1 |
(* ASCEND modelling environment |
2 |
* Copyright (C) 1994-2007 Carnegie Mellon University |
3 |
* |
4 |
* The ASCEND Modeling Library is free software; you can redistribute |
5 |
* it and/or modify it under the terms of the GNU General Public |
6 |
* License as published by the Free Software Foundation; either |
7 |
* version 2 of the License, or (at your option) any later version. |
8 |
* |
9 |
* The ASCEND Modeling Library is distributed in hope that it |
10 |
* will be useful, but WITHOUT ANY WARRANTY; without even the implied |
11 |
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. |
12 |
* See the GNU General Public License for more details. |
13 |
* |
14 |
* You should have received a copy of the GNU General Public License |
15 |
* along with the program; if not, write to the Free Software |
16 |
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139 USA. |
17 |
*) |
18 |
REQUIRE "system.a4l"; (* => system.a4l, basemodel.a4l *) |
19 |
REQUIRE "measures.a4l"; (* => measures.a4l *) |
20 |
PROVIDE "atoms.a4l"; |
21 |
(* |
22 |
Original Author: Joseph J. Zaher |
23 |
Contributors: Ben Allan, Bob Huss, John Pye. |
24 |
|
25 |
ASCEND atom definitions for engineering variable types. |
26 |
Many of the anticipated dimensional variables which occur |
27 |
in engineering design calculations are given to provide a |
28 |
means of standardization. Chosen defaults, nominal, and |
29 |
lower and upper bound values should be re-specified if |
30 |
necessary to enhance the convergence properties of |
31 |
specific models. Units to be displayed are to be controlled |
32 |
using the UNITS tool kit of the environment. |
33 |
|
34 |
If you add a new type here, you are encouraged to also make corresponding |
35 |
changes to the syntax definition files pygtk/gnome/ascend.lang (for gedit |
36 |
on GNOME) and ascend.syn (for TextPad on Windows). |
37 |
*) |
38 |
|
39 |
(* G E N E R I C C O N S T A N T S ( C H E M . E . B I A S ) |
40 |
-------------------------------------------------------------------- *) |
41 |
|
42 |
CONSTANT constant |
43 |
(* any sloppiness about what is a constant will yield a wild real *) |
44 |
REFINES real_constant; |
45 |
|
46 |
(* dimensionless *) |
47 |
|
48 |
CONSTANT critical_compressibility REFINES real_constant DIMENSIONLESS; |
49 |
|
50 |
CONSTANT acentric_factor REFINES real_constant DIMENSIONLESS; |
51 |
|
52 |
CONSTANT UNIFAC_size REFINES real_constant DIMENSIONLESS; |
53 |
|
54 |
CONSTANT Wilson_constant REFINES real_constant DIMENSIONLESS; |
55 |
|
56 |
CONSTANT vapor_pressure_constant REFINES real_constant; |
57 |
|
58 |
CONSTANT factor_constant REFINES real_constant DIMENSIONLESS; |
59 |
|
60 |
(* angles *) |
61 |
CONSTANT angle_constant |
62 |
REFINES real_constant DIMENSION P; |
63 |
|
64 |
CONSTANT solid_angle_constant |
65 |
REFINES real_constant DIMENSION S; |
66 |
|
67 |
(* molecular weight *) |
68 |
CONSTANT molar_weight_constant |
69 |
REFINES real_constant DIMENSION M/Q; |
70 |
|
71 |
(* atomic mass *) |
72 |
CONSTANT atomic_mass_constant |
73 |
REFINES real_constant DIMENSION M; |
74 |
|
75 |
(* temperatures *) |
76 |
CONSTANT temperature_constant |
77 |
REFINES real_constant DIMENSION TMP; |
78 |
|
79 |
CONSTANT boiling_temperature |
80 |
REFINES temperature_constant; |
81 |
|
82 |
CONSTANT critical_temperature |
83 |
REFINES temperature_constant; |
84 |
|
85 |
CONSTANT reference_temperature |
86 |
REFINES temperature_constant; |
87 |
|
88 |
CONSTANT UNIFAC_a |
89 |
REFINES temperature_constant; |
90 |
|
91 |
(* pressures *) |
92 |
CONSTANT pressure_constant |
93 |
REFINES real_constant DIMENSION M/L/T^2; |
94 |
|
95 |
CONSTANT critical_pressure |
96 |
REFINES pressure_constant; |
97 |
|
98 |
CONSTANT reference_pressure |
99 |
REFINES pressure_constant; |
100 |
|
101 |
(* molar volumes *) |
102 |
CONSTANT molar_volume_constant |
103 |
REFINES real_constant DIMENSION L^3/Q; |
104 |
|
105 |
CONSTANT critical_volume |
106 |
REFINES molar_volume_constant; |
107 |
|
108 |
CONSTANT reference_molar_volume |
109 |
REFINES molar_volume_constant; |
110 |
|
111 |
(* mass densities *) |
112 |
CONSTANT reference_mass_density |
113 |
REFINES real_constant DIMENSION M/L^3; |
114 |
|
115 |
(* molar energies *) |
116 |
CONSTANT molar_energy_constant |
117 |
REFINES real_constant DIMENSION M*L^2/T^2/Q; |
118 |
|
119 |
CONSTANT reference_molar_energy |
120 |
REFINES molar_energy_constant; |
121 |
|
122 |
