1 |
(* ASCEND modelling environment |
2 |
Copyright (C) 2007, 2008, 2009, 2010 Carnegie Mellon University |
3 |
|
4 |
This program is free software; you can redistribute it and/or modify |
5 |
it under the terms of the GNU General Public License as published by |
6 |
the Free Software Foundation; either version 2, or (at your option) |
7 |
any later version. |
8 |
|
9 |
This program is distributed in the hope that it will be useful, |
10 |
but WITHOUT ANY WARRANTY; without even the implied warranty of |
11 |
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
12 |
GNU General Public License for more details. |
13 |
|
14 |
You should have received a copy of the GNU General Public License |
15 |
along with this program; if not, write to the Free Software |
16 |
Foundation, Inc., 59 Temple Place - Suite 330, |
17 |
Boston, MA 02111-1307, USA. |
18 |
*)(* |
19 |
This file contains some models of Brayton engines and associated cycles, |
20 |
following the development of Çengel & Boles 'Thermodynamcs: An Engineering |
21 |
Approach, 6th Ed, McGraw-Hill, 2008. |
22 |
|
23 |
Author: John Pye |
24 |
*) |
25 |
|
26 |
REQUIRE "atoms.a4l"; |
27 |
REQUIRE "johnpye/thermo_types.a4c"; |
28 |
REQUIRE "johnpye/airprops.a4c"; |
29 |
IMPORT "sensitivity/solve"; |
30 |
|
31 |
(* first some models of air as an ideal gas *) |
32 |
|
33 |
MODEL ideal_gas_base; |
34 |
M IS_A molar_weight_constant; |
35 |
c_p IS_A specific_heat_capacity; |
36 |
s IS_A specific_entropy; |
37 |
h IS_A specific_enthalpy; |
38 |
v IS_A specific_volume; |
39 |
T IS_A temperature; |
40 |
p IS_A pressure; |
41 |
R IS_A specific_gas_constant; |
42 |
|
43 |
R :== 1{GAS_C} / M; |
44 |
p * v = R * T; |
45 |
|
46 |
METHODS |
47 |
METHOD bound_self; |
48 |
s.lower_bound := -5 {kJ/kg/K}; |
49 |
END bound_self; |
50 |
END ideal_gas_base; |
51 |
|
52 |
(* |
53 |
Ideal air assuming ideal gas and constant cp. |
54 |
*) |
55 |
MODEL simple_ideal_air |
56 |
REFINES ideal_gas_base; |
57 |
|
58 |
M :== 28.958600656 {kg/kmol}; |
59 |
|
60 |
c_p = 1.005 {kJ/kg/K}; |
61 |
|
62 |
T_ref IS_A temperature_constant; |
63 |
p_ref IS_A pressure_constant; |
64 |
|
65 |
s = c_p * ln(T / T_ref) - R * ln(p / p_ref); |
66 |
h = c_p * (T - T_ref); |
67 |
|
68 |
T_ref :== 273.15 {K}; |
69 |
p_ref :== 1 {bar}; |
70 |
|
71 |
METHODS |
72 |
METHOD on_load; |
73 |
RUN ClearAll; |
74 |
RUN bound_self; |
75 |
FIX T, p; |
76 |
T := 300 {K}; |
77 |
p := 1 {bar}; |
78 |
END on_load; |
79 |
END simple_ideal_air; |
80 |
|
81 |
(* |
82 |
Ideal air, using a quartic polynomial for c_p as given in Moran & Shapiro |
83 |
4th Ed. |
84 |
*) |
85 |
MODEL ideal_air REFINES ideal_gas_base; |
86 |
