1 |
(* ASCEND modelling environment |
2 |
* Copyright (C) 1994-2007 Carnegie Mellon University |
3 |
* |
4 |
* The ASCEND Modeling Library is free software; you can redistribute |
5 |
* it and/or modify it under the terms of the GNU General Public |
6 |
* License as published by the Free Software Foundation; either |
7 |
* version 2 of the License, or (at your option) any later version. |
8 |
* |
9 |
* The ASCEND Modeling Library is distributed in hope that it |
10 |
* will be useful, but WITHOUT ANY WARRANTY; without even the implied |
11 |
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. |
12 |
* See the GNU General Public License for more details. |
13 |
* |
14 |
* You should have received a copy of the GNU General Public License |
15 |
* along with the program; if not, write to the Free Software |
16 |
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139 USA. |
17 |
*) |
18 |
REQUIRE "system.a4l"; (* => system.a4l, basemodel.a4l *) |
19 |
REQUIRE "measures.a4l"; (* => measures.a4l *) |
20 |
PROVIDE "atoms.a4l"; |
21 |
(* |
22 |
Original Author: Joseph J. Zaher |
23 |
Contributors: Ben Allan, Bob Huss, John Pye. |
24 |
|
25 |
ASCEND atom definitions for engineering variable types. |
26 |
Many of the anticipated dimensional variables which occur |
27 |
in engineering design calculations are given to provide a |
28 |
means of standardization. Chosen defaults, nominal, and |
29 |
lower and upper bound values should be re-specified if |
30 |
necessary to enhance the convergence properties of |
31 |
specific models. Units to be displayed are to be controlled |
32 |
using the UNITS tool kit of the environment. |
33 |
|
34 |
If you add a new type here, you are encouraged to also make corresponding |
35 |
changes to the syntax definition files pygtk/gnome/ascend.lang (for gedit |
36 |
on GNOME) and ascend.syn (for TextPad on Windows). |
37 |
*) |
38 |
|
39 |
(* G E N E R I C C O N S T A N T S ( C H E M . E . B I A S ) |
40 |
-------------------------------------------------------------------- *) |
41 |
|
42 |
CONSTANT constant |
43 |
(* any sloppiness about what is a constant will yield a wild real *) |
44 |
REFINES real_constant; |
45 |
|
46 |
(* dimensionless *) |
47 |
|
48 |
CONSTANT critical_compressibility REFINES real_constant DIMENSIONLESS; |
49 |
|
50 |
CONSTANT acentric_factor REFINES real_constant DIMENSIONLESS; |
51 |
|
52 |
CONSTANT UNIFAC_size REFINES real_constant DIMENSIONLESS; |
53 |
|
54 |
CONSTANT Wilson_constant REFINES real_constant DIMENSIONLESS; |
55 |
|
56 |
CONSTANT vapor_pressure_constant REFINES real_constant; |
57 |
|
58 |
CONSTANT factor_constant REFINES real_constant DIMENSIONLESS; |
59 |
|
60 |
(* angles *) |
61 |
CONSTANT angle_constant |
62 |
REFINES real_constant DIMENSION P; |
63 |
|
64 |
CONSTANT solid_angle_constant |
65 |
REFINES real_constant DIMENSION S; |
66 |
|
67 |
(* time *) |
68 |
CONSTANT time_constant |
69 |
REFINES real_constant DIMENSION T; |
70 |
|
71 |
(* molecular weight *) |
72 |
CONSTANT molar_weight_constant |
73 |
REFINES real_constant DIMENSION M/Q; |
74 |
|
75 |
(* atomic mass *) |
76 |
CONSTANT atomic_mass_constant |
77 |
REFINES real_constant DIMENSION M; |
78 |
|
79 |
(* temperatures *) |
80 |
CONSTANT temperature_constant |
81 |
REFINES real_constant DIMENSION TMP; |
82 |
|
83 |
CONSTANT boiling_temperature |
84 |
REFINES temperature_constant; |
85 |
|
86 |
CONSTANT critical_temperature |
87 |
REFINES temperature_constant; |
88 |
|
89 |
CONSTANT reference_temperature |
90 |
REFINES temperature_constant; |
91 |
|
92 |
CONSTANT UNIFAC_a |
93 |
REFINES temperature_constant; |
94 |
|
95 |
(* pressures *) |
96 |
CONSTANT pressure_constant |
97 |
REFINES real_constant DIMENSION M/L/T^2; |
98 |
|
99 |
CONSTANT critical_pressure |
100 |
REFINES pressure_constant; |
101 |
|
102 |
CONSTANT reference_pressure |
103 |
REFINES pressure_constant; |
104 |
|
105 |
(* molar volumes *) |
106 |
CONSTANT molar_volume_constant |
107 |
REFINES real_constant DIMENSION L^3/Q; |
108 |
|
109 |
CONSTANT critical_volume |
110 |
REFINES molar_volume_constant; |
111 |
|
112 |
CONSTANT reference_molar_volume |
113 |
REFINES molar_volume_constant; |
114 |
|
115 |
(* mass densities *) |
116 |
CONSTANT reference_mass_density |
117 |
REFINES real_constant DIMENSION M/L^3; |
118 |
|
119 |
(* molar energies *) |
120 |
CONSTANT molar_energy_constant |
121 |
REFINES real_constant DIMENSION M*L^2/T^2/Q; |
122 |
|
123 |
CONSTANT reference_molar_energy |
124 |
REFINES molar_energy_constant; |
125 |
|
126 |
CONSTANT enthalpy_of_formation_constant |
127 |
REFINES molar_energy_constant; |
128 |
|
129 |
CONSTANT free_energy_of_formation_constant |
130 |
REFINES molar_energy_constant; |
131 |
|
132 |
CONSTANT heat_of_vaporization_constant |
133 |
REFINES molar_energy_constant; |
134 |
|
135 |
CONSTANT Wilson_energy_constant |
136 |