CONSTANT enthalpy_of_formation_constant |
123 |
REFINES molar_energy_constant; |
124 |
|
125 |
CONSTANT free_energy_of_formation_constant |
126 |
REFINES molar_energy_constant; |
127 |
|
128 |
CONSTANT heat_of_vaporization_constant |
129 |
REFINES molar_energy_constant; |
130 |
|
131 |
CONSTANT Wilson_energy_constant |
132 |
REFINES molar_energy_constant; |
133 |
|
134 |
(* molar entropies *) |
135 |
CONSTANT molar_entropy_constant |
136 |
REFINES real_constant DIMENSION M*L^2/T^2/Q/TMP; |
137 |
|
138 |
CONSTANT reference_molar_entropy |
139 |
REFINES molar_entropy_constant; |
140 |
|
141 |
(* other strange correlation coefficients *) |
142 |
CONSTANT heat_capacity_constant |
143 |
REFINES real_constant; |
144 |
|
145 |
CONSTANT heat_capacity_a_constant |
146 |
REFINES heat_capacity_constant DIMENSION M*L^2/T^2/Q/TMP; |
147 |
|
148 |
CONSTANT heat_capacity_b_constant |
149 |
REFINES heat_capacity_constant DIMENSION M*L^2/T^2/Q/TMP^2; |
150 |
|
151 |
CONSTANT heat_capacity_c_constant |
152 |
REFINES heat_capacity_constant DIMENSION M*L^2/T^2/Q/TMP^3; |
153 |
|
154 |
CONSTANT heat_capacity_d_constant |
155 |
REFINES heat_capacity_constant DIMENSION M*L^2/T^2/Q/TMP^4; |
156 |
|
157 |
(* |
158 |
CONSTANT |
159 |
REFINES real_constant DIMENSION; |
160 |
*) |
161 |
|
162 |
(* U N I V E R S A L C O N S T A N T S |
163 |
-------------------------------------- *) |
164 |
|
165 |
UNIVERSAL CONSTANT molar_gas_constant |
166 |
(* DIMENSION M*L^2/T^2/Q/TMP *) |
167 |
REFINES real_constant :== 1{GAS_C}; |
168 |
|
169 |
UNIVERSAL CONSTANT gravity_constant |
170 |
(* DIMENSION L/T^2 *) |
171 |
REFINES real_constant :== 1{EARTH_G}; |
172 |
|
173 |
UNIVERSAL CONSTANT circle_constant |
174 |
REFINES real_constant :== 1{PI}; |
175 |
|
176 |
UNIVERSAL CONSTANT speed_of_light |
177 |
REFINES real_constant :== 1{LIGHT_C}; |
178 |
|
179 |
UNIVERSAL CONSTANT planck_constant |
180 |
(* DIMENSION M*L^2/T *) |
181 |
REFINES real_constant :== 1{PLANCK_C}; |
182 |
|
183 |
UNIVERSAL CONSTANT avogadro_constant |
184 |
REFINES real_constant :== 1{AVOGADRO_C}; |
185 |
|
186 |
UNIVERSAL CONSTANT permittivity_constant |
187 |
(* DIMENSION E^2*T^4/M/L^3 *) |
188 |
REFINES real_constant :== 1{EPSILON0}; |
189 |
|
190 |
UNIVERSAL CONSTANT permeability_constant |
191 |
REFINES real_constant :== 1{MU0}; |
192 |
|
193 |
UNIVERSAL CONSTANT electron_charge |
194 |
REFINES real_constant :== 1{eCHARGE}; |
195 |
|
196 |
UNIVERSAL CONSTANT electron_mass |
197 |
REFINES real_constant :== 1{eMASS}; |
198 |
|
199 |
UNIVERSAL CONSTANT proton_mass |
200 |
REFINES real_constant :== 1{pMASS}; |
201 |
|
202 |
(* B O O L E A N S *) |
203 |
|
204 |
(* use these booleans *) |
205 |
ATOM boolean_start_true REFINES boolean |
206 |
DEFAULT TRUE; |
207 |
END boolean_start_true; |
208 |
|
209 |
ATOM boolean_start_false REFINES boolean |
210 |
DEFAULT FALSE; |
211 |
END boolean_start_false; |
212 |
|
213 |
(* for backward compatibility *) |
214 |
ATOM start_true REFINES boolean |
215 |
DEFAULT TRUE; |
216 |
END start_true; |
217 |
|
218 |
ATOM start_false REFINES boolean |
219 |
DEFAULT FALSE; |
220 |
END start_false; |
221 |
|
222 |
|
223 |
(* P A R A M E T E R S *) |
224 |
|
225 |
UNIVERSAL ATOM bound_width REFINES real |
226 |
(* not really a constant but a parameter to tell us how wide to |
227 |
* put bounds from the current point, in relative terms. |
228 |
* e.g. a.upper_bound := a + a.nominal * bound_width_instance; |
229 |
*) |
230 |
DIMENSIONLESS |
231 |
DEFAULT 1.0e8; |
232 |
END bound_width; |
233 |
|
234 |
UNIVERSAL ATOM scaling_constant REFINES real |
235 |
(* not really a constant but a parameter. which |
236 |
* needs problem dependent information to be useful. |
237 |
*) |
238 |
DIMENSIONLESS |
239 |
DEFAULT 1.0; |
240 |
END scaling_constant; |
241 |
|
242 |
UNIVERSAL ATOM ode_counter REFINES integer |
243 |
DIMENSIONLESS |
244 |
DEFAULT 1; |
245 |
END ode_counter; |
246 |
|
247 |
UNIVERSAL ATOM obs_counter REFINES integer |
248 |
DIMENSIONLESS |
249 |
DEFAULT 1; |
250 |
END obs_counter; |
251 |
|
252 |
ATOM real_parameter REFINES real; |
253 |
END real_parameter; |
254 |
|
255 |
ATOM length_parameter REFINES real_parameter |
256 |
DIMENSION L |
257 |
DEFAULT 1.0 {m}; |
258 |
END length_parameter; |
259 |
|
260 |
|
261 |
(* D I M E N S I O N L E S S Q U A N T I T I E S |
262 |
---------------------------------------------- *) |
263 |
|
264 |
ATOM positive_variable REFINES solver_var |
265 |