M :== 28.958600656 {kg/kmol}; |
87 |
|
88 |
a[0..4] IS_A real_constant; |
89 |
a[0] :== 3.653; |
90 |
a[1] :== -1.337e-3{1/K}; |
91 |
a[2] :== 3.294e-6{1/K^2}; |
92 |
a[3] :== -1.913e-9{1/K^3}; |
93 |
a[4] :== 0.2763e-12{1/K^4}; |
94 |
|
95 |
T_ref IS_A temperature_constant; |
96 |
p_ref IS_A pressure_constant; |
97 |
h_ref IS_A real_constant; |
98 |
s_ref IS_A real_constant; |
99 |
|
100 |
T_ref :== 300 {K}; |
101 |
p_ref :== 1 {bar}; |
102 |
h_ref :== -4.40119 {kJ/kg}; |
103 |
s_ref :== 0. {kJ/kg/K}; |
104 |
|
105 |
c_p * M = 1{GAS_C} * SUM[a[i]*T^i | i IN [0..4]]; |
106 |
|
107 |
(h - h_ref) * M = 1{GAS_C} * SUM[a[i]/(i+1) * T^(i+1) | i IN[0..4]]; |
108 |
|
109 |
s0 IS_A specific_entropy; |
110 |
s0 = R * (a[0]*ln(T/T_ref) + SUM[a[i]/i * (T - T_ref)^i | i IN[1..4]]) + 1.294559 {kJ/kg/K} + 0.38191663487 {kJ/kg/K}; |
111 |
|
112 |
s = s0 - R * ln(p/p_ref); |
113 |
|
114 |
METHODS |
115 |
METHOD bound_self; |
116 |
RUN ideal_gas_base::bound_self; |
117 |
s0.lower_bound := -1e20 {kJ/kg/K}; |
118 |
END bound_self; |
119 |
METHOD on_load; |
120 |
RUN ClearAll; |
121 |
RUN bound_self; |
122 |
FIX T, p; |
123 |
T := 200 {K}; |
124 |
p := 1 {bar}; |
125 |
END on_load; |
126 |
END ideal_air; |
127 |
|
128 |
(* |
129 |
Thermo properties |
130 |
*) |
131 |
MODEL state; |
132 |
air IS_A ideal_air; |
133 |
p ALIASES air.p; |
134 |
T ALIASES air.T; |
135 |
h ALIASES air.h; |
136 |
s ALIASES air.s; |
137 |
v ALIASES air.v; |
138 |
METHODS |
139 |
METHOD default; |
140 |
p := 10{bar}; |
141 |
p.nominal := 42 {bar}; |
142 |
h := 2000 {kJ/kg}; |
143 |
|
144 |
T := 400 {K}; |
145 |
v.nominal := 10 {L/kg}; |
146 |
s := 4 {kJ/kg/K}; |
147 |
END default; |
148 |
METHOD solve; |
149 |
EXTERNAL do_solve(SELF); |
150 |
END solve; |
151 |
METHOD on_load; |
152 |
RUN default_all; |
153 |
FIX p, h; |
154 |
END on_load; |
155 |
END state; |
156 |
|
157 |
|
158 |
(* a simple connector that includes calculation of steam properties *) |
159 |
MODEL node; |
160 |
state IS_A state; |
161 |
p ALIASES state.p; |
162 |
h ALIASES state.h; |
163 |
v ALIASES state.v; |
164 |
T ALIASES state.T; |
165 |
s ALIASES state.s; |
166 |
mdot IS_A mass_rate; |
167 |
METHODS |
168 |
METHOD default; |
169 |
mdot.nominal := 2 {kg/s}; |
170 |
END default; |
171 |
METHOD solve; |
172 |
EXTERNAL do_solve(SELF); |
173 |
END solve; |
174 |
METHOD on_load; |
175 |
RUN default; RUN reset; RUN values; |
176 |
FIX p,h; |
177 |
END on_load; |
178 |
END node; |
179 |
|
180 |
MODEL air_equipment; |
181 |
inlet "in: inlet air stream" IS_A node; |
182 |
outlet "out: outlet air stream" IS_A node; |
183 |
|
184 |
inlet.mdot, outlet.mdot ARE_THE_SAME; |
185 |
mdot ALIASES inlet.mdot; |