REFINES molar_energy_constant; |
137 |
|
138 |
(* molar entropies *) |
139 |
CONSTANT molar_entropy_constant |
140 |
REFINES real_constant DIMENSION M*L^2/T^2/Q/TMP; |
141 |
|
142 |
CONSTANT reference_molar_entropy |
143 |
REFINES molar_entropy_constant; |
144 |
|
145 |
(* other strange correlation coefficients *) |
146 |
CONSTANT heat_capacity_constant |
147 |
REFINES real_constant; |
148 |
|
149 |
CONSTANT heat_capacity_a_constant |
150 |
REFINES heat_capacity_constant DIMENSION M*L^2/T^2/Q/TMP; |
151 |
|
152 |
CONSTANT heat_capacity_b_constant |
153 |
REFINES heat_capacity_constant DIMENSION M*L^2/T^2/Q/TMP^2; |
154 |
|
155 |
CONSTANT heat_capacity_c_constant |
156 |
REFINES heat_capacity_constant DIMENSION M*L^2/T^2/Q/TMP^3; |
157 |
|
158 |
CONSTANT heat_capacity_d_constant |
159 |
REFINES heat_capacity_constant DIMENSION M*L^2/T^2/Q/TMP^4; |
160 |
|
161 |
(* |
162 |
CONSTANT |
163 |
REFINES real_constant DIMENSION; |
164 |
*) |
165 |
|
166 |
(* U N I V E R S A L C O N S T A N T S |
167 |
-------------------------------------- *) |
168 |
|
169 |
UNIVERSAL CONSTANT molar_gas_constant |
170 |
(* DIMENSION M*L^2/T^2/Q/TMP *) |
171 |
REFINES real_constant :== 1{GAS_C}; |
172 |
|
173 |
UNIVERSAL CONSTANT gravity_constant |
174 |
(* DIMENSION L/T^2 *) |
175 |
REFINES real_constant :== 1{EARTH_G}; |
176 |
|
177 |
UNIVERSAL CONSTANT circle_constant |
178 |
REFINES real_constant :== 1{PI}; |
179 |
|
180 |
UNIVERSAL CONSTANT speed_of_light |
181 |
REFINES real_constant :== 1{LIGHT_C}; |
182 |
|
183 |
UNIVERSAL CONSTANT planck_constant |
184 |
(* DIMENSION M*L^2/T *) |
185 |
REFINES real_constant :== 1{PLANCK_C}; |
186 |
|
187 |
UNIVERSAL CONSTANT avogadro_constant |
188 |
REFINES real_constant :== 1{AVOGADRO_C}; |
189 |
|
190 |
UNIVERSAL CONSTANT permittivity_constant |
191 |
(* DIMENSION E^2*T^4/M/L^3 *) |
192 |
REFINES real_constant :== 1{EPSILON0}; |
193 |
|
194 |
UNIVERSAL CONSTANT permeability_constant |
195 |
REFINES real_constant :== 1{MU0}; |
196 |
|
197 |
UNIVERSAL CONSTANT electron_charge |
198 |
REFINES real_constant :== 1{eCHARGE}; |
199 |
|
200 |
UNIVERSAL CONSTANT electron_mass |
201 |
REFINES real_constant :== 1{eMASS}; |
202 |
|
203 |
UNIVERSAL CONSTANT proton_mass |
204 |
REFINES real_constant :== 1{pMASS}; |
205 |
|
206 |
(* B O O L E A N S *) |
207 |
|
208 |
(* use these booleans *) |
209 |
ATOM boolean_start_true REFINES boolean |
210 |
DEFAULT TRUE; |
211 |
END boolean_start_true; |
212 |
|
213 |
ATOM boolean_start_false REFINES boolean |
214 |
DEFAULT FALSE; |
215 |
END boolean_start_false; |
216 |
|
217 |
(* for backward compatibility *) |
218 |
ATOM start_true REFINES boolean |
219 |
DEFAULT TRUE; |
220 |
END start_true; |
221 |
|
222 |
ATOM start_false REFINES boolean |
223 |
DEFAULT FALSE; |
224 |
END start_false; |
225 |
|
226 |
|
227 |
(* P A R A M E T E R S *) |
228 |
|
229 |
UNIVERSAL ATOM bound_width REFINES real |
230 |
(* not really a constant but a parameter to tell us how wide to |
231 |
* put bounds from the current point, in relative terms. |
232 |
* e.g. a.upper_bound := a + a.nominal * bound_width_instance; |
233 |
*) |
234 |
DIMENSIONLESS |
235 |
DEFAULT 1.0e8; |
236 |
END bound_width; |
237 |
|
238 |
UNIVERSAL ATOM scaling_constant REFINES real |
239 |
(* not really a constant but a parameter. which |
240 |
* needs problem dependent information to be useful. |
241 |
*) |
242 |
DIMENSIONLESS |
243 |
DEFAULT 1.0; |
244 |
END scaling_constant; |
245 |
|
246 |
UNIVERSAL ATOM ode_counter REFINES integer |
247 |
DIMENSIONLESS |
248 |
DEFAULT 1; |
249 |
END ode_counter; |
250 |
|
251 |
UNIVERSAL ATOM obs_counter REFINES integer |
252 |
DIMENSIONLESS |
253 |
DEFAULT 1; |
254 |
END obs_counter; |
255 |
|
256 |
ATOM real_parameter REFINES real; |
257 |
END real_parameter; |
258 |
|
259 |
ATOM length_parameter REFINES real_parameter |
260 |
DIMENSION L |
261 |
DEFAULT 1.0 {m}; |
262 |
END length_parameter; |
263 |
|
264 |
|
265 |
(* D I M E N S I O N L E S S Q U A N T I T I E S |
266 |
---------------------------------------------- *) |
267 |
|
268 |
ATOM positive_variable REFINES solver_var |
269 |
(* one for the gams folks *) |
270 |
DIMENSIONLESS |
271 |
DEFAULT 1.0; |
272 |
lower_bound := 0.0; |
273 |
upper_bound := 1e20; |
274 |
nominal := 1.0; |
275 |
END positive_variable; |
276 |
|
277 |
ATOM factor REFINES solver_var |
278 |
DIMENSIONLESS |
279 |
DEFAULT 1.0; |
280 |
lower_bound := -1e50; |
281 |
upper_bound := 1e50; |
282 |
nominal := 1.0; |
283 |
END factor; |
284 |
|
285 |
ATOM variable REFINES solver_var |
286 |
DIMENSIONLESS; |
287 |
END variable; |
288 |
|
289 |
|
290 |
ATOM fraction REFINES solver_var |
291 |
DIMENSIONLESS |
292 |
DEFAULT 0.5; |
293 |
nominal := 1.0; |
294 |
lower_bound := 0.0; |
295 |
upper_bound := 1.0; |
296 |
END fraction; |
297 |
|
298 |
ATOM positive_factor REFINES factor; |
299 |
lower_bound := 0.0; |
300 |
