1 |
REQUIRE "stream_holdup.a4l"; |
2 |
(* => stream_holdup.a4l, thermodynamics.a4l, components.a4l, phases.a4l, |
3 |
* atoms.a4l, measures.a4l, system.a4l, basemodel.a4l *) |
4 |
PROVIDE "flash.a4l"; |
5 |
|
6 |
(* |
7 |
* flash.a4l |
8 |
* by Ben Allan, Jennifer Perry, and Art Westerberg |
9 |
* Part of the ASCEND Library |
10 |
* $Date: 1998/06/17 19:05:50 $ |
11 |
* $Revision: 1.7 $ |
12 |
* $Author: mthomas $ |
13 |
* $Source: /afs/cs.cmu.edu/project/ascend/Repository/models/flash.a4l,v $ |
14 |
* |
15 |
* This file is part of the ASCEND Modeling Library. |
16 |
* |
17 |
* The file provide basic vapor-liquid equilibrium flash calcuations |
18 |
* in various unit operation configurations. |
19 |
* |
20 |
* Copyright (C) 1998 Carnegie Mellon University |
21 |
* |
22 |
* The ASCEND Modeling Library is free software; you can redistribute |
23 |
* it and/or modify it under the terms of the GNU General Public |
24 |
* License as published by the Free Software Foundation; either |
25 |
* version 2 of the License, or (at your option) any later version. |
26 |
* |
27 |
* The ASCEND Modeling Library is distributed in hope that it will be |
28 |
* useful, but WITHOUT ANY WARRANTY; without even the implied |
29 |
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. |
30 |
* See the GNU General Public License for more details. |
31 |
* |
32 |
* You should have received a copy of the GNU General Public License |
33 |
* along with the program; if not, write to the Free Software |
34 |
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139 USA. Check |
35 |
* the file named COPYING. |
36 |
*) |
37 |
|
38 |
MODEL flash_base( |
39 |
Qin WILL_BE energy_rate; |
40 |
) REFINES cmumodel; |
41 |
|
42 |
NOTES |
43 |
'usage' SELF { |
44 |
Never create one of these directly. |
45 |
This is just a common ancestor type to provide Qin and |
46 |
boundwidth uniformly and to make type tree navigation |
47 |
easier. |
48 |
} |
49 |
'purpose' SELF { |
50 |
This library provides models: |
51 |
vapor_liquid_flash - a simple two product flash of an arbitrary feed. |
52 |
simple_reboiler - a reboiler with "stream" connections for use in columns. |
53 |
total_condenser - a total condenser with "stream" connections for use in columns. |
54 |
tray - a tray with "stream" connections for use in columns. |
55 |
feed_tray - a feed tray with "stream" connections for use in columns. |
56 |
detailed_tray - a tray with "detailed_stream" connections for use in stacks. |
57 |
} |
58 |
END NOTES; |
59 |
|
60 |
boundwidth IS_A bound_width; |
61 |
END flash_base; |
62 |
|
63 |
MODEL vapor_liquid_flash( |
64 |
Qin WILL_BE energy_rate; |
65 |
equilibrated WILL_BE boolean; |
66 |
feed WILL_BE stream; |
67 |
vapout WILL_BE stream; |
68 |
liqout WILL_BE stream; |
69 |
) WHERE ( |
70 |
feed, vapout, liqout WILL_NOT_BE_THE_SAME; |
71 |
feed.cd, vapout.cd, liqout.cd WILL_BE_THE_SAME; |
72 |
vapout.pd.phase_indicator == 'V'; |
73 |
liqout.pd.phase_indicator == 'L'; |
74 |
(feed.pd.phase_indicator IN ['V','L','VL','VLL']) == TRUE; |
75 |
) REFINES flash_base; |
76 |
|
77 |
NOTES |
78 |
'purpose' SELF { |
79 |
This MODEL computes a VL flash with the potential that the whole |
80 |
feed subcools or superheats into one or the other product. |
81 |
The user supplies all streams, a heat input Qin, and boolean |
82 |
equilibrated. If equilibrated is TRUE, V-L equilibrium will be |
83 |
attempted, OTHERWISE the unit will solve only the mass balances. |
84 |
} |
85 |
'developer-ben' SELF { |
86 |
This is the allegedly simple to use wrapper for the detailed flash |
87 |
MODEL. The user creates a vapor product, a liquid product, and any |
88 |
feed and gives them to us with a heat input and an equilibrium |
89 |
control variable. We do the assembly of the flash VLE MODEL from |
90 |
the given output stream states. |
91 |
} |
92 |
'developer-art' SELF { |
93 |
A vapor-liquid flash MODEL. This MODEL shares the phase_partial |
94 |
information between the vapor and liquid product streams with the |
95 |
flash state. Equilibrium between these phases for the flash state |
96 |
supplies the equilibrium equations for the flash unit. A user |
97 |
parameterizes this MODEL with the feed and the liquid and vapor |
98 |
product streams. The user must also share a variable for the heat |
99 |
into the unit. |
100 |
} |
101 |
END NOTES; |
102 |
|
103 |
cd ALIASES feed.cd; |
104 |
P ALIASES vapout.P; |
105 |
T ALIASES vapout.T; |
106 |
alpha ALIASES state.phase['vapor'].alpha; |
107 |
(* when equilbrated, the relative volatilities alpha become K-values *) |
108 |
|
109 |
(* flash thermo options are derived from product streams *) |
110 |
pdVL IS_A phases_data('VL', vapout.pd.vapor_option, |
111 |
liqout.pd.liquid1_option, 'none'); |
112 |
|
113 |
(* flash Vapor-Liquid state comes from thermo of product streams. *) |
114 |
phaseVL[VLphases] ALIASES |
115 |
(vapout.phase['vapor'], liqout.phase['liquid1']) |
116 |
WHERE VLphases IS_A set OF symbol_constant |
117 |
WITH_VALUE ('vapor','liquid1'); |
118 |
state IS_A thermodynamics(cd, pdVL, phaseVL, equilibrated); |
119 |
|
120 |
x "liquid product composition" ALIASES liqout.state.y; |
121 |
y "vapor product composition" ALIASES vapout.state.y; |
122 |
z "feed composition" ALIASES feed.state.y; |
123 |
|
124 |
(* Link Nc - 1 components of overall state to feed. state |
125 |
* will calculate the last component from SUM[y[i]]=1; |
126 |
*) |
127 |
FOR i IN cd.other_components CREATE |
128 |
connect_feed[i]: state.y[i] = feed.y[i]; |
129 |
END FOR; |
130 |
|
131 |
flowscale IS_A molar_rate_scale; |
132 |
|
133 |
vapor_balance: (vapout.flow - |
134 |
state.phase_fraction['vapor'] * feed.flow)/flowscale = 0; |
135 |
liquid_balance: (liqout.flow - |
136 |
state.phase_fraction['liquid1'] * feed.flow)/flowscale = 0; |
137 |
|
138 |
H_flowscale IS_A energy_rate_scale; |
139 |
energy_balance: (feed.H_flow + Qin - |
140 |
(vapout.H_flow + liqout.H_flow))/H_flowscale = 0; |
141 |
|
142 |
(* Qin is energy balance error when equilibrated is FALSE. |
143 |
* use_energy: |
144 |
* WHEN (equilibrated) |
145 |
* CASE TRUE: USE energy_balance; |
146 |
* OTHERWISE: (* do not close energy balance *) |
147 |
* END WHEN; |
148 |
* Always use EB equation. relaxation is in the thermo equilibrium condition. |
149 |
*) |
150 |
|
151 |
|
152 |
METHODS |
153 |
|
154 |
METHOD check_self; |
155 |
IF (liqout.flow < 1e-4 {mole/s}) THEN |
156 |
STOP {Liquid flow dried up in flash}; |
157 |
END IF; |
158 |
IF (vapout.flow < 1e-4 {mole/s}) THEN |
159 |
STOP {All vapor condensed in flash}; |
160 |
END IF; |
161 |
IF (feed.flow < 1e-4 {mole/s}) THEN |
162 |
STOP {No feed flowing to flash}; |
163 |
END IF; |
164 |
IF (abs(feed.flow - vapout.flow - liqout.flow)/flowscale > 1.0e-4) THEN |
165 |
STOP {Flash violates overall mass-balance}; |
166 |
END IF; |
167 |
RUN pdVL.check_self; |
168 |
RUN state.check_self; |
169 |
END check_self; |
170 |
|
171 |
METHOD check_all; |
172 |
RUN feed.check_all; |
173 |
RUN vapout.check_all; |
174 |
RUN liqout.check_all; |
175 |
RUN check_self; |
176 |
END check_all; |
177 |
|
178 |
METHOD default_self; |
179 |
boundwidth :=10; |
180 |
flowscale := feed.Details.flowscale; |
181 |
H_flowscale := feed.Details.H_flowscale; |
182 |
RUN pdVL.default_self; |
183 |
RUN state.default_self; |
184 |
END default_self; |
185 |
|
186 |
METHOD default_all; |
187 |
Qin := 0 {watt}; |
188 |
equilibrated := FALSE; |
189 |
RUN feed.default_all; |
190 |
RUN vapout.default_all; |
191 |
RUN liqout.default_all; |
192 |
RUN default_self; |
193 |
END default_all; |
194 |
|
195 |
METHOD bound_self; |
196 |
state.boundwidth := boundwidth; |
197 |
RUN pdVL.bound_self; |
198 |