(* one for the gams folks *) |
266 |
DIMENSIONLESS |
267 |
DEFAULT 1.0; |
268 |
lower_bound := 0.0; |
269 |
upper_bound := 1e20; |
270 |
nominal := 1.0; |
271 |
END positive_variable; |
272 |
|
273 |
ATOM factor REFINES solver_var |
274 |
DIMENSIONLESS |
275 |
DEFAULT 1.0; |
276 |
lower_bound := -1e50; |
277 |
upper_bound := 1e50; |
278 |
nominal := 1.0; |
279 |
END factor; |
280 |
|
281 |
ATOM variable REFINES solver_var |
282 |
DIMENSIONLESS; |
283 |
END variable; |
284 |
|
285 |
|
286 |
ATOM fraction REFINES solver_var |
287 |
DIMENSIONLESS |
288 |
DEFAULT 0.5; |
289 |
nominal := 1.0; |
290 |
lower_bound := 0.0; |
291 |
upper_bound := 1.0; |
292 |
END fraction; |
293 |
|
294 |
ATOM positive_factor REFINES factor; |
295 |
lower_bound := 0.0; |
296 |
END positive_factor; |
297 |
|
298 |
ATOM small_factor REFINES factor; |
299 |
lower_bound := -10.0; |
300 |
upper_bound := 10.0; |
301 |
END small_factor; |
302 |
|
303 |
ATOM small_positive_factor REFINES factor; |
304 |
lower_bound := 0.0; |
305 |
upper_bound := 10.0; |
306 |
END small_positive_factor; |
307 |
|
308 |
ATOM reduced_pressure REFINES factor; |
309 |
END reduced_pressure; |
310 |
|
311 |
(* S U B S T I T U T I O N V A R I A B L E S |
312 |
------------------------------------------ *) |
313 |
ATOM exp_sub REFINES factor ; |
314 |
lower_bound := -1e50; |
315 |
upper_bound := 100; |
316 |
nominal := 1.0; |
317 |
END exp_sub; |
318 |
|
319 |
ATOM power_sub REFINES factor; |
320 |
lower_bound := -25; |
321 |
upper_bound := 25; |
322 |
nominal := 1.0; |
323 |
END power_sub; |
324 |
|
325 |
(* T E M P E R A T U R E |
326 |
--------------------- *) |
327 |
|
328 |
ATOM temperature REFINES solver_var |
329 |
DIMENSION TMP |
330 |
DEFAULT 298.0{K}; |
331 |
lower_bound := 1.0e-6{K}; |
332 |
upper_bound := 10000{K}; |
333 |
nominal := 298.0{K}; |
334 |
END temperature; |
335 |
|
336 |
ATOM inverse_temperature REFINES solver_var |
337 |
DIMENSION 1/TMP |
338 |
DEFAULT 0.00366099{1/K}; |
339 |
lower_bound := 0.0{1/K}; |
340 |
upper_bound := 1e50{1/K}; |
341 |
nominal := 0.00366099{1/K}; |
342 |
END inverse_temperature; |
343 |
|
344 |
ATOM delta_temperature REFINES solver_var |
345 |
DIMENSION TMP |
346 |
DEFAULT 0.1{K}; |
347 |
lower_bound := -1000{K}; |
348 |
upper_bound := +1000{K}; |
349 |
nominal := 5{K}; |
350 |
END delta_temperature; |
351 |
|
352 |
(* forces *) |
353 |
ATOM force REFINES solver_var |
354 |
DIMENSION M*L/T^2 |
355 |
DEFAULT 1.0{N}; |
356 |
lower_bound := -1e20{N}; |
357 |
upper_bound := 1e20{N}; |
358 |
nominal := 1.0{kN}; |
359 |
END force; |
360 |
|
361 |
ATOM force_per_length REFINES solver_var |
362 |
DIMENSION M/T^2 |
363 |
DEFAULT 1.0{N/m}; |
364 |
lower_bound := -1e20{N/m}; |
365 |
upper_bound := 1e20{N/m}; |
366 |
nominal := 1.0{N/m}; |
367 |
END force_per_length; |
368 |
|
369 |
ATOM force_per_volume REFINES solver_var |
370 |
DIMENSION M/T^2/L^2 |
371 |
DEFAULT 1.0{N/m^3}; |
372 |
lower_bound := -1e20{N/m^3}; |
373 |
upper_bound := 1e20{N/m^3}; |
374 |
nominal := 1.0{N/m^3}; |
375 |
END force_per_volume; |
376 |
|
377 |
ATOM surface_tension REFINES solver_var |
378 |
DIMENSION M/T^2 |
379 |
DEFAULT 1.0{N/m}; |
380 |
lower_bound := 0{N/m}; |
381 |
upper_bound := 1e20{N/m}; |
382 |
nominal := 1.0{N/m}; |
383 |
END surface_tension; |
384 |
|
385 |
(* P R E S S U R E |
386 |
--------------- *) |
387 |
|
388 |
ATOM pressure REFINES solver_var |
389 |
DIMENSION M/L/T^2 |
390 |
DEFAULT 1.0{atm}; |
391 |
lower_bound := 0.001{Pa}; |
392 |
upper_bound := 5000{atm}; |
393 |
nominal := 1.0{atm}; |
394 |
END pressure; |
395 |
|
396 |
ATOM pressure_rate REFINES solver_var |
397 |
DIMENSION M/L/T^3 |
398 |
DEFAULT -1 {kPa/s}; |
399 |
lower_bound := -5 {bar/s}; |
400 |
upper_bound := +5 {bar/s}; |
401 |
nominal := 1 {kPa/s}; |
402 |
END pressure_rate; |
403 |
|
404 |
ATOM delta_pressure REFINES solver_var |
405 |
DIMENSION M/L/T^2 |
406 |
DEFAULT 1.0{atm}; |
407 |
lower_bound := -1000{atm}; |
408 |
upper_bound := 1000{atm}; |
409 |
nominal := 1.0{atm}; |
410 |
END delta_pressure; |
411 |
|
412 |
ATOM vapor_pressure REFINES pressure |
413 |
DIMENSION M/L/T^2 |
414 |
DEFAULT 1.0{atm}; |
415 |
lower_bound := 0.001{Pa}; |
416 |
upper_bound := 5000{atm}; |
417 |
nominal := 0.5{atm}; |
418 |
END vapor_pressure; |
419 |
|
420 |
ATOM k_constant REFINES solver_var |
421 |
(* what IS this ? ? ? (it rings a bell...) *) |
422 |
DIMENSION T^2/L^5 |
423 |
DEFAULT 1.0 {s^2/ft^5}; |
