126 |
assert(T!=0); |
127 |
assert(!isnan(tau)); |
128 |
assert(!isnan(delta)); |
129 |
assert(!isnan(data->R)); |
130 |
#endif |
131 |
|
132 |
return data->R * T * (1 + tau * (helm_ideal_tau(tau,delta,data->ideal) + helm_resid_tau(tau,delta,data)) + delta*helm_resid_del(tau,delta,data)); |
133 |
} |
134 |
|
135 |
/** |
136 |
Function to calculate entropy from Helmholtz free energy EOS, given |
137 |
temperature and mass density. |
138 |
|
139 |
@param T temperature in K |
140 |
@param rho mass density in kg/m続 |
141 |
@return entropy in J/kgK |
142 |
*/ |
143 |
double helmholtz_s(double T, double rho, const HelmholtzData *data){ |
144 |
|
145 |
double tau = data->T_star / T; |
146 |
double delta = rho / data->rho_star; |
147 |
|
148 |
#ifdef ENTROPY_DEBUG |
149 |
assert(data->rho_star!=0); |
150 |
assert(T!=0); |
151 |
assert(!isnan(tau)); |
152 |
assert(!isnan(delta)); |
153 |
assert(!isnan(data->R)); |
154 |
|
155 |
fprintf(stderr,"helm_ideal_tau = %f\n",helm_ideal_tau(tau,delta,data->ideal)); |
156 |
fprintf(stderr,"helm_resid_tau = %f\n",helm_resid_tau(tau,delta,data)); |
157 |
fprintf(stderr,"helm_ideal = %f\n",helm_ideal(tau,delta,data->ideal)); |
158 |
fprintf(stderr,"helm_resid = %f\n",helm_resid(tau,delta,data)); |
159 |
#endif |
160 |
return data->R * ( |
161 |
tau * (helm_ideal_tau(tau,delta,data->ideal) + helm_resid_tau(tau,delta,data)) |
162 |
- (helm_ideal(tau,delta,data->ideal) + helm_resid(tau,delta,data)) |
163 |
); |
164 |
} |
165 |
|
166 |
/** |
167 |
Function to calculate Helmholtz energy from the Helmholtz free energy EOS, |
168 |
given temperature and mass density. |
169 |
|
170 |
@param T temperature in K |
171 |
@param rho mass density in kg/m続 |
172 |
@return Helmholtz energy 'a', in J/kg |
173 |
*/ |
174 |
double helmholtz_a(double T, double rho, const HelmholtzData *data){ |
175 |
|
176 |
double tau = data->T_star / T; |
177 |
double delta = rho / data->rho_star; |
178 |
|
179 |
#ifdef TEST |
180 |
assert(data->rho_star!=0); |
181 |
assert(T!=0); |
182 |
assert(!isnan(tau)); |
183 |
assert(!isnan(delta)); |
184 |
assert(!isnan(data->R)); |
185 |
#endif |
186 |
|
187 |
#ifdef HELMHOLTZ_DEBUG |
188 |
fprintf(stderr,"helmholtz_a: T = %f, rho = %f\n",T,rho); |
189 |
fprintf(stderr,"multiplying by RT = %f\n",data->R*T); |
190 |
#endif |
191 |
|
192 |
return data->R * T * (helm_ideal(tau,delta,data->ideal) + helm_resid(tau,delta,data)); |
193 |
} |
194 |
|
195 |
|
196 |
/** |
197 |
Calculation zero-pressure specific heat capacity |
198 |
*/ |
199 |
double helmholtz_cp0(double T, const HelmholtzData *data){ |
200 |
double val = helm_cp0(T,data->ideal); |
201 |
#if 0 |
202 |
fprintf(stderr,"val = %f\n",val); |
203 |
#endif |
204 |
return val; |
205 |
} |
206 |
|
207 |
/** |
208 |
Calculate partial derivative of p with respect to T, with rho constant |
209 |
*/ |
210 |
double helmholtz_dpdT_rho(double T, double rho, const HelmholtzData *data){ |
211 |
double tau = data->T_star / T; |
212 |
double delta = rho / data->rho_star; |
213 |
|
214 |
double phir_del = helm_resid_del(tau,delta,data); |
