1 |
REQUIRE "ivpsystem.a4l"; |
2 |
REQUIRE "splitter.a4l"; |
3 |
(* => splitter.a4l, stream_holdup.a4l thermodynamics.a4l, components.a4l, |
4 |
* phases.a4l, atoms.a4l, measures.a4l, system.a4l, basemodel.a4l *) |
5 |
PROVIDE "dyn_flash.a4l"; |
6 |
|
7 |
(* |
8 |
* dyn_flash.a4l |
9 |
* by Duncan Coffey |
10 |
* Modified from flash.a4l by Ben Allan |
11 |
* Part of the ASCEND Library |
12 |
* $Date: 1998/06/20 15:12:02 $ |
13 |
* $Revision: 1.3 $ |
14 |
* $Author: ballan $ |
15 |
* $Source: /afs/cs.cmu.edu/project/ascend/Repository/models/dyn_flash.a4l,v $ |
16 |
* |
17 |
* This file is part of the ASCEND Modeling Library. |
18 |
* The file provide basic vapor-liquid equilibrium flash calcuations |
19 |
* in various unit operation configurations. |
20 |
* |
21 |
* Copyright (C) 1998 Carnegie Mellon University |
22 |
* |
23 |
* The ASCEND Modeling Library is free software; you can redistribute |
24 |
* it and/or modify it under the terms of the GNU General Public |
25 |
* License as published by the Free Software Foundation; either |
26 |
* version 2 of the License, or (at your option) any later version. |
27 |
* |
28 |
* The ASCEND Modeling Library is distributed in hope that it |
29 |
* will be useful, but WITHOUT ANY WARRANTY; without even the implied |
30 |
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. |
31 |
* See the GNU General Public License for more details. |
32 |
* |
33 |
* You should have received a copy of the GNU General Public License |
34 |
* along with the program; if not, write to the Free Software |
35 |
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139 USA. Check |
36 |
* the file named COPYING. |
37 |
*) |
38 |
|
39 |
MODEL flash_base( |
40 |
) REFINES cmumodel; |
41 |
|
42 |
NOTES |
43 |
'usage' SELF { |
44 |
Never create one of these directly. |
45 |
This is just a common ancestor type to |
46 |
make type tree navigation easier. |
47 |
} |
48 |
'purpose' SELF { |
49 |
This library provides models: |
50 |
vapor_liquid_flash - a simple two product flash of an arbitrary feed. |
51 |
simple_reboiler - a reboiler with "stream" connections for use in columns. |
52 |
total_condenser - a total condenser with "stream" connections for use in columns. |
53 |
tray - a tray with "stream" connections for use in columns. |
54 |
feed_tray - a feed tray with "stream" connections for use in columns. |
55 |
detailed_tray - a tray with "detailed_stream" connections for use in stacks. |
56 |
} |
57 |
END NOTES; |
58 |
END flash_base; |
59 |
|
60 |
MODEL vapor_liquid_flash( |
61 |
feed WILL_BE stream; |
62 |
vapout WILL_BE stream; |
63 |
liqout WILL_BE stream; |
64 |
t WILL_BE time; |
65 |
dynamic WILL_BE boolean; |
66 |
ode_offset WILL_BE ode_counter; |
67 |
obs_offset WILL_BE obs_counter; |
68 |
) WHERE ( |
69 |
feed, vapout, liqout WILL_NOT_BE_THE_SAME; |
70 |
feed.cd, vapout.cd, liqout.cd WILL_BE_THE_SAME; |
71 |
vapout.pd.phase_indicator == 'V'; |
72 |
liqout.pd.phase_indicator == 'L'; |
73 |
(feed.pd.phase_indicator IN ['V','L','VL','VLL']) == TRUE; |
74 |
) REFINES flash_base; |
75 |
|
76 |
NOTES |
77 |
'purpose' SELF { |
78 |
This MODEL computes a VL flash with the potential that the whole |
79 |
feed subcools or superheats into one or the other product. |
80 |
The user supplies all streams, time, a dynamic boolean and obs and ode |
81 |
counters. |
82 |
If equilibrated is TRUE, V-L equilibrium will be |
83 |
attempted, otherwise the unit will solve only the mass balances |
84 |
and single phase properties. |
85 |
} |
86 |
'developer-Duncan' SELF { |
87 |
This is a simple dynamic model of a flash unit. The user creates a |
88 |
vapor product, a liquid product, and any |
89 |
feed and gives them to us with time, a dynamic boolean and ode and obs |
90 |
counters. We do the assembly of the flash VLE MODEL from |
91 |
the given output stream states. |
92 |
} |
93 |
END NOTES; |
94 |
|
95 |
cd ALIASES feed.cd; |
96 |
P ALIASES liqout.P; |
97 |
T ALIASES liqout.T; |
98 |
equilibrated ALIASES vapout.equilibrated; |
99 |
(* flash thermo options are derived from product streams *) |
100 |
pdVL IS_A phases_data('VL', vapout.pd.vapor_option, |
101 |
liqout.pd.liquid1_option, 'none'); |
102 |
|
103 |
(* flash Vapor-Liquid state comes from thermo of product streams. *) |
104 |
phaseVL[VLphases] ALIASES |
105 |
(vapout.phase['vapor'], liqout.phase['liquid1']) |
106 |
WHERE VLphases IS_A set OF symbol_constant |
107 |
WITH_VALUE ('vapor','liquid1'); |
108 |
state IS_A thermodynamics(cd, pdVL, phaseVL, equilibrated); |
109 |
|
110 |
x "liquid product composition" ALIASES liqout.state.y; |
111 |
y "vapor product composition" ALIASES vapout.state.y; |
112 |
|
113 |
|
114 |
dMi_dt[cd.other_components] IS_A molar_rate; |
115 |
M "total mass holdup", |
116 |
Mi[cd.components] "species holdup", |
117 |
Ml "liquid mass holdup", |
118 |
Mv "vapor mass holdup" IS_A mole; |
119 |
dM_dt IS_A molar_rate; |
120 |
dU_dt IS_A energy_rate; |
121 |
U "internal energy holdup" IS_A energy; |
122 |
Vol "holdup volume", |
123 |
vol_liq "holdup liquid volume", |
124 |
vol_vap "holdup vapor volume" IS_A volume; |
125 |
Qin "heat input" IS_A energy_rate; |
126 |
split_fraction[VLphases] IS_A fraction; |
127 |
flowscale IS_A molar_rate_scale; |
128 |
|
129 |
(* component material balances *) |
130 |
FOR i IN cd.other_components CREATE |
131 |
cmb[i]: |
132 |
dMi_dt[i]/flowscale = |
133 |
(feed.f[i] - vapout.f[i] - liqout.f[i]) / flowscale; |
134 |
END FOR; |
135 |
|
136 |
(* overall material balance *) |
137 |
OMB: |
138 |
dM_dt/flowscale = (feed.flow - vapout.flow - liqout.flow)/flowscale; |
139 |
|
140 |
vapor_balance: (vapout.flow - |
141 |
split_fraction['vapor'] * feed.flow)/flowscale = 0; |
142 |
|
143 |
SUM[split_fraction[i] | i IN VLphases] = 1; |
144 |
|
145 |
state.phase_fraction['vapor'] * M = Mv; |
146 |
|
147 |
FOR i IN cd.components CREATE |
148 |
Mi[i] = Ml*x[i] + Mv*y[i]; |
149 |
END FOR; |
150 |
M = Ml + Mv; |
151 |
Vol = vol_liq + vol_vap; |
152 |
vol_liq = Ml * state.phase['liquid1'].v_y; |
153 |
vol_vap = Mv * state.phase['vapor'].v_y; |
154 |
|
155 |
(* overall energy balance *) |
156 |
H_flowscale IS_A energy_rate_scale; |
157 |
|
158 |
dU_dt/H_flowscale = |
159 |
(feed.H_flow + Qin - vapout.H_flow - liqout.H_flow)/H_flowscale; |
160 |
|
161 |
U/H_flowscale = |
162 |
(state.phase['vapor'].h_y * Mv + state.phase['liquid1'].h_y * Ml) |
163 |
/H_flowscale; |
164 |
|
165 |
boundwidth IS_A bound_width; |
166 |
|
167 |
METHODS |
168 |
|
169 |
METHOD check_self; |
170 |
IF (liqout.flow < 1e-4 {mole/s}) THEN |
171 |
STOP {Liquid flow dried up in flash}; |
172 |
END IF; |
173 |
IF (vapout.flow < 1e-4 {mole/s}) THEN |
174 |
STOP {All vapor condensed in flash}; |
175 |
END IF; |
176 |
IF (feed.flow < 1e-4 {mole/s}) THEN |
177 |
STOP {No feed flowing to flash}; |
178 |
END IF; |
179 |
IF (abs(feed.flow - vapout.flow - liqout.flow)/flowscale > 1.0e-4) THEN |
180 |
STOP {Flash violates overall mass-balance}; |
181 |
END IF; |
182 |
RUN pdVL.check_self; |
183 |
RUN state.check_self; |
184 |
END check_self; |
185 |
|
186 |
METHOD check_all; |
187 |
RUN feed.check_self; |
188 |
RUN vapout.check_self; |
189 |
RUN liqout.check_self; |
190 |
RUN check_self; |
191 |
END check_all; |
192 |
|
193 |
METHOD default_self; |
194 |
boundwidth :=10; |
195 |
flowscale := feed.Details.flowscale; |
196 |
H_flowscale := feed.Details.H_flowscale; |
197 |
dMi_dt[cd.other_components] :=0 {mole/sec}; |
198 |
dMi_dt[cd.other_components].lower_bound :=-1e100 {mole/sec}; |
199 |
dM_dt :=0 {mole/sec}; |
200 |
dM_dt.lower_bound :=-1e100 {mole/sec}; |
201 |
dU_dt :=0 {J/sec}; |
202 |
(* Upper bound of split fraction must be changed to |
203 |
greater than 1 for dynamic simulation *) |
204 |
split_fraction[VLphases].upper_bound :=2; |
205 |
split_fraction[VLphases].lower_bound :=-2; |
206 |
dynamic :=FALSE; |
207 |
t :=0 {s}; |
208 |
RUN pdVL.default_self; |
209 |
RUN state.default_self; |
210 |
END default_self; |
211 |
|
212 |
METHOD default_all; |
213 |
Qin := 0 {watt}; |
214 |
RUN feed.default_self; |
215 |
RUN vapout.default_self; |
216 |
RUN liqout.default_self; |
217 |
RUN default_self; |
218 |
END default_all; |
219 |
|
220 |
METHOD bound_self; |
221 |
state.boundwidth := boundwidth; |
222 |
RUN pdVL.bound_self; |
223 |
RUN state.bound_self; |
224 |
END bound_self; |
225 |
|
226 |
METHOD bound_all; |
227 |
feed.boundwidth := boundwidth; |
228 |
vapout.boundwidth := boundwidth; |
229 |
liqout.boundwidth := boundwidth; |
230 |
RUN feed.bound_self; |
231 |
RUN vapout.bound_self; |
232 |
RUN liqout.bound_self; |
233 |
RUN bound_self; |
234 |
END bound_all; |
235 |
|
236 |
METHOD scale_self; |
237 |
flowscale := feed.flow; |
238 |
H_flowscale := feed.H_flow; |
239 |
RUN pdVL.scale_self; |
240 |
RUN state.scale_self; |
241 |
END scale_self; |
242 |
|
243 |
METHOD scale_all; |
244 |
RUN feed.scale_self; |
245 |
RUN vapout.scale_self; |
246 |
RUN liqout.scale_self; |
247 |
RUN scale_self; |
248 |
END scale_all; |
249 |
|
250 |
METHOD seqmod; |
251 |
RUN state.specify; |
252 |
state.y[cd.components].fixed := FALSE; |
253 |
IF equilibrated THEN |
254 |
state.T.fixed :=FALSE; |
255 |
ELSE |
256 |
state.T.fixed :=TRUE; |
257 |
END IF; |
258 |
split_fraction['vapor'].fixed :=TRUE; |
259 |
state.phase_fraction['vapor'].fixed :=FALSE; |
260 |
dMi_dt[cd.other_components].fixed :=TRUE; |
261 |
Mi[cd.components].fixed :=FALSE; |
262 |
dM_dt.fixed :=TRUE; |
263 |
M.fixed :=FALSE; |
264 |
dU_dt.fixed :=TRUE; |
265 |