END positive_factor; |
301 |
|
302 |
ATOM small_factor REFINES factor; |
303 |
lower_bound := -10.0; |
304 |
upper_bound := 10.0; |
305 |
END small_factor; |
306 |
|
307 |
ATOM small_positive_factor REFINES factor; |
308 |
lower_bound := 0.0; |
309 |
upper_bound := 10.0; |
310 |
END small_positive_factor; |
311 |
|
312 |
ATOM reduced_pressure REFINES factor; |
313 |
END reduced_pressure; |
314 |
|
315 |
(* S U B S T I T U T I O N V A R I A B L E S |
316 |
------------------------------------------ *) |
317 |
ATOM exp_sub REFINES factor ; |
318 |
lower_bound := -1e50; |
319 |
upper_bound := 100; |
320 |
nominal := 1.0; |
321 |
END exp_sub; |
322 |
|
323 |
ATOM power_sub REFINES factor; |
324 |
lower_bound := -25; |
325 |
upper_bound := 25; |
326 |
nominal := 1.0; |
327 |
END power_sub; |
328 |
|
329 |
(* T E M P E R A T U R E |
330 |
--------------------- *) |
331 |
|
332 |
ATOM temperature REFINES solver_var |
333 |
DIMENSION TMP |
334 |
DEFAULT 298.0{K}; |
335 |
lower_bound := 1.0e-6{K}; |
336 |
upper_bound := 10000{K}; |
337 |
nominal := 298.0{K}; |
338 |
END temperature; |
339 |
|
340 |
ATOM inverse_temperature REFINES solver_var |
341 |
DIMENSION 1/TMP |
342 |
DEFAULT 0.00366099{1/K}; |
343 |
lower_bound := 0.0{1/K}; |
344 |
upper_bound := 1e50{1/K}; |
345 |
nominal := 0.00366099{1/K}; |
346 |
END inverse_temperature; |
347 |
|
348 |
ATOM delta_temperature REFINES solver_var |
349 |
DIMENSION TMP |
350 |
DEFAULT 0.1{K}; |
351 |
lower_bound := -1000{K}; |
352 |
upper_bound := +1000{K}; |
353 |
nominal := 5{K}; |
354 |
END delta_temperature; |
355 |
|
356 |
(* forces *) |
357 |
ATOM force REFINES solver_var |
358 |
DIMENSION M*L/T^2 |
359 |
DEFAULT 1.0{N}; |
360 |
lower_bound := -1e20{N}; |
361 |
upper_bound := 1e20{N}; |
362 |
nominal := 1.0{kN}; |
363 |
END force; |
364 |
|
365 |
ATOM force_per_length REFINES solver_var |
366 |
DIMENSION M/T^2 |
367 |
DEFAULT 1.0{N/m}; |
368 |
lower_bound := -1e20{N/m}; |
369 |
upper_bound := 1e20{N/m}; |
370 |
nominal := 1.0{N/m}; |
371 |
END force_per_length; |
372 |
|
373 |
ATOM force_per_volume REFINES solver_var |
374 |
DIMENSION M/T^2/L^2 |
375 |
DEFAULT 1.0{N/m^3}; |
376 |
lower_bound := -1e20{N/m^3}; |
377 |
upper_bound := 1e20{N/m^3}; |
378 |
nominal := 1.0{N/m^3}; |
379 |
END force_per_volume; |
380 |
|
381 |
ATOM surface_tension REFINES solver_var |
382 |
DIMENSION M/T^2 |
383 |
DEFAULT 1.0{N/m}; |
384 |
lower_bound := 0{N/m}; |
385 |
upper_bound := 1e20{N/m}; |
386 |
nominal := 1.0{N/m}; |
387 |
END surface_tension; |
388 |
|
389 |
(* P R E S S U R E |
390 |
--------------- *) |
391 |
|
392 |
ATOM pressure REFINES solver_var |
393 |
DIMENSION M/L/T^2 |
394 |
DEFAULT 1.0{atm}; |
395 |
lower_bound := 0.001{Pa}; |
396 |
upper_bound := 5000{atm}; |
397 |
nominal := 1.0{atm}; |
398 |
END pressure; |
399 |
|
400 |
ATOM pressure_rate REFINES solver_var |
401 |
DIMENSION M/L/T^3 |
402 |
DEFAULT -1 {kPa/s}; |
403 |
lower_bound := -5 {bar/s}; |
404 |
upper_bound := +5 {bar/s}; |
405 |
nominal := 1 {kPa/s}; |
406 |
END pressure_rate; |
407 |
|
408 |
ATOM delta_pressure REFINES solver_var |
409 |
DIMENSION M/L/T^2 |
410 |
DEFAULT 1.0{atm}; |
411 |
lower_bound := -1000{atm}; |
412 |
upper_bound := 1000{atm}; |
413 |
nominal := 1.0{atm}; |
414 |
END delta_pressure; |
415 |
|
416 |
ATOM vapor_pressure REFINES pressure |
417 |
DIMENSION M/L/T^2 |
418 |
DEFAULT 1.0{atm}; |
419 |
lower_bound := 0.001{Pa}; |
420 |
upper_bound := 5000{atm}; |
421 |
nominal := 0.5{atm}; |
422 |
END vapor_pressure; |
423 |
|
424 |
ATOM k_constant REFINES solver_var |
425 |
(* what IS this ? ? ? (it rings a bell...) *) |
426 |
DIMENSION T^2/L^5 |
427 |
DEFAULT 1.0 {s^2/ft^5}; |
428 |
lower_bound := 0.001 {s^2/ft^5}; |
429 |
upper_bound := 5000 {s^2/ft^5}; |
430 |
nominal := 1.0 {s^2/ft^5}; |
431 |
END k_constant; |
432 |
|
433 |
ATOM youngs_modulus REFINES solver_var |
434 |
(* the measure of the physical stiffness of a material *) |
435 |
DIMENSION M/L/T^2 |
436 |
DEFAULT 200 {GPa}; |
437 |
lower_bound := 0 {Pa}; |
438 |
upper_bound := 1500 {GPa}; |
439 |
nominal := 40 {GPa}; |
440 |
END youngs_modulus; |
441 |
|
442 |
ATOM pressure_per_length REFINES solver_var |
443 |
DIMENSION M/L^2/T^2 |
444 |
DEFAULT 50 {Pa/m}; |
445 |
lower_bound := -1e20{bar/m}; |
446 |
upper_bound := +1e20{bar/m}; |
447 |
nominal := 50 {Pa/m}; |
448 |
END pressure_per_length; |
449 |
|
450 |
|
451 |
(* M A S S / M O L E Q U A N T I T I E S |
452 |
-------------------------------------- *) |
453 |
|
454 |
ATOM molar_mass REFINES solver_var |
455 |
DIMENSION M/Q |
456 |
DEFAULT 100.0{g/g_mole}; |
457 |
lower_bound := 0.0{g/g_mole}; |
458 |
upper_bound := 1e9{g/g_mole}; |
459 |
nominal := 100.0{g/g_mole}; |
460 |
END molar_mass; |
461 |
|
462 |
ATOM mass REFINES solver_var |
463 |
DIMENSION M |
464 |
DEFAULT 10.0{kg}; |
465 |
lower_bound := 0.0{kg}; |
466 |
upper_bound := 1e50{kg}; |