215 |
double phir_deltau = helm_resid_deltau(tau,delta,data); |
216 |
#ifdef TEST |
217 |
assert(!isinf(phir_del)); |
218 |
assert(!isinf(phir_deltau)); |
219 |
assert(!isnan(phir_del)); |
220 |
assert(!isnan(phir_deltau)); |
221 |
assert(!isnan(data->R)); |
222 |
assert(!isnan(rho)); |
223 |
assert(!isnan(tau)); |
224 |
#endif |
225 |
|
226 |
double res = data->R * rho * (1 + delta*phir_del - delta*tau*phir_deltau); |
227 |
|
228 |
#ifdef TEST |
229 |
assert(!isnan(res)); |
230 |
assert(!isinf(res)); |
231 |
#endif |
232 |
return res; |
233 |
} |
234 |
|
235 |
/** |
236 |
Calculate partial derivative of p with respect to rho, with T constant |
237 |
*/ |
238 |
double helmholtz_dpdrho_T(double T, double rho, const HelmholtzData *data){ |
239 |
double tau = data->T_star / T; |
240 |
double delta = rho / data->rho_star; |
241 |
|
242 |
double phir_del = helm_resid_del(tau,delta,data); |
243 |
double phir_deldel = helm_resid_deldel(tau,delta,data); |
244 |
#ifdef TEST |
245 |
assert(!isinf(phir_del)); |
246 |
assert(!isinf(phir_deldel)); |
247 |
#endif |
248 |
return data->R * T * (1 + 2*delta*phir_del + delta*delta* phir_deldel); |
249 |
} |
250 |
|
251 |
/*--------------------------------------------- |
252 |
UTILITY FUNCTION(S) |
253 |
*/ |
254 |
|
255 |
/* ipow: public domain by Mark Stephen with suggestions by Keiichi Nakasato */ |
256 |
static double ipow(double x, int n){ |
257 |
double t = 1.0; |
258 |
|
259 |
if(!n)return 1.0; /* At the top. x^0 = 1 */ |
260 |
|
261 |
if (n < 0){ |
262 |
n = -n; |
263 |
x = 1.0/x; /* error if x == 0. Good */ |
264 |
} /* ZTC/SC returns inf, which is even better */ |
265 |
|
266 |
if (x == 0.0)return 0.0; |
267 |
|
268 |
do{ |
269 |
if(n & 1)t *= x; |
270 |
n /= 2; /* KN prefers if (n/=2) x*=x; This avoids an */ |
271 |
x *= x; /* unnecessary but benign multiplication on */ |
272 |
}while(n); /* the last pass, but the comparison is always |
273 |
true _except_ on the last pass. */ |
274 |
|
275 |
return t; |
276 |
} |
277 |
|
278 |
//#define RESID_DEBUG |
279 |
|
280 |
/** |
281 |
Residual part of helmholtz function. |
282 |
*/ |
283 |
double helm_resid(double tau, double delta, const HelmholtzData *data){ |
284 |
double dell,ldell, term, sum, res = 0; |
285 |
unsigned n, i; |
286 |
const HelmholtzPowTerm *pt; |
287 |
const HelmholtzGausTerm *gt; |
288 |
|
289 |
n = data->np; |
290 |
pt = &(data->pt[0]); |
291 |
|
292 |
#ifdef RESID_DEBUG |
293 |
fprintf(stderr,"tau=%f, del=%f\n",tau,delta); |
294 |
#endif |
295 |
|
296 |
/* power terms */ |
297 |
sum = 0; |
298 |
dell = ipow(delta,pt->l); |
299 |
ldell = pt->l * dell; |
300 |
unsigned oldl; |
301 |
for(i=0; i<n; ++i){ |
302 |
term = pt->a * pow(tau, pt->t) * ipow(delta, pt->d); |
303 |
sum += term; |
304 |
#ifdef RESID_DEBUG |
305 |
fprintf(stderr,"i = %d, a=%e, t=%f, d=%d, term = %f, sum = %f",i,pt->a,pt->t,pt->d,term,sum); |
306 |
if(pt->l==0){ |
307 |
fprintf(stderr,",row=%e\n",term); |
308 |
}else{ |
309 |
fprintf(stderr,",row=%e\n,",term*exp(-dell)); |
310 |
} |
311 |
#endif |
312 |