U.fixed :=FALSE; |
266 |
Vol.fixed :=TRUE; |
267 |
vol_liq.fixed :=TRUE; |
268 |
IF dynamic THEN |
269 |
dMi_dt[cd.other_components].fixed :=FALSE; |
270 |
Mi[cd.other_components].fixed :=TRUE; |
271 |
dM_dt.fixed :=FALSE; |
272 |
M.fixed :=TRUE; |
273 |
dU_dt.fixed :=FALSE; |
274 |
U.fixed :=TRUE; |
275 |
Qin.fixed :=TRUE; |
276 |
IF equilibrated THEN |
277 |
state.P.fixed :=FALSE; |
278 |
ELSE |
279 |
state.T.fixed :=FALSE; |
280 |
END IF; |
281 |
vol_liq.fixed :=FALSE; |
282 |
liqout.flow.fixed :=TRUE; |
283 |
vapout.flow.fixed :=TRUE; |
284 |
split_fraction['vapor'].fixed :=FALSE; |
285 |
ELSE |
286 |
dMi_dt[cd.other_components] :=0 {mole/sec}; |
287 |
dM_dt :=0 {mole/sec}; |
288 |
dU_dt :=0 {J/sec}; |
289 |
END IF; |
290 |
END seqmod; |
291 |
|
292 |
METHOD specify; |
293 |
RUN feed.specify; |
294 |
RUN seqmod; |
295 |
END specify; |
296 |
|
297 |
METHOD set_ode; |
298 |
t.ode_type :=-1; |
299 |
FOR i IN cd.other_components DO |
300 |
dMi_dt[i].ode_type :=2; |
301 |
Mi[i].ode_type :=1; |
302 |
dMi_dt[i].ode_id :=ode_offset; |
303 |
Mi[i].ode_id :=ode_offset; |
304 |
ode_offset :=ode_offset+1; |
305 |
END FOR; |
306 |
dM_dt.ode_type :=2; |
307 |
M.ode_type :=1; |
308 |
dM_dt.ode_id :=ode_offset; |
309 |
M.ode_id :=ode_offset; |
310 |
ode_offset :=ode_offset+1; |
311 |
dU_dt.ode_type :=2; |
312 |
U.ode_type :=1; |
313 |
dU_dt.ode_id :=ode_offset; |
314 |
U.ode_id :=ode_offset; |
315 |
ode_offset :=ode_offset+1; |
316 |
END set_ode; |
317 |
|
318 |
METHOD set_obs; |
319 |
Vol.obs_id :=obs_offset; |
320 |
vol_liq.obs_id :=obs_offset+1; |
321 |
state.T.obs_id :=obs_offset+2; |
322 |
state.P.obs_id :=obs_offset+3; |
323 |
Qin.obs_id :=obs_offset+4; |
324 |
feed.flow.obs_id :=obs_offset+5; |
325 |
liqout.flow.obs_id :=obs_offset+6; |
326 |
vapout.flow.obs_id :=obs_offset+7; |
327 |
obs_offset :=obs_offset+8; |
328 |
END set_obs; |
329 |
END vapor_liquid_flash; |
330 |
|
331 |
MODEL tray_base( |
332 |
|
333 |
) REFINES flash_base; |
334 |
END tray_base; |
335 |
|
336 |
MODEL detailed_tray( |
337 |
liqin WILL_BE detailed_stream; |
338 |
vapin WILL_BE detailed_stream; |
339 |
liqout WILL_BE detailed_stream; |
340 |
vapout WILL_BE detailed_stream; |
341 |
state WILL_BE thermodynamics; |
342 |
t WILL_BE time; |
343 |
dynamic WILL_BE boolean; |
344 |
ode_offset WILL_BE ode_counter; |
345 |
obs_offset WILL_BE obs_counter; |
346 |
) WHERE ( |
347 |
liqout.state, vapout.state WILL_NOT_BE_THE_SAME; |
348 |
vapin.state.cd, vapout.state.cd WILL_BE_THE_SAME; |
349 |
vapin.state.pd.phase_indicator == 'V'; |
350 |
liqin.state.pd.phase_indicator == 'L'; |
351 |
vapout.state.pd.phase_indicator == 'V'; |
352 |
liqout.state.pd.phase_indicator == 'L'; |
353 |
) REFINES tray_base; |
354 |
|
355 |
NOTES |
356 |
'purpose' SELF { |
357 |
This MODEL computes VLE for a tray with the purpose of being used in a |
358 |
stack of trays for a column. The streams used are detailed_streams |
359 |
which make it easier to construct a stack of trays with a lot less variables. |
360 |
The user supplies all streams, time, a dynamic boolean and obs and ode |
361 |
counters. |
362 |
If equilibrated is TRUE, V-L equilibrium will be |
363 |
attempted, OTHERWISE the unit will solve only the mass balances. |
364 |
} |
365 |
'developer-Duncan' SELF { |
366 |
This is a simple dynamic model of a tray. The user creates a |
367 |
vapor feed and product, a liquid feed and product, along with time, |
368 |
a dynamic boolean and ode and obs counters. We do the assembly of the |
369 |
tray VLE MODEL from the given output stream states. |
370 |
} |
371 |
END NOTES; |
372 |
|
373 |
cd ALIASES vapout.state.cd; |
374 |
P ALIASES liqout.P; |
375 |
T ALIASES liqout.T; |
376 |
equilibrated ALIASES vapout.state.equilibrated; |
377 |
x "liquid product composition" ALIASES liqout.state.y; |
378 |
y "vapor product composition" ALIASES vapout.state.y; |
379 |
|
380 |
|
381 |
dMi_dt[cd.other_components] IS_A molar_rate; |
382 |
M,Mi[cd.components],Ml,Mv IS_A mole; |
383 |
dM_dt IS_A molar_rate; |
384 |
dU_dt IS_A energy_rate; |
385 |
U IS_A energy; |
386 |
Vol,vol_liq,vol_vap IS_A volume; |
387 |
Qin IS_A energy_rate; |
388 |
flowscale IS_A molar_rate_scale; |
389 |
cmo_ratio "Constant molar overflow" IS_A factor; |
390 |
|
391 |
cmo_eqn: (cmo_ratio * liqin.flow - liqout.flow)/flowscale = 0; |
392 |
|
393 |
(* component material balances *) |
394 |
FOR i IN cd.other_components CREATE |
395 |
dMi_dt[i]/flowscale=(liqin.f[i]+vapin.f[i]-vapout.f[i]-liqout.f[i])/flowscale; |
396 |
END FOR; |
397 |
(* overall material balance *) |
398 |
dM_dt/flowscale=(liqin.flow+vapin.flow-vapout.flow-liqout.flow)/flowscale; |
399 |
|
400 |
FOR i IN cd.components CREATE |
401 |
Mi[i]=Ml*x[i]+Mv*y[i]; |
402 |
END FOR; |
403 |
M=Ml+Mv; |
404 |
Vol=vol_liq+vol_vap; |
405 |
vol_liq=Ml*state.phase['liquid1'].v_y; |
406 |
vol_vap=Mv*state.phase['vapor'].v_y; |
407 |
|
408 |
state.phase_fraction['vapor'] * M = Mv; |
409 |
|
410 |
(* hydraulic type equations *) |
411 |
taul,tauv IS_A time; |
412 |
|
413 |
taul*liqout.flow = Ml; |
414 |
tauv*vapout.flow = sqrt(state.P/1{Pa})*1{mol}; |
415 |
|
416 |
|
417 |
(* overall energy balance *) |
418 |
H_flowscale IS_A energy_rate_scale; |
419 |
|
420 |
dU_dt/H_flowscale=(liqin.H_flow+vapin.H_flow+Qin-vapout.H_flow |
421 |
-liqout.H_flow)/H_flowscale; |
422 |
|
423 |
U/H_flowscale = (state.phase['vapor'].h_y*Mv+state.phase['liquid1'].h_y*Ml) |
424 |
/H_flowscale; |
425 |
boundwidth IS_A bound_width; |
426 |
METHODS |
427 |
METHOD check_self; |
428 |
IF (liqout.flow < 1e-4 {mole/s}) THEN |
429 |
STOP {Liquid flow dried up in tray}; |
430 |
END IF; |
431 |
IF (vapout.flow < 1e-4 {mole/s}) THEN |
432 |
STOP {All vapor condensed in tray}; |
433 |
END IF; |
434 |
IF (vapin.flow < 1e-4 {mole/s}) THEN |
435 |
STOP {No vapin flowing to tray}; |
436 |
END IF; |
437 |
IF (liqin.flow < 1e-4 {mole/s}) THEN |
438 |
STOP {No liqin flowing to tray}; |
439 |
END IF; |
440 |
IF (abs(vapin.flow+liqin.flow - vapout.flow - liqout.flow) |
441 |
/flowscale > 1.0e-4) THEN |
442 |
STOP {tray violates overall mass-balance}; |
443 |
END IF; |
444 |
RUN state.check_self; |
445 |
END check_self; |
446 |
|
447 |
METHOD check_all; |
448 |
RUN vapin.check_self; |
449 |
RUN liqin.check_self; |
450 |
RUN vapout.check_self; |
451 |
RUN liqout.check_self; |
452 |
RUN state.check_self; |
453 |
RUN check_self; |
454 |
END check_all; |
455 |
|
456 |
METHOD default_self; |
457 |
boundwidth :=10; |
458 |
flowscale := vapout.flowscale; |
459 |
H_flowscale := vapout.H_flowscale; |
460 |
dMi_dt[cd.other_components] :=0 {mole/sec}; |
461 |
dMi_dt[cd.other_components].lower_bound :=-1e100 {mole/sec}; |
462 |
dM_dt :=0 {mole/sec}; |
463 |
dM_dt.lower_bound :=-1e100 {mole/sec}; |
464 |
dU_dt :=0 {J/sec}; |
465 |
dynamic :=FALSE; |
466 |
t :=0 {s}; |
467 |
END default_self; |
468 |
|
469 |
METHOD default_all; |
470 |
Qin := 0 {watt}; |
471 |
RUN vapin.default_self; |
472 |
RUN liqin.default_self; |
473 |
RUN vapout.default_self; |
474 |
RUN liqout.default_self; |
475 |
RUN state.default_self; |
476 |
RUN default_self; |
477 |
END default_all; |
478 |
|
479 |
METHOD bound_self; |
480 |
state.boundwidth := boundwidth; |
481 |
END bound_self; |
482 |
|
483 |
METHOD bound_all; |
484 |
vapin.boundwidth := boundwidth; |
485 |
liqin.boundwidth := boundwidth; |
486 |
vapout.boundwidth := boundwidth; |
487 |
liqout.boundwidth := boundwidth; |
488 |
RUN vapin.bound_self; |
489 |
RUN liqin.bound_self; |
490 |
RUN vapout.bound_self; |
491 |
RUN liqout.bound_self; |
492 |
RUN state.bound_self; |
493 |
RUN bound_self; |
494 |
END bound_all; |
495 |
|
496 |
METHOD scale_self; |
497 |
flowscale := vapin.flow; |
498 |
H_flowscale := vapin.H_flow; |
499 |
END scale_self; |
500 |
|
501 |
METHOD scale_all; |
502 |
RUN vapin.scale_self; |
503 |
RUN liqin.scale_self; |
504 |
RUN vapout.scale_self; |
505 |
RUN liqout.scale_self; |
506 |
RUN state.scale_self; |
507 |
RUN scale_self; |
508 |
END scale_all; |
509 |
|
510 |
METHOD seqmod; |
511 |
RUN state.specify; |
512 |
state.y[cd.components].fixed := FALSE; |
513 |
IF equilibrated THEN |
514 |
state.T.fixed :=FALSE; |
515 |
ELSE |
516 |
state.T.fixed :=TRUE; |
517 |
END IF; |
518 |
state.phase_fraction['vapor'].fixed :=FALSE; |
519 |
cmo_ratio.fixed :=TRUE; |
520 |
dMi_dt[cd.other_components].fixed :=TRUE; |
521 |
Mi[cd.other_components].fixed :=FALSE; |
522 |
dM_dt.fixed :=TRUE; |
523 |
M.fixed :=FALSE; |
524 |
dU_dt.fixed :=TRUE; |
525 |
U.fixed :=FALSE; |
526 |
Vol.fixed :=TRUE; |
527 |
vol_liq.fixed :=TRUE; |
528 |
tauv.fixed :=FALSE; |
529 |
taul.fixed :=FALSE; |
530 |
liqout.flow.fixed :=FALSE; |
531 |
vapout.flow.fixed :=FALSE; |
532 |
IF dynamic THEN |
533 |
dMi_dt[cd.other_components].fixed :=FALSE; |
534 |
Mi[cd.other_components].fixed :=TRUE; |
535 |
dM_dt.fixed :=FALSE; |
536 |
M.fixed :=TRUE; |
537 |
dU_dt.fixed :=FALSE; |
538 |
U.fixed :=TRUE; |
539 |
Qin.fixed :=TRUE; |
540 |
IF equilibrated THEN |
541 |
state.P.fixed :=FALSE; |
542 |
ELSE |
543 |
state.T.fixed :=FALSE; |
544 |
END IF; |
545 |
vol_liq.fixed :=FALSE; |
546 |
tauv.fixed :=TRUE; |
547 |
taul.fixed :=TRUE; |
548 |
cmo_ratio.fixed :=FALSE; |
549 |
ELSE |
550 |
dMi_dt[cd.other_components] :=0 {mole/sec}; |
551 |
dM_dt :=0 {mole/sec}; |
552 |
dU_dt :=0 {J/sec}; |
553 |
END IF; |
554 |
END seqmod; |
555 |
|
556 |
METHOD specify; |
557 |
RUN vapin.specify; |
558 |
RUN liqin.specify; |
559 |
RUN seqmod; |
560 |
END specify; |
561 |
|
562 |
METHOD reset_to_adiabatic; |
