8 |
I WILL_BE second_moment_of_area; |
I WILL_BE second_moment_of_area; |
9 |
L WILL_BE distance; |
L WILL_BE distance; |
10 |
); |
); |
11 |
v[1..n] IS_A distance; |
v[1..n] IS_A deflection; |
12 |
x[1..n] IS_A distance; |
x[1..n] IS_A distance; |
13 |
|
|
14 |
P IS_A force; |
P,R1,R2 IS_A force; |
15 |
a,b IS_A distance; |
a,b IS_A distance; |
16 |
a + b = L; |
a + b = L; |
17 |
|
|
18 |
|
(* |
19 |
isrightp[1..n] IS_A boolean_var; |
isrightp[1..n] IS_A boolean_var; |
20 |
|
|
21 |
FOR i IN [1..n] CREATE |
FOR i IN [1..n] CREATE |
38 |
CASE FALSE: |
CASE FALSE: |
39 |
USE v_left[i]; |
USE v_left[i]; |
40 |
END WHEN; |
END WHEN; |
41 |
END FOR; |
END FOR; |
42 |
|
*) |
43 |
|
FOR i IN [1..n] CREATE |
44 |
|
defl[i]: v[i] = P*b/(6*E*I*L)*((L^2 - b^2)*x[i] - x[i]^3 + (L/b)*( 0.5 * (x[i]-a + abs(x[i]-a)) )^3 ); |
45 |
|
END FOR; |
46 |
|
|
47 |
|
(* sum of vertical forces *) |
48 |
|
R1 + P + R2 = 0 {N}; |
49 |
|
(* sum of moments about left end *) |
50 |
|
P * a + R2 * L = 0 {N*m}; |
51 |
|
|
52 |
METHODS |
METHODS |
53 |
METHOD specify; |
METHOD specify; |
54 |
FIX P, a, x[1..n]; |
FIX P, a, x[1..n]; |
55 |
END specify; |
END specify; |
56 |
METHOD values; |
METHOD values; |
57 |
|
RUN bound_self; |
58 |
|
END values; |
59 |
|
METHOD bound_self; |
60 |
a.upper_bound := 100 {m}; |
a.upper_bound := 100 {m}; |
61 |
b.upper_bound := 100 {m}; |
b.upper_bound := 100 {m}; |
62 |
L.upper_bound := 100 {m}; |
L.upper_bound := 100 {m}; |
63 |
END values; |
P.lower_bound := -2e4 {kN}; |
64 |
|
P.upper_bound := 2e4 {kN}; |
65 |
|
v[1..n].upper_bound := 10 {m}; |
66 |
|
v[1..n].lower_bound := -10 {m}; |
67 |
|
x[1..n].upper_bound := 100 {m}; |
68 |
|
x[1..n].lower_bound := -100 {m}; |
69 |
|
R1.lower_bound := -1e4 {kN}; |
70 |
|
R1.upper_bound := 1e4 {kN}; |
71 |
|
R2.lower_bound := -1e4 {kN}; |
72 |
|
R2.upper_bound := 1e4 {kN}; |
73 |
|
END bound_self; |
74 |
|
|
75 |
END beam_parameterised; |
END beam_parameterised; |
76 |
|
|
77 |
|
(* superposition of n beams with displacements calculated at n locations *) |
78 |
|
MODEL beam_superposition( |
79 |
|
n WILL_BE integer_constant; |
80 |
|
E WILL_BE youngs_modulus; |
81 |
|
I WILL_BE second_moment_of_area; |
82 |
|
L WILL_BE distance; |
83 |
|
); |
84 |
|
|
85 |
|
B[1..n] IS_A beam_parameterised(n,E,I,L); |
86 |
|
|
87 |
|
v[1..n] IS_A deflection; |
88 |
|
x[1..n] IS_A distance; |
89 |
|
R1,R2 IS_A force; |
90 |
|
|
91 |
|
FOR i IN [1..n] CREATE |
92 |
|
B[1..n].x[i], x[i] ARE_THE_SAME; |
93 |
|
v[i] = SUM[B[j].v[i] | j IN [1..n]]; |
94 |
|
END FOR; |
95 |
|
|
96 |
|
(* displacements are calculated at the locations of the loads *) |
97 |
|
FOR i IN [1..n] CREATE |
98 |
|
B[i].a, x[i] ARE_THE_SAME; |
99 |
|
END FOR; |
100 |
|
|
101 |
|
R1 = SUM[B[i].R1 | i IN [1..n]]; |
102 |
|
R2 = SUM[B[i].R2 | i IN [1..n]]; |
103 |
|
|
104 |
|
METHODS |
105 |
|
METHOD bound_self; |
106 |
|
FOR i IN [1..n] DO |
107 |
|
RUN B[i].bound_self; |
108 |
|
v[i].upper_bound := 10 {m}; |
109 |
|
v[i].lower_bound := -10 {m}; |
110 |
|
x[i].upper_bound := 500 {m}; |
111 |
|
x[i].lower_bound := -500 {m}; |
112 |
|
END FOR; |
113 |
|
R1.lower_bound := -1e4 {kN}; |
114 |
|
R1.upper_bound := 1e4 {kN}; |
115 |
|
R2.lower_bound := -1e4 {kN}; |
116 |
|
R2.upper_bound := 1e4 {kN}; |
117 |
|
END bound_self; |
118 |
|
|
119 |
|
END beam_superposition; |
120 |
|
|
121 |
(* |
(* |
122 |
Model of a simply-supported beam of length L |
Model of a simply-supported beam of length L |
152 |
P := 14.0 {kN}; |
P := 14.0 {kN}; |
153 |
a := 1.75 {m}; |
a := 1.75 {m}; |
154 |
x := 2.0 {m}; |
x := 2.0 {m}; |
155 |
END values; |
END values; |
156 |
|
|
157 |
|
METHOD bound_self; |
158 |
|
RUN B.bound_self; |
159 |
|
L.lower_bound := 500 {m}; |
160 |
|
L.upper_bound := 0{m}; |
161 |
|
END bound_self; |
162 |
|
|
163 |
METHOD on_load; |
METHOD on_load; |
164 |
RUN reset; |
RUN reset; |
165 |
|
RUN bound_self; |
166 |
RUN values; |
RUN values; |
167 |
END on_load; |
END on_load; |
168 |
|
|