RUN state.bound_self; |
199 |
END bound_self; |
200 |
|
201 |
METHOD bound_all; |
202 |
feed.boundwidth := boundwidth; |
203 |
vapout.boundwidth := boundwidth; |
204 |
liqout.boundwidth := boundwidth; |
205 |
RUN feed.bound_all; |
206 |
RUN vapout.bound_all; |
207 |
RUN liqout.bound_all; |
208 |
RUN bound_self; |
209 |
END bound_all; |
210 |
|
211 |
METHOD scale_self; |
212 |
flowscale := feed.flow; |
213 |
H_flowscale := feed.H_flow; |
214 |
RUN pdVL.scale_self; |
215 |
RUN state.scale_self; |
216 |
END scale_self; |
217 |
|
218 |
METHOD scale_all; |
219 |
RUN feed.scale_all; |
220 |
RUN vapout.scale_all; |
221 |
RUN liqout.scale_all; |
222 |
RUN scale_self; |
223 |
END scale_all; |
224 |
|
225 |
METHOD seqmod; |
226 |
RUN state.specify; |
227 |
state.y[cd.components].fixed := FALSE; |
228 |
END seqmod; |
229 |
|
230 |
METHOD reset_to_massbal; |
231 |
equilibrated := FALSE; |
232 |
RUN reset; |
233 |
END reset_to_massbal; |
234 |
|
235 |
METHOD reset_to_fullthermo; |
236 |
equilibrated := TRUE; |
237 |
RUN reset; |
238 |
END reset_to_fullthermo; |
239 |
|
240 |
METHOD specify; |
241 |
NOTES 'usage' SELF { |
242 |
The standard initialization for this unit assumes the user has |
243 |
specified enough information to fully specify the feed stream and |
244 |
then has specified the flash pressure, P, and fraction of the feed |
245 |
leaving in the vapor stream. This split fraction specification makes |
246 |
it easy to keep the flash in the two phase region. |
247 |
} END NOTES; |
248 |
RUN specify_P_and_vapor_fraction; |
249 |
END specify; |
250 |
|
251 |
METHOD specify_P_and_vapor_fraction; |
252 |
RUN feed.specify; |
253 |
RUN seqmod; |
254 |
END specify_P_and_vapor_fraction; |
255 |
|
256 |
METHOD specify_P_and_heat_input; |
257 |
NOTES 'usage' SELF { |
258 |
This can be used to obtain an adiabatic flash by setting |
259 |
Qin to zero and equilibrated to TRUE. |
260 |
} END NOTES; |
261 |
RUN specify_P_and_vapor_fraction; |
262 |
Qin.fixed := TRUE; |
263 |
IF (equilibrated) THEN |
264 |
state.phase_fraction['vapor'].fixed := FALSE; |
265 |
END IF; |
266 |
END specify_P_and_heat_input; |
267 |
|
268 |
END vapor_liquid_flash; |
269 |
|
270 |
|
271 |
MODEL tray_base( |
272 |
Qin WILL_BE energy_rate; |
273 |
) REFINES flash_base; |
274 |
END tray_base; |
275 |
|
276 |
MODEL detailed_tray( |
277 |
Qin WILL_BE energy_rate; |
278 |
equilibrated WILL_BE boolean; |
279 |
liqin WILL_BE detailed_stream; |
280 |
vapin WILL_BE detailed_stream; |
281 |
liqout WILL_BE detailed_stream; |
282 |
vapout WILL_BE detailed_stream; |
283 |
state WILL_BE thermodynamics; |
284 |
) WHERE ( |
285 |
vapin.state.pd.phase_indicator IN ['V','M'] == TRUE; |
286 |
vapout.state.pd.phase_indicator == 'V'; |
287 |
liqin.state.pd.phase_indicator IN ['L','M'] == TRUE; |
288 |
liqout.state.pd.phase_indicator == 'L'; |
289 |
state.pd.phase_indicator == 'VL'; |
290 |
liqout.state, vapout.state WILL_NOT_BE_THE_SAME; |
291 |
state.phase['liquid1'], liqout.state.phase['liquid1'] WILL_BE_THE_SAME; |
292 |
state.phase['vapor'], vapout.state.phase['vapor'] WILL_BE_THE_SAME; |
293 |
state.cd, liqin.state.cd, liqout.state.cd, |
294 |
vapin.state.cd, vapout.state.cd WILL_BE_THE_SAME; |
295 |
) REFINES tray_base; |
296 |
|
297 |
alpha "relative volatilities" ALIASES state.phase['vapor'].alpha; |
298 |
x "liquid product composition" ALIASES liqout.state.y; |
299 |
y "vapor product composition" ALIASES vapout.state.y; |
300 |
P ALIASES state.P; |
301 |
T ALIASES state.T; |
302 |
|
303 |
cmo_ratio "constant molar overflow ratio" IS_A factor; |
304 |
cmo_eqn: (cmo_ratio * liqin.flow - liqout.flow)/flowscale = 0; |
305 |
|
306 |
flowscale IS_A molar_rate_scale; |
307 |
FOR i IN state.cd.other_components CREATE |
308 |
connect_feeds[i]: ( |
309 |
state.y[i] * (liqin.flow + vapin.flow) - |
310 |
(vapin.state.y[i] * vapin.flow + liqin.state.y[i] * liqin.flow) |
311 |
) / flowscale = 0; |
312 |
END FOR; |
313 |
|
314 |
vapor_balance: (vapout.flow - |
315 |
state.phase_fraction['vapor'] * (vapin.flow+liqin.flow)) |
316 |
/ flowscale = 0; |
317 |
|
318 |
liquid_balance: (liqout.flow - |
319 |
state.phase_fraction['liquid1'] * (vapin.flow+liqin.flow)) |
320 |
/ flowscale = 0; |
321 |
|
322 |
H_flowscale IS_A energy_rate_scale; |
323 |
energy_balance: ((vapin.H_flow + liqin.H_flow) + Qin - |
324 |
(vapout.H_flow + liqout.H_flow)) / H_flowscale = 0; |
325 |
|
326 |
METHODS |
327 |
|
328 |
METHOD check_all; |
329 |
RUN check_self; |
330 |
RUN vapin.check_all; |
331 |
RUN liqin.check_all; |
332 |
RUN vapout.check_all; |
333 |
RUN liqout.check_all; |
334 |
RUN state.check_all; |
335 |
END check_all; |
336 |
|
337 |
METHOD check_self; |
338 |
IF (liqout.flow < 1e-4 {mole/s}) THEN |
339 |
STOP {Liquid flow dried up on tray}; |
340 |
END IF; |
341 |
IF (vapout.flow < 1e-4 {mole/s}) THEN |
342 |
STOP {All vapor condensed on tray}; |
343 |
END IF; |
344 |
IF (abs(vapin.flow + liqin.flow - |
345 |
vapout.flow - liqout.flow)/flowscale > 1.0e-4) THEN |
346 |
STOP {Tray violates overall mass-balance}; |
347 |
END IF; |
348 |
END check_self; |
349 |
|
350 |
METHOD default_self; |
351 |
boundwidth := 10; |
352 |
flowscale := liqin.flowscale + vapin.flowscale; |
353 |
H_flowscale := liqin.H_flowscale + vapin.H_flowscale; |
354 |
END default_self; |
355 |
|
356 |
METHOD default_all; |
357 |
equilibrated := FALSE; |
358 |
Qin := 0 {watt}; |
359 |
RUN vapin.default_all; |
360 |
RUN liqin.default_all; |
361 |
RUN vapout.default_all; |
362 |
RUN liqout.default_all; |
363 |
RUN state.default_all; |
364 |
RUN default_self; |
365 |
END default_all; |
366 |
|
367 |
METHOD bound_self; |
368 |
cmo_ratio.lower_bound := 0.0; (* really?? *) |
369 |
cmo_ratio.upper_bound := cmo_ratio + boundwidth*cmo_ratio.nominal; |
370 |
END bound_self; |
371 |
|
372 |
METHOD bound_all; |
373 |
liqin.boundwidth := boundwidth; |
374 |
vapin.boundwidth := boundwidth; |
375 |
vapout.boundwidth := boundwidth; |
376 |
liqout.boundwidth := boundwidth; |
377 |
state.boundwidth := boundwidth; |
378 |
RUN liqin.bound_all; |
379 |
RUN vapin.bound_all; |
380 |
RUN vapout.bound_all; |
381 |
RUN liqout.bound_all; |
382 |
RUN state.bound_all; |
383 |
STOP {tray bound_all needs to bound Qin somehow}; |
384 |
RUN bound_self; |
385 |
END bound_all; |
386 |
|
387 |
METHOD scale_self; |
388 |
flowscale := liqin.flowscale + vapin.flowscale; |
389 |
H_flowscale := liqin.H_flowscale + vapin.H_flowscale; |
390 |
cmo_ratio.nominal := abs(cmo_ratio)*1.01 + 0.01; |
391 |
END scale_self; |
392 |
|
393 |
METHOD scale_all; |
394 |
RUN liqin.scale_all; |
395 |
RUN vapin.scale_all; |
396 |
RUN vapout.scale_all; |
397 |
RUN liqout.scale_all; |
398 |
RUN state.scale_all; |
399 |
RUN scale_self; |
400 |
END scale_all; |
401 |
|
402 |
METHOD seqmod; |
403 |
RUN state.specify; |
404 |
(* Equations connect_feed, vapor_balance, and liquid_balance |
405 |
* make us free nc+1 variables. |
406 |
*) |
407 |
state.y[state.cd.components].fixed := FALSE; |
408 |
state.phase_fraction['vapor'].fixed := FALSE; |
409 |
(* Then we trade cmo_ratio for T *) |
410 |
cmo_ratio.fixed := TRUE; |
411 |
IF (equilibrated) THEN |
412 |
state.T.fixed := FALSE; |
413 |
END IF; |
414 |
END seqmod; |
415 |
|
416 |
METHOD seqmod_massbal; |
417 |
equilibrated := FALSE; |
418 |
RUN seqmod; |
419 |
vapin.state.T.fixed := TRUE; |
420 |
liqin.state.T.fixed := TRUE; |
421 |
END seqmod_massbal; |
422 |
|
423 |
METHOD seqmod_fullthermo; |
424 |
equilibrated := TRUE; |
425 |
RUN seqmod; |
426 |
END seqmod_fullthermo; |
427 |
|
428 |
METHOD seqmod_fixed_Q; |
429 |
RUN seqmod_fullthermo; |
430 |
cmo_ratio.fixed := FALSE; |
431 |
Qin.fixed := TRUE; |
432 |
END seqmod_fixed_Q; |
433 |
|
434 |