oldl = pt->l; |
313 |
++pt; |
314 |
if(i+1==n || oldl != pt->l){ |
315 |
if(oldl == 0){ |
316 |
#ifdef RESID_DEBUG |
317 |
fprintf(stderr,"linear "); |
318 |
#endif |
319 |
res += sum; |
320 |
}else{ |
321 |
#ifdef RESID_DEBUG |
322 |
fprintf(stderr,"exp dell=%f, exp(-dell)=%f sum=%f: ",dell,exp(-dell),sum); |
323 |
#endif |
324 |
res += sum * exp(-dell); |
325 |
} |
326 |
#ifdef RESID_DEBUG |
327 |
fprintf(stderr,"i = %d, res = %f\n",i,res); |
328 |
#endif |
329 |
sum = 0; |
330 |
dell = ipow(delta,pt->l); |
331 |
ldell = pt->l*dell; |
332 |
} |
333 |
} |
334 |
|
335 |
/* gaussian terms */ |
336 |
n = data->ng; |
337 |
//fprintf(stderr,"THERE ARE %d GAUSSIAN TERMS\n",n); |
338 |
gt = &(data->gt[0]); |
339 |
for(i=0; i<n; ++i){ |
340 |
#ifdef RESID_DEBUG |
341 |
fprintf(stderr,"i = %d, GAUSSIAN, n = %e, t = %f, d = %f, alpha = %f, beta = %f, gamma = %f, epsilon = %f\n",i+1, gt->n, gt->t, gt->d, gt->alpha, gt->beta, gt->gamma, gt->epsilon); |
342 |
#endif |
343 |
double d1 = delta - gt->epsilon; |
344 |
double t1 = tau - gt->gamma; |
345 |
double e1 = -gt->alpha*d1*d1 - gt->beta*t1*t1; |
346 |
sum = gt->n * pow(tau,gt->t) * pow(delta,gt->d) * exp(e1); |
347 |
//fprintf(stderr,"sum = %f\n",sum); |
348 |
res += sum; |
349 |
++gt; |
350 |
} |
351 |
|
352 |
#ifdef RESID_DEBUG |
353 |
fprintf(stderr,"phir = %f\n",res); |
354 |
#endif |
355 |
return res; |
356 |
} |
357 |
|
358 |
/** |
359 |
Derivative of the helmholtz residual function with respect to |
360 |
delta. |
361 |
*/ |
362 |
double helm_resid_del(double tau,double delta, const HelmholtzData *data){ |
363 |
double sum = 0, res = 0; |
364 |
double dell, ldell; |
365 |
unsigned n, i; |
366 |
const HelmholtzPowTerm *pt; |
367 |
const HelmholtzGausTerm *gt; |
368 |
|
369 |
|
370 |
#ifdef RESID_DEBUG |
371 |
fprintf(stderr,"tau=%f, del=%f\n",tau,delta); |
372 |
#endif |
373 |
|
374 |
/* power terms */ |
375 |
n = data->np; |
376 |
pt = &(data->pt[0]); |
377 |
dell = ipow(delta,pt->l); |
378 |
ldell = pt->l * dell; |
379 |
unsigned oldl; |
380 |
for(i=0; i<n; ++i){ |
381 |
sum += pt->a * pow(tau, pt->t) * ipow(delta, pt->d - 1) * (pt->d - ldell); |
382 |
oldl = pt->l; |
383 |
++pt; |
384 |
if(i+1==n || oldl != pt->l){ |
385 |
if(oldl == 0){ |
386 |
res += sum; |
387 |
}else{ |
388 |
res += sum * exp(-dell); |
389 |
} |
390 |
sum = 0; |
391 |
dell = ipow(delta,pt->l); |
392 |
ldell = pt->l*dell; |
393 |
} |
394 |
} |
395 |
|
396 |
/* gaussian terms */ |
397 |
n = data->ng; |
398 |
//fprintf(stderr,"THERE ARE %d GAUSSIAN TERMS\n",n); |
399 |
gt = &(data->gt[0]); |
400 |
for(i=0; i<n; ++i){ |
401 |
#ifdef RESID_DEBUG |
402 |
fprintf(stderr,"i = %d, GAUSSIAN, n = %e, t = %f, d = %f, alpha = %f, beta = %f, gamma = %f, epsilon = %f\n",i+1, gt->n, gt->t, gt->d, gt->alpha, gt->beta, gt->gamma, gt->epsilon); |
403 |
#endif |
404 |
double val2; |
405 |
val2 = - gt->n * pow(tau,gt->t) * pow(delta, -1. + gt->d) |
406 |
* (2. * gt->alpha * delta * (delta - gt->epsilon) - gt->d) |
407 |
* exp(-(gt->alpha * SQ(delta-gt->epsilon) + gt->beta*SQ(tau-gt->gamma))); |