424 |
lower_bound := 0.001 {s^2/ft^5}; |
425 |
upper_bound := 5000 {s^2/ft^5}; |
426 |
nominal := 1.0 {s^2/ft^5}; |
427 |
END k_constant; |
428 |
|
429 |
ATOM youngs_modulus REFINES solver_var |
430 |
(* the measure of the physical stiffness of a material *) |
431 |
DIMENSION M/L/T^2 |
432 |
DEFAULT 200 {GPa}; |
433 |
lower_bound := 0 {Pa}; |
434 |
upper_bound := 1500 {GPa}; |
435 |
nominal := 40 {GPa}; |
436 |
END youngs_modulus; |
437 |
|
438 |
ATOM pressure_per_length REFINES solver_var |
439 |
DIMENSION M/L^2/T^2 |
440 |
DEFAULT 50 {Pa/m}; |
441 |
lower_bound := -1e20{bar/m}; |
442 |
upper_bound := +1e20{bar/m}; |
443 |
nominal := 50 {Pa/m}; |
444 |
END pressure_per_length; |
445 |
|
446 |
|
447 |
(* M A S S / M O L E Q U A N T I T I E S |
448 |
-------------------------------------- *) |
449 |
|
450 |
ATOM molar_mass REFINES solver_var |
451 |
DIMENSION M/Q |
452 |
DEFAULT 100.0{g/g_mole}; |
453 |
lower_bound := 0.0{g/g_mole}; |
454 |
upper_bound := 1e9{g/g_mole}; |
455 |
nominal := 100.0{g/g_mole}; |
456 |
END molar_mass; |
457 |
|
458 |
ATOM mass REFINES solver_var |
459 |
DIMENSION M |
460 |
DEFAULT 10.0{kg}; |
461 |
lower_bound := 0.0{kg}; |
462 |
upper_bound := 1e50{kg}; |
463 |
nominal := 10.0{kg}; |
464 |
END mass; |
465 |
|
466 |
ATOM mole_scale REFINES real DIMENSION Q DEFAULT 1 {mole}; |
467 |
END mole_scale; |
468 |
|
469 |
ATOM mole REFINES solver_var |
470 |
DIMENSION Q |
471 |
DEFAULT 10.0{lb_mole}; |
472 |
lower_bound := 0.0{lb_mole}; |
473 |
upper_bound := 1e50{lb_mole}; |
474 |
nominal := 10.0{lb_mole}; |
475 |
END mole; |
476 |
|
477 |
ATOM mass_rate REFINES solver_var |
478 |
DIMENSION M/T |
479 |
DEFAULT 50{g/s}; |
480 |
lower_bound := 0.0{g/s}; |
481 |
upper_bound := 1e50{g/s}; |
482 |
nominal := 100.0{g/s}; |
483 |
END mass_rate; |
484 |
|
485 |
CONSTANT mass_rate_constant |
486 |
REFINES real_constant DIMENSION M/T; |
487 |
|
488 |
ATOM mass_flux REFINES solver_var |
489 |
DIMENSION M/T/L^2 |
490 |
DEFAULT 10{kg/s/m^2}; |
491 |
lower_bound := -1e12{kg/s/m^2}; |
492 |
upper_bound := 1e12{kg/s/m^2}; |
493 |
nominal := 10.0{kg/s/m^2}; |
494 |
END mass_flux; |
495 |
|
496 |
ATOM mass_rate_rate REFINES solver_var |
497 |
DIMENSION M/T^2 |
498 |
DEFAULT 10{g/s/s}; |
499 |
lower_bound := -1e50{g/s/s}; |
500 |
upper_bound := 1e50{g/s/s}; |
501 |
nominal := 10.0{g/s/s}; |
502 |
END mass_rate_rate; |
503 |
|
504 |
ATOM mass_rate_per_length REFINES solver_var |
505 |
DIMENSION M/T/L |
506 |
DEFAULT 0.1 {kg/s/m}; |
507 |
lower_bound := -1e50 {kg/s/m}; |
508 |
upper_bound := 1e50 {kg/s/m}; |
509 |
nominal := 1.0 {kg/s/m}; |
510 |
END mass_rate_per_length; |
511 |
|
512 |
|
513 |
ATOM molar_rate_scale REFINES real DIMENSION Q/T DEFAULT 1 {mole/second}; |
514 |
END molar_rate_scale; |
515 |
|
516 |
ATOM molar_rate REFINES solver_var |
517 |
DIMENSION Q/T |
518 |
DEFAULT 100.0{lb_mole/hour}; |
519 |
lower_bound := 0.0{lb_mole/hour}; |
520 |
upper_bound := 1e50{lb_mole/hour}; |
521 |
nominal := 100.0{lb_mole/hour}; |
522 |
END molar_rate; |
523 |
|
524 |
ATOM conc_rate REFINES solver_var |
525 |
DIMENSION Q/L^3/T |
526 |
DEFAULT 100.0{lb_mole/ft^3/hour}; |
527 |
lower_bound := 0.0{lb_mole/ft^3/hour}; |
528 |
upper_bound := 1e50{lb_mole/ft^3/hour}; |
529 |
nominal := 100.0{lb_mole/ft^3/hour}; |
530 |
END conc_rate; |
531 |
|
532 |
|
533 |
ATOM mole_fraction REFINES fraction |
534 |
DIMENSIONLESS |
535 |
DEFAULT 0.5; |
536 |
lower_bound := 0.0; |
537 |
nominal := 0.3; |
538 |
upper_bound := 1.0; |
539 |
END mole_fraction; |
540 |
|
541 |
ATOM mass_fraction REFINES fraction |
542 |
DIMENSIONLESS |
543 |
DEFAULT 0.5; |
544 |
lower_bound := 0.0; |
545 |
nominal := 0.3; |
546 |
upper_bound := 1.0; |
547 |
END mass_fraction; |
548 |
|
549 |
|
550 |
(* V O L U M E Q U A N T I T I E S |
551 |
-------------------------------- *) |
552 |
|
553 |
ATOM molar_volume REFINES solver_var |
554 |
DIMENSION L^3/Q |
555 |
DEFAULT 1000.0{cm^3/g_mole}; |
556 |
lower_bound := 0.0{cm^3/g_mole}; |
557 |
upper_bound := 1e50{cm^3/g_mole}; |
558 |
nominal := 1000.0{cm^3/g_mole}; |
559 |
END molar_volume; |
560 |
|
561 |
ATOM volume_scale REFINES real DIMENSION L^3 DEFAULT 1.0 {m^3}; |
562 |
END volume_scale; |
563 |
|
564 |
ATOM volume REFINES solver_var |
565 |
DIMENSION L^3 |
566 |
DEFAULT 100.0{ft^3}; |
567 |
lower_bound := 0.0{ft^3}; |
568 |
upper_bound := 1e50{ft^3}; |
569 |
nominal := 100.0{ft^3}; |
570 |
END volume; |
571 |
|
572 |