186 |
END air_equipment; |
187 |
|
188 |
|
189 |
MODEL compressor REFINES air_equipment; |
190 |
NOTES |
191 |
'block' SELF {Simple model of a compressor using isentropic efficiency} |
192 |
END NOTES; |
193 |
|
194 |
dp IS_A delta_pressure; |
195 |
inlet.p + dp = outlet.p; |
196 |
|
197 |
outlet_is IS_A state; |
198 |
outlet_is.p, outlet.p ARE_THE_SAME; |
199 |
|
200 |
outlet_is.s, inlet.s ARE_THE_SAME; |
201 |
eta IS_A fraction; |
202 |
|
203 |
r IS_A factor; |
204 |
r * inlet.p = outlet.p; |
205 |
|
206 |
eta_eq:eta * (inlet.h - outlet.h) = (inlet.h - outlet_is.h); |
207 |
|
208 |
(* work done on the environment, will be negative *) |
209 |
Wdot IS_A energy_rate; |
210 |
Wdot_eq:Wdot * eta = mdot * (inlet.h - outlet_is.h); |
211 |
|
212 |
w IS_A specific_energy; |
213 |
w_eq:w = eta * (outlet.h - inlet.h); |
214 |
|
215 |
END compressor; |
216 |
|
217 |
MODEL compressor_test REFINES compressor; |
218 |
(* no equations here *) |
219 |
METHODS |
220 |
METHOD on_load; |
221 |
FIX inlet.T; |
222 |
FIX inlet.p; |
223 |
|
224 |
inlet.T := 300 {K}; |
225 |
inlet.p := 1 {bar}; |
226 |
|
227 |
FIX r; |
228 |
FIX eta; |
229 |
FIX mdot; |
230 |
|
231 |
r := 8; |
232 |
eta := 0.8; |
233 |
mdot := 1 {kg/s}; |
234 |
END on_load; |
235 |
END compressor_test; |
236 |
|
237 |
|
238 |
|
239 |
MODEL gas_turbine REFINES air_equipment; |
240 |
NOTES |
241 |
'block' SELF {Simple turbine model} |
242 |
END NOTES; |
243 |
|
244 |
dp IS_A delta_pressure; |
245 |
inlet.p + dp = outlet.p; |
246 |
|
247 |
outlet_is IS_A state; |
248 |
outlet_is.p, outlet.p ARE_THE_SAME; |
249 |
outlet_is.s, inlet.s ARE_THE_SAME; |
250 |
|
251 |
eta IS_A fraction; |
252 |
eta_eq:eta * (inlet.h - outlet_is.h) = (inlet.h - outlet.h); |
253 |
|
254 |
(* work done on the environment, will be positive *) |
255 |
Wdot IS_A energy_rate; |
256 |
Wedot_eq:Wdot = mdot * (inlet.h - outlet.h); |
257 |
|
258 |
w IS_A specific_energy; |
259 |
w_eq:w = inlet.h - outlet.h; |
260 |
|
261 |
r IS_A factor; |
262 |
r * outlet.p = inlet.p; |
263 |
|
264 |
END gas_turbine; |
265 |
|
266 |
MODEL gas_turbine_test REFINES gas_turbine; |
267 |
(* no equations here *) |
268 |
METHODS |
269 |
METHOD on_load; |
270 |
FIX inlet.p; |
271 |
FIX inlet.T; |
272 |
FIX outlet.p; |
273 |
FIX eta; |
274 |
FIX mdot; |
275 |
|
276 |
inlet.p := 15 {bar}; |
277 |
inlet.T := 1200 {K}; |
278 |
outlet.p := 1 {bar}; |
279 |
eta := 0.85; |
280 |
mdot := 1 {kg/s}; |
281 |
END on_load; |
282 |
END gas_turbine_test; |
283 |
|
284 |
|
285 |
|
286 |
|
287 |
(* |
288 |
simple model assumes no pressure drop, but heating losses due to |
289 |
flue gas temperature |
290 |
*) |
291 |