408 |
res += val2; |
409 |
#ifdef RESID_DEBUG |
410 |
fprintf(stderr,"val2 = %f --> res = %f\n",val2,res); |
411 |
#endif |
412 |
++gt; |
413 |
} |
414 |
|
415 |
return res; |
416 |
} |
417 |
|
418 |
/** |
419 |
Derivative of the helmholtz residual function with respect to |
420 |
tau. |
421 |
*/ |
422 |
double helm_resid_tau(double tau,double delta,const HelmholtzData *data){ |
423 |
|
424 |
double sum; |
425 |
double res = 0; |
426 |
double delX; |
427 |
unsigned l; |
428 |
unsigned n, i; |
429 |
const HelmholtzPowTerm *pt; |
430 |
const HelmholtzGausTerm *gt; |
431 |
|
432 |
n = data->np; |
433 |
pt = &(data->pt[0]); |
434 |
|
435 |
delX = 1; |
436 |
|
437 |
l = 0; |
438 |
sum = 0; |
439 |
for(i=0; i<n; ++i){ |
440 |
if(pt->t){ |
441 |
//fprintf(stderr,"i = %d, a = %e, t = %f, d = %d, l = %d\n",i+1, pt->a, pt->t, pt->d, pt->l); |
442 |
sum += pt->a * pow(tau, pt->t - 1) * ipow(delta, pt->d) * pt->t; |
443 |
} |
444 |
++pt; |
445 |
//fprintf(stderr,"l = %d\n",l); |
446 |
if(i+1==n || l != pt->l){ |
447 |
if(l==0){ |
448 |
//fprintf(stderr,"Adding non-exp term\n"); |
449 |
res += sum; |
450 |
}else{ |
451 |
//fprintf(stderr,"Adding exp term with l = %d, delX = %e\n",l,delX); |
452 |
res += sum * exp(-delX); |
453 |
} |
454 |
/* set l to new value */ |
455 |
if(i+1!=n){ |
456 |
l = pt->l; |
457 |
//fprintf(stderr,"New l = %d\n",l); |
458 |
delX = ipow(delta,l); |
459 |
sum = 0; |
460 |
} |
461 |
} |
462 |
} |
463 |
|
464 |
//#define RESID_DEBUG |
465 |
/* gaussian terms */ |
466 |
n = data->ng; |
467 |
gt = &(data->gt[0]); |
468 |
for(i=0; i<n; ++i){ |
469 |
#ifdef RESID_DEBUG |
470 |
fprintf(stderr,"i = %d, GAUSSIAN, n = %e, t = %f, d = %f, alpha = %f, beta = %f, gamma = %f, epsilon = %f\n",i+1, gt->n, gt->t, gt->d, gt->alpha, gt->beta, gt->gamma, gt->epsilon); |
471 |
#endif |
472 |
|
473 |
double val2; |
474 |
val2 = -gt->n * pow(tau,gt->t - 1.) * pow(delta, gt->d) |
475 |
* (2. * gt->beta * tau * (tau - gt->gamma) - gt->t) |
476 |
* exp(-(gt->alpha * SQ(delta-gt->epsilon) + gt->beta*SQ(tau-gt->gamma))); |
477 |
res += val2; |
478 |
#ifdef RESID_DEBUG |
479 |
fprintf(stderr,"res = %f\n",res); |
480 |
#endif |
481 |
|
482 |
++gt; |
483 |
} |
484 |
|
485 |
return res; |
486 |
} |
487 |
|
488 |
|
489 |
|
490 |
/** |
491 |
Mixed derivative of the helmholtz residual function with respect to |
492 |
delta and tau. |
493 |
*/ |
494 |
double helm_resid_deltau(double tau,double delta,const HelmholtzData *data){ |
495 |
double dell,ldell, term, sum = 0, res = 0; |
496 |
unsigned n, i; |
497 |
const HelmholtzPowTerm *pt; |
498 |
const HelmholtzGausTerm *gt; |
499 |
|
500 |
/* power terms */ |
501 |
n = data->np; |
502 |
pt = &(data->pt[0]); |
503 |
dell = ipow(delta,pt->l); |
504 |
ldell = pt->l * dell; |
505 |
unsigned oldl; |
506 |
for(i=0; i<n; ++i){ |
507 |
sum += pt->a * pt->t * pow(tau, pt->t - 1) * ipow(delta, pt->d - 1) * (pt->d - ldell); |
508 |
oldl = pt->l; |
509 |
++pt; |
510 |
if(i+1==n || oldl != pt->l){ |
511 |
if(oldl == 0){ |
512 |
res += sum; |
513 |
}else{ |
514 |
res += sum * exp(-dell); |