METHOD seqmod_adiabatic; |
435 |
RUN seqmod_fixed_Q; |
436 |
Qin := 0{W}; |
437 |
END seqmod_adiabatic; |
438 |
|
439 |
METHOD reset_to_massbal; |
440 |
equilibrated := FALSE; |
441 |
RUN reset; |
442 |
END reset_to_massbal; |
443 |
|
444 |
METHOD reset_to_fullthermo; |
445 |
equilibrated := TRUE; |
446 |
RUN reset; |
447 |
END reset_to_fullthermo; |
448 |
|
449 |
METHOD reset_to_adiabatic; |
450 |
RUN reset_to_fullthermo; |
451 |
cmo_ratio.fixed := FALSE; |
452 |
Qin.fixed := TRUE; |
453 |
Qin := 0{W}; |
454 |
END reset_to_adiabatic; |
455 |
|
456 |
METHOD specify; |
457 |
RUN seqmod; |
458 |
RUN vapin.specify; |
459 |
RUN liqin.specify; |
460 |
END specify; |
461 |
|
462 |
METHOD heat_balance; |
463 |
cmo_ratio.fixed := FALSE; |
464 |
Qin.fixed := TRUE; |
465 |
END heat_balance; |
466 |
|
467 |
METHOD CMO; |
468 |
cmo_ratio.fixed := TRUE; |
469 |
Qin.fixed := FALSE; |
470 |
END CMO; |
471 |
|
472 |
END detailed_tray; |
473 |
|
474 |
MODEL tray( |
475 |
Qin WILL_BE energy_rate; |
476 |
equilibrated WILL_BE boolean; |
477 |
liqin WILL_BE stream; |
478 |
vapin WILL_BE stream; |
479 |
liqout WILL_BE stream; |
480 |
vapout WILL_BE stream; |
481 |
) WHERE ( |
482 |
liqin, vapin, vapout, liqout WILL_NOT_BE_THE_SAME; |
483 |
liqin.cd, liqout.cd, vapin.cd, vapout.cd WILL_BE_THE_SAME; |
484 |
liqin.pd.phase_indicator IN ['L','M'] == TRUE; |
485 |
liqout.pd.phase_indicator == 'L'; |
486 |
vapin.pd.phase_indicator IN ['V','M'] == TRUE; |
487 |
vapout.pd.phase_indicator == 'V'; |
488 |
) REFINES flash_base; |
489 |
|
490 |
NOTES |
491 |
'purpose' SELF { |
492 |
This is a VLE tray MODEL for use when a single tray is needed |
493 |
that must be connected via streams to other units. This is |
494 |
a tray stack one tray tall. |
495 |
} |
496 |
'contra-indications' SELF { |
497 |
This tray should not be used to create a stack of trays, as |
498 |
it has a lot of unnecessary overhead for that application. |
499 |
} |
500 |
END NOTES; |
501 |
|
502 |
cd ALIASES liqin.cd; |
503 |
|
504 |
(* flash thermo options are derived from product streams *) |
505 |
pdVL IS_A phases_data('VL', vapout.pd.vapor_option, |
506 |
liqout.pd.liquid1_option, 'none'); |
507 |
|
508 |
(* flash Vapor-Liquid state comes from thermo of product streams. *) |
509 |
phaseVL[VLphases] ALIASES |
510 |
(vapout.phase['vapor'], liqout.phase['liquid1']) |
511 |
WHERE VLphases IS_A set OF symbol_constant |
512 |
WITH_VALUE ('vapor','liquid1'); |
513 |
state IS_A thermodynamics(cd, pdVL, phaseVL, equilibrated); |
514 |
|
515 |
P ALIASES state.P; |
516 |
T ALIASES state.T; |
517 |
alpha "relative volatility" ALIASES state.phase['vapor'].alpha; |
518 |
x "liquid product composition" ALIASES liqout.state.y; |
519 |
y "vapor product composition" ALIASES vapout.state.y; |
520 |
|
521 |
Details IS_A detailed_tray(Qin,equilibrated, |
522 |
liqin.Details,vapin.Details, |
523 |
liqout.Details,vapout.Details, |
524 |
state); |
525 |
|
526 |
METHODS |
527 |
|
528 |
METHOD check_all; |
529 |
RUN vapin.check_all; |
530 |
RUN liqin.check_all; |
531 |
RUN vapout.check_all; |
532 |
RUN liqout.check_all; |
533 |
RUN check_self; |
534 |
END check_all; |
535 |
|
536 |
METHOD check_self; |
537 |
RUN pdVL.check_self; |
538 |
RUN state.check_self; |
539 |
RUN Details.check_self; |
540 |
END check_self; |
541 |
|
542 |
METHOD default_self; |
543 |
RUN pdVL.default_self; |
544 |
RUN state.default_self; |
545 |
RUN Details.default_self; |
546 |
END default_self; |
547 |
|
548 |
METHOD default_all; |
549 |
equilibrated := FALSE; |
550 |
Qin := 0 {watt}; |
551 |
RUN vapin.default_all; |
552 |
RUN liqin.default_all; |
553 |
RUN vapout.default_all; |
554 |
RUN liqout.default_all; |
555 |
RUN default_self; |
556 |
END default_all; |
557 |
|
558 |
METHOD bound_self; |
559 |
state.boundwidth := boundwidth; |
560 |
Details.boundwidth := boundwidth; |
561 |
RUN pdVL.bound_self; |
562 |
RUN state.bound_self; |
563 |
RUN Details.bound_self; |
564 |
END bound_self; |
565 |
|
566 |
METHOD bound_all; |
567 |
liqin.boundwidth := boundwidth; |
568 |
vapin.boundwidth := boundwidth; |
569 |
vapout.boundwidth := boundwidth; |
570 |
liqout.boundwidth := boundwidth; |
571 |
RUN liqin.bound_all; |
572 |
RUN vapin.bound_all; |
573 |
RUN vapout.bound_all; |
574 |
RUN liqout.bound_all; |
575 |
STOP {tray bound_all needs to bound Qin somehow}; |
576 |
RUN bound_self; |
577 |
END bound_all; |
578 |
|
579 |
METHOD scale_self; |
580 |
RUN pdVL.scale_self; |
581 |
RUN state.scale_self; |
582 |
RUN Details.scale_self; |
583 |
END scale_self; |
584 |
|
585 |
METHOD scale_all; |
586 |
RUN liqin.scale_all; |
587 |
RUN vapin.scale_all; |
588 |
RUN vapout.scale_all; |
589 |
RUN liqout.scale_all; |
590 |
RUN scale_self; |
591 |
END scale_all; |
592 |
|
593 |
METHOD seqmod; |
594 |
RUN Details.seqmod; |
595 |
END seqmod; |
596 |
|
597 |
METHOD seqmod_massbalance; |
598 |
RUN Details.seqmod_massbal; |
599 |
END seqmod_massbalance; |
600 |
|
601 |
METHOD seqmod_fullthermo; |
602 |
RUN Details.seqmod_fullthermo; |
603 |
END seqmod_fullthermo; |
604 |
|
605 |
METHOD seqmod_fixed_Q; |
606 |
RUN Details.seqmod_fixed_Q; |
607 |
END seqmod_fixed_Q; |
608 |
|
609 |
METHOD seqmod_adiabatic; |
610 |
RUN Details.seqmod_adiabatic; |
611 |
END seqmod_adiabatic; |
612 |
|
613 |
METHOD reset_to_massbalance; |
614 |
RUN Details.reset_to_massbal; |
615 |
END reset_to_massbalance; |
616 |
|
617 |
METHOD reset_to_fullthermo; |
618 |
RUN Details.reset_to_fullthermo; |
619 |
END reset_to_fullthermo; |
620 |
|
621 |
METHOD reset_to_adiabatic; |
622 |
RUN Details.reset_to_adiabatic; |
623 |
END reset_to_adiabatic; |
624 |
|
625 |
METHOD specify; |
626 |
RUN Details.specify; |
627 |
END specify; |
628 |
|
629 |
METHOD heat_balance; |
630 |
RUN Details.heat_balance; |
631 |
END heat_balance; |
632 |
|
633 |
METHOD CMO; |
634 |
RUN Details.CMO; |
635 |
END CMO; |
636 |
|
637 |
END tray; |
638 |
|
639 |
MODEL feed_tray( |
640 |
Qin WILL_BE energy_rate; |
641 |
equilibrated WILL_BE boolean; |
642 |
feed WILL_BE stream; |
643 |
liqin WILL_BE stream; |
644 |
vapin WILL_BE stream; |
645 |
liqout WILL_BE stream; |
646 |
vapout WILL_BE stream; |
647 |
) WHERE ( |
648 |
feed, liqin, vapin, vapout, liqout WILL_NOT_BE_THE_SAME; |
649 |
feed.cd, liqin.cd, liqout.cd, vapin.cd, vapout.cd WILL_BE_THE_SAME; |
650 |
liqin.pd.phase_indicator IN ['L','M'] == TRUE; |
651 |
liqout.pd.phase_indicator == 'L'; |
652 |
vapin.pd.phase_indicator IN ['V','M'] == TRUE; |
653 |
vapout.pd.phase_indicator == 'V'; |
654 |
(feed.pd.phase_indicator IN ['V','L','VL']) == TRUE; |
655 |
) REFINES flash_base; |
656 |
|
657 |
cd ALIASES liqin.cd; |
658 |
|
659 |
(* flash thermo options are derived from product streams *) |
660 |
pdVL IS_A phases_data('VL', vapout.pd.vapor_option, |
661 |
liqout.pd.liquid1_option, 'none'); |
662 |
|
663 |
(* flash Vapor-Liquid state comes from thermo of product streams. *) |
664 |
phaseVL[VLphases] ALIASES |
665 |
(vapout.phase['vapor'], liqout.phase['liquid1']) |
666 |
WHERE VLphases IS_A set OF symbol_constant |
667 |
WITH_VALUE ('vapor','liquid1'); |
668 |
state IS_A thermodynamics(cd, pdVL, phaseVL, equilibrated); |
669 |
|
670 |
P ALIASES state.P; |
671 |
T ALIASES state.T; |
672 |
alpha "relative volatility" ALIASES state.phase['vapor'].alpha; |
673 |
|
674 |
x "liquid product composition" ALIASES liqout.state.y; |
675 |
y "vapor product composition" ALIASES vapout.state.y; |
676 |
|
677 |
q IS_A factor; |
678 |
|
679 |
q_eqn: (liqout.flow - (liqin.flow + q * feed.flow)) / flowscale = 0; |
680 |
|
681 |
flowscale IS_A molar_rate_scale; |
682 |
FOR i IN cd.other_components CREATE |
683 |
connect_feed[i]: |
684 |
( (state.y[i] * (feed.flow + liqin.flow + vapin.flow)) - |