467 |
nominal := 10.0{kg}; |
468 |
END mass; |
469 |
|
470 |
ATOM mole_scale REFINES real DIMENSION Q DEFAULT 1 {mole}; |
471 |
END mole_scale; |
472 |
|
473 |
ATOM mole REFINES solver_var |
474 |
DIMENSION Q |
475 |
DEFAULT 10.0{lb_mole}; |
476 |
lower_bound := 0.0{lb_mole}; |
477 |
upper_bound := 1e50{lb_mole}; |
478 |
nominal := 10.0{lb_mole}; |
479 |
END mole; |
480 |
|
481 |
ATOM mass_rate REFINES solver_var |
482 |
DIMENSION M/T |
483 |
DEFAULT 50{g/s}; |
484 |
lower_bound := 0.0{g/s}; |
485 |
upper_bound := 1e50{g/s}; |
486 |
nominal := 100.0{g/s}; |
487 |
END mass_rate; |
488 |
|
489 |
CONSTANT mass_rate_constant |
490 |
REFINES real_constant DIMENSION M/T; |
491 |
|
492 |
ATOM mass_flux REFINES solver_var |
493 |
DIMENSION M/T/L^2 |
494 |
DEFAULT 10{kg/s/m^2}; |
495 |
lower_bound := -1e12{kg/s/m^2}; |
496 |
upper_bound := 1e12{kg/s/m^2}; |
497 |
nominal := 10.0{kg/s/m^2}; |
498 |
END mass_flux; |
499 |
|
500 |
ATOM mass_rate_rate REFINES solver_var |
501 |
DIMENSION M/T^2 |
502 |
DEFAULT 10{g/s/s}; |
503 |
lower_bound := -1e50{g/s/s}; |
504 |
upper_bound := 1e50{g/s/s}; |
505 |
nominal := 10.0{g/s/s}; |
506 |
END mass_rate_rate; |
507 |
|
508 |
ATOM mass_rate_per_length REFINES solver_var |
509 |
DIMENSION M/T/L |
510 |
DEFAULT 0.1 {kg/s/m}; |
511 |
lower_bound := -1e50 {kg/s/m}; |
512 |
upper_bound := 1e50 {kg/s/m}; |
513 |
nominal := 1.0 {kg/s/m}; |
514 |
END mass_rate_per_length; |
515 |
|
516 |
|
517 |
ATOM molar_rate_scale REFINES real DIMENSION Q/T DEFAULT 1 {mole/second}; |
518 |
END molar_rate_scale; |
519 |
|
520 |
ATOM molar_rate REFINES solver_var |
521 |
DIMENSION Q/T |
522 |
DEFAULT 100.0{lb_mole/hour}; |
523 |
lower_bound := 0.0{lb_mole/hour}; |
524 |
upper_bound := 1e50{lb_mole/hour}; |
525 |
nominal := 100.0{lb_mole/hour}; |
526 |
END molar_rate; |
527 |
|
528 |
ATOM conc_rate REFINES solver_var |
529 |
DIMENSION Q/L^3/T |
530 |
DEFAULT 100.0{lb_mole/ft^3/hour}; |
531 |
lower_bound := 0.0{lb_mole/ft^3/hour}; |
532 |
upper_bound := 1e50{lb_mole/ft^3/hour}; |
533 |
nominal := 100.0{lb_mole/ft^3/hour}; |
534 |
END conc_rate; |
535 |
|
536 |
|
537 |
ATOM mole_fraction REFINES fraction |
538 |
DIMENSIONLESS |
539 |
DEFAULT 0.5; |
540 |
lower_bound := 0.0; |
541 |
nominal := 0.3; |
542 |
upper_bound := 1.0; |
543 |
END mole_fraction; |
544 |
|
545 |
ATOM mass_fraction REFINES fraction |
546 |
DIMENSIONLESS |
547 |
DEFAULT 0.5; |
548 |
lower_bound := 0.0; |
549 |
nominal := 0.3; |
550 |
upper_bound := 1.0; |
551 |
END mass_fraction; |
552 |
|
553 |
|
554 |
(* V O L U M E Q U A N T I T I E S |
555 |
-------------------------------- *) |
556 |
|
557 |
ATOM molar_volume REFINES solver_var |
558 |
DIMENSION L^3/Q |
559 |
DEFAULT 1000.0{cm^3/g_mole}; |
560 |
lower_bound := 0.0{cm^3/g_mole}; |
561 |
upper_bound := 1e50{cm^3/g_mole}; |
562 |
nominal := 1000.0{cm^3/g_mole}; |
563 |
END molar_volume; |
564 |
|
565 |
ATOM volume_scale REFINES real DIMENSION L^3 DEFAULT 1.0 {m^3}; |
566 |
END volume_scale; |
567 |
|
568 |
ATOM volume REFINES solver_var |
569 |
DIMENSION L^3 |
570 |
DEFAULT 100.0{ft^3}; |
571 |
lower_bound := 0.0{ft^3}; |
572 |
upper_bound := 1e50{ft^3}; |
573 |
nominal := 100.0{ft^3}; |
574 |
END volume; |
575 |
|
576 |
ATOM volume_rate_scale REFINES real DIMENSION L^3/T DEFAULT 1{m^3/s}; |
577 |
END volume_rate_scale; |
578 |
|
579 |
ATOM volume_rate REFINES solver_var |
580 |
DIMENSION L^3/T |
581 |
DEFAULT 100.0{gpm}; |
582 |
lower_bound := 0.0{gpm}; |
583 |
upper_bound := 1e50{gpm}; |
584 |
nominal := 100.0{gpm}; |
585 |
END volume_rate; |
586 |
|
587 |
ATOM volume_rate_square REFINES solver_var |
588 |
DIMENSION L^6/T^2 |
589 |
DEFAULT 100.0{ft^6/s^2}; |
590 |
lower_bound := 0.0{ft^6/s^2}; |
591 |
upper_bound := 1e50{ft^6/s^2}; |
592 |
nominal := 100 {ft^6/s^2}; |
593 |
END volume_rate_square; |
594 |
|
595 |
ATOM volume_expansivity REFINES solver_var |
596 |
DIMENSION 1/TMP |
597 |
DEFAULT 0.001{1/K}; |
598 |
lower_bound := 0.0{1/K}; |
599 |
upper_bound := 1e50{1/K}; |
600 |
nominal := 0.001{1/K}; |
601 |
END volume_expansivity; |
602 |
|
603 |
|
604 |
(* D E N S I T Y Q U A N T I T I E S |
605 |
---------------------------------- *) |
606 |
|
607 |
ATOM molar_density REFINES solver_var |
608 |
DIMENSION Q/L^3 |
609 |
DEFAULT 0.1{mole/m^3}; |
610 |
lower_bound := 0.0{mole/m^3}; |
611 |
upper_bound := 1e50{mole/m^3}; |
612 |
nominal := 0.1{mole/m^3}; |
613 |
END molar_density; |
614 |
|
615 |
ATOM mass_density REFINES solver_var |
616 |
DIMENSION M/L^3 |
617 |
DEFAULT 1.0{g/cm^3}; |
618 |
lower_bound := 0.0{g/cm^3}; |
619 |
upper_bound := 1e50{g/cm^3}; |
620 |
nominal := 1.0{g/cm^3}; |
621 |
END mass_density; |
622 |
|
623 |
|
624 |
(* E N E R G Y Q U A N T I T I E S |
625 |
------------------------------------ *) |
626 |
|
627 |
ATOM molar_energy REFINES solver_var |
628 |
DIMENSION M*L^2/T^2/Q |
629 |
DEFAULT 10000.0{BTU/lb_mole}; |