ATOM volume_rate_scale REFINES real DIMENSION L^3/T DEFAULT 1{m^3/s}; |
573 |
END volume_rate_scale; |
574 |
|
575 |
ATOM volume_rate REFINES solver_var |
576 |
DIMENSION L^3/T |
577 |
DEFAULT 100.0{gpm}; |
578 |
lower_bound := 0.0{gpm}; |
579 |
upper_bound := 1e50{gpm}; |
580 |
nominal := 100.0{gpm}; |
581 |
END volume_rate; |
582 |
|
583 |
ATOM volume_rate_square REFINES solver_var |
584 |
DIMENSION L^6/T^2 |
585 |
DEFAULT 100.0{ft^6/s^2}; |
586 |
lower_bound := 0.0{ft^6/s^2}; |
587 |
upper_bound := 1e50{ft^6/s^2}; |
588 |
nominal := 100 {ft^6/s^2}; |
589 |
END volume_rate_square; |
590 |
|
591 |
ATOM volume_expansivity REFINES solver_var |
592 |
DIMENSION 1/TMP |
593 |
DEFAULT 0.001{1/K}; |
594 |
lower_bound := 0.0{1/K}; |
595 |
upper_bound := 1e50{1/K}; |
596 |
nominal := 0.001{1/K}; |
597 |
END volume_expansivity; |
598 |
|
599 |
|
600 |
(* D E N S I T Y Q U A N T I T I E S |
601 |
---------------------------------- *) |
602 |
|
603 |
ATOM molar_density REFINES solver_var |
604 |
DIMENSION Q/L^3 |
605 |
DEFAULT 0.1{mole/m^3}; |
606 |
lower_bound := 0.0{mole/m^3}; |
607 |
upper_bound := 1e50{mole/m^3}; |
608 |
nominal := 0.1{mole/m^3}; |
609 |
END molar_density; |
610 |
|
611 |
ATOM mass_density REFINES solver_var |
612 |
DIMENSION M/L^3 |
613 |
DEFAULT 1.0{g/cm^3}; |
614 |
lower_bound := 0.0{g/cm^3}; |
615 |
upper_bound := 1e50{g/cm^3}; |
616 |
nominal := 1.0{g/cm^3}; |
617 |
END mass_density; |
618 |
|
619 |
|
620 |
(* E N E R G Y Q U A N T I T I E S |
621 |
------------------------------------ *) |
622 |
|
623 |
ATOM molar_energy REFINES solver_var |
624 |
DIMENSION M*L^2/T^2/Q |
625 |
DEFAULT 10000.0{BTU/lb_mole}; |
626 |
lower_bound := -1e50{BTU/lb_mole}; |
627 |
upper_bound := 1e50{BTU/lb_mole}; |
628 |
nominal := 10000.0{BTU/lb_mole}; |
629 |
END molar_energy; |
630 |
|
631 |
ATOM energy_scale REFINES real DIMENSION M*L^2/T^2 DEFAULT 1{joule}; |
632 |
END energy_scale; |
633 |
|
634 |
ATOM energy REFINES solver_var |
635 |
DIMENSION M*L^2/T^2 |
636 |
DEFAULT 100000.0{BTU}; |
637 |
lower_bound := -1e50{BTU}; |
638 |
upper_bound := 1e50{BTU}; |
639 |
nominal := 100000.0{BTU}; |
640 |
END energy; |
641 |
|
642 |
ATOM energy_per_volume REFINES solver_var |
643 |
DIMENSION M/L/T^2 |
644 |
DEFAULT 1000{kJ/L}; |
645 |
lower_bound := -1e50{kJ/L}; |
646 |
upper_bound := 1e50{kJ/L}; |
647 |
nominal := 1000{kJ/L}; |
648 |
END energy_per_volume; |
649 |
|
650 |
ATOM energy_rate_scale REFINES real DIMENSION M*L^2/T^3 DEFAULT 1{watt}; |
651 |
END energy_rate_scale; |
652 |
|
653 |
ATOM energy_rate REFINES solver_var |
654 |
DIMENSION M*L^2/T^3 |
655 |
DEFAULT 100000.0{BTU/hour}; |
656 |
lower_bound := -1e50{BTU/hour}; |
657 |
upper_bound := 1e50{BTU/hour}; |
658 |
nominal := 100000.0{BTU/hour}; |
659 |
END energy_rate; |
660 |
|
661 |
ATOM power_per_length REFINES solver_var |
662 |
DIMENSION M*L/T^3 |
663 |
DEFAULT 1.0{kW/m}; |
664 |
lower_bound := -1e50{kW/m}; |
665 |
upper_bound := 1e50{kW/m}; |
666 |
nominal := 1.0{kW/m}; |
667 |
END power_per_length; |
668 |
|
669 |
ATOM power_per_volume REFINES solver_var |
670 |
DIMENSION M/L/T^3 |
671 |
DEFAULT 1.0{kW/m^3}; |
672 |
lower_bound := -1e50{kW/m^3}; |
673 |
upper_bound := 1e50{kW/m^3}; |
674 |
nominal := 1.0{kW/m^3}; |
675 |
END power_per_volume; |
676 |
|
677 |
ATOM power_per_area REFINES solver_var |
678 |
DIMENSION M/T^3 |
679 |
DEFAULT 1.0{kW/m^2}; |
680 |
lower_bound := -1e50{kW/m^3}; |
681 |
upper_bound := 1e50{kW/m^3}; |
682 |
nominal := 1.0{kW/m^3}; |
683 |
END power_per_area; |
684 |
|
685 |
ATOM power_per_temperature REFINES solver_var |
686 |
DIMENSION M*L^2/T^3/TMP |
687 |
DEFAULT 1.0{kW/K}; |
688 |
lower_bound := -1e30{kW/K}; |
689 |
upper_bound := 1e30{kW/K}; |
690 |
nominal := 1.0 {kW/K}; |
691 |
END power_per_temperature; |
692 |
|
693 |
ATOM irradiance REFINES solver_var |
694 |
DIMENSION M/T^3 |
695 |
DEFAULT 1000{W/m^2}; |
696 |
lower_bound := 0{W/m^2}; |
697 |
upper_bound := 1.5{MW/m^2}; (* a bit more that the max possible from sunlight *) |
698 |
nominal := 300{W/m^2}; |
699 |
END irradiance; |
700 |
|
701 |
ATOM irradiation REFINES solver_var |
702 |
DIMENSION M/T^2 |
703 |
DEFAULT 1000{J/m^2}; |
704 |
lower_bound := 0{J/m^2}; |
705 |
upper_bound := 1e50{J/m^2}; (* a bit more that the max possible from sunlight *) |
706 |
nominal := 300{J/m^2}; |
707 |
END irradiation; |
708 |
|
709 |
|
710 |
ATOM molar_heat_capacity REFINES solver_var |
711 |
DIMENSION M*L^2/T^2/Q/TMP |
712 |