685 |
(vapin.state.y[i] * vapin.flow + liqin.state.y[i] * liqin.flow + |
686 |
feed.state.y[i] * feed.flow) |
687 |
) / flowscale = 0; |
688 |
END FOR; |
689 |
|
690 |
vapor_balance: (vapout.flow - |
691 |
state.phase_fraction['vapor'] * (vapin.flow + liqin.flow + feed.flow)) |
692 |
/ flowscale = 0; |
693 |
|
694 |
liquid_balance: (liqout.flow - |
695 |
state.phase_fraction['liquid1'] * (vapin.flow + liqin.flow + feed.flow)) |
696 |
/ flowscale = 0; |
697 |
|
698 |
H_flowscale IS_A energy_rate_scale; |
699 |
energy_balance: ((vapin.H_flow + liqin.H_flow + feed.H_flow) + Qin - |
700 |
(vapout.H_flow + liqout.H_flow)) / H_flowscale = 0; |
701 |
|
702 |
|
703 |
METHODS |
704 |
|
705 |
METHOD default_self; |
706 |
q := 1.0; |
707 |
q.lower_bound := -2; (* correct?? *) |
708 |
q.upper_bound := 2; |
709 |
flowscale := liqin.Details.flowscale + vapin.Details.flowscale; |
710 |
H_flowscale := liqin.Details.H_flowscale + vapin.Details.H_flowscale; |
711 |
RUN pdVL.default_self; |
712 |
RUN state.default_self; |
713 |
END default_self; |
714 |
|
715 |
METHOD default_all; |
716 |
equilibrated := FALSE; |
717 |
Qin := 0 {watt}; |
718 |
RUN feed.default_all; |
719 |
RUN vapin.default_all; |
720 |
RUN liqin.default_all; |
721 |
RUN vapout.default_all; |
722 |
RUN liqout.default_all; |
723 |
RUN default_self; |
724 |
END default_all; |
725 |
|
726 |
METHOD check_all; |
727 |
RUN feed.check_all; |
728 |
RUN vapin.check_all; |
729 |
RUN liqin.check_all; |
730 |
RUN vapout.check_all; |
731 |
RUN liqout.check_all; |
732 |
RUN pdVL.check_all; |
733 |
RUN check_self; |
734 |
END check_all; |
735 |
|
736 |
METHOD check_self; |
737 |
IF (feed.flow < 1e-4 {mole/s}) THEN |
738 |
STOP {Feed flow to feed tray disappeared}; |
739 |
END IF; |
740 |
IF (liqout.flow < 1e-4 {mole/s}) THEN |
741 |
STOP {Liquid flow dried up on feed tray}; |
742 |
END IF; |
743 |
IF (vapout.flow < 1e-4 {mole/s}) THEN |
744 |
STOP {All vapor condensed on feed tray}; |
745 |
END IF; |
746 |
RUN pdVL.check_self; |
747 |
RUN state.check_self; |
748 |
IF (abs(vapin.flow + liqin.flow + feed.flow - |
749 |
vapout.flow - liqout.flow)/flowscale > 1.0e-4) THEN |
750 |
STOP {Feed tray violates overall mass-balance}; |
751 |
END IF; |
752 |
END check_self; |
753 |
|
754 |
METHOD bound_self; |
755 |
state.boundwidth := boundwidth; |
756 |
RUN pdVL.bound_self; |
757 |
RUN state.bound_self; |
758 |
q.lower_bound := q - boundwidth*q.nominal; |
759 |
q.upper_bound := q + boundwidth*q.nominal; |
760 |
END bound_self; |
761 |
|
762 |
METHOD bound_all; |
763 |
feed.boundwidth := boundwidth; |
764 |
liqin.boundwidth := boundwidth; |
765 |
vapin.boundwidth := boundwidth; |
766 |
vapout.boundwidth := boundwidth; |
767 |
liqout.boundwidth := boundwidth; |
768 |
RUN feed.bound_all; |
769 |
RUN liqin.bound_all; |
770 |
RUN vapin.bound_all; |
771 |
RUN vapout.bound_all; |
772 |
RUN liqout.bound_all; |
773 |
RUN bound_self; |
774 |
END bound_all; |
775 |
|
776 |
METHOD scale_self; |
777 |
flowscale := liqin.Details.flowscale + vapin.Details.flowscale |
778 |
+ feed.Details.flowscale; |
779 |
H_flowscale := liqin.Details.H_flowscale + vapin.Details.H_flowscale |
780 |
+ feed.Details.H_flowscale; |
781 |
q.nominal := abs(q)*1.01 + 0.1; |
782 |
RUN pdVL.scale_self; |
783 |
RUN state.scale_self; |
784 |
END scale_self; |
785 |
|
786 |
METHOD scale_all; |
787 |
RUN feed.scale_all; |
788 |
RUN liqin.scale_all; |
789 |
RUN vapin.scale_all; |
790 |
RUN vapout.scale_all; |
791 |
RUN liqout.scale_all; |
792 |
RUN scale_self; |
793 |
END scale_all; |
794 |
|
795 |
METHOD seqmod; |
796 |
RUN state.specify; |
797 |
(* Equations connect_feed, vapor_balance, and liquid_balance |
798 |
* make us free nc+1 variables. |
799 |
*) |
800 |
state.y[cd.components].fixed := FALSE; |
801 |
state.phase_fraction['vapor'].fixed := FALSE; |
802 |
(* swap q for T at equilibrium, or set both if |
803 |
* ignoring equilbrium. |
804 |
*) |
805 |
q.fixed := TRUE; |
806 |
IF (equilibrated) THEN |
807 |
T.fixed := FALSE; |
808 |
END IF; |
809 |
END seqmod; |
810 |
|
811 |
METHOD seqmod_massbal; |
812 |
equilibrated := FALSE; |
813 |
RUN seqmod; |
814 |
vapin.state.T.fixed := TRUE; |
815 |
liqin.state.T.fixed := TRUE; |
816 |
END seqmod_massbal; |
817 |
|
818 |
METHOD seqmod_fullthermo; |
819 |
equilibrated := TRUE; |
820 |
RUN seqmod; |
821 |
END seqmod_fullthermo; |
822 |
|
823 |
METHOD seqmod_fixed_Q; |
824 |
RUN fullthermo_seqmod; |
825 |
q.fixed := FALSE; |
826 |
Qin.fixed := TRUE; |
827 |
END seqmod_fixed_Q; |
828 |
|
829 |
METHOD seqmod_adiabatic; |
830 |
RUN seqmod_fixed_Q; |
831 |
Qin := 0{W}; |
832 |
END seqmod_adiabatic; |
833 |
|
834 |
METHOD reset_to_massbal; |
835 |
equilibrated := FALSE; |
836 |
RUN reset; |
837 |
END reset_to_massbal; |
838 |
|
839 |
METHOD reset_to_fullthermo; |
840 |
equilibrated := TRUE; |
841 |
RUN reset; |
842 |
END reset_to_fullthermo; |
843 |
|
844 |
METHOD reset_to_adiabatic; |
845 |
RUN reset_to_fullthermo; |
846 |
q.fixed := FALSE; |
847 |
Qin.fixed := TRUE; |
848 |
Qin := 0{W}; |
849 |
END reset_to_adiabatic; |
850 |
|
851 |
METHOD specify; |
852 |
RUN seqmod; |
853 |
RUN feed.specify; |
854 |
IF (feed.equilibrated AND (feed.pd.phase_indicator == 'VL')) THEN |
855 |
feed.Details.state.phase[pd.reference_phase].T.fixed := FALSE; |
856 |
feed.Details.state.phase_fraction[pd.other_phases].fixed := TRUE; |
857 |
END IF; |
858 |
RUN vapin.specify; |
859 |
RUN liqin.specify; |
860 |
END specify; |
861 |
|
862 |
END feed_tray; |
863 |
|
864 |
MODEL total_condenser( |
865 |
Qin WILL_BE energy_rate; |
866 |
vapin WILL_BE stream; |
867 |
liqout WILL_BE stream; |
868 |
distillate WILL_BE stream; |
869 |
) WHERE ( |
870 |
vapin, liqout, distillate WILL_NOT_BE_THE_SAME; |
871 |
distillate.state, liqout.state WILL_NOT_BE_THE_SAME; |
872 |
distillate.cd, liqout.cd, vapin.cd WILL_BE_THE_SAME; |
873 |
vapin.pd.phase_indicator IN ['V','M'] == TRUE; |
874 |
liqout.pd.phase_indicator == 'L'; |
875 |
distillate.pd.phase_indicator == 'L'; |
876 |
) REFINES flash_base; |
877 |
|
878 |
NOTES |
879 |
'purpose' SELF { |
880 |
This models a total condenser. A partial condenser |
881 |
would need a vapor-liquid state constructed from the |
882 |
vapor product and the distillate product streams. |
883 |
} |
884 |
'ascii-picture' SELF { |
885 |
| |
886 |
v Vapin |
887 |
/-------------\ |
888 |
|OOOOOOOOOOOOO+--< Qin |
889 |
|~~~~~~~~~~~~~| |
890 |
\_____________+--> Distillate |
891 |
| Liqout |
892 |
v |
893 |
} |
894 |
END NOTES; |
895 |
|
896 |
cd ALIASES vapin.cd; |
897 |
state ALIASES distillate.state; |
898 |
P ALIASES state.P; |
899 |
T ALIASES state.T; |
900 |
|
901 |
reflux_ratio IS_A factor; |
902 |
|
903 |
reflux_eqn: (liqout.flow - reflux_ratio * distillate.flow) |
904 |
/ flowscale = 0; |
905 |
|
906 |
FOR i IN cd.other_components CREATE |
907 |
distillate.state.y[i] = vapin.state.y[i]; |
908 |
liqout.state.y[i] = vapin.state.y[i]; |
909 |
END FOR; |
910 |
|
911 |
flowscale IS_A molar_rate_scale; |
912 |
(vapin.flow - distillate.flow - liqout.flow) / flowscale = 0; |
913 |
|
914 |
H_flowscale IS_A energy_rate_scale; |
915 |
energy_balance: (vapin.H_flow + Qin - |
916 |
(liqout.H_flow + distillate.H_flow)) / H_flowscale =0; |
917 |
|
918 |
|
919 |
|
920 |
METHODS |
921 |
|
922 |
METHOD check_all; |
923 |
RUN vapin.check_all; |
924 |
RUN liqout.check_all; |
925 |
RUN distillate.check_all; |
926 |
RUN check_self; |
927 |
END check_all; |
928 |
|
929 |
METHOD check_self; |
930 |
IF (vapin.flow < 1e-4 {mole/s}) THEN |
931 |
STOP {Vapor flow to condenser disappeared}; |
932 |
END IF; |
933 |
IF (liqout.flow < 1e-4 {mole/s}) THEN |
934 |
STOP {No reflux leaving condenser}; |
935 |
END IF; |
936 |