MODEL combustor REFINES air_equipment; |
292 |
NOTES |
293 |
'block' SELF {Simple combustion chamber model} |
294 |
END NOTES; |
295 |
|
296 |
inlet.p, outlet.p ARE_THE_SAME; |
297 |
Qdot_fuel IS_A energy_rate; |
298 |
Qdot IS_A energy_rate; |
299 |
|
300 |
Qdot = mdot * (outlet.h - inlet.h); |
301 |
|
302 |
eta IS_A fraction; |
303 |
Qdot = eta * Qdot_fuel; |
304 |
|
305 |
qdot_fuel IS_A specific_energy_rate; |
306 |
qdot_fuel * mdot = Qdot_fuel; |
307 |
END combustor; |
308 |
|
309 |
MODEL combustor_test REFINES combustor; |
310 |
(* nothing here *) |
311 |
METHODS |
312 |
METHOD on_load; |
313 |
FIX inlet.p; |
314 |
FIX inlet.T; |
315 |
FIX eta; |
316 |
FIX outlet.T; |
317 |
FIX mdot; |
318 |
|
319 |
inlet.p := 15 {bar}; |
320 |
inlet.T := 500 {K}; |
321 |
|
322 |
eta := 0.8; |
323 |
outlet.T := 700 {K}; |
324 |
mdot := 1 {kg/s}; |
325 |
END on_load; |
326 |
END combustor_test; |
327 |
|
328 |
|
329 |
|
330 |
(* |
331 |
this is really simple (fluid props permitting): just work out the heat |
332 |
that must be expelled to get the gas down to a specified temperature |
333 |
*) |
334 |
MODEL dissipator REFINES air_equipment; |
335 |
NOTES |
336 |
'block' SELF {Simple condenser model} |
337 |
END NOTES; |
338 |
|
339 |
inlet.p, outlet.p ARE_THE_SAME; |
340 |
Qdot IS_A energy_rate; |
341 |
|
342 |
Qdot = mdot * (outlet.h - inlet.h); |
343 |
|
344 |
END dissipator; |
345 |
|
346 |
MODEL dissipator_test REFINES dissipator; |
347 |
(* nothing here *) |
348 |
METHODS |
349 |
METHOD on_load; |
350 |
FIX inlet.p, inlet.T; |
351 |
FIX outlet.T; |
352 |
FIX mdot; |
353 |
|
354 |
inlet.p := 1 {bar}; |
355 |
inlet.T := 500 {K}; |
356 |
outlet.T := 300 {K}; |
357 |
mdot := 1 {kg/s}; |
358 |
END on_load; |
359 |
END dissipator_test; |
360 |
|
361 |
|
362 |
MODEL brayton; |
363 |
NOTES |
364 |
'description' SELF { |
365 |
This is a model of a simple Brayton cycle with |
366 |
irreversible compressor (eta=0.8) and turbine (eta=0.85) operating |
367 |
between 300 K and 1300 K, with a compression ratio of 8 and an |
368 |
assumed inlet pressure of 1 bar. Based on examples 9-5 and 9-6 from |
369 |
Çengel & Boles, 'Thermodynamics: An Engineering Approach', 6th Ed, |
370 |
McGraw-Hill, 2008} |
371 |
END NOTES; |
372 |
|
373 |
CO IS_A compressor; |
374 |
TU IS_A gas_turbine; |
375 |
BU IS_A combustor; |
376 |
DI IS_A dissipator; |
377 |
|
378 |
CO.outlet, BU.inlet ARE_THE_SAME; |
379 |
BU.outlet, TU.inlet ARE_THE_SAME; |
380 |
TU.outlet, DI.inlet ARE_THE_SAME; |
381 |
DI.outlet, CO.inlet ARE_THE_SAME; |
382 |
|
383 |
Wdot_CO ALIASES CO.Wdot; |
384 |
Wdot_TU ALIASES TU.Wdot; |
385 |
Wdot IS_A energy_rate; |
386 |
Wdot = Wdot_CO + Wdot_TU; |