563 |
cmo_ratio.fixed := FALSE; |
564 |
Qin.fixed := TRUE; |
565 |
Qin := 0{W}; |
566 |
END reset_to_adiabatic; |
567 |
|
568 |
METHOD set_ode; |
569 |
t.ode_type :=-1; |
570 |
FOR i IN cd.other_components DO |
571 |
dMi_dt[i].ode_type :=2; |
572 |
Mi[i].ode_type :=1; |
573 |
dMi_dt[i].ode_id :=ode_offset; |
574 |
Mi[i].ode_id :=ode_offset; |
575 |
ode_offset :=ode_offset+1; |
576 |
END FOR; |
577 |
dM_dt.ode_type :=2; |
578 |
M.ode_type :=1; |
579 |
dM_dt.ode_id :=ode_offset; |
580 |
M.ode_id :=ode_offset; |
581 |
ode_offset :=ode_offset+1; |
582 |
dU_dt.ode_type :=2; |
583 |
U.ode_type :=1; |
584 |
dU_dt.ode_id :=ode_offset; |
585 |
U.ode_id :=ode_offset; |
586 |
ode_offset :=ode_offset+1; |
587 |
END set_ode; |
588 |
METHOD set_obs; |
589 |
Vol.obs_id :=obs_offset; |
590 |
vol_liq.obs_id :=obs_offset+1; |
591 |
state.T.obs_id :=obs_offset+2; |
592 |
state.P.obs_id :=obs_offset+3; |
593 |
Qin.obs_id :=obs_offset+4; |
594 |
vapin.flow.obs_id :=obs_offset+5; |
595 |
liqin.flow.obs_id :=obs_offset+6; |
596 |
liqout.flow.obs_id :=obs_offset+7; |
597 |
vapout.flow.obs_id :=obs_offset+8; |
598 |
obs_offset :=obs_offset+9; |
599 |
END set_obs; |
600 |
END detailed_tray; |
601 |
|
602 |
|
603 |
MODEL tray( |
604 |
liqin WILL_BE stream; |
605 |
vapin WILL_BE stream; |
606 |
liqout WILL_BE stream; |
607 |
vapout WILL_BE stream; |
608 |
t WILL_BE time; |
609 |
dynamic WILL_BE boolean; |
610 |
ode_offset WILL_BE ode_counter; |
611 |
obs_offset WILL_BE obs_counter; |
612 |
) WHERE ( |
613 |
liqout.state, vapout.state WILL_NOT_BE_THE_SAME; |
614 |
vapin.state.cd, vapout.state.cd WILL_BE_THE_SAME; |
615 |
vapin.pd.phase_indicator == 'V'; |
616 |
liqin.pd.phase_indicator == 'L'; |
617 |
vapout.pd.phase_indicator == 'V'; |
618 |
liqout.pd.phase_indicator == 'L'; |
619 |
) REFINES tray_base; |
620 |
NOTES |
621 |
'purpose' SELF { |
622 |
This MODEL uses the detailed_tray model create a tray using streams |
623 |
instead of detailed streams. |
624 |
The user supplies all streams, time, a dynamic boolean and obs and ode |
625 |
counters. |
626 |
If equilibrated is TRUE, V-L equilibrium will be |
627 |
attempted, OTHERWISE the unit will solve only the mass balances. |
628 |
} |
629 |
'developer-Duncan' SELF { |
630 |
This is a simple dynamic model of a tray. The user creates a |
631 |
vapor feed and product, a liquid feed and product, along with time, |
632 |
a dynamic boolean and ode and obs counters. We do the assembly of the |
633 |
tray VLE MODEL from the given output stream states. |
634 |
} |
635 |
END NOTES; |
636 |
cd ALIASES vapout.cd; |
637 |
P ALIASES liqout.P; |
638 |
T ALIASES liqout.T; |
639 |
equilibrated ALIASES vapout.equilibrated; |
640 |
pdVL IS_A phases_data('VL', vapout.pd.vapor_option, |
641 |
liqout.pd.liquid1_option, 'none'); |
642 |
|
643 |
phaseVL[VLphases] ALIASES |
644 |
(vapout.phase['vapor'], liqout.phase['liquid1']) |
645 |
WHERE VLphases IS_A set OF symbol_constant |
646 |
WITH_VALUE ('vapor','liquid1'); |
647 |
|
648 |
state IS_A thermodynamics(cd,pdVL,phaseVL,equilibrated); |
649 |
|
650 |
details IS_A detailed_tray(liqin.Details,vapin.Details,liqout.Details,vapout.Details, |
651 |
state,t,dynamic,ode_offset,obs_offset); |
652 |
|
653 |
Vol ALIASES details.Vol; |
654 |
vol_liq ALIASES details.vol_liq; |
655 |
vol_vap ALIASES details.vol_vap; |
656 |
Qin ALIASES details.Qin; |
657 |
cmo_ratio ALIASES details.cmo_ratio; |
658 |
|
659 |
METHODS |
660 |
METHOD check_self; |
661 |
IF (liqout.flow < 1e-4 {mole/s}) THEN |
662 |
STOP {Liquid flow dried up in tray}; |
663 |
END IF; |
664 |
IF (vapout.flow < 1e-4 {mole/s}) THEN |
665 |
STOP {All vapor condensed in tray}; |
666 |
END IF; |
667 |
IF (vapin.flow < 1e-4 {mole/s}) THEN |
668 |
STOP {No vapin flowing to tray}; |
669 |
END IF; |
670 |
IF (liqin.flow < 1e-4 {mole/s}) THEN |
671 |
STOP {No liqin flowing to tray}; |
672 |
END IF; |
673 |
IF (abs(vapin.flow+liqin.flow - vapout.flow - liqout.flow) |
674 |
> 1.0e-4) THEN |
675 |
STOP {tray violates overall mass-balance}; |
676 |
END IF; |
677 |
RUN details.check_self; |
678 |
END check_self; |
679 |
|
680 |
METHOD check_all; |
681 |
RUN vapin.check_self; |
682 |
RUN liqin.check_self; |
683 |
RUN vapout.check_self; |
684 |
RUN liqout.check_self; |
685 |
RUN check_self; |
686 |
END check_all; |
687 |
|
688 |
METHOD default_self; |
689 |
dynamic :=FALSE; |
690 |
t :=0 {s}; |
691 |
RUN pdVL.default_self; |
692 |
RUN state.default_self; |
693 |
RUN details.default_self; |
694 |
END default_self; |
695 |
|
696 |
METHOD default_all; |
697 |
RUN vapin.default_self; |
698 |
RUN liqin.default_self; |
699 |
RUN vapout.default_self; |
700 |
RUN liqout.default_self; |
701 |
RUN default_self; |
702 |
END default_all; |
703 |
|
704 |
METHOD bound_self; |
705 |
RUN pdVL.bound_self; |
706 |
RUN state.bound_self; |
707 |
RUN details.bound_self; |
708 |
END bound_self; |
709 |
|
710 |
METHOD bound_all; |
711 |
RUN vapin.bound_self; |
712 |
RUN liqin.bound_self; |
713 |
RUN vapout.bound_self; |
714 |
RUN liqout.bound_self; |
715 |
RUN bound_self; |
716 |
END bound_all; |
717 |
|
718 |
METHOD scale_self; |
719 |
RUN pdVL.scale_self; |
720 |
RUN state.scale_self; |
721 |
RUN details.scale_self; |
722 |
END scale_self; |
723 |
|
724 |
METHOD scale_all; |
725 |
RUN vapin.scale_self; |
726 |
RUN liqin.scale_self; |
727 |
RUN vapout.scale_self; |
728 |
RUN liqout.scale_self; |
729 |
RUN scale_self; |
730 |
END scale_all; |
731 |
|
732 |
METHOD seqmod; |
733 |
RUN details.seqmod; |
734 |
END seqmod; |
735 |
|
736 |
METHOD specify; |
737 |
RUN details.specify; |
738 |
END specify; |
739 |
|
740 |
METHOD reset_to_adiabatic; |
741 |
RUN details.reset_to_adiabatic; |
742 |
END reset_to_adiabatic; |
743 |
|
744 |
METHOD set_ode; |
745 |
RUN details.set_ode; |
746 |
END set_ode; |
747 |
METHOD set_obs; |
748 |
RUN details.set_obs; |
749 |
END set_obs; |
750 |
END tray; |
751 |
|
752 |
MODEL feed_tray( |
753 |
feed WILL_BE stream; |
754 |
liqin WILL_BE stream; |
755 |
vapin WILL_BE stream; |
756 |
liqout WILL_BE stream; |
757 |
vapout WILL_BE stream; |
758 |
t WILL_BE time; |
759 |
dynamic WILL_BE boolean; |
760 |
ode_offset WILL_BE ode_counter; |
761 |
obs_offset WILL_BE obs_counter; |
762 |
) WHERE ( |
763 |
feed.state, liqout.state, vapout.state WILL_NOT_BE_THE_SAME; |
764 |
feed.cd, vapin.state.cd, vapout.state.cd WILL_BE_THE_SAME; |
765 |
(feed.pd.phase_indicator IN ['V','L','VL','VLL']) == TRUE; |
766 |
vapin.pd.phase_indicator == 'V'; |
767 |
liqin.pd.phase_indicator == 'L'; |
768 |
vapout.pd.phase_indicator == 'V'; |
769 |
liqout.pd.phase_indicator == 'L'; |
770 |
) REFINES tray_base; |
771 |
NOTES |
772 |
'purpose' SELF { |
773 |
This MODEL is the same as a tray except it has an extra input |
774 |
stream and the equations are written instead of created by |
775 |
detailed+tray. This model would be used as a feed tray in a column |
776 |
model. |
777 |
The user supplies all streams, time, a dynamic boolean and obs and ode |
778 |
counters. |
779 |
If equilibrated is TRUE, V-L equilibrium will be |
780 |
attempted, OTHERWISE the unit will solve only the mass balances. |
781 |
} |
782 |
'developer-Duncan' SELF { |
783 |
This is a simple dynamic model of a feed_tray. The user creates a |
784 |
vapor feed and product, a liquid feed and product, just like a normal |
785 |
tray but also has to create another feed, along with time, |
786 |
a dynamic boolean and ode and obs counters. We do the assembly of the |
787 |
tray VLE MODEL from the given output stream states. |
788 |
} |
789 |
END NOTES; |
790 |
cd ALIASES feed.cd; |
791 |
P ALIASES liqout.P; |
792 |
T ALIASES liqout.T; |
793 |
equilibrated ALIASES vapout.equilibrated; |
794 |
(* flash thermo options are derived from product streams *) |
795 |
pdVL IS_A phases_data('VL', vapout.pd.vapor_option, |
796 |
liqout.pd.liquid1_option, 'none'); |
797 |
|
798 |
(* flash Vapor-Liquid state comes from thermo of product streams. *) |
799 |
phaseVL[VLphases] ALIASES |
800 |
(vapout.phase['vapor'], liqout.phase['liquid1']) |
801 |
WHERE VLphases IS_A set OF symbol_constant |
802 |
WITH_VALUE ('vapor','liquid1'); |
803 |
state IS_A thermodynamics(cd, pdVL, phaseVL, equilibrated); |
804 |
|
805 |
x "liquid product composition" ALIASES liqout.state.y; |
806 |
y "vapor product composition" ALIASES vapout.state.y; |
807 |
|
808 |
|
809 |
dMi_dt[cd.other_components] IS_A molar_rate; |
810 |
M,Mi[cd.components],Ml,Mv IS_A mole; |
811 |
dM_dt,dMl_dt,dMv_dt IS_A molar_rate; |
812 |
dU_dt IS_A energy_rate; |
813 |
U IS_A energy; |
814 |
Vol,vol_liq,vol_vap IS_A volume; |
815 |
Qin IS_A energy_rate; |
816 |
flowscale IS_A molar_rate_scale; |
817 |
q IS_A factor; |
818 |
|
819 |
q_eqn: (liqout.flow - (liqin.flow + q * feed.flow)) / flowscale = 0; |
820 |
|
821 |
(* component material balances *) |
822 |
FOR i IN cd.other_components CREATE |
823 |
cmb[i]: |
824 |
dMi_dt[i]/flowscale=(feed.f[i]+liqin.f[i]+vapin.f[i]-vapout.f[i] |
825 |
-liqout.f[i])/flowscale; |
826 |
END FOR; |
827 |
(* overall material balance *) |
828 |
OMB: |
829 |
dM_dt/flowscale=(feed.flow+liqin.flow+vapin.flow-vapout.flow-liqout.flow)/flowscale; |
830 |
|
831 |
FOR i IN cd.components CREATE |
832 |
phase_cb[i]: |
833 |
Mi[i]=Ml*x[i]+Mv*y[i]; |
834 |
END FOR; |
835 |
M=Ml+Mv; |
836 |
Vol=vol_liq+vol_vap; |
837 |
vol_liq=Ml*state.phase['liquid1'].v_y; |
838 |
vol_vap=Mv*state.phase['vapor'].v_y; |
839 |
|
840 |
state.phase_fraction['vapor'] * M = Mv; |
841 |
|
842 |
(* hydraulic type equations *) |