IF (distillate.flow < 1e-4 {mole/s}) THEN |
937 |
STOP {No distillate leaving condenser}; |
938 |
END IF; |
939 |
IF (abs(vapin.flow - |
940 |
distillate.flow - liqout.flow)/flowscale > 1.0e-4) THEN |
941 |
STOP {Condenser violates overall mass-balance}; |
942 |
END IF; |
943 |
END check_self; |
944 |
|
945 |
METHOD default_self; |
946 |
H_flowscale := vapin.H_flow + abs(Qin); |
947 |
flowscale := vapin.Details.flowscale; |
948 |
reflux_ratio := 10; |
949 |
reflux_ratio.upper_bound := 1000; |
950 |
reflux_ratio.lower_bound := 0; |
951 |
END default_self; |
952 |
|
953 |
METHOD default_all; |
954 |
RUN vapin.default_all; |
955 |
RUN liqout.default_all; |
956 |
RUN distillate.default_all; |
957 |
RUN default_self; |
958 |
END default_all; |
959 |
|
960 |
METHOD bound_self; |
961 |
reflux_ratio.lower_bound := |
962 |
reflux_ratio - boundwidth * reflux_ratio.nominal; |
963 |
reflux_ratio.upper_bound := |
964 |
reflux_ratio + boundwidth * reflux_ratio.nominal; |
965 |
IF (reflux_ratio.lower_bound < 0) THEN |
966 |
reflux_ratio.lower_bound := 0; |
967 |
END IF; |
968 |
END bound_self; |
969 |
|
970 |
METHOD bound_all; |
971 |
vapin.boundwidth := boundwidth; |
972 |
liqout.boundwidth := boundwidth; |
973 |
distillate.boundwidth := boundwidth; |
974 |
RUN vapin.bound_all; |
975 |
RUN liqout.bound_all; |
976 |
RUN distillate.bound_all; |
977 |
RUN bound_self; |
978 |
STOP {MODEL total_condenser method bound_all needs to do Qin}; |
979 |
END bound_all; |
980 |
|
981 |
METHOD scale_self; |
982 |
flowscale := vapin.Details.flowscale + liqout.Details.flowscale |
983 |
+ distillate.Details.flowscale; |
984 |
H_flowscale := liqout.Details.H_flowscale + vapin.Details.H_flowscale |
985 |
+ distillate.Details.H_flowscale; |
986 |
reflux_ratio.nominal := abs(reflux_ratio)*1.01 + 1; |
987 |
END scale_self; |
988 |
|
989 |
METHOD scale_all; |
990 |
RUN vapin.scale_all; |
991 |
RUN liqout.scale_all; |
992 |
RUN distillate.scale_all; |
993 |
RUN scale_self; |
994 |
STOP {MODEL total_condenser method scale_all needs to do Qin}; |
995 |
END scale_all; |
996 |
|
997 |
METHOD seqmod; |
998 |
RUN liqout.seqmod; |
999 |
RUN distillate.seqmod; |
1000 |
reflux_ratio.fixed := TRUE; |
1001 |
END seqmod; |
1002 |
|
1003 |
METHOD specify; |
1004 |
RUN seqmod; |
1005 |
RUN vapin.specify; |
1006 |
END specify; |
1007 |
|
1008 |
END total_condenser; |
1009 |
|
1010 |
MODEL simple_reboiler( |
1011 |
Qin WILL_BE energy_rate; |
1012 |
equilibrated WILL_BE boolean; |
1013 |
liqin WILL_BE stream; |
1014 |
vapout WILL_BE stream; |
1015 |
bottoms WILL_BE stream; |
1016 |
) WHERE ( |
1017 |
liqin, vapout, bottoms WILL_NOT_BE_THE_SAME; |
1018 |
liqin.cd, vapout.cd, bottoms.cd WILL_BE_THE_SAME; |
1019 |
liqin.pd.phase_indicator IN ['L','M'] == TRUE; |
1020 |
vapout.pd.phase_indicator == 'V'; |
1021 |
bottoms.pd.phase_indicator == 'L'; |
1022 |
) REFINES flash_base; |
1023 |
|
1024 |
NOTES |
1025 |
'purpose' SELF { |
1026 |
This models a reboiler where the liquid bottoms product is |
1027 |
in equilibrium with the vapor returned to the bottom of the |
1028 |
column. Taking a vapor product off this reboiler should be |
1029 |
done, if desired, by routing the vapout stream through a |
1030 |
splitter before returning it to the column. |
1031 |
} |
1032 |
'ascii-picture' SELF { |
1033 |
| ^ |
1034 |
v liqin | vapout |
1035 |
/-------------\ |
1036 |
| | |
1037 |
|~~~~~~~~~~~~~| |
1038 |
\__OOO________+--> bottoms |
1039 |
| | |
1040 |
Qin ^ . |
1041 |
} |
1042 |
END NOTES; |
1043 |
|
1044 |
cd ALIASES liqin.cd; |
1045 |
P ALIASES vapout.P; |
1046 |
T ALIASES vapout.T; |
1047 |
alpha "relative volatility" ALIASES state.phase['vapor'].alpha; |
1048 |
|
1049 |
(* flash thermo options are derived from product streams *) |
1050 |
pdVL IS_A phases_data('VL', vapout.pd.vapor_option, |
1051 |
bottoms.pd.liquid1_option, 'none'); |
1052 |
|
1053 |
(* flash Vapor-Liquid state comes from thermo of product streams. *) |
1054 |
phaseVL[VLphases] ALIASES |
1055 |
(vapout.phase['vapor'], bottoms.phase['liquid1']) |
1056 |
WHERE VLphases IS_A set OF symbol_constant |
1057 |
WITH_VALUE ('vapor','liquid1'); |
1058 |
state IS_A thermodynamics(cd, pdVL, phaseVL, equilibrated); |
1059 |
|
1060 |
x "bottoms product composition" ALIASES bottoms.state.y; |
1061 |
y "vapor product composition" ALIASES vapout.state.y; |
1062 |
|
1063 |
reboil_ratio "vapor flow to product flow ratio" |
1064 |
IS_A factor; |
1065 |
|
1066 |
reboil_eqn: (vapout.flow - reboil_ratio * bottoms.flow) |
1067 |
/ flowscale = 0; |
1068 |
|
1069 |
FOR i IN cd.other_components CREATE |
1070 |
connect_feed[i]: state.y[i] = liqin.state.y[i]; |
1071 |
END FOR; |
1072 |
|
1073 |
flowscale IS_A molar_rate_scale; |
1074 |
|
1075 |
vapor_balance: (vapout.flow - |
1076 |
state.phase_fraction['vapor'] * liqin.flow) |
1077 |
/ flowscale = 0; |
1078 |
liquid_balance: (bottoms.flow - |
1079 |
state.phase_fraction['liquid1'] * liqin.flow) |
1080 |
/ flowscale = 0; |
1081 |
|
1082 |
H_flowscale IS_A energy_rate_scale; |
1083 |
energy_balance: (liqin.H_flow + Qin - |
1084 |
(vapout.H_flow + bottoms.H_flow)) / H_flowscale = 0; |
1085 |
|
1086 |
|
1087 |
METHODS |
1088 |
|
1089 |
METHOD check_all; |
1090 |
RUN liqin.check_all; |
1091 |
RUN vapout.check_all; |
1092 |
RUN bottoms.check_all; |
1093 |
RUN check_self; |
1094 |
END check_all; |
1095 |
|
1096 |
METHOD check_self; |
1097 |
IF (liqin.flow < 1e-4 {mole/s}) THEN |
1098 |
STOP {Liquid flow to reboiler disappeared}; |
1099 |
END IF; |
1100 |
IF (vapout.flow < 1e-4 {mole/s}) THEN |
1101 |
STOP {No boilup leaving reboiler.}; |
1102 |
END IF; |
1103 |
IF (bottoms.flow < 1e-4 {mole/s}) THEN |
1104 |
STOP {No bottoms leaving reboiler.}; |
1105 |
END IF; |
1106 |
IF (abs(liqin.flow - |
1107 |
bottoms.flow - vapout.flow)/flowscale > 1.0e-4) THEN |
1108 |
STOP {Reboiler violates overall mass-balance}; |
1109 |
END IF; |
1110 |
END check_self; |
1111 |
|
1112 |
METHOD default_self; |
1113 |
H_flowscale := abs(liqin.H_flow) + abs(Qin); |
1114 |
flowscale := liqin.Details.flowscale; |
1115 |
reboil_ratio := 1; |
1116 |
reboil_ratio.upper_bound := 1000; |
1117 |
reboil_ratio.lower_bound := 0; |
1118 |
END default_self; |
1119 |
|
1120 |
METHOD default_all; |
1121 |
equilibrated := FALSE; |
1122 |
RUN liqin.default_all; |
1123 |
RUN vapout.default_all; |
1124 |
RUN bottoms.default_all; |
1125 |
RUN default_self; |
1126 |
STOP {MODEL simple_reboiler needs to set Qin in default_all}; |
1127 |
END default_all; |
1128 |
|
1129 |
METHOD bound_self; |
1130 |
reboil_ratio.lower_bound := |
1131 |
reboil_ratio - boundwidth * reboil_ratio.nominal; |
1132 |
reboil_ratio.upper_bound := |
1133 |
reboil_ratio + boundwidth * reboil_ratio.nominal; |
1134 |
IF (reboil_ratio.lower_bound < 0) THEN |
1135 |
reboil_ratio.lower_bound := 0; |
1136 |
END IF; |
1137 |
END bound_self; |
1138 |
|
1139 |
METHOD bound_all; |
1140 |
liqin.boundwidth := boundwidth; |
1141 |
vapout.boundwidth := boundwidth; |
1142 |
bottoms.boundwidth := boundwidth; |
1143 |
RUN liqin.bound_all; |
1144 |
RUN vapout.bound_all; |
1145 |
RUN bottoms.bound_all; |
1146 |
RUN bound_self; |
1147 |
STOP |
1148 |
{MODEL simple_reboiler method bound_all needs to do Qin, reboil_ratio}; |
1149 |
END bound_all; |
1150 |
|
1151 |
METHOD scale_self; |
1152 |
flowscale := liqin.Details.flowscale + vapout.Details.flowscale |
1153 |
+ bottoms.Details.flowscale; |
1154 |
H_flowscale := liqin.Details.H_flowscale + vapout.Details.H_flowscale |
1155 |
+ bottoms.Details.H_flowscale; |
1156 |
reboil_ratio.nominal := abs(reboil_ratio)*1.01 + 1; |
1157 |
END scale_self; |
1158 |
|
1159 |
METHOD scale_all; |
1160 |
RUN liqin.scale_all; |
1161 |
RUN vapout.scale_all; |
1162 |