387 |
|
388 |
Qdot_BU ALIASES BU.Qdot; |
389 |
Qdot_DI ALIASES DI.Qdot; |
390 |
|
391 |
Qdot IS_A energy_rate; |
392 |
Qdot = Qdot_BU + Qdot_DI; |
393 |
|
394 |
Edot IS_A energy_rate; |
395 |
Edot = Wdot - Qdot; |
396 |
|
397 |
eta IS_A fraction; |
398 |
eta = Wdot / Qdot_BU; |
399 |
|
400 |
r_bw IS_A factor; |
401 |
r_bw = -Wdot_CO / Wdot_TU; |
402 |
|
403 |
state[1..4] IS_A node; |
404 |
state[1], CO.inlet ARE_THE_SAME; |
405 |
state[2], BU.inlet ARE_THE_SAME; |
406 |
state[3], TU.inlet ARE_THE_SAME; |
407 |
state[4], DI.inlet ARE_THE_SAME; |
408 |
|
409 |
eta_TU ALIASES TU.eta; |
410 |
eta_CO ALIASES CO.eta; |
411 |
|
412 |
METHODS |
413 |
METHOD on_load; |
414 |
FIX CO.eta, TU.eta; |
415 |
CO.eta := 0.8; |
416 |
TU.eta := 0.85; |
417 |
FIX CO.inlet.T, TU.inlet.T; |
418 |
CO.inlet.T := 300 {K}; |
419 |
TU.inlet.T := 1300 {K}; |
420 |
FIX CO.r; |
421 |
CO.r := 8; |
422 |
FIX CO.inlet.p; |
423 |
CO.inlet.p := 1 {bar}; |
424 |
FIX CO.inlet.mdot; |
425 |
CO.inlet.mdot := 1 {kg/s}; |
426 |
FIX BU.eta; |
427 |
BU.eta := 1; |
428 |
END on_load; |
429 |
END brayton; |
430 |
|
431 |
|
432 |
(* |
433 |
Regenerator: air-to-air heat exchanger |
434 |
|
435 |
Assumption: fluid on both sides have the same c_p. |
436 |
*) |
437 |
MODEL regenerator REFINES air_equipment; |
438 |
inlet_hot, outlet_hot IS_A node; |
439 |
|
440 |
inlet.p, outlet.p ARE_THE_SAME; |
441 |
inlet_hot.p, outlet_hot.p ARE_THE_SAME; |
442 |
|
443 |
inlet_hot.mdot, outlet_hot.mdot ARE_THE_SAME; |
444 |
mdot_hot ALIASES inlet_hot.mdot; |
445 |
|
446 |
(* for perfect eps=1 case: inlet_hot.T, outlet.T ARE_THE_SAME;*) |
447 |
|
448 |
epsilon IS_A fraction; |
449 |
|
450 |
Qdot IS_A energy_rate; |
451 |
mdot_min IS_A mass_rate; |
452 |
mdot_min = inlet.mdot + 0.5*(inlet.mdot - inlet_hot.mdot + abs(inlet.mdot - inlet_hot.mdot)); |
453 |
|
454 |
Qdot = epsilon * mdot_min * (inlet_hot.h - inlet.h); |
455 |
outlet.h = inlet.h + Qdot/inlet.mdot; |
456 |
outlet_hot.h = inlet_hot.h - Qdot/inlet_hot.mdot; |
457 |
END regenerator; |
458 |
|
459 |
MODEL regenerator_test REFINES regenerator; |
460 |
METHODS |
461 |
METHOD on_load; |
462 |
FIX inlet.mdot, inlet.p, inlet.T; |
463 |
FIX inlet_hot.mdot, inlet_hot.p, inlet_hot.T; |
464 |
inlet.mdot := 1 {kg/s}; |
465 |
inlet.p := 1 {bar}; |
466 |
inlet.T := 300 {K}; |
467 |
inlet_hot.mdot := 1.05 {kg/s}; |
468 |
inlet_hot.p := 15 {bar}; |
469 |
inlet_hot.T := 500 {K}; |
470 |
FIX epsilon; |
471 |
epsilon := 0.8; |
472 |
END on_load; |
473 |
END regenerator_test; |
474 |
|
475 |
|
476 |
|
477 |
MODEL brayton_regenerative; |
478 |
NOTES |
479 |
'description' SELF { |
480 |
This is a model of a regenerative Brayton cycle with |