630 |
lower_bound := -1e50{BTU/lb_mole}; |
631 |
upper_bound := 1e50{BTU/lb_mole}; |
632 |
nominal := 10000.0{BTU/lb_mole}; |
633 |
END molar_energy; |
634 |
|
635 |
ATOM energy_scale REFINES real DIMENSION M*L^2/T^2 DEFAULT 1{joule}; |
636 |
END energy_scale; |
637 |
|
638 |
ATOM energy REFINES solver_var |
639 |
DIMENSION M*L^2/T^2 |
640 |
DEFAULT 100000.0{BTU}; |
641 |
lower_bound := -1e50{BTU}; |
642 |
upper_bound := 1e50{BTU}; |
643 |
nominal := 100000.0{BTU}; |
644 |
END energy; |
645 |
|
646 |
ATOM energy_per_volume REFINES solver_var |
647 |
DIMENSION M/L/T^2 |
648 |
DEFAULT 1000{kJ/L}; |
649 |
lower_bound := -1e50{kJ/L}; |
650 |
upper_bound := 1e50{kJ/L}; |
651 |
nominal := 1000{kJ/L}; |
652 |
END energy_per_volume; |
653 |
|
654 |
ATOM energy_rate_scale REFINES real DIMENSION M*L^2/T^3 DEFAULT 1{watt}; |
655 |
END energy_rate_scale; |
656 |
|
657 |
ATOM energy_rate REFINES solver_var |
658 |
DIMENSION M*L^2/T^3 |
659 |
DEFAULT 100000.0{BTU/hour}; |
660 |
lower_bound := -1e50{BTU/hour}; |
661 |
upper_bound := 1e50{BTU/hour}; |
662 |
nominal := 100000.0{BTU/hour}; |
663 |
END energy_rate; |
664 |
|
665 |
ATOM power_per_length REFINES solver_var |
666 |
DIMENSION M*L/T^3 |
667 |
DEFAULT 1.0{kW/m}; |
668 |
lower_bound := -1e50{kW/m}; |
669 |
upper_bound := 1e50{kW/m}; |
670 |
nominal := 1.0{kW/m}; |
671 |
END power_per_length; |
672 |
|
673 |
ATOM power_per_volume REFINES solver_var |
674 |
DIMENSION M/L/T^3 |
675 |
DEFAULT 1.0{kW/m^3}; |
676 |
lower_bound := -1e50{kW/m^3}; |
677 |
upper_bound := 1e50{kW/m^3}; |
678 |
nominal := 1.0{kW/m^3}; |
679 |
END power_per_volume; |
680 |
|
681 |
ATOM power_per_area REFINES solver_var |
682 |
DIMENSION M/T^3 |
683 |
DEFAULT 1.0{kW/m^2}; |
684 |
lower_bound := -1e50{kW/m^2}; |
685 |
upper_bound := 1e50{kW/m^2}; |
686 |
nominal := 1.0{kW/m^2}; |
687 |
END power_per_area; |
688 |
|
689 |
ATOM power_per_temperature REFINES solver_var |
690 |
DIMENSION M*L^2/T^3/TMP |
691 |
DEFAULT 1.0{kW/K}; |
692 |
lower_bound := -1e30{kW/K}; |
693 |
upper_bound := 1e30{kW/K}; |
694 |
nominal := 1.0 {kW/K}; |
695 |
END power_per_temperature; |
696 |
|
697 |
ATOM irradiance REFINES solver_var |
698 |
DIMENSION M/T^3 |
699 |
DEFAULT 1000{W/m^2}; |
700 |
lower_bound := 0{W/m^2}; |
701 |
upper_bound := 1.5{MW/m^2}; (* a bit more that the max possible from sunlight *) |
702 |
nominal := 300{W/m^2}; |
703 |
END irradiance; |
704 |
|
705 |
ATOM irradiation REFINES solver_var |
706 |
DIMENSION M/T^2 |
707 |
DEFAULT 1000{J/m^2}; |
708 |
lower_bound := 0{J/m^2}; |
709 |
upper_bound := 1e50{J/m^2}; (* a bit more that the max possible from sunlight *) |
710 |
nominal := 300{J/m^2}; |
711 |
END irradiation; |
712 |
|
713 |
|
714 |
ATOM molar_heat_capacity REFINES solver_var |
715 |
DIMENSION M*L^2/T^2/Q/TMP |
716 |
DEFAULT 1.00e5{J/mole/K}; |
717 |
lower_bound := 0.0{J/mole/K}; |
718 |
upper_bound := 1e60{J/mole/K}; |
719 |
nominal := 1.00e5{J/mole/K}; |
720 |
END molar_heat_capacity; |
721 |
|
722 |
ATOM molar_energy_rate REFINES solver_var |
723 |
DIMENSION M*L^2/T^3/Q |
724 |
DEFAULT 0 {BTU/lb_mole/h}; |
725 |
lower_bound := -1e50 {BTU/lb_mole/h}; |
726 |
upper_bound := 1e50 {BTU/lb_mole/h}; |
727 |
nominal := 10000.0 {BTU/lb_mole/h}; |
728 |
END molar_energy_rate; |
729 |
|
730 |
(* E N T R O P Y Q U A N T I T I E S |
731 |
---------------------------------- *) |
732 |
|
733 |
ATOM molar_entropy REFINES solver_var |
734 |
DIMENSION M*L^2/T^2/Q/TMP |
735 |
DEFAULT 100.0{BTU/lb_mole/R}; |
736 |
lower_bound := -1e50{BTU/lb_mole/R}; |
737 |
upper_bound := 1e50{BTU/lb_mole/R}; |
738 |
nominal := 100.0{BTU/lb_mole/R}; |
739 |
END molar_entropy; |
740 |
|
741 |
ATOM entropy REFINES solver_var |
742 |
DIMENSION M*L^2/T^2/TMP |
743 |
DEFAULT 1000.0{BTU/R}; |
744 |
lower_bound := -1e50{BTU/R}; |
745 |
upper_bound := 1e50{BTU/R}; |
746 |
nominal := 1000.0{BTU/R}; |
747 |
END entropy; |
748 |
|
749 |
ATOM entropy_rate REFINES solver_var |
750 |
DIMENSION M*L^2/T^3/TMP |
751 |
DEFAULT 1000.0{BTU/hour/R}; |
752 |
lower_bound := -1e50{BTU/hour/R}; |
753 |
upper_bound := 1e50{BTU/hour/R}; |
754 |
nominal := 1000.0{BTU/hour/R}; |
755 |
END entropy_rate; |
756 |
|
757 |
|
758 |
|
759 |
(* E Q U I L I B R I U M Q U A N T I T I E S |
760 |
------------------------------------------ *) |
761 |
|
762 |
ATOM partition_coefficient REFINES factor (* new *) |
763 |
DEFAULT 1.0; |
764 |
lower_bound := 1.0e-10; |
765 |
upper_bound := 30.0; |
766 |
nominal := 1.0; |
767 |
END partition_coefficient; |
768 |
|
769 |
ATOM relative_volatility REFINES partition_coefficient; (* new *) |
770 |
END relative_volatility; |
771 |
|
772 |
|
773 |
(* M O N E T A R Y Q U A N T I T I E S |
774 |
------------------------------------ *) |
775 |
|
776 |
ATOM monetary_unit REFINES solver_var |
777 |
DIMENSION C |
778 |
DEFAULT 100.0{USD}; |
779 |
lower_bound := -1e50{USD}; |
780 |