DEFAULT 1.00e5{J/mole/K}; |
713 |
lower_bound := 0.0{J/mole/K}; |
714 |
upper_bound := 1e60{J/mole/K}; |
715 |
nominal := 1.00e5{J/mole/K}; |
716 |
END molar_heat_capacity; |
717 |
|
718 |
ATOM molar_energy_rate REFINES solver_var |
719 |
DIMENSION M*L^2/T^3/Q |
720 |
DEFAULT 0 {BTU/lb_mole/h}; |
721 |
lower_bound := -1e50 {BTU/lb_mole/h}; |
722 |
upper_bound := 1e50 {BTU/lb_mole/h}; |
723 |
nominal := 10000.0 {BTU/lb_mole/h}; |
724 |
END molar_energy_rate; |
725 |
|
726 |
(* E N T R O P Y Q U A N T I T I E S |
727 |
---------------------------------- *) |
728 |
|
729 |
ATOM molar_entropy REFINES solver_var |
730 |
DIMENSION M*L^2/T^2/Q/TMP |
731 |
DEFAULT 100.0{BTU/lb_mole/R}; |
732 |
lower_bound := -1e50{BTU/lb_mole/R}; |
733 |
upper_bound := 1e50{BTU/lb_mole/R}; |
734 |
nominal := 100.0{BTU/lb_mole/R}; |
735 |
END molar_entropy; |
736 |
|
737 |
ATOM entropy REFINES solver_var |
738 |
DIMENSION M*L^2/T^2/TMP |
739 |
DEFAULT 1000.0{BTU/R}; |
740 |
lower_bound := -1e50{BTU/R}; |
741 |
upper_bound := 1e50{BTU/R}; |
742 |
nominal := 1000.0{BTU/R}; |
743 |
END entropy; |
744 |
|
745 |
ATOM entropy_rate REFINES solver_var |
746 |
DIMENSION M*L^2/T^3/TMP |
747 |
DEFAULT 1000.0{BTU/hour/R}; |
748 |
lower_bound := -1e50{BTU/hour/R}; |
749 |
upper_bound := 1e50{BTU/hour/R}; |
750 |
nominal := 1000.0{BTU/hour/R}; |
751 |
END entropy_rate; |
752 |
|
753 |
|
754 |
|
755 |
(* E Q U I L I B R I U M Q U A N T I T I E S |
756 |
------------------------------------------ *) |
757 |
|
758 |
ATOM partition_coefficient REFINES factor (* new *) |
759 |
DEFAULT 1.0; |
760 |
lower_bound := 1.0e-10; |
761 |
upper_bound := 30.0; |
762 |
nominal := 1.0; |
763 |
END partition_coefficient; |
764 |
|
765 |
ATOM relative_volatility REFINES partition_coefficient; (* new *) |
766 |
END relative_volatility; |
767 |
|
768 |
|
769 |
(* M O N E T A R Y Q U A N T I T I E S |
770 |
------------------------------------ *) |
771 |
|
772 |
ATOM monetary_unit REFINES solver_var |
773 |
DIMENSION C |
774 |
DEFAULT 100.0{USD}; |
775 |
lower_bound := -1e50{USD}; |
776 |
upper_bound := 1e50{USD}; |
777 |
nominal := 100.0{USD}; |
778 |
END monetary_unit; |
779 |
|
780 |
ATOM cost_per_volume REFINES solver_var |
781 |
DIMENSION C/L^3 |
782 |
DEFAULT 1.0{USD/gallon}; |
783 |
lower_bound := 0.0{USD/gallon}; |
784 |
upper_bound := 1e50{USD/gallon}; |
785 |
nominal := 1.0{USD/gallon}; |
786 |
END cost_per_volume; |
787 |
|
788 |
ATOM cost_per_mass REFINES solver_var |
789 |
DIMENSION C/M |
790 |
DEFAULT 1.0{USD/lbm}; |
791 |
lower_bound := 0.0{USD/lbm}; |
792 |
upper_bound := 1e50{USD/lbm}; |
793 |
nominal := 1.0{USD/lbm}; |
794 |
END cost_per_mass; |
795 |
|
796 |
CONSTANT cost_per_mass_constant |
797 |
REFINES real_constant DIMENSION C/M; |
798 |
|
799 |
ATOM cost_per_mole REFINES solver_var |
800 |
DIMENSION C/Q |
801 |
DEFAULT 1.0{USD/lb_mole}; |
802 |
lower_bound := 0.0{USD/lb_mole}; |
803 |
upper_bound := 1e50{USD/lb_mole}; |
804 |
nominal := 1.0{USD/lb_mole}; |
805 |
END cost_per_mole; |
806 |
|
807 |
ATOM cost_per_time REFINES solver_var |
808 |
DIMENSION C/T |
809 |
DEFAULT 1.0{USD/min}; |
810 |
lower_bound := 0.0{USD/min}; |
811 |
upper_bound := 1e50{USD/min}; |
812 |
nominal := 1.0{USD/min}; |
813 |
END cost_per_time; |
814 |
|
815 |
ATOM cost_per_energy REFINES solver_var |
816 |
DIMENSION C*T^2/M/L^2 |
817 |
DEFAULT 1.0{USD/BTU}; |
818 |
lower_bound := 0.0{USD/BTU}; |
819 |
upper_bound := 1e50{USD/BTU}; |
820 |
nominal := 1.0{USD/BTU}; |
821 |
END cost_per_energy; |
822 |
|
823 |
CONSTANT cost_per_mass_per_distance_constant |
824 |
REFINES real_constant DIMENSION C/M/L; |
825 |
|
826 |
|
827 |
(* S U R V E Y I N G Q U A N T I T I E S |
828 |
--------------------------------------- *) |
829 |
|
830 |
ATOM distance REFINES solver_var |
831 |
DIMENSION L |
832 |
DEFAULT 10.0{ft}; |
833 |
lower_bound := 0.0{ft}; |
834 |
upper_bound := 1e50{ft}; |
835 |
nominal := 10.0{ft}; |
836 |
END distance; |
837 |
|
838 |
CONSTANT distance_constant |
839 |
REFINES real_constant DIMENSION L; |
840 |
|
841 |
ATOM area REFINES solver_var |
842 |
DIMENSION L^2 |
843 |
DEFAULT 1{m^2}; |
844 |
lower_bound := 0.0{m^2}; |
845 |
upper_bound := 1e50{m^2}; |
846 |
nominal := 1{m^2}; |
847 |
END area; |
848 |
|
849 |
ATOM inverse_area REFINES solver_var |
850 |
DIMENSION L^-2 |
851 |
DEFAULT 1{1/ft^2}; |
852 |
lower_bound := 0.0{1/ft^2}; |
853 |
upper_bound := 1e50{1/ft^2}; |
854 |
nominal := 1.0{1/ft^2}; |