481 |
irreversible compressor (eta=0.8) and turbine (eta=0.85) operating |
482 |
between 300 K and 1300 K, with a compression ratio of 8 and an |
483 |
assumed inlet pressure of 1 bar. The regenerator effectiveness is |
484 |
0.8. |
485 |
|
486 |
Based on example 9-7 from Çengel & Boles, 'Thermodynamics: An |
487 |
Engineering Approach', 6th Ed, McGraw-Hill, 2008} |
488 |
END NOTES; |
489 |
|
490 |
CO IS_A compressor; |
491 |
TU IS_A gas_turbine; |
492 |
BU IS_A combustor; |
493 |
DI IS_A dissipator; |
494 |
RE IS_A regenerator; |
495 |
|
496 |
CO.outlet, RE.inlet ARE_THE_SAME; |
497 |
RE.outlet, BU.inlet ARE_THE_SAME; |
498 |
BU.outlet, TU.inlet ARE_THE_SAME; |
499 |
TU.outlet, RE.inlet_hot ARE_THE_SAME; |
500 |
RE.outlet_hot, DI.inlet ARE_THE_SAME; |
501 |
DI.outlet, CO.inlet ARE_THE_SAME; |
502 |
|
503 |
Wdot_CO ALIASES CO.Wdot; |
504 |
Wdot_TU ALIASES TU.Wdot; |
505 |
Wdot IS_A energy_rate; |
506 |
Wdot = Wdot_CO + Wdot_TU; |
507 |
|
508 |
Qdot_BU ALIASES BU.Qdot; |
509 |
Qdot_DI ALIASES DI.Qdot; |
510 |
|
511 |
Qdot IS_A energy_rate; |
512 |
Qdot = Qdot_BU + Qdot_DI; |
513 |
|
514 |
Edot IS_A energy_rate; |
515 |
Edot = Wdot - Qdot; |
516 |
|
517 |
eta IS_A factor; |
518 |
eta = Wdot / Qdot_BU; |
519 |
|
520 |
r_bw IS_A factor; |
521 |
r_bw = -Wdot_CO / Wdot_TU; |
522 |
|
523 |
Qdot_RE ALIASES RE.Qdot; |
524 |
|
525 |
eta_TU ALIASES TU.eta; |
526 |
eta_CO ALIASES CO.eta; |
527 |
epsilon_RE ALIASES RE.epsilon; |
528 |
METHODS |
529 |
METHOD on_load; |
530 |
FIX CO.eta, TU.eta; |
531 |
CO.eta := 0.8; |
532 |
TU.eta := 0.85; |
533 |
FIX CO.inlet.T, TU.inlet.T; |
534 |
CO.inlet.T := 300 {K}; |
535 |
TU.inlet.T := 1300 {K}; |
536 |
FIX CO.r; |
537 |
CO.r := 8; |
538 |
FIX CO.inlet.p; |
539 |
CO.inlet.p := 1 {bar}; |
540 |
FIX CO.inlet.mdot; |
541 |
CO.inlet.mdot := 1 {kg/s}; |
542 |
FIX BU.eta; |
543 |
BU.eta := 1; |
544 |
FIX RE.epsilon; |
545 |
RE.epsilon := 0.8; |
546 |
END on_load; |
547 |
END brayton_regenerative; |
548 |
|
549 |
|
550 |
|
551 |
|
552 |
MODEL brayton_intercool_reheat_regen; |
553 |
NOTES |
554 |
'description' SELF { |
555 |
This is a model of a Brayton cycle with intercooling, reheating, and |
556 |
regeneration. |
557 |
|
558 |
It has an irreversible compressor (eta=0.8) and turbine (eta=0.85) |
559 |
and operates between 300 K and 1300 K, with a compression ratio of 8 |
560 |
and an assumed inlet pressure of 1 bar. The regenerator |
561 |
effectiveness is 0.8. |
562 |
|
563 |
In adding the intercooling and reheating stages, we assume an |
564 |
intermediate pressure that results in two compression stages of |
565 |
equal pressure ratio, and two turbine stages of equal pressure |