upper_bound := 1e50{USD}; |
781 |
nominal := 100.0{USD}; |
782 |
END monetary_unit; |
783 |
|
784 |
ATOM cost_per_volume REFINES solver_var |
785 |
DIMENSION C/L^3 |
786 |
DEFAULT 1.0{USD/gallon}; |
787 |
lower_bound := 0.0{USD/gallon}; |
788 |
upper_bound := 1e50{USD/gallon}; |
789 |
nominal := 1.0{USD/gallon}; |
790 |
END cost_per_volume; |
791 |
|
792 |
ATOM cost_per_mass REFINES solver_var |
793 |
DIMENSION C/M |
794 |
DEFAULT 1.0{USD/lbm}; |
795 |
lower_bound := 0.0{USD/lbm}; |
796 |
upper_bound := 1e50{USD/lbm}; |
797 |
nominal := 1.0{USD/lbm}; |
798 |
END cost_per_mass; |
799 |
|
800 |
CONSTANT cost_per_mass_constant |
801 |
REFINES real_constant DIMENSION C/M; |
802 |
|
803 |
ATOM cost_per_mole REFINES solver_var |
804 |
DIMENSION C/Q |
805 |
DEFAULT 1.0{USD/lb_mole}; |
806 |
lower_bound := 0.0{USD/lb_mole}; |
807 |
upper_bound := 1e50{USD/lb_mole}; |
808 |
nominal := 1.0{USD/lb_mole}; |
809 |
END cost_per_mole; |
810 |
|
811 |
ATOM cost_per_time REFINES solver_var |
812 |
DIMENSION C/T |
813 |
DEFAULT 1.0{USD/min}; |
814 |
lower_bound := 0.0{USD/min}; |
815 |
upper_bound := 1e50{USD/min}; |
816 |
nominal := 1.0{USD/min}; |
817 |
END cost_per_time; |
818 |
|
819 |
ATOM cost_per_energy REFINES solver_var |
820 |
DIMENSION C*T^2/M/L^2 |
821 |
DEFAULT 1.0{USD/BTU}; |
822 |
lower_bound := 0.0{USD/BTU}; |
823 |
upper_bound := 1e50{USD/BTU}; |
824 |
nominal := 1.0{USD/BTU}; |
825 |
END cost_per_energy; |
826 |
|
827 |
CONSTANT cost_per_mass_per_distance_constant |
828 |
REFINES real_constant DIMENSION C/M/L; |
829 |
|
830 |
|
831 |
(* S U R V E Y I N G Q U A N T I T I E S |
832 |
--------------------------------------- *) |
833 |
|
834 |
ATOM distance REFINES solver_var |
835 |
DIMENSION L |
836 |
DEFAULT 10.0{ft}; |
837 |
lower_bound := 0.0{ft}; |
838 |
upper_bound := 1e50{ft}; |
839 |
nominal := 10.0{ft}; |
840 |
END distance; |
841 |
|
842 |
CONSTANT distance_constant |
843 |
REFINES real_constant DIMENSION L; |
844 |
|
845 |
ATOM area REFINES solver_var |
846 |
DIMENSION L^2 |
847 |
DEFAULT 1{m^2}; |
848 |
lower_bound := 0.0{m^2}; |
849 |
upper_bound := 1e50{m^2}; |
850 |
nominal := 1{m^2}; |
851 |
END area; |
852 |
|
853 |
ATOM inverse_area REFINES solver_var |
854 |
DIMENSION L^-2 |
855 |
DEFAULT 1{1/ft^2}; |
856 |
lower_bound := 0.0{1/ft^2}; |
857 |
upper_bound := 1e50{1/ft^2}; |
858 |
nominal := 1.0{1/ft^2}; |
859 |
END inverse_area; |
860 |
|
861 |
ATOM angle REFINES solver_var |
862 |
DIMENSION P |
863 |
DEFAULT 1 {rad}; |
864 |
lower_bound := -1e50 {rad}; |
865 |
upper_bound := 1e50 {rad}; |
866 |
nominal := 1 {rad}; |
867 |
END angle; |
868 |
|
869 |
ATOM solid_angle REFINES solver_var |
870 |
DIMENSION S |
871 |
DEFAULT 1 {srad}; |
872 |
lower_bound := -1e50 {srad}; |
873 |
upper_bound := 1e50 {srad}; |
874 |
nominal := 1 {srad}; |
875 |
END solid_angle; |
876 |
|
877 |
(* M O T I O N Q U A N T I T I E S |
878 |
--------------------------------- *) |
879 |
|
880 |
ATOM time REFINES solver_var |
881 |
DIMENSION T |
882 |
DEFAULT 60.0{s}; |
883 |
lower_bound := -1e50{s}; |
884 |
upper_bound := 1e50{s}; |
885 |
nominal := 60.0{s}; |
886 |
END time; |
887 |
|
888 |
ATOM speed REFINES solver_var |
889 |
DIMENSION L/T |
890 |
DEFAULT 3.0{ft/s}; |
891 |
lower_bound := -1e50{m/s}; |
892 |
upper_bound := 1e50{m/s}; |
893 |
nominal := 1.0{m/s}; |
894 |
END speed; |
895 |
|
896 |
ATOM angular_speed REFINES solver_var |
897 |
DIMENSION P/T |
898 |
DEFAULT 1.0 {rad/s}; |
899 |
lower_bound := -1e50{rad/s}; |
900 |
upper_bound := 1e50{rad/s}; |
901 |
nominal := 1 {rad/s}; |
902 |
END angular_speed; |
903 |
|
904 |
ATOM acceleration REFINES solver_var |
905 |
DIMENSION L/T^2 |
906 |
DEFAULT 9.8{m/s^2}; |
907 |
lower_bound := -1e50{m/s^2}; |
908 |
upper_bound := 1e50{m/s^2}; |
909 |
nominal := 9.8{m/s^2}; |
910 |
END acceleration; |
911 |
|
912 |
ATOM frequency REFINES solver_var |
913 |
DIMENSION 1/T |
914 |
DEFAULT 60.0{1/s}; |
915 |
lower_bound := 0.0{1/s}; |
916 |
upper_bound := 1e50{1/s}; |
917 |
nominal := 60.0{1/s}; |
918 |
END frequency; |
919 |
|
920 |
ATOM stiffness REFINES solver_var |
921 |
DIMENSION M/T^2 |
922 |
DEFAULT 1 {N/m}; |
923 |
lower_bound := 0 {N/m}; |
924 |
upper_bound := 1e12 {N/m}; |
925 |
nominal := 1 {N/m}; |
926 |
END stiffness; |
927 |
|
928 |
|
929 |
|
930 |
(* T R A N S P O R T Q U A N T I T I E S |
931 |
--------------------------------------- *) |
932 |
|
933 |
ATOM viscosity REFINES solver_var |
934 |
DIMENSION M/L/T |
935 |
DEFAULT 1.0{cP}; |
936 |
lower_bound := 0.0{cP}; |
937 |
upper_bound := 1e50{cP}; |
938 |
nominal := 1.0{cP}; |
939 |
END viscosity; |
940 |
|
941 |
ATOM kinematic_viscosity REFINES solver_var |
942 |
DIMENSION L^2/T |
943 |
DEFAULT 1e-6 {m^2/s}; |
944 |
lower_bound := 0.0 {m^2/s}; |
945 |
upper_bound := 1e50 {m^2/s}; |
946 |
nominal := 1.3 {g/s/m} * 0.001 {m^3/kg}; |
947 |
END kinematic_viscosity; |
948 |