843 |
taul,tauv IS_A time; |
844 |
|
845 |
taul*liqout.flow = Ml; |
846 |
tauv*vapout.flow = sqrt(state.P/1{Pa})*1{mol}; |
847 |
|
848 |
(* overall energy balance *) |
849 |
|
850 |
H_flowscale IS_A energy_rate_scale; |
851 |
|
852 |
dU_dt/H_flowscale=(feed.H_flow+liqin.H_flow+vapin.H_flow+Qin-vapout.H_flow |
853 |
-liqout.H_flow)/H_flowscale; |
854 |
U/H_flowscale = (state.phase['vapor'].h_y*Mv+state.phase['liquid1'].h_y*Ml) |
855 |
/H_flowscale; |
856 |
|
857 |
boundwidth IS_A bound_width; |
858 |
METHODS |
859 |
METHOD check_self; |
860 |
IF (feed.flow < 1e-4 {mole/s}) THEN |
861 |
STOP {feed flow dried up in flash}; |
862 |
END IF; |
863 |
IF (liqout.flow < 1e-4 {mole/s}) THEN |
864 |
STOP {Liquid flow dried up in flash}; |
865 |
END IF; |
866 |
IF (vapout.flow < 1e-4 {mole/s}) THEN |
867 |
STOP {All vapor condensed in flash}; |
868 |
END IF; |
869 |
IF (vapin.flow < 1e-4 {mole/s}) THEN |
870 |
STOP {No vapin flowing to flash}; |
871 |
END IF; |
872 |
IF (liqin.flow < 1e-4 {mole/s}) THEN |
873 |
STOP {No liqin flowing to flash}; |
874 |
END IF; |
875 |
IF (abs(vapin.flow+feed.flow+liqin.flow-vapout.flow-liqout.flow) |
876 |
/flowscale > 1.0e-4) THEN |
877 |
STOP {Feed tray violates overall mass-balance}; |
878 |
END IF; |
879 |
RUN pdVL.check_self; |
880 |
RUN state.check_self; |
881 |
END check_self; |
882 |
|
883 |
METHOD check_all; |
884 |
RUN feed.check_self; |
885 |
RUN vapin.check_self; |
886 |
RUN liqin.check_self; |
887 |
RUN vapout.check_self; |
888 |
RUN liqout.check_self; |
889 |
RUN check_self; |
890 |
END check_all; |
891 |
|
892 |
METHOD default_self; |
893 |
boundwidth :=10; |
894 |
flowscale := vapout.Details.flowscale; |
895 |
H_flowscale := vapout.Details.H_flowscale; |
896 |
dMi_dt[cd.other_components] :=0 {mole/sec}; |
897 |
dMi_dt[cd.other_components].lower_bound :=-1e100 {mole/sec}; |
898 |
dM_dt :=0 {mole/sec}; |
899 |
dM_dt.lower_bound :=-1e100 {mole/sec}; |
900 |
dU_dt :=0 {J/sec}; |
901 |
dynamic :=FALSE; |
902 |
t :=0 {s}; |
903 |
RUN pdVL.default_self; |
904 |
RUN state.default_self; |
905 |
END default_self; |
906 |
|
907 |
METHOD default_all; |
908 |
Qin := 0 {watt}; |
909 |
RUN feed.default_self; |
910 |
RUN vapin.default_self; |
911 |
RUN liqin.default_self; |
912 |
RUN vapout.default_self; |
913 |
RUN liqout.default_self; |
914 |
RUN default_self; |
915 |
END default_all; |
916 |
|
917 |
METHOD bound_self; |
918 |
state.boundwidth := boundwidth; |
919 |
RUN pdVL.bound_self; |
920 |
RUN state.bound_self; |
921 |
END bound_self; |
922 |
|
923 |
METHOD bound_all; |
924 |
feed.boundwidth := boundwidth; |
925 |
vapin.boundwidth := boundwidth; |
926 |
liqin.boundwidth := boundwidth; |
927 |
vapout.boundwidth := boundwidth; |
928 |
liqout.boundwidth := boundwidth; |
929 |
RUN vapin.bound_self; |
930 |
RUN liqin.bound_self; |
931 |
RUN vapout.bound_self; |
932 |
RUN liqout.bound_self; |
933 |
RUN bound_self; |
934 |
END bound_all; |
935 |
|
936 |
METHOD scale_self; |
937 |
flowscale := vapin.flow; |
938 |
H_flowscale := vapin.H_flow; |
939 |
RUN pdVL.scale_self; |
940 |
RUN state.scale_self; |
941 |
END scale_self; |
942 |
|
943 |
METHOD scale_all; |
944 |
RUN feed.scale_self; |
945 |
RUN vapin.scale_self; |
946 |
RUN liqin.scale_self; |
947 |
RUN vapout.scale_self; |
948 |
RUN liqout.scale_self; |
949 |
RUN scale_self; |
950 |
END scale_all; |
951 |
|
952 |
METHOD seqmod; |
953 |
RUN state.specify; |
954 |
state.y[cd.components].fixed := FALSE; |
955 |
IF equilibrated THEN |
956 |
state.T.fixed :=FALSE; |
957 |
ELSE |
958 |
state.T.fixed :=TRUE; |
959 |
END IF; |
960 |
state.phase_fraction['vapor'].fixed :=FALSE; |
961 |
q.fixed :=TRUE; |
962 |
dMi_dt[cd.other_components].fixed :=TRUE; |
963 |
Mi[cd.other_components].fixed :=FALSE; |
964 |
dM_dt.fixed :=TRUE; |
965 |
M.fixed :=FALSE; |
966 |
dU_dt.fixed :=TRUE; |
967 |
U.fixed :=FALSE; |
968 |
Vol.fixed :=TRUE; |
969 |
vol_liq.fixed :=TRUE; |
970 |
tauv.fixed :=FALSE; |
971 |
taul.fixed :=FALSE; |
972 |
IF dynamic THEN |
973 |
dMi_dt[cd.other_components].fixed :=FALSE; |
974 |
Mi[cd.other_components].fixed :=TRUE; |
975 |
dM_dt.fixed :=FALSE; |
976 |
M.fixed :=TRUE; |
977 |
dU_dt.fixed :=FALSE; |
978 |
U.fixed :=TRUE; |
979 |
Qin.fixed :=TRUE; |
980 |
IF equilibrated THEN |
981 |
state.P.fixed :=FALSE; |
982 |
ELSE |
983 |
state.T.fixed :=FALSE; |
984 |
END IF; |
985 |
vol_liq.fixed :=FALSE; |
986 |
tauv.fixed :=TRUE; |
987 |
taul.fixed :=TRUE; |
988 |
q.fixed :=FALSE; |
989 |
ELSE |
990 |
dMi_dt[cd.other_components] :=0 {mole/sec}; |
991 |
dM_dt :=0 {mole/sec}; |
992 |
dU_dt :=0 {J/sec}; |
993 |
END IF; |
994 |
END seqmod; |
995 |
|
996 |
METHOD specify; |
997 |
RUN feed.specify; |
998 |
RUN vapin.specify; |
999 |
RUN liqin.specify; |
1000 |
RUN seqmod; |
1001 |
END specify; |
1002 |
|
1003 |
METHOD reset_to_adiabatic; |
1004 |
RUN seqmod; |
1005 |
q.fixed := FALSE; |
1006 |
Qin.fixed := TRUE; |
1007 |
Qin := 0{W}; |
1008 |
END reset_to_adiabatic; |
1009 |
|
1010 |
METHOD set_ode; |
1011 |
t.ode_type :=-1; |
1012 |
FOR i IN cd.other_components DO |
1013 |
dMi_dt[i].ode_type :=2; |
1014 |
Mi[i].ode_type :=1; |
1015 |
dMi_dt[i].ode_id :=ode_offset; |
1016 |
Mi[i].ode_id :=ode_offset; |
1017 |
ode_offset :=ode_offset+1; |
1018 |
END FOR; |
1019 |
dM_dt.ode_type :=2; |
1020 |
M.ode_type :=1; |
1021 |
dM_dt.ode_id :=ode_offset; |
1022 |
M.ode_id :=ode_offset; |
1023 |
ode_offset :=ode_offset+1; |
1024 |
dU_dt.ode_type :=2; |
1025 |
U.ode_type :=1; |
1026 |
dU_dt.ode_id :=ode_offset; |
1027 |
U.ode_id :=ode_offset; |
1028 |
ode_offset :=ode_offset+1; |
1029 |
END set_ode; |
1030 |
METHOD set_obs; |
1031 |
Vol.obs_id :=obs_offset; |
1032 |
vol_liq.obs_id :=obs_offset+1; |
1033 |
state.T.obs_id :=obs_offset+2; |
1034 |
state.P.obs_id :=obs_offset+3; |
1035 |
Qin.obs_id :=obs_offset+4; |
1036 |
feed.flow.obs_id :=obs_offset+5; |
1037 |
vapin.flow.obs_id :=obs_offset+6; |
1038 |
liqin.flow.obs_id :=obs_offset+7; |
1039 |
liqout.flow.obs_id :=obs_offset+8; |
1040 |
vapout.flow.obs_id :=obs_offset+9; |
1041 |
obs_offset :=obs_offset+10; |
1042 |
END set_obs; |
1043 |
END feed_tray; |
1044 |
|
1045 |
MODEL condenser( |
1046 |
vapin WILL_BE stream; |
1047 |
vap_distillate WILL_BE stream; |
1048 |
liq_distillate WILL_BE stream; |
1049 |
liqout WILL_BE stream; |
1050 |
partial WILL_BE boolean; |
1051 |
t WILL_BE time; |
1052 |
dynamic WILL_BE boolean; |
1053 |
ode_offset WILL_BE ode_counter; |
1054 |
obs_offset WILL_BE obs_counter; |
1055 |
) WHERE ( |
1056 |
vapin, liqout WILL_NOT_BE_THE_SAME; |
1057 |
vapin, vap_distillate, liq_distillate WILL_NOT_BE_THE_SAME; |
1058 |
vapin.cd, liqout.cd, liq_distillate.cd,vap_distillate.cd WILL_BE_THE_SAME; |
1059 |
vap_distillate.pd.phase_indicator == 'V'; |
1060 |
liq_distillate.pd.phase_indicator == 'L'; |
1061 |
liqout.pd.phase_indicator == 'L'; |
1062 |
vapin.pd.phase_indicator == 'V'; |
1063 |
) REFINES flash_base; |
1064 |
NOTES |
1065 |
'purpose' SELF { |
1066 |
This MODEL can be used as a partial or a total condenser and would |
1067 |
normally be used in a column model. |
1068 |
The user supplies all streams, a partial boolean, time, a dynamic |
1069 |
boolean and obs and ode counters. |
1070 |
The partial boolean is used to convert from a total condenser to a |
1071 |
partial condenser. If partial is FALSE then vap_distillate is fixed |
1072 |
and the user is expected to set the flow rate to zero so there is no |
1073 |
vapor product. If partial is TRUE then liq_distillate is fixed |
1074 |
and the user is expected to set the flow rate to zero so there is no |
1075 |
liquid product. Both vapor and liquid products are possible both it |
1076 |
is up to the user to define what fraction of the product will be vapor |
1077 |
and what fraction liquid. |
1078 |
If equilibrated is TRUE, V-L equilibrium will be |
1079 |
attempted, OTHERWISE the unit will solve only the mass balances. |
1080 |
} |
1081 |
'developer-Duncan' SELF { |
1082 |
This is a simple dynamic model of a condenser. The user creates a |
1083 |
vapor feed and product, 2 liquid products, a partial |
1084 |
boolean along with time, a dynamic boolean and ode and obs |
1085 |
counters. We do the assembly of the condenser VLE MODEL from the given |
1086 |
output stream states. |
1087 |
} |
1088 |
END NOTES; |
1089 |
cd ALIASES vapin.cd; |
1090 |
P ALIASES liq.P; |
1091 |
T ALIASES liq.T; |
1092 |
equilibrated ALIASES liq_distillate.equilibrated; |
1093 |
(* condenser thermo options are derived from product streams *) |
1094 |
pdL IS_A phases_data('L','none',liq_distillate.pd.liquid1_option,'none'); |
1095 |
pdVL IS_A phases_data('VL', vap_distillate.pd.vapor_option, |
1096 |
liq.pd.liquid1_option, 'none'); |
1097 |
liq IS_A stream(cd, pdL, equilibrated); |
1098 |
|
1099 |
phaseVL[VLphases] ALIASES |
1100 |
(vap_distillate.phase['vapor'],liq.phase['liquid1']) |
1101 |
WHERE VLphases IS_A set OF symbol_constant |
1102 |
WITH_VALUE ('vapor','liquid1'); |
1103 |
state IS_A thermodynamics(cd, pdVL, phaseVL, equilibrated); |
1104 |
|
1105 |
out[outs] ALIASES (liqout, liq_distillate) WHERE outs |
1106 |
IS_A set OF integer_constant; |
1107 |
n_outs IS_A integer_constant; |
1108 |
n_outs :== CARD[outs]; |
1109 |
|
1110 |
split IS_A splitter(liq,n_outs,out); |
1111 |
|
1112 |
dMi_dt[cd.other_components] IS_A molar_rate; |
1113 |
M,Mi[cd.components],Ml,Mv IS_A mole; |
1114 |
dM_dt IS_A molar_rate; |
1115 |
dU_dt IS_A energy_rate; |
1116 |
U IS_A energy; |
1117 |
Vol,vol_liq,vol_vap IS_A volume; |