566 |
ratio. |
567 |
|
568 |
Based on example 9-8 from Çengel & Boles, 'Thermodynamics: An |
569 |
Engineering Approach', 6th Ed, McGraw-Hill, 2008} |
570 |
END NOTES; |
571 |
|
572 |
CO1, CO2 IS_A compressor; |
573 |
TU1, TU2 IS_A gas_turbine; |
574 |
BU IS_A combustor; |
575 |
DI IS_A dissipator; |
576 |
RE IS_A regenerator; |
577 |
IC IS_A dissipator; |
578 |
RH IS_A combustor; |
579 |
|
580 |
CO1.outlet, IC.inlet ARE_THE_SAME; |
581 |
IC.outlet, CO2.inlet ARE_THE_SAME; |
582 |
CO2.outlet, RE.inlet ARE_THE_SAME; |
583 |
RE.outlet, BU.inlet ARE_THE_SAME; |
584 |
BU.outlet, TU1.inlet ARE_THE_SAME; |
585 |
TU1.outlet, RH.inlet ARE_THE_SAME; |
586 |
RH.outlet, TU2.inlet ARE_THE_SAME; |
587 |
TU2.outlet, RE.inlet_hot ARE_THE_SAME; |
588 |
RE.outlet_hot, DI.inlet ARE_THE_SAME; |
589 |
DI.outlet, CO1.inlet ARE_THE_SAME; |
590 |
|
591 |
Wdot_CO1 ALIASES CO1.Wdot; |
592 |
Wdot_CO2 ALIASES CO2.Wdot; |
593 |
Wdot_TU1 ALIASES TU1.Wdot; |
594 |
Wdot_TU2 ALIASES TU2.Wdot; |
595 |
|
596 |
Wdot_CO, Wdot_TU, Wdot IS_A energy_rate; |
597 |
Wdot_CO = Wdot_CO1 + Wdot_CO2; |
598 |
Wdot_TU = Wdot_TU1 + Wdot_TU2; |
599 |
Wdot = Wdot_CO + Wdot_TU; |
600 |
|
601 |
Qdot_BU ALIASES BU.Qdot; |
602 |
Qdot_DI ALIASES DI.Qdot; |
603 |
Qdot_IC ALIASES IC.Qdot; |
604 |
Qdot_RH ALIASES RH.Qdot; |
605 |
|
606 |
Qdot IS_A energy_rate; |
607 |
Qdot = Qdot_BU + Qdot_DI + Qdot_IC + Qdot_RH; |
608 |
|
609 |
Edot IS_A energy_rate; |
610 |
Edot = Wdot - Qdot; |
611 |
|
612 |
eta IS_A factor; |
613 |
eta = Wdot / Qdot_BU; |
614 |
|
615 |
CO1.r = CO2.r; |
616 |
TU1.r = TU2.r; |
617 |
|
618 |
RH.outlet.T = BU.outlet.T; |
619 |
IC.outlet.T = DI.outlet.T; |
620 |
|
621 |
r IS_A factor; |
622 |
r = CO2.outlet.p / CO1.inlet.p; |
623 |
|
624 |
r_bw IS_A factor; |
625 |
r_bw = -Wdot_CO / Wdot_TU; |
626 |
|
627 |
Qdot_RE ALIASES RE.Qdot; |
628 |
|
629 |
eta_TU1 ALIASES TU1.eta; |
630 |
eta_TU2 ALIASES TU2.eta; |
631 |
eta_CO1 ALIASES CO1.eta; |
632 |
eta_CO2 ALIASES CO2.eta; |
633 |
epsilon_RE ALIASES RE.epsilon; |
634 |
METHODS |
635 |
METHOD on_load; |
636 |
FIX CO1.eta, CO2.eta, TU1.eta, TU2.eta; |
637 |
CO1.eta := 0.8; |
638 |
CO2.eta := 0.8; |
639 |
TU1.eta := 0.85; |
640 |
TU2.eta := 0.85; |
641 |
FIX CO1.inlet.T, TU1.inlet.T; |
642 |
CO1.inlet.T := 300 {K}; |
643 |
TU1.inlet.T := 1300 {K}; |
644 |
FIX r; |
645 |
r := 8; |
646 |
FIX CO1.inlet.p; |
647 |
CO1.inlet.p := 1 {bar}; |
648 |
FIX CO1.inlet.mdot; |
649 |
CO1.inlet.mdot := 1 {kg/s}; |
650 |
FIX BU.eta, RH.eta; |
651 |
BU.eta := 1; |
652 |
RH.eta := 1; |
653 |
FIX RE.epsilon; |
654 |
RE.epsilon := 0.8; |
655 |
END on_load; |
656 |
END brayton_intercool_reheat_regen; |