RUN bottoms.scale_all; |
1163 |
RUN scale_self; |
1164 |
STOP |
1165 |
{MODEL simple_reboiler method scale_all needs to do Qin, reboil_ratio}; |
1166 |
END scale_all; |
1167 |
|
1168 |
|
1169 |
METHOD seqmod; |
1170 |
RUN state.specify; |
1171 |
state.y[cd.components].fixed := FALSE; |
1172 |
state.phase_fraction['vapor'].fixed := FALSE; |
1173 |
reboil_ratio.fixed := TRUE; |
1174 |
IF (equilibrated) THEN |
1175 |
state.T.fixed := FALSE; |
1176 |
END IF; |
1177 |
END seqmod; |
1178 |
|
1179 |
METHOD reset_to_massbal; |
1180 |
state.equilibrated := FALSE; |
1181 |
RUN reset; |
1182 |
END reset_to_massbal; |
1183 |
|
1184 |
METHOD reset_to_fullthermo; |
1185 |
state.equilibrated := TRUE; |
1186 |
RUN reset; |
1187 |
END reset_to_fullthermo; |
1188 |
|
1189 |
METHOD specify; |
1190 |
RUN seqmod; |
1191 |
RUN liqin.specify; |
1192 |
END specify; |
1193 |
|
1194 |
END simple_reboiler; |
1195 |
|
1196 |
(**************************************************************************) |
1197 |
|
1198 |
MODEL testflashmodel() REFINES testcmumodel(); |
1199 |
(* root for flash based test models *) |
1200 |
boundwidth IS_A bound_width; |
1201 |
END testflashmodel; |
1202 |
|
1203 |
MODEL test_vapor_liquid_flash() REFINES testflashmodel(); |
1204 |
|
1205 |
(* the next 5 are probably used throughout a flowsheet *) |
1206 |
cd IS_A components_data(['n_pentane','n_hexane','n_heptane'],'n_heptane'); |
1207 |
pdV IS_A phases_data('V', 'ideal_vapor_mixture', 'none', 'none'); |
1208 |
pdL IS_A phases_data('L', 'none', 'UNIFAC_liquid_mixture', 'none'); |
1209 |
pdVL IS_A phases_data('VL', 'ideal_vapor_mixture', |
1210 |
'UNIFAC_liquid_mixture', 'none'); |
1211 |
equilibrated IS_A start_false; |
1212 |
|
1213 |
(* Qin is unit specific *) |
1214 |
Qin IS_A energy_rate; |
1215 |
|
1216 |
feed IS_A stream(cd, pdVL, equilibrated); |
1217 |
liq IS_A stream(cd, pdL, equilibrated); |
1218 |
vap IS_A stream(cd, pdV, equilibrated); |
1219 |
fl1 IS_A vapor_liquid_flash(Qin, equilibrated, feed, vap, liq); |
1220 |
|
1221 |
|
1222 |
METHODS |
1223 |
|
1224 |
METHOD default_all; |
1225 |
RUN default_self; |
1226 |
END default_all; |
1227 |
|
1228 |
METHOD default_self; |
1229 |
boundwidth := 10; |
1230 |
RUN feed.default_self; |
1231 |
RUN liq.default_self; |
1232 |
RUN vap.default_self; |
1233 |
RUN fl1.default_self; |
1234 |
(* or could be RUN fl1.default_all; *) |
1235 |
END default_self; |
1236 |
|
1237 |
METHOD check_all; |
1238 |
RUN check_self; |
1239 |
END check_all; |
1240 |
|
1241 |
METHOD check_self; |
1242 |
RUN feed.check_self; |
1243 |
RUN liq.check_self; |
1244 |
RUN vap.check_self; |
1245 |
RUN fl1.check_self; |
1246 |
(* or could be RUN check_all; *) |
1247 |
END check_self; |
1248 |
|
1249 |
METHOD bound_all; |
1250 |
RUN bound_self; |
1251 |
END bound_all; |
1252 |
|
1253 |
METHOD bound_self; |
1254 |
fl1.boundwidth := boundwidth; |
1255 |
liq.boundwidth := boundwidth; |
1256 |
vap.boundwidth := boundwidth; |
1257 |
feed.boundwidth := boundwidth; |
1258 |
(* The right, later reusable, way to finish this method is as follows: |
1259 |
RUN feed.bound_self; |
1260 |
RUN liq.bound_self; |
1261 |
RUN vap.bound_self; |
1262 |
RUN fl1.bound_self; |
1263 |
* where we didn't have to look inside the parts we're using because |
1264 |
* we know they follow the standard in system.a4l. |
1265 |
*) |
1266 |
(* The quick and dirty way, since there are no parts passed into |
1267 |
* this MODEL is like so: |
1268 |
*) |
1269 |
RUN fl1.bound_all; |
1270 |
(* This works, but we had to look into the VLflash MODEL to be sure. *) |
1271 |
END bound_self; |
1272 |
|
1273 |
METHOD scale_self; |
1274 |
RUN feed.scale_self; |
1275 |
RUN liq.scale_self; |
1276 |
RUN vap.scale_self; |
1277 |
RUN fl1.scale_self; |
1278 |
(* or could be RUN fl1.scale_all; *) |
1279 |
END scale_self; |
1280 |
|
1281 |
METHOD specify; |
1282 |
RUN fl1.specify; |
1283 |
END specify; |
1284 |
|
1285 |
METHOD reset_T; |
1286 |
RUN ClearAll; |
1287 |
RUN specify_T; |
1288 |
END reset_T; |
1289 |
|
1290 |
METHOD specify_T; |
1291 |
RUN specify; |
1292 |
fl1.state.phase_fraction['vapor'].fixed := FALSE; |
1293 |
fl1.T := 340{K}; |
1294 |
fl1.T.fixed := TRUE; |
1295 |
END specify_T; |
1296 |
|
1297 |
METHOD values; |
1298 |
feed.P := 1 {atm}; |
1299 |
feed.T := 298 {K}; |
1300 |
feed.f[cd.components] := 3 {mole/s}; |
1301 |
feed.phase['vapor'].alpha['n_pentane'] := 5; |
1302 |
feed.phase['vapor'].alpha['n_hexane'] := 2; |
1303 |
feed.phase['vapor'].alpha['n_heptane'] := 1; |
1304 |
fl1.alpha['n_pentane'] := 5; |
1305 |
fl1.alpha['n_hexane'] := 2; |
1306 |
fl1.alpha['n_heptane'] := 1; |
1307 |
fl1.state.phase_fraction['vapor'] := 0.5; |
1308 |
fl1.P := 1 {atm}; |
1309 |
fl1.T := 365 {K}; |
1310 |
fl1.Qin := 0 {kW}; |
1311 |
equilibrated := FALSE; |
1312 |
END values; |
1313 |
|
1314 |
END test_vapor_liquid_flash; |
1315 |
|
1316 |
MODEL test2_vapor_liquid_flash() REFINES testflashmodel(); |
1317 |
|
1318 |
(* the next 5 are probably used throughout a flowsheet *) |
1319 |
cd IS_A components_data(['methanol','water'],'water'); |
1320 |
pdV IS_A phases_data('V', 'ideal_vapor_mixture', 'none', 'none'); |
1321 |
pdL IS_A phases_data('L', 'none', 'UNIFAC_liquid_mixture', 'none'); |
1322 |
pdVL IS_A phases_data('VL', 'ideal_vapor_mixture', |
1323 |
'UNIFAC_liquid_mixture', 'none'); |
1324 |
equilibrated IS_A start_false; |
1325 |
|
1326 |
(* Qin is unit specific *) |
1327 |
Qin IS_A energy_rate; |
1328 |
|
1329 |
feed IS_A stream(cd, pdVL, equilibrated); |
1330 |
liq IS_A stream(cd, pdL, equilibrated); |
1331 |
vap IS_A stream(cd, pdV, equilibrated); |
1332 |
fl1 IS_A vapor_liquid_flash(Qin, equilibrated, feed, vap, liq); |
1333 |
|
1334 |
|
1335 |
METHODS |
1336 |
|
1337 |
METHOD default_all; |
1338 |
RUN default_self; |
1339 |
END default_all; |
1340 |
|
1341 |
METHOD default_self; |
1342 |
boundwidth := 10; |
1343 |
RUN feed.default_self; |
1344 |
RUN liq.default_self; |
1345 |
RUN vap.default_self; |
1346 |
RUN fl1.default_self; |
1347 |
(* or could be RUN fl1.default_all; *) |
1348 |
END default_self; |
1349 |
|
1350 |
METHOD check_all; |
1351 |
RUN check_self; |
1352 |
END check_all; |
1353 |
|
1354 |
METHOD check_self; |
1355 |
RUN feed.check_self; |
1356 |
RUN liq.check_self; |
1357 |
RUN vap.check_self; |
1358 |
RUN fl1.check_self; |
1359 |
(* or could be RUN check_all; *) |
1360 |
END check_self; |
1361 |
|
1362 |
METHOD bound_all; |
1363 |
RUN bound_self; |
1364 |
END bound_all; |
1365 |
|
1366 |
METHOD bound_self; |
1367 |
fl1.boundwidth := boundwidth; |
1368 |
liq.boundwidth := boundwidth; |
1369 |
vap.boundwidth := boundwidth; |
1370 |
feed.boundwidth := boundwidth; |
1371 |
(* The right, later reusable, way to finish this method is as follows: |
1372 |
RUN feed.bound_self; |
1373 |
RUN liq.bound_self; |
1374 |
RUN vap.bound_self; |
1375 |
RUN fl1.bound_self; |
1376 |
* where we didn't have to look inside the parts we're using because |
1377 |
* we know they follow the standard in system.a4l. |
1378 |
*) |
1379 |
(* The quick and dirty way, since there are no parts passed into |
1380 |
* this MODEL is like so: |
1381 |
*) |
1382 |
RUN fl1.bound_all; |
1383 |
(* This works, but we had to look into the VLflash MODEL to be sure. *) |
1384 |
END bound_self; |
1385 |
|
1386 |
METHOD scale_self; |
1387 |
RUN feed.scale_self; |
1388 |
RUN liq.scale_self; |
1389 |
RUN vap.scale_self; |
1390 |
RUN fl1.scale_self; |
1391 |
(* or could be RUN fl1.scale_all; *) |
1392 |
END scale_self; |
1393 |
|
1394 |
METHOD specify; |
1395 |
RUN fl1.specify; |
1396 |
END specify; |
1397 |
|
1398 |
METHOD reset_T; |
1399 |
RUN ClearAll; |
1400 |
RUN specify_T; |
1401 |
END reset_T; |
1402 |
|
1403 |