1118 |
Qin IS_A energy_rate; |
1119 |
flowscale IS_A molar_rate_scale; |
1120 |
|
1121 |
(* component material balances *) |
1122 |
FOR i IN cd.other_components CREATE |
1123 |
dMi_dt[i]/flowscale=(vapin.f[i]-vap_distillate.f[i]-liq.f[i])/flowscale; |
1124 |
END FOR; |
1125 |
(* overall material balance *) |
1126 |
dM_dt/flowscale=(vapin.flow-vap_distillate.flow-liq.flow)/flowscale; |
1127 |
|
1128 |
reflux_ratio IS_A factor; |
1129 |
reflux_eqn: (liqout.flow - reflux_ratio * (vap_distillate.flow+ |
1130 |
liq_distillate.flow))/ flowscale = 0; |
1131 |
|
1132 |
FOR i IN cd.components CREATE |
1133 |
Mi[i]=Ml*state.phase['liquid1'].y[i]+Mv*state.phase['vapor'].y[i]; |
1134 |
END FOR; |
1135 |
Vol=vol_liq+vol_vap; |
1136 |
vol_liq=Ml*state.phase['liquid1'].v_y; |
1137 |
vol_vap=Mv*state.phase['vapor'].v_y; |
1138 |
M=Ml+Mv; |
1139 |
state.phase_fraction['vapor'] * M = Mv; |
1140 |
|
1141 |
(* overall energy balance *) |
1142 |
H_flowscale IS_A energy_rate_scale; |
1143 |
|
1144 |
dU_dt/H_flowscale=(vapin.H_flow+Qin-vap_distillate.H_flow |
1145 |
-liq.H_flow)/H_flowscale; |
1146 |
|
1147 |
U/H_flowscale = (state.phase['vapor'].h_y*Mv+state.phase['liquid1'].h_y*Ml) |
1148 |
/H_flowscale; |
1149 |
|
1150 |
boundwidth IS_A bound_width; |
1151 |
METHODS |
1152 |
METHOD check_self; |
1153 |
IF (liqout.flow < 1e-4 {mole/s}) THEN |
1154 |
STOP {No reflux/liquid flow in condenser}; |
1155 |
END IF; |
1156 |
IF (vapin.flow < 1e-4 {mole/s}) THEN |
1157 |
STOP {No vapor feed to condenser}; |
1158 |
END IF; |
1159 |
IF partial THEN |
1160 |
IF (vap_distillate.flow < 1e-4 {mole/s}) THEN |
1161 |
STOP {No liquid distillate product from Condenser}; |
1162 |
END IF; |
1163 |
ELSE |
1164 |
IF (liq_distillate.flow < 1e-4 {mole/s}) THEN |
1165 |
STOP {No vapor distillate product from Condenser}; |
1166 |
END IF; |
1167 |
END IF; |
1168 |
IF (abs(vapin.flow - vap_distillate.flow- liq_distillate.flow |
1169 |
- liqout.flow) > 1.0e-4) THEN |
1170 |
STOP {Condenser violates overall mass-balance}; |
1171 |
END IF; |
1172 |
RUN state.check_self; |
1173 |
END check_self; |
1174 |
|
1175 |
METHOD check_all; |
1176 |
RUN vapin.check_self; |
1177 |
IF partial THEN |
1178 |
RUN vap_distillate.check_self; |
1179 |
ELSE |
1180 |
RUN liq_distillate.check_self; |
1181 |
END IF; |
1182 |
RUN liqout.check_self; |
1183 |
RUN check_self; |
1184 |
END check_all; |
1185 |
|
1186 |
METHOD default_self; |
1187 |
boundwidth :=10; |
1188 |
flowscale := vapin.Details.flowscale; |
1189 |
H_flowscale := vapin.Details.H_flowscale; |
1190 |
dMi_dt[cd.other_components] :=0 {mole/sec}; |
1191 |
dMi_dt[cd.other_components].lower_bound :=-1e100 {mole/sec}; |
1192 |
dM_dt :=0 {mole/sec}; |
1193 |
dM_dt.lower_bound :=-1e100 {mole/sec}; |
1194 |
dU_dt :=0 {J/sec}; |
1195 |
dynamic :=FALSE; |
1196 |
partial :=FALSE; |
1197 |
t :=0 {s}; |
1198 |
RUN liq.default_self; |
1199 |
RUN split.default_self; |
1200 |
RUN state.default_self; |
1201 |
END default_self; |
1202 |
|
1203 |
METHOD default_all; |
1204 |
Qin := 0 {watt}; |
1205 |
RUN vapin.default_self; |
1206 |
RUN vap_distillate.default_self; |
1207 |
RUN liq_distillate.default_self; |
1208 |
RUN liqout.default_self; |
1209 |
RUN default_self; |
1210 |
END default_all; |
1211 |
|
1212 |
METHOD bound_self; |
1213 |
state.boundwidth := boundwidth; |
1214 |
RUN liq.bound_self; |
1215 |
RUN split.bound_self; |
1216 |
RUN state.bound_self; |
1217 |
END bound_self; |
1218 |
|
1219 |
METHOD bound_all; |
1220 |
vapin.boundwidth := boundwidth; |
1221 |
distillate.boundwidth := boundwidth; |
1222 |
liqout.boundwidth := boundwidth; |
1223 |
RUN vapin.bound_self; |
1224 |
RUN vap_distillate.bound_self; |
1225 |
RUN liq_distillate.bound_self; |
1226 |
RUN liqout.bound_self; |
1227 |
RUN bound_self; |
1228 |
END bound_all; |
1229 |
|
1230 |
METHOD scale_self; |
1231 |
flowscale := vapin.flow; |
1232 |
H_flowscale := vapin.H_flow; |
1233 |
RUN liq.scale_self; |
1234 |
RUN split.scale_self; |
1235 |
RUN state.scale_self; |
1236 |
END scale_self; |
1237 |
|
1238 |
METHOD scale_all; |
1239 |
RUN vapin.scale_self; |
1240 |
RUN vap_distillate.scale_self; |
1241 |
RUN liq_distillate.scale_self; |
1242 |
RUN liqout.scale_self; |
1243 |
RUN scale_self; |
1244 |
END scale_all; |
1245 |
|
1246 |
METHOD seqmod; |
1247 |
RUN state.specify; |
1248 |
state.y[cd.components].fixed := FALSE; |
1249 |
state.phase_fraction['vapor'].fixed :=FALSE; |
1250 |
IF equilibrated THEN |
1251 |
state.T.fixed :=FALSE; |
1252 |
ELSE |
1253 |
state.T.fixed :=TRUE; |
1254 |
END IF; |
1255 |
RUN split.seqmod; |
1256 |
split.split[1].fixed :=FALSE; |
1257 |
liqout.flow.fixed :=FALSE; |
1258 |
vap_distillate.flow.fixed :=FALSE; |
1259 |
liq_distillate.flow.fixed :=FALSE; |
1260 |
IF partial THEN |
1261 |
liq_distillate.flow.fixed :=TRUE; |
1262 |
ELSE |
1263 |
vap_distillate.flow.fixed :=TRUE; |
1264 |
END IF; |
1265 |
reflux_ratio.fixed :=TRUE; |
1266 |
dMi_dt[cd.other_components].fixed :=TRUE; |
1267 |
Mi[cd.other_components].fixed :=FALSE; |
1268 |
dM_dt.fixed :=TRUE; |
1269 |
M.fixed :=FALSE; |
1270 |
dU_dt.fixed :=TRUE; |
1271 |
U.fixed :=FALSE; |
1272 |
Qin.fixed :=FALSE; |
1273 |
Vol.fixed :=TRUE; |
1274 |
vol_liq.fixed :=TRUE; |
1275 |
IF dynamic THEN |
1276 |
dMi_dt[cd.other_components].fixed :=FALSE; |
1277 |
Mi[cd.other_components].fixed :=TRUE; |
1278 |
dM_dt.fixed :=FALSE; |
1279 |
M.fixed :=TRUE; |
1280 |
dU_dt.fixed :=FALSE; |
1281 |
U.fixed :=TRUE; |
1282 |
Qin.fixed :=TRUE; |
1283 |
IF equilibrated THEN |
1284 |
state.P.fixed :=FALSE; |
1285 |
ELSE |
1286 |
state.T.fixed :=FALSE; |
1287 |
END IF; |
1288 |
vol_liq.fixed :=FALSE; |
1289 |
reflux_ratio.fixed :=FALSE; |
1290 |
state.phase_fraction['vapor'].fixed :=FALSE; |
1291 |
liqout.flow.fixed :=TRUE; |
1292 |
(* liqout.Details.state.slack_PhaseDisappearance['liquid1'].fixed :=TRUE;*) |
1293 |
vap_distillate.flow.fixed :=TRUE; |
1294 |
liq_distillate.flow.fixed :=TRUE; |
1295 |
ELSE |
1296 |
dMi_dt[cd.other_components] :=0 {mole/sec}; |
1297 |
dM_dt :=0 {mole/sec}; |
1298 |
dU_dt :=0 {J/sec}; |
1299 |
END IF; |
1300 |
END seqmod; |
1301 |
|
1302 |
METHOD specify; |
1303 |
RUN vapin.specify; |
1304 |
RUN seqmod; |
1305 |
END specify; |
1306 |
|
1307 |
METHOD set_ode; |
1308 |
t.ode_type :=-1; |
1309 |
FOR i IN cd.other_components DO |
1310 |
dMi_dt[i].ode_type :=2; |
1311 |
Mi[i].ode_type :=1; |
1312 |
dMi_dt[i].ode_id :=ode_offset; |
1313 |
Mi[i].ode_id :=ode_offset; |
1314 |
ode_offset :=ode_offset+1; |
1315 |
END FOR; |
1316 |
dM_dt.ode_type :=2; |
1317 |
M.ode_type :=1; |
1318 |
dM_dt.ode_id :=ode_offset; |
1319 |
M.ode_id :=ode_offset; |
1320 |
ode_offset :=ode_offset+1; |
1321 |
dU_dt.ode_type :=2; |
1322 |
U.ode_type :=1; |
1323 |
dU_dt.ode_id :=ode_offset; |
1324 |
U.ode_id :=ode_offset; |
1325 |
ode_offset :=ode_offset+1; |
1326 |
END set_ode; |
1327 |
|
1328 |
METHOD set_obs; |
1329 |
Vol.obs_id :=obs_offset; |
1330 |
vol_liq.obs_id :=obs_offset+1; |
1331 |
state.T.obs_id :=obs_offset+2; |
1332 |
state.P.obs_id :=obs_offset+3; |
1333 |
Qin.obs_id :=obs_offset+4; |
1334 |
vapin.flow.obs_id :=obs_offset+5; |
1335 |
liqout.flow.obs_id :=obs_offset+6; |
1336 |
vap_distillate.flow.obs_id :=obs_offset+7; |
1337 |
liq_distillate.flow.obs_id :=obs_offset+8; |
1338 |
obs_offset :=obs_offset+9; |
1339 |
END set_obs; |
1340 |
END condenser; |
1341 |
|
1342 |
MODEL reboiler( |
1343 |
liqin WILL_BE stream; |
1344 |
vap_bottom WILL_BE stream; |
1345 |
liq_bottom WILL_BE stream; |
1346 |
vapout WILL_BE stream; |
1347 |
partial WILL_BE boolean; |
1348 |
t WILL_BE time; |
1349 |
dynamic WILL_BE boolean; |
1350 |
ode_offset WILL_BE ode_counter; |
1351 |
obs_offset WILL_BE obs_counter; |
1352 |
) WHERE ( |
1353 |
liqin, vapout WILL_NOT_BE_THE_SAME; |
1354 |
liqin, vap_bottom, liq_bottom WILL_NOT_BE_THE_SAME; |
1355 |
liqin.cd, vapout.cd, liq_bottom.cd,vap_bottom.cd WILL_BE_THE_SAME; |
1356 |
vap_bottom.pd.phase_indicator == 'V'; |
1357 |
liq_bottom.pd.phase_indicator == 'L'; |
1358 |
vapout.pd.phase_indicator == 'V'; |
1359 |
liqin.pd.phase_indicator == 'L'; |
1360 |
) REFINES flash_base; |
1361 |
NOTES |
1362 |
'purpose' SELF { |
1363 |
This MODEL can be used as a partial or a total reboiler and would |
1364 |
normally be used in a column model. |
1365 |
The user supplies all streams, a partial boolean, time, a dynamic |
1366 |
boolean and obs and ode counters. |
1367 |
The partial boolean is used to convert from a total reboiler to a |
1368 |
partial reboiler. If partial is FALSE then liq_bottoms is fixed |
1369 |
and the user is expected to set the flow rate to zero so there is no |
1370 |
liquid product. If partial is TRUE then vap_bottoms is fixed |
1371 |
and the user is expected to set the flow rate to zero so there is no |
1372 |
vapor product. Both vapor and liquid products are possible both it |
1373 |
is up to the user to define what fraction of the product will be vapor |
1374 |
and what fraction liquid. |
1375 |
If equilibrated is TRUE, V-L equilibrium will be |
1376 |
attempted, OTHERWISE the unit will solve only the mass balances. |
1377 |
} |
1378 |
'developer-Duncan' SELF { |
1379 |
This is a simple dynamic model of a reboiler. The user creates a |
1380 |
vapor product, a liquid feed and products, a partial |
1381 |
boolean along with time, a dynamic boolean and ode and obs |
1382 |
counters. We do the assembly of the condenser VLE MODEL from the given |
1383 |
output stream states. |
1384 |
} |
1385 |
END NOTES; |
1386 |
cd ALIASES liqin.cd; |
1387 |