|
949 |
ATOM thermal_conductivity REFINES solver_var |
950 |
DIMENSION M*L/T^3/TMP |
951 |
DEFAULT 0.1{BTU/hour/ft/R}; |
952 |
lower_bound := 0.0{BTU/hour/ft/R}; |
953 |
upper_bound := 1e50{BTU/hour/ft/R}; |
954 |
nominal := 0.1{BTU/hour/ft/R}; |
955 |
END thermal_conductivity; |
956 |
|
957 |
ATOM diffusivity REFINES solver_var |
958 |
DIMENSION L^2/T |
959 |
DEFAULT 1.0{cm^2/s}; |
960 |
lower_bound := 0.0{cm^2/s}; |
961 |
upper_bound := 1e50{cm^2/s}; |
962 |
nominal := 1.0{cm^2/s}; |
963 |
END diffusivity; |
964 |
|
965 |
|
966 |
(* E L E C T R O - M A G N E T I C Q U A N T I T I E S |
967 |
---------------------------------------------------- *) |
968 |
|
969 |
ATOM voltage REFINES solver_var |
970 |
DIMENSION M*L^2/(T^3*E) |
971 |
DEFAULT 10.0{volt}; |
972 |
lower_bound := -1e50{volt}; |
973 |
upper_bound := 1e50{volt}; |
974 |
nominal := 10.0{volt}; |
975 |
END voltage; |
976 |
|
977 |
ATOM resistance REFINES solver_var |
978 |
DIMENSION M*L^2/(E^2*T^3) |
979 |
DEFAULT 10.0{ohm}; |
980 |
lower_bound := -1e50{ohm}; |
981 |
upper_bound := 1e50{ohm}; |
982 |
nominal := 10.0{ohm}; |
983 |
END resistance; |
984 |
|
985 |
ATOM conductance REFINES solver_var |
986 |
DIMENSION (E^2*T^3)/(M*L^2) |
987 |
DEFAULT 0.01{siemens}; |
988 |
lower_bound := -1e50{siemens}; |
989 |
upper_bound := 1e50{siemens}; |
990 |
nominal := 0.01{siemens}; |
991 |
END conductance; |
992 |
|
993 |
ATOM current REFINES solver_var |
994 |
DIMENSION E |
995 |
DEFAULT 1.0{amp}; |
996 |
lower_bound := -1e50{amp}; |
997 |
upper_bound := 1e50{amp}; |
998 |
nominal := 1.0{amp}; |
999 |
END current; |
1000 |
|
1001 |
ATOM capacitance REFINES solver_var |
1002 |
DIMENSION E^2*T^4/M/L^2 |
1003 |
DEFAULT 1.0{coulomb/volt}; |
1004 |
lower_bound := -1e50{coulomb/volt}; |
1005 |
upper_bound := 1e50{coulomb/volt}; |
1006 |
nominal := 1.0{coulomb/volt}; |
1007 |
END capacitance; |
1008 |
|
1009 |
ATOM inductance REFINES solver_var |
1010 |
DIMENSION M*L^2/E^2/T^2 |
1011 |
DEFAULT 1.0{volt*s/amp}; |
1012 |
lower_bound := -1e50{volt*s/amp}; |
1013 |
upper_bound := 1e50{volt*s/amp}; |
1014 |
nominal := 1.0{volt*s/amp}; |
1015 |
END inductance; |
1016 |
|
1017 |
ATOM magnetic_field REFINES solver_var |
1018 |
DIMENSION E/L |
1019 |
DEFAULT 1.0{amp/m}; |
1020 |
lower_bound := -1e50{amp/m}; |
1021 |
upper_bound := 1e50{amp/m}; |
1022 |
nominal := 1.0{amp/m}; |
1023 |
END magnetic_field; |
1024 |
|
1025 |
ATOM electric_field REFINES solver_var |
1026 |
DIMENSION M*L/E/T^3 |
1027 |
DEFAULT 1.0{volt/m}; |
1028 |
lower_bound := -1e50{volt/m}; |
1029 |
upper_bound := 1e50{volt/m}; |
1030 |
nominal := 1.0{volt/m}; |
1031 |
END electric_field; |
1032 |
|
1033 |
ATOM electrical_conductivity REFINES solver_var |
1034 |
DIMENSION E^2*T^3/M/L^3 |
1035 |
DEFAULT 1000 {S/m}; |
1036 |
lower_bound := 1e-50 {S/m}; |
1037 |
upper_bound := 1e50 {S/m}; |
1038 |
nominal := 1000 {S/m}; |
1039 |
END electrical_conductivity; |
1040 |
|
1041 |
ATOM thermoelectric_power_factor REFINES solver_var |
1042 |
DIMENSION M*L/T^3/TMP^2 |
1043 |
DEFAULT 10e-5 {W/m/K^2}; |
1044 |
lower_bound := 1e-50 {W/m/K^2}; |
1045 |
upper_bound := 1e50 {W/m/K^2}; |
1046 |
nominal := 10e-5 {W/m/K^2}; |
1047 |
END thermoelectric_power_factor; |
1048 |
|
1049 |
ATOM seebeck_coefficient REFINES solver_var |
1050 |
DIMENSION M*L^2/T^3/E/TMP |
1051 |
DEFAULT 200 {micro*V/K}; |
1052 |
lower_bound := 1e-50 {micro*V/K}; |
1053 |
upper_bound := 1e50 {micro*V/K}; |
1054 |
nominal := 200 {micro*V/K}; |
1055 |
END seebeck_coefficient; |
1056 |
|
1057 |
|
1058 |
(* D I F F E R E N T I A L Q U A N T I T I E S |
1059 |
------------------------------------------- *) |
1060 |
|
1061 |
ATOM delta_distance REFINES solver_var |
1062 |
DIMENSION L |
1063 |
DEFAULT 10.0{ft}; |
1064 |
lower_bound := -1e50{ft}; |
1065 |
upper_bound := 1e50{ft}; |
1066 |
nominal := 10.0{ft}; |
1067 |
END delta_distance; |
1068 |
|
1069 |
ATOM delta_area REFINES solver_var |
1070 |
DIMENSION L^2 |
1071 |
DEFAULT 1{m^2}; |
1072 |
lower_bound := -1e50{m^2}; |
1073 |
upper_bound := 1e50{m^2}; |
1074 |
nominal := 1{m^2}; |
1075 |
END delta_area; |
1076 |
|
1077 |
ATOM temperature_rate REFINES solver_var |
1078 |
DIMENSION TMP/T |
1079 |
DEFAULT 0{K/s}; |
1080 |
lower_bound := -100{K/s}; |
1081 |
upper_bound := 100{K/s}; |
1082 |
nominal := 298.0{K/s}; |
1083 |
END temperature_rate; |
1084 |
|
1085 |
ATOM delta_mass REFINES solver_var |
1086 |
DIMENSION M |
1087 |
DEFAULT 0.0{kg}; |
1088 |
lower_bound := -1e50{kg}; |
1089 |
upper_bound := 1e50{kg}; |
1090 |
nominal := 10.0{kg}; |
1091 |
END delta_mass; |
1092 |
|
1093 |
ATOM delta_mole REFINES solver_var |
1094 |
DIMENSION Q |
1095 |
DEFAULT 0{lb_mole}; |
1096 |
lower_bound := -1e50{lb_mole}; |
1097 |
upper_bound := 1e50{lb_mole}; |
1098 |
nominal := 10.0{lb_mole}; |
1099 |
END delta_mole; |
1100 |
|
1101 |
ATOM delta_mass_rate REFINES solver_var |
1102 |