METHOD specify_T; |
1404 |
RUN specify; |
1405 |
fl1.state.phase_fraction['vapor'].fixed := FALSE; |
1406 |
fl1.T := 340{K}; |
1407 |
fl1.T.fixed := TRUE; |
1408 |
END specify_T; |
1409 |
|
1410 |
METHOD values; |
1411 |
feed.P := 1 {atm}; |
1412 |
feed.T := 365 {K}; |
1413 |
feed.f['methanol'] := 0.01 {kmol/s}; |
1414 |
feed.f['water'] := 0.02 {kmol/s}; |
1415 |
feed.phase['vapor'].alpha['methanol'] := 2.1; |
1416 |
feed.phase['vapor'].alpha['water'] := 0.9; |
1417 |
fl1.alpha['methanol'] := 2; |
1418 |
fl1.alpha['water'] := 1; |
1419 |
fl1.state.phase_fraction['vapor'] := 0.5; |
1420 |
fl1.P := 1 {atm}; |
1421 |
fl1.T := 365 {K}; |
1422 |
fl1.Qin := 0 {kW}; |
1423 |
equilibrated := FALSE; |
1424 |
END values; |
1425 |
|
1426 |
END test2_vapor_liquid_flash; |
1427 |
MODEL test5_vapor_liquid_flash() REFINES testflashmodel(); |
1428 |
|
1429 |
(* the next 5 are probably used throughout a flowsheet *) |
1430 |
cd IS_A components_data( |
1431 |
['n_butane','n_pentane','n_hexane','n_heptane','n_octane'], |
1432 |
'n_octane'); |
1433 |
pdV IS_A phases_data('V', 'ideal_vapor_mixture', 'none', 'none'); |
1434 |
pdL IS_A phases_data('L', 'none', 'UNIFAC_liquid_mixture', 'none'); |
1435 |
pdVL IS_A phases_data('VL', 'ideal_vapor_mixture', |
1436 |
'UNIFAC_liquid_mixture', 'none'); |
1437 |
equilibrated IS_A start_false; |
1438 |
|
1439 |
(* Qin is unit specific *) |
1440 |
Qin IS_A energy_rate; |
1441 |
|
1442 |
feed IS_A stream(cd, pdVL, equilibrated); |
1443 |
liq IS_A stream(cd, pdL, equilibrated); |
1444 |
vap IS_A stream(cd, pdV, equilibrated); |
1445 |
fl1 IS_A vapor_liquid_flash(Qin, equilibrated, feed, vap, liq); |
1446 |
|
1447 |
(* boundwidth might be unit specific *) |
1448 |
|
1449 |
METHODS |
1450 |
|
1451 |
METHOD default_all; |
1452 |
RUN default_self; |
1453 |
END default_all; |
1454 |
|
1455 |
METHOD default_self; |
1456 |
boundwidth := 10; |
1457 |
RUN feed.default_self; |
1458 |
RUN liq.default_self; |
1459 |
RUN vap.default_self; |
1460 |
RUN fl1.default_self; |
1461 |
(* or could be RUN fl1.default_all; *) |
1462 |
END default_self; |
1463 |
|
1464 |
METHOD check_all; |
1465 |
RUN check_self; |
1466 |
END check_all; |
1467 |
|
1468 |
METHOD check_self; |
1469 |
RUN feed.check_self; |
1470 |
RUN liq.check_self; |
1471 |
RUN vap.check_self; |
1472 |
RUN fl1.check_self; |
1473 |
(* or could be RUN check_all; *) |
1474 |
END check_self; |
1475 |
|
1476 |
METHOD bound_all; |
1477 |
RUN bound_self; |
1478 |
END bound_all; |
1479 |
|
1480 |
METHOD bound_self; |
1481 |
fl1.boundwidth := boundwidth; |
1482 |
liq.boundwidth := boundwidth; |
1483 |
vap.boundwidth := boundwidth; |
1484 |
feed.boundwidth := boundwidth; |
1485 |
(* The right, later reusable, way to finish this method is as follows: |
1486 |
RUN feed.bound_self; |
1487 |
RUN liq.bound_self; |
1488 |
RUN vap.bound_self; |
1489 |
RUN fl1.bound_self; |
1490 |
* where we didn't have to look inside the parts we're using because |
1491 |
* we know they follow the standard in system.a4l. |
1492 |
*) |
1493 |
(* The quick and dirty way, since there are no parts passed into |
1494 |
* this MODEL is like so: |
1495 |
*) |
1496 |
RUN fl1.bound_all; |
1497 |
(* This works, but we had to look into the VLflash MODEL to be sure. *) |
1498 |
END bound_self; |
1499 |
|
1500 |
METHOD scale_self; |
1501 |
RUN feed.scale_self; |
1502 |
RUN liq.scale_self; |
1503 |
RUN vap.scale_self; |
1504 |
RUN fl1.scale_self; |
1505 |
(* or could be RUN fl1.scale_all; *) |
1506 |
END scale_self; |
1507 |
|
1508 |
METHOD specify; |
1509 |
RUN fl1.specify; |
1510 |
END specify; |
1511 |
|
1512 |
METHOD reset_T; |
1513 |
RUN ClearAll; |
1514 |
RUN specify_T; |
1515 |
END reset_T; |
1516 |
|
1517 |
METHOD specify_T; |
1518 |
RUN specify; |
1519 |
fl1.state.phase_fraction['vapor'].fixed := FALSE; |
1520 |
fl1.T := 340{K}; |
1521 |
fl1.T.fixed := TRUE; |
1522 |
END specify_T; |
1523 |
|
1524 |
METHOD values; |
1525 |
feed.P := 1 {atm}; |
1526 |
feed.T := 365 {K}; |
1527 |
feed.f[cd.components] := 0.1 {kmol/s}; |
1528 |
feed.phase['vapor'].alpha['n_butane'] := 3.0; |
1529 |
feed.phase['vapor'].alpha['n_pentane'] := 2.0; |
1530 |
feed.phase['vapor'].alpha['n_hexane'] := 1.6; |
1531 |
feed.phase['vapor'].alpha['n_heptane'] := 1.3; |
1532 |
feed.phase['vapor'].alpha['n_octane'] := 0.9; |
1533 |
fl1.alpha['n_butane'] := 3.0; |
1534 |
fl1.alpha['n_pentane'] := 2.0; |
1535 |
fl1.alpha['n_hexane'] := 1.6; |
1536 |
fl1.alpha['n_heptane'] := 1.3; |
1537 |
fl1.alpha['n_octane'] := 0.9; |
1538 |
fl1.state.phase_fraction['vapor'] := 0.5; |
1539 |
fl1.P := 1 {atm}; |
1540 |
fl1.T := 365 {K}; |
1541 |
fl1.Qin := 0 {kW}; |
1542 |
equilibrated := FALSE; |
1543 |
END values; |
1544 |
|
1545 |
END test5_vapor_liquid_flash; |
1546 |
MODEL test_vlflashes; |
1547 |
f2 IS_A test2_vapor_liquid_flash; |
1548 |
f3 IS_A test_vapor_liquid_flash; |
1549 |
f5 IS_A test5_vapor_liquid_flash; |
1550 |
equilibrated IS_A boolean; |
1551 |
f2.equilibrated,f3.equilibrated,f5.equilibrated,equilibrated ARE_THE_SAME; |
1552 |
METHODS |
1553 |
METHOD default_all; |
1554 |
RUN default_self; |
1555 |
END default_all; |
1556 |
|
1557 |
METHOD default_self; |
1558 |
RUN f2.default_self; |
1559 |
RUN f3.default_self; |
1560 |
RUN f5.default_self; |
1561 |
END default_self; |
1562 |
|
1563 |
METHOD specify; |
1564 |
RUN f2.specify; |
1565 |
RUN f3.specify; |
1566 |
RUN f5.specify; |
1567 |
END specify; |
1568 |
|
1569 |
METHOD values; |
1570 |
RUN f2.values; |
1571 |
RUN f3.values; |
1572 |
RUN f5.values; |
1573 |
END values; |
1574 |
|
1575 |
END test_vlflashes; |
1576 |
|
1577 |
MODEL test_hard_vapor_liquid_flash() REFINES testflashmodel(); |
1578 |
|
1579 |
|
1580 |
(* the next 5 are probably used throughout a flowsheet *) |
1581 |
cd IS_A components_data(['acetone','chloroform','benzene'],'benzene'); |
1582 |
pdV IS_A phases_data('V', 'ideal_vapor_mixture', 'none', 'none'); |
1583 |
pdL IS_A phases_data('L', 'none', 'UNIFAC_liquid_mixture', 'none'); |
1584 |
equilibrated IS_A start_false; |
1585 |
|
1586 |
(* Qin is unit specific *) |
1587 |
Qin IS_A energy_rate; |
1588 |
|
1589 |
feed IS_A stream(cd, pdL, equilibrated); |
1590 |
liq IS_A stream(cd, pdL, equilibrated); |
1591 |
vap IS_A stream(cd, pdV, equilibrated); |
1592 |
fl1 IS_A vapor_liquid_flash(Qin, equilibrated, feed, vap, liq); |
1593 |
|
1594 |
|
1595 |
METHODS |
1596 |
|
1597 |
METHOD default_all; |
1598 |
RUN default_self; |
1599 |
END default_all; |
1600 |
|
1601 |
METHOD default_self; |
1602 |
boundwidth := 10; |
1603 |
RUN feed.default_self; |
1604 |
RUN liq.default_self; |
1605 |
RUN vap.default_self; |
1606 |
RUN fl1.default_self; |
1607 |
(* or could be RUN fl1.default_all; *) |
1608 |
END default_self; |
1609 |
|
1610 |
METHOD check_all; |
1611 |
RUN check_self; |
1612 |
END check_all; |
1613 |
|
1614 |
METHOD check_self; |
1615 |
RUN feed.check_self; |
1616 |
RUN liq.check_self; |
1617 |
RUN vap.check_self; |
1618 |
RUN fl1.check_self; |
1619 |
(* or could be RUN check_all; *) |
1620 |
END check_self; |
1621 |
|
1622 |
METHOD bound_all; |
1623 |
RUN bound_self; |
1624 |
END bound_all; |
1625 |
|
1626 |
METHOD bound_self; |
1627 |
fl1.boundwidth := boundwidth; |
1628 |
liq.boundwidth := boundwidth; |
1629 |
vap.boundwidth := boundwidth; |
1630 |
feed.boundwidth := boundwidth; |
1631 |
(* The right, later reusable, way to finish this method is as follows: |
1632 |
RUN feed.bound_self; |
1633 |
RUN liq.bound_self; |
1634 |
RUN vap.bound_self; |
1635 |
RUN fl1.bound_self; |
1636 |
* where we didn't have to look inside the parts we're using because |
1637 |
* we know they follow the standard in system.a4l. |
1638 |
*) |
1639 |
(* The quick and dirty way, since there are no parts passed into |