855 |
END inverse_area; |
856 |
|
857 |
ATOM angle REFINES solver_var |
858 |
DIMENSION P |
859 |
DEFAULT 1 {rad}; |
860 |
lower_bound := -1e50 {rad}; |
861 |
upper_bound := 1e50 {rad}; |
862 |
nominal := 1 {rad}; |
863 |
END angle; |
864 |
|
865 |
ATOM solid_angle REFINES solver_var |
866 |
DIMENSION S |
867 |
DEFAULT 1 {srad}; |
868 |
lower_bound := -1e50 {srad}; |
869 |
upper_bound := 1e50 {srad}; |
870 |
nominal := 1 {srad}; |
871 |
END solid_angle; |
872 |
|
873 |
(* M O T I O N Q U A N T I T I E S |
874 |
--------------------------------- *) |
875 |
|
876 |
ATOM time REFINES solver_var |
877 |
DIMENSION T |
878 |
DEFAULT 60.0{s}; |
879 |
lower_bound := -1e50{s}; |
880 |
upper_bound := 1e50{s}; |
881 |
nominal := 60.0{s}; |
882 |
END time; |
883 |
|
884 |
ATOM speed REFINES solver_var |
885 |
DIMENSION L/T |
886 |
DEFAULT 3.0{ft/s}; |
887 |
lower_bound := -1e50{m/s}; |
888 |
upper_bound := 1e50{m/s}; |
889 |
nominal := 1.0{m/s}; |
890 |
END speed; |
891 |
|
892 |
ATOM angular_speed REFINES solver_var |
893 |
DIMENSION P/T |
894 |
DEFAULT 1.0 {rad/s}; |
895 |
lower_bound := -1e50{rad/s}; |
896 |
upper_bound := 1e50{rad/s}; |
897 |
nominal := 1 {rad/s}; |
898 |
END angular_speed; |
899 |
|
900 |
ATOM acceleration REFINES solver_var |
901 |
DIMENSION L/T^2 |
902 |
DEFAULT 9.8{m/s^2}; |
903 |
lower_bound := -1e50{m/s^2}; |
904 |
upper_bound := 1e50{m/s^2}; |
905 |
nominal := 9.8{m/s^2}; |
906 |
END acceleration; |
907 |
|
908 |
ATOM frequency REFINES solver_var |
909 |
DIMENSION 1/T |
910 |
DEFAULT 60.0{1/s}; |
911 |
lower_bound := 0.0{1/s}; |
912 |
upper_bound := 1e50{1/s}; |
913 |
nominal := 60.0{1/s}; |
914 |
END frequency; |
915 |
|
916 |
ATOM stiffness REFINES solver_var |
917 |
DIMENSION M/T^2 |
918 |
DEFAULT 1 {N/m}; |
919 |
lower_bound := 0 {N/m}; |
920 |
upper_bound := 1e12 {N/m}; |
921 |
nominal := 1 {N/m}; |
922 |
END stiffness; |
923 |
|
924 |
|
925 |
|
926 |
(* T R A N S P O R T Q U A N T I T I E S |
927 |
--------------------------------------- *) |
928 |
|
929 |
ATOM viscosity REFINES solver_var |
930 |
DIMENSION M/L/T |
931 |
DEFAULT 1.0{cP}; |
932 |
lower_bound := 0.0{cP}; |
933 |
upper_bound := 1e50{cP}; |
934 |
nominal := 1.0{cP}; |
935 |
END viscosity; |
936 |
|
937 |
ATOM kinematic_viscosity REFINES solver_var |
938 |
DIMENSION L^2/T |
939 |
DEFAULT 1e-6 {m^2/s}; |
940 |
lower_bound := 0.0 {m^2/s}; |
941 |
upper_bound := 1e50 {m^2/s}; |
942 |
nominal := 1.3 {g/s/m} * 0.001 {m^3/kg}; |
943 |
END kinematic_viscosity; |
944 |
|
945 |
ATOM thermal_conductivity REFINES solver_var |
946 |
DIMENSION M*L/T^3/TMP |
947 |
DEFAULT 0.1{BTU/hour/ft/R}; |
948 |
lower_bound := 0.0{BTU/hour/ft/R}; |
949 |
upper_bound := 1e50{BTU/hour/ft/R}; |
950 |
nominal := 0.1{BTU/hour/ft/R}; |
951 |
END thermal_conductivity; |
952 |
|
953 |
ATOM diffusivity REFINES solver_var |
954 |
DIMENSION L^2/T |
955 |
DEFAULT 1.0{cm^2/s}; |
956 |
lower_bound := 0.0{cm^2/s}; |
957 |
upper_bound := 1e50{cm^2/s}; |
958 |
nominal := 1.0{cm^2/s}; |
959 |
END diffusivity; |
960 |
|
961 |
|
962 |
(* E L E C T R O - M A G N E T I C Q U A N T I T I E S |
963 |
---------------------------------------------------- *) |
964 |
|
965 |
ATOM voltage REFINES solver_var |
966 |
DIMENSION M*L^2/(T^3*E) |
967 |
DEFAULT 10.0{volt}; |
968 |
lower_bound := -1e50{volt}; |
969 |
upper_bound := 1e50{volt}; |
970 |
nominal := 10.0{volt}; |
971 |
END voltage; |
972 |
|
973 |
ATOM resistance REFINES solver_var |
974 |
DIMENSION M*L^2/(E^2*T^3) |
975 |
DEFAULT 10.0{ohm}; |
976 |
lower_bound := -1e50{ohm}; |
977 |
upper_bound := 1e50{ohm}; |
978 |
nominal := 10.0{ohm}; |
979 |
END resistance; |
980 |
|
981 |
ATOM current REFINES solver_var |
982 |
DIMENSION E |
983 |
DEFAULT 1.0{amp}; |
984 |
lower_bound := -1e50{amp}; |
985 |
upper_bound := 1e50{amp}; |
986 |
nominal := 1.0{amp}; |
987 |
END current; |
988 |
|
989 |
ATOM capacitance REFINES solver_var |
990 |
DIMENSION E^2*T^4/M/L^2 |
991 |
DEFAULT 1.0{coulomb/volt}; |
992 |
lower_bound := -1e50{coulomb/volt}; |
993 |
upper_bound := 1e50{coulomb/volt}; |
994 |
nominal := 1.0{coulomb/volt}; |
995 |
END capacitance; |
996 |
|
997 |
ATOM inductance REFINES solver_var |
998 |
DIMENSION M*L^2/E^2/T^2 |
999 |
DEFAULT 1.0{volt*s/amp}; |
1000 |
lower_bound := -1e50{volt*s/amp}; |
1001 |
upper_bound := 1e50{volt*s/amp}; |
1002 |
nominal := 1.0{volt*s/amp}; |
1003 |
END inductance; |
1004 |
|
1005 |
ATOM magnetic_field REFINES solver_var |