P ALIASES liq_bottom.P; |
1388 |
T ALIASES liq_bottom.T; |
1389 |
equilibrated ALIASES liq_bottom.equilibrated; |
1390 |
(* reboiler thermo options are derived from product streams *) |
1391 |
pdV IS_A phases_data('V', vapout.pd.vapor_option,'none','none'); |
1392 |
vap IS_A stream(cd,pdV,equilibrated); |
1393 |
pdVL IS_A phases_data('VL', vap.pd.vapor_option, |
1394 |
liq_bottom.pd.liquid1_option, 'none'); |
1395 |
phaseVL[VLphases] ALIASES |
1396 |
(vap.phase['vapor'],liq_bottom.phase['liquid1']) |
1397 |
WHERE VLphases IS_A set OF symbol_constant |
1398 |
WITH_VALUE ('vapor','liquid1'); |
1399 |
state IS_A thermodynamics(cd, pdVL, phaseVL, equilibrated); |
1400 |
|
1401 |
out[outs] ALIASES (vapout,vap_bottom) |
1402 |
WHERE outs IS_A set OF integer_constant; |
1403 |
n_outs IS_A integer_constant; |
1404 |
n_outs :==CARD[outs]; |
1405 |
|
1406 |
split IS_A splitter(vap,n_outs,out); |
1407 |
|
1408 |
|
1409 |
dMi_dt[cd.other_components] IS_A molar_rate; |
1410 |
M,Mi[cd.components],Ml,Mv IS_A mole; |
1411 |
dM_dt IS_A molar_rate; |
1412 |
dU_dt IS_A energy_rate; |
1413 |
U IS_A energy; |
1414 |
Vol,vol_liq,vol_vap IS_A volume; |
1415 |
Qin IS_A energy_rate; |
1416 |
flowscale IS_A molar_rate_scale; |
1417 |
|
1418 |
(* component material balances *) |
1419 |
FOR i IN cd.other_components CREATE |
1420 |
dMi_dt[i]/flowscale=(liqin.f[i]-vap.f[i]-liq_bottom.f[i])/flowscale; |
1421 |
END FOR; |
1422 |
(* overall material balance *) |
1423 |
dM_dt/flowscale=(liqin.flow-vap.flow-liq_bottom.flow)/flowscale; |
1424 |
|
1425 |
reboil_ratio IS_A factor; |
1426 |
reboil_eqn: (vapout.flow - reboil_ratio * (vap_bottom.flow+ |
1427 |
liq_bottom.flow))/ flowscale = 0; |
1428 |
|
1429 |
FOR i IN cd.components CREATE |
1430 |
Mi[i]=Ml*state.phase['liquid1'].y[i]+Mv*state.phase['vapor'].y[i]; |
1431 |
END FOR; |
1432 |
Vol=vol_liq+vol_vap; |
1433 |
vol_liq=Ml*state.phase['liquid1'].v_y; |
1434 |
vol_vap=Mv*state.phase['vapor'].v_y; |
1435 |
M=Ml+Mv; |
1436 |
state.phase_fraction['vapor'] * M = Mv; |
1437 |
|
1438 |
(* overall energy balance *) |
1439 |
H_flowscale IS_A energy_rate_scale; |
1440 |
|
1441 |
dU_dt/H_flowscale=(liqin.H_flow+Qin-vap.H_flow |
1442 |
-liq_bottom.H_flow)/H_flowscale; |
1443 |
|
1444 |
U/H_flowscale = (state.phase['vapor'].h_y*Mv+state.phase['liquid1'].h_y*Ml) |
1445 |
/H_flowscale; |
1446 |
|
1447 |
boundwidth IS_A bound_width; |
1448 |
METHODS |
1449 |
METHOD check_self; |
1450 |
IF (vapout.flow < 1e-4 {mole/s}) THEN |
1451 |
STOP {No reboil/vapor flow out of reboiler}; |
1452 |
END IF; |
1453 |
IF (liqin.flow < 1e-4 {mole/s}) THEN |
1454 |
STOP {No liquid feed to reboiler}; |
1455 |
END IF; |
1456 |
IF partial THEN |
1457 |
IF (liq_bottom.flow < 1e-4 {mole/s}) THEN |
1458 |
STOP {No liquid bottom product from reboiler}; |
1459 |
END IF; |
1460 |
ELSE |
1461 |
IF (vap_bottom.flow < 1e-4 {mole/s}) THEN |
1462 |
STOP {No vapor bottom product from reboiler}; |
1463 |
END IF; |
1464 |
END IF; |
1465 |
IF (abs(liqin.flow - vap_bottom.flow- liq_bottom.flow |
1466 |
- vapout.flow) > 1.0e-4) THEN |
1467 |
STOP {Reboiler violates overall mass-balance}; |
1468 |
END IF; |
1469 |
RUN state.check_self; |
1470 |
END check_self; |
1471 |
|
1472 |
METHOD check_all; |
1473 |
RUN liqin.check_self; |
1474 |
IF partial THEN |
1475 |
RUN liq_bottom.check_self; |
1476 |
ELSE |
1477 |
RUN vap_bottom.check_self; |
1478 |
END IF; |
1479 |
RUN vapout.check_self; |
1480 |
RUN check_self; |
1481 |
END check_all; |
1482 |
|
1483 |
METHOD default_self; |
1484 |
boundwidth :=10; |
1485 |
flowscale := liqin.Details.flowscale; |
1486 |
H_flowscale := liqin.Details.H_flowscale; |
1487 |
dMi_dt[cd.other_components] :=0 {mole/sec}; |
1488 |
dMi_dt[cd.other_components].lower_bound :=-1e100 {mole/sec}; |
1489 |
dM_dt :=0 {mole/sec}; |
1490 |
dM_dt.lower_bound :=-1e100 {mole/sec}; |
1491 |
dU_dt :=0 {J/sec}; |
1492 |
dynamic :=FALSE; |
1493 |
partial :=TRUE; |
1494 |
t :=0 {s}; |
1495 |
RUN vap.default_self; |
1496 |
RUN split.default_self; |
1497 |
RUN state.default_self; |
1498 |
END default_self; |
1499 |
|
1500 |
METHOD default_all; |
1501 |
Qin := 0 {watt}; |
1502 |
RUN liqin.default_self; |
1503 |
RUN vap_bottom.default_self; |
1504 |
RUN liq_bottom.default_self; |
1505 |
RUN vapout.default_self; |
1506 |
RUN default_self; |
1507 |
END default_all; |
1508 |
|
1509 |
METHOD bound_self; |
1510 |
state.boundwidth := boundwidth; |
1511 |
RUN vap.bound_self; |
1512 |
RUN splitbound_self; |
1513 |
RUN state.bound_self; |
1514 |
END bound_self; |
1515 |
|
1516 |
METHOD bound_all; |
1517 |
liqin.boundwidth := boundwidth; |
1518 |
distillate.boundwidth := boundwidth; |
1519 |
vapout.boundwidth := boundwidth; |
1520 |
RUN liqin.bound_self; |
1521 |
RUN vap_bottom.bound_self; |
1522 |
RUN liq_bottom.bound_self; |
1523 |
RUN vapout.bound_self; |
1524 |
RUN bound_self; |
1525 |
END bound_all; |
1526 |
|
1527 |
METHOD scale_self; |
1528 |
flowscale := liqin.flow; |
1529 |
H_flowscale := liqin.H_flow; |
1530 |
RUN vap.scale_self; |
1531 |
RUN split.scale_self; |
1532 |
RUN state.scale_self; |
1533 |
END scale_self; |
1534 |
|
1535 |
METHOD scale_all; |
1536 |
RUN liqin.scale_self; |
1537 |
RUN vap_bottom.scale_self; |
1538 |
RUN liq_bottom.scale_self; |
1539 |
RUN vapout.scale_self; |
1540 |
RUN scale_self; |
1541 |
END scale_all; |
1542 |
|
1543 |
METHOD seqmod; |
1544 |
RUN state.specify; |
1545 |
state.y[cd.components].fixed := FALSE; |
1546 |
state.phase_fraction['vapor'].fixed :=FALSE; |
1547 |
IF equilibrated THEN |
1548 |
state.T.fixed :=FALSE; |
1549 |
ELSE |
1550 |
state.T.fixed :=TRUE; |
1551 |
END IF; |
1552 |
RUN split.seqmod; |
1553 |
split.split[1].fixed :=FALSE; |
1554 |
vapout.flow.fixed :=FALSE; |
1555 |
vap_bottom.flow.fixed :=FALSE; |
1556 |
liq_bottom.flow.fixed :=FALSE; |
1557 |
IF partial THEN |
1558 |
vap_bottom.flow.fixed :=TRUE; |
1559 |
ELSE |
1560 |
liq_bottom.flow.fixed :=TRUE; |
1561 |
END IF; |
1562 |
reboil_ratio.fixed :=TRUE; |
1563 |
dMi_dt[cd.other_components].fixed :=TRUE; |
1564 |
Mi[cd.other_components].fixed :=FALSE; |
1565 |
dM_dt.fixed :=TRUE; |
1566 |
M.fixed :=FALSE; |
1567 |
dU_dt.fixed :=TRUE; |
1568 |
U.fixed :=FALSE; |
1569 |
Qin.fixed :=FALSE; |
1570 |
Vol.fixed :=TRUE; |
1571 |
vol_liq.fixed :=TRUE; |
1572 |
IF dynamic THEN |
1573 |
dMi_dt[cd.other_components].fixed :=FALSE; |
1574 |
Mi[cd.other_components].fixed :=TRUE; |
1575 |
dM_dt.fixed :=FALSE; |
1576 |
M.fixed :=TRUE; |
1577 |
dU_dt.fixed :=FALSE; |
1578 |
U.fixed :=TRUE; |
1579 |
Qin.fixed :=TRUE; |
1580 |
IF equilibrated THEN |
1581 |
state.P.fixed :=FALSE; |
1582 |
ELSE |
1583 |
state.T.fixed :=FALSE; |
1584 |
END IF; |
1585 |
vol_liq.fixed :=FALSE; |
1586 |
reboil_ratio.fixed :=FALSE; |
1587 |
state.phase_fraction['vapor'].fixed :=FALSE; |
1588 |
vapout.flow.fixed :=TRUE; |
1589 |
vap_bottom.flow.fixed :=TRUE; |
1590 |
liq_bottom.flow.fixed :=TRUE; |
1591 |
ELSE |
1592 |
dMi_dt[cd.other_components] :=0 {mole/sec}; |
1593 |
dM_dt :=0 {mole/sec}; |
1594 |
dU_dt :=0 {J/sec}; |
1595 |
END IF; |
1596 |
END seqmod; |
1597 |
|
1598 |
METHOD specify; |
1599 |
RUN liqin.specify; |
1600 |
RUN seqmod; |
1601 |
END specify; |
1602 |
|
1603 |
METHOD set_ode; |
1604 |
t.ode_type :=-1; |
1605 |
FOR i IN cd.other_components DO |
1606 |
dMi_dt[i].ode_type :=2; |
1607 |
Mi[i].ode_type :=1; |
1608 |
dMi_dt[i].ode_id :=ode_offset; |
1609 |
Mi[i].ode_id :=ode_offset; |
1610 |
ode_offset :=ode_offset+1; |
1611 |
END FOR; |
1612 |
dM_dt.ode_type :=2; |
1613 |
M.ode_type :=1; |
1614 |
dM_dt.ode_id :=ode_offset; |
1615 |
M.ode_id :=ode_offset; |
1616 |
ode_offset :=ode_offset+1; |
1617 |
dU_dt.ode_type :=2; |
1618 |
U.ode_type :=1; |
1619 |
dU_dt.ode_id :=ode_offset; |
1620 |
U.ode_id :=ode_offset; |
1621 |
ode_offset :=ode_offset+1; |
1622 |
END set_ode; |
1623 |
|
1624 |
METHOD set_obs; |
1625 |
Vol.obs_id :=obs_offset; |
1626 |
vol_liq.obs_id :=obs_offset+1; |
1627 |
state.T.obs_id :=obs_offset+2; |
1628 |
state.P.obs_id :=obs_offset+3; |
1629 |
Qin.obs_id :=obs_offset+4; |
1630 |
liqin.flow.obs_id :=obs_offset+5; |
1631 |
vapout.flow.obs_id :=obs_offset+6; |
1632 |
vap_bottom.flow.obs_id :=obs_offset+7; |
1633 |
liq_bottom.flow.obs_id :=obs_offset+8; |
1634 |
obs_offset :=obs_offset+9; |
1635 |
END set_obs; |
1636 |
END reboiler; |
1637 |
|
1638 |
(**************************************************************************) |
1639 |
(**************************************************************************) |
1640 |
|
1641 |
|
1642 |
MODEL testflashmodel() REFINES testcmumodel; |
1643 |
(* root fo flash based test models *) |
1644 |
END testflashmodel; |
1645 |
|
1646 |
MODEL test_vapor_liquid_flash() REFINES testflashmodel(); |
1647 |
|
1648 |
(* the next 5 are probably used throughout a flowsheet *) |
1649 |
cd IS_A components_data(['methanol','ethanol','water'],'water'); |
1650 |
pdV IS_A phases_data('V', 'Pitzer_vapor_mixture', 'none', 'none'); |
1651 |
pdL IS_A phases_data('L', 'none', 'UNIFAC_liquid_mixture', 'none'); |
1652 |
pdVL IS_A phases_data('VL', 'Pitzer_vapor_mixture', |
1653 |
'UNIFAC_liquid_mixture', 'none'); |
1654 |
equilibrated IS_A boolean; |
1655 |
feed IS_A stream(cd, pdVL, equilibrated); |
1656 |
liq IS_A stream(cd, pdL, equilibrated); |
1657 |
vap IS_A stream(cd, pdV, equilibrated); |
1658 |
t IS_A time; |
1659 |
dynamic IS_A boolean; |
1660 |
ode_offset IS_A ode_counter; |
1661 |
obs_offset IS_A obs_counter; |
1662 |
fl1 IS_A vapor_liquid_flash(feed, vap, liq,t,dynamic,ode_offset,obs_offset); |