1640 |
* this MODEL is like so: |
1641 |
*) |
1642 |
RUN fl1.bound_all; |
1643 |
(* This works, but we had to look into the VLflash MODEL to be sure. *) |
1644 |
END bound_self; |
1645 |
|
1646 |
METHOD scale_self; |
1647 |
RUN feed.scale_self; |
1648 |
RUN liq.scale_self; |
1649 |
RUN vap.scale_self; |
1650 |
RUN fl1.scale_self; |
1651 |
(* or could be RUN fl1.scale_all; *) |
1652 |
END scale_self; |
1653 |
|
1654 |
METHOD specify; |
1655 |
RUN fl1.specify; |
1656 |
END specify; |
1657 |
|
1658 |
METHOD reset_T; |
1659 |
RUN ClearAll; |
1660 |
RUN specify_T; |
1661 |
END reset_T; |
1662 |
|
1663 |
METHOD specify_T; |
1664 |
RUN specify; |
1665 |
fl1.state.phase_fraction['vapor'].fixed := FALSE; |
1666 |
fl1.T := 310{K}; |
1667 |
fl1.T.fixed := TRUE; |
1668 |
END specify_T; |
1669 |
|
1670 |
METHOD values; |
1671 |
fl1.alpha['acetone'] := 3; |
1672 |
fl1.alpha['chloroform'] := 2; |
1673 |
fl1.alpha['benzene'] := 1; |
1674 |
fl1.T := 298 {K}; |
1675 |
fl1.P := 1{atm}; |
1676 |
feed.f[cd.components] := 3{mole/s}; |
1677 |
END values; |
1678 |
|
1679 |
END test_hard_vapor_liquid_flash; |
1680 |
|
1681 |
MODEL test_tray() REFINES testflashmodel(); |
1682 |
|
1683 |
cd IS_A components_data(['n_pentane','n_hexane','n_heptane'], |
1684 |
'n_heptane'); |
1685 |
pdV IS_A phases_data('V', 'ideal_vapor_mixture', 'none', 'none'); |
1686 |
pdL IS_A phases_data('L', 'none', 'UNIFAC_liquid_mixture', 'none'); |
1687 |
|
1688 |
equilibrated IS_A start_false; |
1689 |
|
1690 |
(* Qin is unit specific *) |
1691 |
Qin IS_A energy_rate; |
1692 |
|
1693 |
Liqin IS_A stream(cd, pdL, equilibrated); |
1694 |
Vapin IS_A stream(cd, pdV, equilibrated); |
1695 |
Liqout IS_A stream(cd, pdL, equilibrated); |
1696 |
Vapout IS_A stream(cd, pdV, equilibrated); |
1697 |
|
1698 |
|
1699 |
Tray IS_A tray(Qin, equilibrated, Liqin, Vapin, Liqout, Vapout); |
1700 |
|
1701 |
METHODS |
1702 |
|
1703 |
METHOD default_all; |
1704 |
RUN default_self; |
1705 |
END default_all; |
1706 |
|
1707 |
METHOD default_self; |
1708 |
Qin := 0{kW}; |
1709 |
boundwidth := 10; |
1710 |
RUN Liqin.default_self; |
1711 |
RUN Vapin.default_self; |
1712 |
RUN Liqout.default_self; |
1713 |
RUN Vapout.default_self; |
1714 |
RUN Tray.default_self; |
1715 |
END default_self; |
1716 |
|
1717 |
METHOD values; |
1718 |
Tray.alpha['n_pentane'] := 3; |
1719 |
Tray.alpha['n_hexane'] := 2; |
1720 |
Tray.alpha['n_heptane'] := 1; |
1721 |
Tray.state.T := 298 {K}; |
1722 |
Tray.state.P := 1{atm}; |
1723 |
Liqin.f['n_pentane'] := 3{mole/s}; |
1724 |
Liqin.f['n_hexane'] := 3{mole/s}; |
1725 |
Liqin.f['n_heptane'] := 3{mole/s}; |
1726 |
END values; |
1727 |
|
1728 |
METHOD specify; |
1729 |
RUN Tray.specify; |
1730 |
END specify; |
1731 |
|
1732 |
END test_tray; |
1733 |
|
1734 |
MODEL test_feed_tray() REFINES testflashmodel(); |
1735 |
|
1736 |
(* The next 5 are probably used throughout a flowsheet *) |
1737 |
cd IS_A components_data(['n_pentane','n_hexane','n_heptane'], |
1738 |
'n_heptane'); |
1739 |
pdV IS_A phases_data('V', 'ideal_vapor_mixture', 'none', 'none'); |
1740 |
pdL IS_A phases_data('L', 'none', 'UNIFAC_liquid_mixture', 'none'); |
1741 |
|
1742 |
equilibrated IS_A start_false; |
1743 |
|
1744 |
(* Qin is unit specific *) |
1745 |
Qin IS_A energy_rate; |
1746 |
|
1747 |
Feedin IS_A stream(cd, pdL, equilibrated); |
1748 |
Liqin IS_A stream(cd, pdL, equilibrated); |
1749 |
Vapin IS_A stream(cd, pdV, equilibrated); |
1750 |
Liqout IS_A stream(cd, pdL, equilibrated); |
1751 |
Vapout IS_A stream(cd, pdV, equilibrated); |
1752 |
|
1753 |
Feed_tray IS_A |
1754 |
feed_tray(Qin, equilibrated, Feedin, Liqin, Vapin, Liqout, Vapout); |
1755 |
|
1756 |
METHODS |
1757 |
|
1758 |
METHOD default_all; |
1759 |
RUN default_self; |
1760 |
END default_all; |
1761 |
|
1762 |
METHOD default_self; |
1763 |
Qin := 0{kW}; |
1764 |
boundwidth := 10; |
1765 |
RUN Feedin.default_self; |
1766 |
RUN Liqin.default_self; |
1767 |
RUN Vapin.default_self; |
1768 |
RUN Liqout.default_self; |
1769 |
RUN Vapout.default_self; |
1770 |
RUN Feed_tray.default_self; |
1771 |
END default_self; |
1772 |
|
1773 |
METHOD values; |
1774 |
Feed_tray.alpha['n_pentane'] := 3; |
1775 |
Feed_tray.alpha['n_hexane'] := 2; |
1776 |
Feed_tray.alpha['n_heptane'] := 1; |
1777 |
Feed_tray.T := 298 {K}; |
1778 |
Feed_tray.P := 1{atm}; |
1779 |
Liqin.f['n_pentane'] := 3{mole/s}; |
1780 |
Liqin.f['n_hexane'] := 3{mole/s}; |
1781 |
Liqin.f['n_heptane'] := 3{mole/s}; |
1782 |
END values; |
1783 |
|
1784 |
METHOD specify; |
1785 |
RUN Feed_tray.specify; |
1786 |
END specify; |
1787 |
|
1788 |
END test_feed_tray; |
1789 |
|
1790 |
MODEL test_condenser() REFINES testflashmodel(); |
1791 |
|
1792 |
cd IS_A components_data(['n_pentane','n_hexane','n_heptane'], |
1793 |
'n_heptane'); |
1794 |
pdV IS_A phases_data('V', 'ideal_vapor_mixture', 'none', 'none'); |
1795 |
pdL IS_A phases_data('L', 'none', 'UNIFAC_liquid_mixture', 'none'); |
1796 |
|
1797 |
(* Qin is unit specific *) |
1798 |
Qin IS_A energy_rate; |
1799 |
|
1800 |
equilibrated IS_A start_false; |
1801 |
|
1802 |
Vapin IS_A stream(cd, pdV, equilibrated); |
1803 |
Liqout IS_A stream(cd, pdL, equilibrated); |
1804 |
Distillate IS_A stream(cd, pdL, equilibrated); |
1805 |
|
1806 |
Condenser IS_A total_condenser(Qin, Vapin, Liqout, Distillate); |
1807 |
|
1808 |
METHODS |
1809 |
|
1810 |
METHOD default_all; |
1811 |
RUN default_self; |
1812 |
END default_all; |
1813 |
|
1814 |
METHOD default_self; |
1815 |
Qin := 100{kW}; |
1816 |
boundwidth := 10; |
1817 |
RUN Vapin.default_self; |
1818 |
RUN Liqout.default_self; |
1819 |
RUN Distillate.default_self; |
1820 |
RUN Condenser.default_self; |
1821 |
END default_self; |
1822 |
|
1823 |
METHOD values; |
1824 |
Condenser.state.T := 298 {K}; |
1825 |
Condenser.state.P := 1{atm}; |
1826 |
Vapin.f['n_pentane'] := 3{mole/s}; |
1827 |
Vapin.f['n_hexane'] := 3{mole/s}; |
1828 |
Vapin.f['n_heptane'] := 3{mole/s}; |
1829 |
END values; |
1830 |
|
1831 |
METHOD specify; |
1832 |
RUN Condenser.specify; |
1833 |
END specify; |
1834 |
END test_condenser; |
1835 |
|
1836 |
MODEL test_reboiler() REFINES testflashmodel(); |
1837 |
|
1838 |
(* The next 5 are probably used throughout a flowsheet *) |
1839 |
cd IS_A components_data(['n_pentane','n_hexane','n_heptane'], |
1840 |
'n_heptane'); |
1841 |
pdV IS_A phases_data('V', 'ideal_vapor_mixture', 'none', 'none'); |
1842 |
pdL IS_A phases_data('L', 'none', 'UNIFAC_liquid_mixture', 'none'); |
1843 |
|
1844 |
equilibrated IS_A start_false; |
1845 |
|
1846 |
(* Qin is unit specific *) |
1847 |
Qin IS_A energy_rate; |
1848 |
|
1849 |
Vapout IS_A stream(cd, pdV, equilibrated); |
1850 |
Liqin IS_A stream(cd, pdL, equilibrated); |
1851 |
Bottoms IS_A stream(cd, pdL, equilibrated); |
1852 |
|
1853 |
Reboiler IS_A |
1854 |
simple_reboiler(Qin, equilibrated, Liqin, Vapout, Bottoms); |
1855 |
|
1856 |
METHODS |
1857 |
|
1858 |
METHOD default_all; |
1859 |
RUN default_self; |
1860 |
END default_all; |
1861 |
|
1862 |
METHOD default_self; |
1863 |
Qin := 100{kW}; |
1864 |
RUN Liqin.default_self; |
1865 |
RUN Vapout.default_self; |
1866 |
RUN Bottoms.default_self; |
1867 |
RUN Reboiler.default_self; |
1868 |
END default_self; |
1869 |
|
1870 |
METHOD values; |
1871 |
Reboiler.alpha['n_pentane'] := 3; |
1872 |
Reboiler.alpha['n_hexane'] := 2; |
1873 |
Reboiler.alpha['n_heptane'] := 1; |
1874 |
Reboiler.T := 298 {K}; |
1875 |
Reboiler.P := 1{atm}; |
1876 |
Liqin.f['n_pentane'] := 3{mole/s}; |
1877 |
Liqin.f['n_hexane'] := 3{mole/s}; |
1878 |
Liqin.f['n_heptane'] := 3{mole/s}; |
1879 |
END values; |
1880 |
|
1881 |
METHOD specify; |
1882 |
RUN Reboiler.specify; |
1883 |
END specify; |
1884 |
END test_reboiler; |