DIMENSION M/T |
1103 |
DEFAULT 0{g/s}; |
1104 |
lower_bound := -1e50{g/s}; |
1105 |
upper_bound := 1e50{g/s}; |
1106 |
nominal := 100.0{g/s}; |
1107 |
END delta_mass_rate; |
1108 |
|
1109 |
ATOM delta_molar_rate REFINES solver_var |
1110 |
DIMENSION Q/T |
1111 |
DEFAULT 0.0{lb_mole/hour}; |
1112 |
lower_bound := -1e50{lb_mole/hour}; |
1113 |
upper_bound := 1e50{lb_mole/hour}; |
1114 |
nominal := 100.0{lb_mole/hour}; |
1115 |
END delta_molar_rate; |
1116 |
|
1117 |
ATOM delta_volume_rate REFINES solver_var |
1118 |
DIMENSION L^3/T |
1119 |
DEFAULT 0.0{gpm}; |
1120 |
lower_bound := -1e50{gpm}; |
1121 |
upper_bound := 1e50{gpm}; |
1122 |
nominal := 100.0{gpm}; |
1123 |
END delta_volume_rate; |
1124 |
|
1125 |
ATOM density_rate REFINES solver_var |
1126 |
DIMENSION M/L^3/T |
1127 |
DEFAULT 0.0 {kg/m^3/s}; |
1128 |
lower_bound := -1e50 {kg/m^3/s}; |
1129 |
upper_bound := 1e50 {kg/m^3/s}; |
1130 |
nominal := 0.1 {kg/m^3/s}; |
1131 |
END density_rate; |
1132 |
|
1133 |
ATOM delta_energy_rate REFINES solver_var |
1134 |
DIMENSION M*L^2/T^3 |
1135 |
DEFAULT 0.0{BTU/hour}; |
1136 |
lower_bound := -1e50{BTU/hour}; |
1137 |
upper_bound := 1e50{BTU/hour}; |
1138 |
nominal := 100000.0{BTU/hour}; |
1139 |
END delta_energy_rate; |
1140 |
|
1141 |
ATOM delta_molar_energy_rate REFINES solver_var |
1142 |
DIMENSION M*L^2/T^3/Q |
1143 |
DEFAULT 0 {BTU/lb_mole/h}; |
1144 |
lower_bound := -1e50 {BTU/lb_mole/h}; |
1145 |
upper_bound := 1e50 {BTU/lb_mole/h}; |
1146 |
nominal := 10000.0 {BTU/lb_mole/h}; |
1147 |
END delta_molar_energy_rate; |
1148 |
|
1149 |
ATOM delta_entropy REFINES solver_var |
1150 |
DIMENSION M*L^2/T^2/TMP |
1151 |
DEFAULT 0.0{BTU/R}; |
1152 |
lower_bound := -1e50{BTU/R}; |
1153 |
upper_bound := 1e50{BTU/R}; |
1154 |
nominal := 1000.0{BTU/R}; |
1155 |
END delta_entropy; |
1156 |
|
1157 |
ATOM delta_entropy_rate REFINES solver_var |
1158 |
DIMENSION M*L^2/T^3/TMP |
1159 |
DEFAULT 0.0{BTU/hour/R}; |
1160 |
lower_bound := -1e50{BTU/hour/R}; |
1161 |
upper_bound := 1e50{BTU/hour/R}; |
1162 |
nominal := 1000.0{BTU/hour/R}; |
1163 |
END delta_entropy_rate; |
1164 |
|
1165 |
|
1166 |
(* C O N T R O L L E R Q U A N T I T I E S |
1167 |
---------------------------------------- *) |
1168 |
|
1169 |
ATOM mass_sec REFINES solver_var |
1170 |
DIMENSION M*T |
1171 |
DEFAULT 0.0{kg*s}; |
1172 |
lower_bound := -1e50{kg*s}; |
1173 |
upper_bound := 1e50{kg*s}; |
1174 |
nominal := 10.0{kg*s}; |
1175 |
END mass_sec; |
1176 |
|
1177 |
ATOM mole_sec REFINES solver_var |
1178 |
DIMENSION Q*T |
1179 |
DEFAULT 0.0{lb_mole*s}; |
1180 |
lower_bound := -1e50{lb_mole*s}; |
1181 |
upper_bound := 1e50{lb_mole*s}; |
1182 |
nominal := 10.0{lb_mole*s}; |
1183 |
END mole_sec; |
1184 |
|
1185 |
(* D I F F E R E N T I A L S *) |
1186 |
|
1187 |
ATOM rate REFINES solver_var |
1188 |
DIMENSION T^-1 |
1189 |
DEFAULT 0{s^-1}; |
1190 |
lower_bound := -1e50{s^-1}; |
1191 |
upper_bound := 1e50{s^-1}; |
1192 |
nominal := 1{s^-1}; |
1193 |
END rate; |
1194 |
|
1195 |
(* M E C H A N I C AL P R O P E R T I E S |
1196 |
---------------------------------------- *) |
1197 |
|
1198 |
ATOM deflection REFINES solver_var (* to facilitate different display units for small values *) |
1199 |
DIMENSION L |
1200 |
DEFAULT 1 {mm}; |
1201 |
lower_bound := -10{m}; |
1202 |
upper_bound := 10{m}; |
1203 |
nominal := 5{mm}; |
1204 |
END deflection; |
1205 |
|
1206 |
ATOM second_moment_of_area REFINES solver_var (* for use in beam bending problems *) |
1207 |
DIMENSION L^4 |
1208 |
DEFAULT 6.67e5 {mm^4}; (* for 150UB14 Universal Beam, AISC (Australia) *) |
1209 |
lower_bound := 0 {mm^4}; |
1210 |
upper_bound := 10000e6 {mm^4}; |
1211 |
nominal := 1e6 {mm^4}; (* this may be too high still *) |
1212 |
END second_moment_of_area; |
1213 |
|
1214 |
ATOM polar_moment_of_inertia REFINES solver_var (* for use in torsion problems *) |
1215 |
DIMENSION L^4 |
1216 |
DEFAULT 28.2e3 {mm^4}; (* for 150UB14 Universal Beam, AISC (Australia) *) |
1217 |
lower_bound := 0 {mm^4}; |
1218 |
upper_bound := 10000e3 {mm^4}; |
1219 |
nominal := 100e3 {mm^4}; (* this may be too high still *) |
1220 |
END polar_moment_of_inertia; |
1221 |
|
1222 |
CONSTANT second_moment_of_area_constant |
1223 |
REFINES real_constant DIMENSION L^4; |
1224 |
|
1225 |
CONSTANT length_constant |
1226 |
REFINES real_constant DIMENSION L; |
1227 |
|
1228 |
CONSTANT area_constant |
1229 |
REFINES real_constant DIMENSION L^2; |
1230 |
|
1231 |
ATOM moment REFINES solver_var |
1232 |
DIMENSION M*L^2/T^2 |
1233 |
DEFAULT 1 {kN*m}; |
1234 |
lower_bound := -1e5 {kN*m}; |
1235 |
upper_bound := 1e5 {kN*m}; |
1236 |
nominal := 1 {kN*m}; |
1237 |
END moment; |
1238 |
|
1239 |
ATOM stress REFINES solver_var |
1240 |
DIMENSION M/L/T^2 |
1241 |
DEFAULT 1.0 {MPa}; |
1242 |
lower_bound := -5000 {MPa}; |
1243 |
upper_bound := 5000 {MPa}; |
1244 |
nominal := 1.0 {MPa}; |
1245 |
END stress; |