1663 |
|
1664 |
(* boundwidth might be unit specific *) |
1665 |
boundwidth IS_A bound_width; |
1666 |
|
1667 |
METHODS |
1668 |
|
1669 |
METHOD default_all; |
1670 |
RUN default_self; |
1671 |
END default_all; |
1672 |
|
1673 |
METHOD default_self; |
1674 |
boundwidth := 10; |
1675 |
equilibrated :=TRUE; |
1676 |
ode_offset :=1; |
1677 |
obs_offset :=1; |
1678 |
RUN feed.default_self; |
1679 |
RUN liq.default_self; |
1680 |
RUN vap.default_self; |
1681 |
RUN fl1.default_self; |
1682 |
(* or could be RUN fl1.default_all; *) |
1683 |
END default_self; |
1684 |
|
1685 |
METHOD check_all; |
1686 |
RUN check_self; |
1687 |
END check_all; |
1688 |
|
1689 |
METHOD check_self; |
1690 |
RUN feed.check_self; |
1691 |
RUN liq.check_self; |
1692 |
RUN vap.check_self; |
1693 |
RUN fl1.check_self; |
1694 |
(* or could be RUN check_all; *) |
1695 |
END check_self; |
1696 |
|
1697 |
METHOD bound_all; |
1698 |
RUN bound_self; |
1699 |
END bound_all; |
1700 |
|
1701 |
METHOD bound_self; |
1702 |
fl1.boundwidth := boundwidth; |
1703 |
liq.boundwidth := boundwidth; |
1704 |
vap.boundwidth := boundwidth; |
1705 |
feed.boundwidth := boundwidth; |
1706 |
(* The right, later reusable, way to finish this method is as follows: |
1707 |
RUN feed.bound_self; |
1708 |
RUN liq.bound_self; |
1709 |
RUN vap.bound_self; |
1710 |
RUN fl1.bound_self; |
1711 |
* where we didn't have to look inside the parts we're using because |
1712 |
* we know they follow the standard in system.a4l. |
1713 |
*) |
1714 |
(* The quick and dirty way, since there are no parts passed into |
1715 |
* this MODEL is like so: |
1716 |
*) |
1717 |
RUN fl1.bound_all; |
1718 |
(* This works, but we had to look into the VLflash MODEL to be sure. *) |
1719 |
END bound_self; |
1720 |
|
1721 |
METHOD scale_self; |
1722 |
RUN feed.scale_self; |
1723 |
RUN liq.scale_self; |
1724 |
RUN vap.scale_self; |
1725 |
RUN fl1.scale_self; |
1726 |
(* or could be RUN fl1.scale_all; *) |
1727 |
END scale_self; |
1728 |
|
1729 |
METHOD specify; |
1730 |
RUN fl1.specify; |
1731 |
END specify; |
1732 |
|
1733 |
METHOD values; |
1734 |
feed.P := 1 {atm}; |
1735 |
feed.T := 365 {K}; |
1736 |
feed.f['methanol'] := 0.01 {kmol/s}; |
1737 |
feed.f['ethanol'] := 0.015 {kmol/s}; |
1738 |
feed.f['water'] := 0.02 {kmol/s}; |
1739 |
fl1.state.phase_fraction['vapor'] := 0.5; |
1740 |
fl1.P := 1 {atm}; |
1741 |
fl1.T := 365 {K}; |
1742 |
fl1.Qin := 0 {kW}; |
1743 |
fl1.Vol := 10 {m^3}; |
1744 |
fl1.vol_liq := 3 {m^3}; |
1745 |
END values; |
1746 |
END test_vapor_liquid_flash; |
1747 |
|
1748 |
|
1749 |
MODEL test_tray() REFINES testflashmodel(); |
1750 |
|
1751 |
(* the next 5 are probably used throughout a flowsheet *) |
1752 |
cd IS_A components_data(['methanol','ethanol','water'],'water'); |
1753 |
pdV IS_A phases_data('V', 'Pitzer_vapor_mixture', 'none', 'none'); |
1754 |
pdL IS_A phases_data('L', 'none', 'UNIFAC_liquid_mixture', 'none'); |
1755 |
|
1756 |
equilibrated IS_A boolean; |
1757 |
vin IS_A stream(cd, pdV, equilibrated); |
1758 |
lin IS_A stream(cd, pdL, equilibrated); |
1759 |
lout IS_A stream(cd, pdL, equilibrated); |
1760 |
vout IS_A stream(cd, pdV, equilibrated); |
1761 |
t IS_A time; |
1762 |
dynamic IS_A boolean; |
1763 |
ode_offset IS_A ode_counter; |
1764 |
obs_offset IS_A obs_counter; |
1765 |
fl1 IS_A tray(lin,vin,lout,vout,t,dynamic,ode_offset,obs_offset); |
1766 |
|
1767 |
(* boundwidth might be unit specific *) |
1768 |
boundwidth IS_A bound_width; |
1769 |
|
1770 |
METHODS |
1771 |
|
1772 |
METHOD default_all; |
1773 |
RUN default_self; |
1774 |
END default_all; |
1775 |
|
1776 |
METHOD default_self; |
1777 |
boundwidth := 10; |
1778 |
equilibrated :=TRUE; |
1779 |
ode_offset :=1; |
1780 |
obs_offset :=1; |
1781 |
RUN vin.default_self; |
1782 |
RUN lin.default_self; |
1783 |
RUN lout.default_self; |
1784 |
RUN vout.default_self; |
1785 |
RUN fl1.default_self; |
1786 |
(* or could be RUN fl1.default_all; *) |
1787 |
END default_self; |
1788 |
|
1789 |
METHOD check_all; |
1790 |
RUN check_self; |
1791 |
END check_all; |
1792 |
|
1793 |
METHOD check_self; |
1794 |
RUN vin.check_self; |
1795 |
RUN lin.check_self; |
1796 |
RUN lout.check_self; |
1797 |
RUN vout.check_self; |
1798 |
RUN fl1.check_self; |
1799 |
(* or could be RUN check_all; *) |
1800 |
END check_self; |
1801 |
|
1802 |
METHOD bound_all; |
1803 |
RUN bound_self; |
1804 |
END bound_all; |
1805 |
|
1806 |
METHOD bound_self; |
1807 |
fl1.boundwidth := boundwidth; |
1808 |
lin.boundwidth := boundwidth; |
1809 |
vin.boundwidth := boundwidth; |
1810 |
lout.boundwidth := boundwidth; |
1811 |
vout.boundwidth := boundwidth; |
1812 |
(* The right, later reusable, way to finish this method is as follows: |
1813 |
RUN vin.bound_self |
1814 |
RUN lin.bound_self; |
1815 |
RUN lout.bound_self; |
1816 |
RUN vout.bound_self; |
1817 |
RUN fl1.bound_self; |
1818 |
* where we didn't have to look inside the parts we're using because |
1819 |
* we know they follow the standard in system.a4l. |
1820 |
*) |
1821 |
(* The quick and dirty way, since there are no parts passed into |
1822 |
* this MODEL is like so: |
1823 |
*) |
1824 |
RUN fl1.bound_all; |
1825 |
(* This works, but we had to look into the VLflash MODEL to be sure. *) |
1826 |
END bound_self; |
1827 |
|
1828 |
METHOD scale_self; |
1829 |
RUN vin.scale_self; |
1830 |
RUN lin.scale_self; |
1831 |
RUN lout.scale_self; |
1832 |
RUN vout.scale_self; |
1833 |
RUN fl1.scale_self; |
1834 |
(* or could be RUN fl1.scale_all; *) |
1835 |
END scale_self; |
1836 |
|
1837 |
METHOD specify; |
1838 |
RUN fl1.specify; |
1839 |
END specify; |
1840 |
|
1841 |
METHOD values; |
1842 |
vin.P := 1 {atm}; |
1843 |
vin.T := 365 {K}; |
1844 |
vin.f['methanol'] := 0.01 {kmol/s}; |
1845 |
vin.f['ethanol'] := 0.015 {kmol/s}; |
1846 |
vin.f['water'] := 0.02 {kmol/s}; |
1847 |
lin.P := 1 {atm}; |
1848 |
lin.T := 365 {K}; |
1849 |
lin.f['methanol'] := 0.01 {kmol/s}; |
1850 |
lin.f['ethanol'] := 0.015 {kmol/s}; |
1851 |
lin.f['water'] := 0.02 {kmol/s}; |
1852 |
fl1.cmo_ratio := 1; |
1853 |
fl1.P := 1 {atm}; |
1854 |
fl1.T := 365 {K}; |
1855 |
fl1.Qin := 0 {kW}; |
1856 |
fl1.Vol := 10 {m^3}; |
1857 |
fl1.vol_liq := 3 {m^3}; |
1858 |
END values; |
1859 |
|
1860 |
END test_tray; |
1861 |
|
1862 |
|
1863 |
MODEL test_feed_tray() REFINES testflashmodel(); |
1864 |
|
1865 |
(* the next 5 are probably used throughout a flowsheet *) |
1866 |
cd IS_A components_data(['methanol','ethanol','water'],'water'); |
1867 |
pdV IS_A phases_data('V', 'Pitzer_vapor_mixture', 'none', 'none'); |
1868 |
pdL IS_A phases_data('L', 'none', 'UNIFAC_liquid_mixture', 'none'); |
1869 |
|
1870 |
equilibrated IS_A boolean; |
1871 |
feed IS_A stream(cd, pdV, equilibrated); |
1872 |
vin IS_A stream(cd, pdV, equilibrated); |
1873 |
lin IS_A stream(cd, pdL, equilibrated); |
1874 |
lout IS_A stream(cd, pdL, equilibrated); |
1875 |
vout IS_A stream(cd, pdV, equilibrated); |
1876 |
t IS_A time; |
1877 |
dynamic IS_A boolean; |
1878 |
ode_offset IS_A ode_counter; |
1879 |
obs_offset IS_A obs_counter; |
1880 |
fl1 IS_A feed_tray(feed,lin,vin,lout,vout,t,dynamic,ode_offset,obs_offset); |
1881 |
|
1882 |
(* boundwidth might be unit specific *) |
1883 |
boundwidth IS_A bound_width; |
1884 |
|
1885 |
METHODS |
1886 |
|
1887 |
METHOD default_all; |
1888 |
RUN default_self; |
1889 |
END default_all; |
1890 |
|
1891 |
METHOD default_self; |
1892 |
boundwidth := 10; |
1893 |
equilibrated :=TRUE; |
1894 |
ode_offset :=1; |
1895 |
obs_offset :=1; |
1896 |
RUN feed.default_self; |
1897 |
RUN vin.default_self; |
1898 |
RUN lin.default_self; |
1899 |
RUN lout.default_self; |
1900 |
RUN vout.default_self; |
1901 |
RUN fl1.default_self; |
1902 |
END default_self; |
1903 |
|
1904 |
METHOD check_all; |
1905 |
RUN check_self; |
1906 |
END check_all; |
1907 |
|
1908 |
METHOD check_self; |
1909 |
RUN feed.check_self; |
1910 |
RUN vin.check_self; |
1911 |
RUN lin.check_self; |
1912 |
RUN lout.check_self; |
1913 |
RUN vout.check_self; |
1914 |
RUN fl1.check_self; |
1915 |
END check_self; |
1916 |
|
1917 |
METHOD bound_all; |
1918 |
RUN bound_self; |
1919 |
END bound_all; |
1920 |
|
1921 |
METHOD bound_self; |
1922 |
fl1.boundwidth := boundwidth; |
1923 |
feed.boundwidth := boundwidth; |
1924 |
lin.boundwidth := boundwidth; |
1925 |
vin.boundwidth := boundwidth; |
1926 |
lout.boundwidth := boundwidth; |
1927 |
vout.boundwidth := boundwidth; |
1928 |
RUN fl1.bound_all; |
1929 |
END bound_self; |
1930 |
|
1931 |
METHOD scale_self; |
1932 |
RUN feed.scale_self; |
1933 |
RUN vin.scale_self; |
1934 |
RUN lin.scale_self; |
1935 |
RUN lout.scale_self; |
1936 |
RUN vout.scale_self; |
1937 |
RUN fl1.scale_self; |
1938 |
END scale_self; |
1939 |
|
1940 |
METHOD specify; |
1941 |
RUN fl1.specify; |
1942 |
END specify; |
1943 |
|
1944 |
METHOD values; |
1945 |
feed.P := 1 {atm}; |
1946 |
feed.T := 365 {K}; |
1947 |
feed.f['methanol'] := 0.01 {kmol/s}; |
1948 |
feed.f['ethanol'] := 0.015 {kmol/s}; |
1949 |
feed.f['water'] := 0.02 {kmol/s}; |
1950 |
vin.P := 1 {atm}; |
1951 |
vin.T := 365 {K}; |
1952 |
vin.f['methanol'] := 0.01 {kmol/s}; |
1953 |
vin.f['ethanol'] := 0.015 {kmol/s}; |
1954 |
vin.f['water'] := 0.02 {kmol/s}; |
1955 |
lin.P := 1 {atm}; |
1956 |
lin.T := 365 {K}; |
1957 |
lin.f['methanol'] := 0.01 {kmol/s}; |
1958 |
lin.f['ethanol'] := 0.015 {kmol/s}; |
1959 |
lin.f['water'] := 0.02 {kmol/s}; |
1960 |
fl1.q := 0; |
1961 |
fl1.P := 1 {atm}; |
1962 |
fl1.T := 365 {K}; |
1963 |
fl1.Qin := 0 {kW}; |
1964 |
fl1.Vol := 10 {m^3}; |
1965 |