515 |
} |
516 |
sum = 0; |
517 |
dell = ipow(delta,pt->l); |
518 |
ldell = pt->l*dell; |
519 |
} |
520 |
} |
521 |
|
522 |
#ifdef TEST |
523 |
assert(!isinf(res)); |
524 |
#endif |
525 |
|
526 |
/* gaussian terms */ |
527 |
n = data->ng; |
528 |
gt = &(data->gt[0]); |
529 |
for(i=0; i<n; ++i){ |
530 |
#ifdef RESID_DEBUG |
531 |
fprintf(stderr,"i = %d, GAUSSIAN, n = %e, t = %f, d = %f, alpha = %f, beta = %f, gamma = %f, epsilon = %f\n",i+1, gt->n, gt->t, gt->d, gt->alpha, gt->beta, gt->gamma, gt->epsilon); |
532 |
#endif |
533 |
double d1 = delta - gt->epsilon; |
534 |
double t1 = tau - gt->gamma; |
535 |
double e1 = -gt->alpha*SQ(d1) - gt->beta*SQ(t1); |
536 |
|
537 |
double f1 = gt->t - 2*gt->beta*tau*(tau - gt->gamma); |
538 |
double g1 = gt->d - 2*gt->alpha*delta*(delta - gt->epsilon); |
539 |
|
540 |
sum = gt->n * f1 * pow(tau,gt->t-1) * g1 * pow(delta,gt->d-1) * exp(e1); |
541 |
|
542 |
//fprintf(stderr,"sum = %f\n",sum); |
543 |
res += sum; |
544 |
#ifdef TEST |
545 |
assert(!isinf(res)); |
546 |
#endif |
547 |
++gt; |
548 |
} |
549 |
|
550 |
#ifdef RESID_DEBUG |
551 |
fprintf(stderr,"phir = %f\n",res); |
552 |
#endif |
553 |
|
554 |
#ifdef TEST |
555 |
assert(!isnan(res)); |
556 |
assert(!isinf(res)); |
557 |
#endif |
558 |
return res; |
559 |
} |
560 |
|
561 |
/** |
562 |
Second derivative of helmholtz residual function with respect to |
563 |
delta (twice). |
564 |
|
565 |
FIXME this function is WRONG. |
566 |
*/ |
567 |
double helm_resid_deldel(double tau,double delta,const HelmholtzData *data){ |
568 |
double sum = 0, res = 0; |
569 |
double dell, ldell; |
570 |
unsigned n, i; |
571 |
const HelmholtzPowTerm *pt; |
572 |
const HelmholtzGausTerm *gt; |
573 |
|
574 |
|
575 |
#ifdef RESID_DEBUG |
576 |
fprintf(stderr,"tau=%f, del=%f\n",tau,delta); |
577 |
#endif |
578 |
|
579 |
/* power terms */ |
580 |
n = data->np; |
581 |
pt = &(data->pt[0]); |
582 |
dell = ipow(delta,pt->l); |
583 |
ldell = pt->l * dell; |
584 |
unsigned oldl; |
585 |
for(i=0; i<n; ++i){ |
586 |
double lpart = pt->l ? SQ(ldell) + ldell*(1. - 2*pt->d - pt->l) : 0; |
587 |
sum += pt->a * pow(tau, pt->t) * ipow(delta, pt->d - 2) * (pt->d*(pt->d - 1) + lpart); |
588 |
oldl = pt->l; |
589 |
++pt; |
590 |
if(i+1==n || oldl != pt->l){ |
591 |
if(oldl == 0){ |
592 |
res += sum; |
593 |
}else{ |
594 |
res += sum * exp(-dell); |
595 |
} |
596 |
sum = 0; |
597 |
dell = ipow(delta,pt->l); |
598 |
ldell = pt->l*dell; |
599 |
} |
600 |
} |
601 |
|
602 |
/* gaussian terms */ |
603 |
n = data->ng; |
604 |
//fprintf(stderr,"THERE ARE %d GAUSSIAN TERMS\n",n); |
605 |
gt = &(data->gt[0]); |
606 |
for(i=0; i<n; ++i){ |
607 |
double s1 = SQ(delta - gt->epsilon); |
608 |
double f1 = gt->d*(gt->d - 1) |
609 |
+ 2.*gt->alpha*delta * ( |
610 |
delta * (2. * gt->alpha * s1 - 1) |
611 |
- 2. * gt->d * (delta - gt->epsilon) |
612 |
); |
613 |
res += gt->n * pow(tau,gt->t) * pow(delta, gt->d - 2.) |
614 |
* f1 |
615 |
* exp(-(gt->alpha * s1 + gt->beta*SQ(tau-gt->gamma))); |
616 |
++gt; |
617 |
} |
618 |
|
619 |
return res; |
620 |
} |
621 |
|