fl1.vol_liq := 3 {m^3}; |
1966 |
END values; |
1967 |
END test_feed_tray; |
1968 |
|
1969 |
|
1970 |
|
1971 |
MODEL test_condenser() REFINES testflashmodel(); |
1972 |
|
1973 |
(* the next 5 are probably used throughout a flowsheet *) |
1974 |
cd IS_A components_data(['methanol','ethanol','water'],'water'); |
1975 |
pdV IS_A phases_data('V', 'Pitzer_vapor_mixture', 'none', 'none'); |
1976 |
pdL IS_A phases_data('L', 'none', 'UNIFAC_liquid_mixture', 'none'); |
1977 |
partial IS_A boolean; |
1978 |
equilibrated IS_A boolean; |
1979 |
vapin IS_A stream(cd, pdV, equilibrated); |
1980 |
liq IS_A stream(cd, pdL, equilibrated); |
1981 |
liq_dist IS_A stream(cd, pdL, equilibrated); |
1982 |
vap_dist IS_A stream(cd, pdV, equilibrated); |
1983 |
t IS_A time; |
1984 |
dynamic IS_A boolean; |
1985 |
ode_offset IS_A ode_counter; |
1986 |
obs_offset IS_A obs_counter; |
1987 |
fl1 IS_A condenser(vapin,vap_dist,liq_dist,liq,partial,t,dynamic, |
1988 |
ode_offset,obs_offset); |
1989 |
|
1990 |
(* boundwidth might be unit specific *) |
1991 |
boundwidth IS_A bound_width; |
1992 |
|
1993 |
METHODS |
1994 |
|
1995 |
METHOD default_all; |
1996 |
RUN default_self; |
1997 |
END default_all; |
1998 |
|
1999 |
METHOD default_self; |
2000 |
boundwidth := 10; |
2001 |
equilibrated :=TRUE; |
2002 |
ode_offset :=1; |
2003 |
obs_offset :=1; |
2004 |
RUN vapin.default_self; |
2005 |
RUN liq.default_self; |
2006 |
RUN vap_dist.default_self; |
2007 |
RUN liq_dist.default_self; |
2008 |
RUN fl1.default_self; |
2009 |
(* or could be RUN fl1.default_all; *) |
2010 |
END default_self; |
2011 |
|
2012 |
METHOD check_all; |
2013 |
RUN check_self; |
2014 |
END check_all; |
2015 |
|
2016 |
METHOD check_self; |
2017 |
RUN vapin.check_self; |
2018 |
RUN liq.check_self; |
2019 |
IF partial THEN |
2020 |
RUN vap_dist.check_self; |
2021 |
ELSE |
2022 |
RUN liq_dist.check_self; |
2023 |
END IF; |
2024 |
RUN fl1.check_self; |
2025 |
(* or could be RUN fl1.check_all; *) |
2026 |
END check_self; |
2027 |
|
2028 |
METHOD bound_all; |
2029 |
RUN bound_self; |
2030 |
END bound_all; |
2031 |
|
2032 |
METHOD bound_self; |
2033 |
fl1.boundwidth := boundwidth; |
2034 |
liq.boundwidth := boundwidth; |
2035 |
liq_dist.boundwidth := boundwidth; |
2036 |
vap_dist.boundwidth := boundwidth; |
2037 |
vapin.boundwidth := boundwidth; |
2038 |
RUN fl1.bound_all; |
2039 |
END bound_self; |
2040 |
|
2041 |
METHOD scale_self; |
2042 |
RUN vapin.scale_self; |
2043 |
RUN liq.scale_self; |
2044 |
RUN vap_dist.scale_self; |
2045 |
RUN liq_dist.scale_self; |
2046 |
RUN fl1.scale_self; |
2047 |
END scale_self; |
2048 |
|
2049 |
METHOD specify; |
2050 |
RUN fl1.specify; |
2051 |
END specify; |
2052 |
|
2053 |
METHOD values; |
2054 |
vapin.P := 1 {atm}; |
2055 |
vapin.T := 365 {K}; |
2056 |
vapin.f['methanol'] := 0.01 {kmol/s}; |
2057 |
vapin.f['ethanol'] := 0.015 {kmol/s}; |
2058 |
vapin.f['water'] := 0.02 {kmol/s}; |
2059 |
fl1.reflux_ratio :=1; |
2060 |
fl1.P := 1 {atm}; |
2061 |
fl1.T := 365 {K}; |
2062 |
fl1.Qin := 0 {kW}; |
2063 |
fl1.Vol := 3 {m^3}; |
2064 |
fl1.vol_liq := 1 {m^3}; |
2065 |
END values; |
2066 |
END test_condenser; |
2067 |
|
2068 |
MODEL test_reboiler() REFINES testflashmodel(); |
2069 |
|
2070 |
(* the next 5 are probably used throughout a flowsheet *) |
2071 |
cd IS_A components_data(['methanol','ethanol','water'],'water'); |
2072 |
pdV IS_A phases_data('V', 'Pitzer_vapor_mixture', 'none', 'none'); |
2073 |
pdL IS_A phases_data('L', 'none', 'UNIFAC_liquid_mixture', 'none'); |
2074 |
partial IS_A boolean; |
2075 |
equilibrated IS_A boolean; |
2076 |
liqin IS_A stream(cd, pdL, equilibrated); |
2077 |
vap IS_A stream(cd, pdV, equilibrated); |
2078 |
liq_bot IS_A stream(cd, pdL, equilibrated); |
2079 |
vap_bot IS_A stream(cd, pdV, equilibrated); |
2080 |
t IS_A time; |
2081 |
dynamic IS_A boolean; |
2082 |
ode_offset IS_A ode_counter; |
2083 |
obs_offset IS_A obs_counter; |
2084 |
fl1 IS_A reboiler(liqin,vap_bot,liq_bot,vap,partial,t,dynamic, |
2085 |
ode_offset,obs_offset); |
2086 |
|
2087 |
(* boundwidth might be unit specific *) |
2088 |
boundwidth IS_A bound_width; |
2089 |
|
2090 |
METHODS |
2091 |
|
2092 |
METHOD default_all; |
2093 |
RUN default_self; |
2094 |
END default_all; |
2095 |
|
2096 |
METHOD default_self; |
2097 |
boundwidth := 10; |
2098 |
equilibrated :=TRUE; |
2099 |
partial :=FALSE; |
2100 |
ode_offset :=1; |
2101 |
obs_offset :=1; |
2102 |
RUN liqin.default_self; |
2103 |
RUN vap.default_self; |
2104 |
RUN vap_bot.default_self; |
2105 |
RUN liq_bot.default_self; |
2106 |
RUN fl1.default_self; |
2107 |
(* or could be RUN fl1.default_all; *) |
2108 |
END default_self; |
2109 |
|
2110 |
METHOD check_all; |
2111 |
RUN check_self; |
2112 |
END check_all; |
2113 |
|
2114 |
METHOD check_self; |
2115 |
RUN liqin.check_self; |
2116 |
RUN vap.check_self; |
2117 |
IF partial THEN |
2118 |
RUN liq_bot.check_self; |
2119 |
ELSE |
2120 |
RUN vap_bot.check_self; |
2121 |
END IF; |
2122 |
RUN fl1.check_self; |
2123 |
(* or could be RUN check_all; *) |
2124 |
END check_self; |
2125 |
|
2126 |
METHOD bound_all; |
2127 |
RUN bound_self; |
2128 |
END bound_all; |
2129 |
|
2130 |
METHOD bound_self; |
2131 |
fl1.boundwidth := boundwidth; |
2132 |
vap.boundwidth := boundwidth; |
2133 |
liq_bot.boundwidth := boundwidth; |
2134 |
vap_bot.boundwidth := boundwidth; |
2135 |
liqin.boundwidth := boundwidth; |
2136 |
RUN fl1.bound_all; |
2137 |
END bound_self; |
2138 |
|
2139 |
METHOD scale_self; |
2140 |
RUN liqin.scale_self; |
2141 |
RUN vap.scale_self; |
2142 |
RUN vap_bot.scale_self; |
2143 |
RUN liq_bot.scale_self; |
2144 |
RUN fl1.scale_self; |
2145 |
END scale_self; |
2146 |
|
2147 |
METHOD specify; |
2148 |
RUN fl1.specify; |
2149 |
END specify; |
2150 |
|
2151 |
METHOD values; |
2152 |
liqin.P := 1 {atm}; |
2153 |
liqin.T := 365 {K}; |
2154 |
liqin.f['methanol'] := 0.01 {kmol/s}; |
2155 |
liqin.f['ethanol'] := 0.015 {kmol/s}; |
2156 |
liqin.f['water'] := 0.02 {kmol/s}; |
2157 |
fl1.reboil_ratio :=1; |
2158 |
fl1.P := 1 {atm}; |
2159 |
fl1.T := 365 {K}; |
2160 |
fl1.Qin := 0 {kW}; |
2161 |
fl1.Vol := 3 {m^3}; |
2162 |
fl1.vol_liq :=1 {m^3}; |
2163 |
END values; |
2164 |
END test_reboiler; |
2165 |
|
2166 |
|
2167 |
MODEL test_detailed_tray() REFINES testflashmodel(); |
2168 |
|
2169 |
cd IS_A components_data(['methanol','ethanol','water'],'water'); |
2170 |
pdV IS_A phases_data('V', 'Pitzer_vapor_mixture', 'none', 'none'); |
2171 |
pdL IS_A phases_data('L', 'none', 'UNIFAC_liquid_mixture', 'none'); |
2172 |
equilibrated IS_A boolean; |
2173 |
vin IS_A stream(cd,pdV,equilibrated); |
2174 |
lin IS_A stream(cd,pdL,equilibrated); |
2175 |
lout IS_A stream(cd,pdL,equilibrated); |
2176 |
vout IS_A stream(cd,pdV,equilibrated); |
2177 |
pdVL IS_A phases_data('VL', vout.pd.vapor_option, |
2178 |
lout.pd.liquid1_option, 'none'); |
2179 |
phaseVL[VLphases] ALIASES |
2180 |
(vout.phase['vapor'],lout.phase['liquid1']) |
2181 |
WHERE VLphases IS_A set OF symbol_constant |
2182 |
WITH_VALUE ('vapor','liquid1'); |
2183 |
state IS_A thermodynamics(cd, pdVL, phaseVL, equilibrated); |
2184 |
t IS_A time; |
2185 |
dynamic IS_A boolean; |
2186 |
ode_offset IS_A ode_counter; |
2187 |
obs_offset IS_A obs_counter; |
2188 |
fl1 IS_A detailed_tray(lin.Details,vin.Details,lout.Details,vout.Details, |
2189 |
state,t,dynamic,ode_offset,obs_offset); |
2190 |
|
2191 |
(* boundwidth might be unit specific *) |
2192 |
boundwidth IS_A bound_width; |
2193 |
|
2194 |
METHODS |
2195 |
|
2196 |
METHOD default_all; |
2197 |
RUN default_self; |
2198 |
END default_all; |
2199 |
|
2200 |
METHOD default_self; |
2201 |
boundwidth := 10; |
2202 |
equilibrated :=TRUE; |
2203 |
ode_offset :=1; |
2204 |
obs_offset :=1; |
2205 |
RUN vin.default_self; |
2206 |
RUN lin.default_self; |
2207 |
RUN lout.default_self; |
2208 |
RUN vout.default_self; |
2209 |
RUN fl1.default_self; |
2210 |
END default_self; |
2211 |
|
2212 |
METHOD check_all; |
2213 |
RUN check_self; |
2214 |
END check_all; |
2215 |
|
2216 |
METHOD check_self; |
2217 |
RUN vin.check_self; |
2218 |
RUN lin.check_self; |
2219 |
RUN lout.check_self; |
2220 |
RUN vout.check_self; |
2221 |
RUN fl1.check_self; |
2222 |
END check_self; |
2223 |
|
2224 |
METHOD bound_all; |
2225 |
RUN bound_self; |
2226 |
END bound_all; |
2227 |
|
2228 |
METHOD bound_self; |
2229 |
fl1.boundwidth := boundwidth; |
2230 |
lin.boundwidth := boundwidth; |
2231 |
vin.boundwidth := boundwidth; |
2232 |
lout.boundwidth := boundwidth; |
2233 |
vout.boundwidth := boundwidth; |
2234 |
RUN fl1.bound_all; |
2235 |
END bound_self; |
2236 |
|
2237 |
METHOD scale_self; |
2238 |
RUN vin.scale_self; |
2239 |
RUN lin.scale_self; |
2240 |
RUN lout.scale_self; |
2241 |
RUN vout.scale_self; |
2242 |
RUN fl1.scale_self; |
2243 |
END scale_self; |
2244 |
|
2245 |
METHOD specify; |
2246 |
RUN fl1.specify; |
2247 |
END specify; |
2248 |
|
2249 |
METHOD values; |
2250 |
vin.P := 1 {atm}; |
2251 |
vin.T := 365 {K}; |
2252 |
vin.f['methanol'] := 0.01 {kmol/s}; |
2253 |
vin.f['ethanol'] := 0.015 {kmol/s}; |
2254 |
vin.f['water'] := 0.02 {kmol/s}; |
2255 |
lin.P := 1 {atm}; |
2256 |
lin.T := 365 {K}; |
2257 |
lin.f['methanol'] := 0.01 {kmol/s}; |
2258 |
lin.f['ethanol'] := 0.015 {kmol/s}; |
2259 |
lin.f['water'] := 0.02 {kmol/s}; |
2260 |
fl1.cmo_ratio := 1; |
2261 |
fl1.P := 1 {atm}; |
2262 |
fl1.T := 365 {K}; |
2263 |
fl1.Qin := 0 {kW}; |
2264 |
fl1.Vol := 10 {m^3}; |
2265 |
fl1.vol_liq := 3 {m^3}; |
2266 |
END values; |
2267 |
|
2268 |
END test_detailed_tray; |