1006 |
DIMENSION E/L |
1007 |
DEFAULT 1.0{amp/m}; |
1008 |
lower_bound := -1e50{amp/m}; |
1009 |
upper_bound := 1e50{amp/m}; |
1010 |
nominal := 1.0{amp/m}; |
1011 |
END magnetic_field; |
1012 |
|
1013 |
ATOM electric_field REFINES solver_var |
1014 |
DIMENSION M*L/E/T^3 |
1015 |
DEFAULT 1.0{volt/m}; |
1016 |
lower_bound := -1e50{volt/m}; |
1017 |
upper_bound := 1e50{volt/m}; |
1018 |
nominal := 1.0{volt/m}; |
1019 |
END electric_field; |
1020 |
|
1021 |
(* D I F F E R E N T I A L Q U A N T I T I E S |
1022 |
------------------------------------------- *) |
1023 |
|
1024 |
ATOM delta_distance REFINES solver_var |
1025 |
DIMENSION L |
1026 |
DEFAULT 10.0{ft}; |
1027 |
lower_bound := -1e50{ft}; |
1028 |
upper_bound := 1e50{ft}; |
1029 |
nominal := 10.0{ft}; |
1030 |
END delta_distance; |
1031 |
|
1032 |
ATOM delta_area REFINES solver_var |
1033 |
DIMENSION L^2 |
1034 |
DEFAULT 1{m^2}; |
1035 |
lower_bound := -1e50{m^2}; |
1036 |
upper_bound := 1e50{m^2}; |
1037 |
nominal := 1{m^2}; |
1038 |
END delta_area; |
1039 |
|
1040 |
ATOM temperature_rate REFINES solver_var |
1041 |
DIMENSION TMP/T |
1042 |
DEFAULT 0{K/s}; |
1043 |
lower_bound := -100{K/s}; |
1044 |
upper_bound := 100{K/s}; |
1045 |
nominal := 298.0{K/s}; |
1046 |
END temperature_rate; |
1047 |
|
1048 |
ATOM delta_mass REFINES solver_var |
1049 |
DIMENSION M |
1050 |
DEFAULT 0.0{kg}; |
1051 |
lower_bound := -1e50{kg}; |
1052 |
upper_bound := 1e50{kg}; |
1053 |
nominal := 10.0{kg}; |
1054 |
END delta_mass; |
1055 |
|
1056 |
ATOM delta_mole REFINES solver_var |
1057 |
DIMENSION Q |
1058 |
DEFAULT 0{lb_mole}; |
1059 |
lower_bound := -1e50{lb_mole}; |
1060 |
upper_bound := 1e50{lb_mole}; |
1061 |
nominal := 10.0{lb_mole}; |
1062 |
END delta_mole; |
1063 |
|
1064 |
ATOM delta_mass_rate REFINES solver_var |
1065 |
DIMENSION M/T |
1066 |
DEFAULT 0{g/s}; |
1067 |
lower_bound := -1e50{g/s}; |
1068 |
upper_bound := 1e50{g/s}; |
1069 |
nominal := 100.0{g/s}; |
1070 |
END delta_mass_rate; |
1071 |
|
1072 |
ATOM delta_molar_rate REFINES solver_var |
1073 |
DIMENSION Q/T |
1074 |
DEFAULT 0.0{lb_mole/hour}; |
1075 |
lower_bound := -1e50{lb_mole/hour}; |
1076 |
upper_bound := 1e50{lb_mole/hour}; |
1077 |
nominal := 100.0{lb_mole/hour}; |
1078 |
END delta_molar_rate; |
1079 |
|
1080 |
ATOM delta_volume_rate REFINES solver_var |
1081 |
DIMENSION L^3/T |
1082 |
DEFAULT 0.0{gpm}; |
1083 |
lower_bound := -1e50{gpm}; |
1084 |
upper_bound := 1e50{gpm}; |
1085 |
nominal := 100.0{gpm}; |
1086 |
END delta_volume_rate; |
1087 |
|
1088 |
ATOM density_rate REFINES solver_var |
1089 |
DIMENSION M/L^3/T |
1090 |
DEFAULT 0.0 {kg/m^3/s}; |
1091 |
lower_bound := -1e50 {kg/m^3/s}; |
1092 |
upper_bound := 1e50 {kg/m^3/s}; |
1093 |
nominal := 0.1 {kg/m^3/s}; |
1094 |
END density_rate; |
1095 |
|
1096 |
ATOM delta_energy_rate REFINES solver_var |
1097 |
DIMENSION M*L^2/T^3 |
1098 |
DEFAULT 0.0{BTU/hour}; |
1099 |
lower_bound := -1e50{BTU/hour}; |
1100 |
upper_bound := 1e50{BTU/hour}; |
1101 |
nominal := 100000.0{BTU/hour}; |
1102 |
END delta_energy_rate; |
1103 |
|
1104 |
ATOM delta_molar_energy_rate REFINES solver_var |
1105 |
DIMENSION M*L^2/T^3/Q |
1106 |
DEFAULT 0 {BTU/lb_mole/h}; |
1107 |
lower_bound := -1e50 {BTU/lb_mole/h}; |
1108 |
upper_bound := 1e50 {BTU/lb_mole/h}; |
1109 |
nominal := 10000.0 {BTU/lb_mole/h}; |
1110 |
END delta_molar_energy_rate; |
1111 |
|
1112 |
ATOM delta_entropy REFINES solver_var |
1113 |
DIMENSION M*L^2/T^2/TMP |
1114 |
DEFAULT 0.0{BTU/R}; |
1115 |
lower_bound := -1e50{BTU/R}; |
1116 |
upper_bound := 1e50{BTU/R}; |
1117 |
nominal := 1000.0{BTU/R}; |
1118 |
END delta_entropy; |
1119 |
|
1120 |
ATOM delta_entropy_rate REFINES solver_var |
1121 |
DIMENSION M*L^2/T^3/TMP |
1122 |
DEFAULT 0.0{BTU/hour/R}; |
1123 |
lower_bound := -1e50{BTU/hour/R}; |
1124 |
upper_bound := 1e50{BTU/hour/R}; |
1125 |
nominal := 1000.0{BTU/hour/R}; |
1126 |
END delta_entropy_rate; |
1127 |
|
1128 |
|
1129 |
(* C O N T R O L L E R Q U A N T I T I E S |
1130 |
---------------------------------------- *) |
1131 |
|
1132 |
ATOM mass_sec REFINES solver_var |
1133 |
DIMENSION M*T |
1134 |
DEFAULT 0.0{kg*s}; |
1135 |
lower_bound := -1e50{kg*s}; |
1136 |
upper_bound := 1e50{kg*s}; |
1137 |
nominal := 10.0{kg*s}; |
1138 |
END mass_sec; |
1139 |
|
1140 |
ATOM mole_sec REFINES solver_var |
1141 |
DIMENSION Q*T |
1142 |
DEFAULT 0.0{lb_mole*s}; |
1143 |
lower_bound := -1e50{lb_mole*s}; |
1144 |
upper_bound := 1e50{lb_mole*s}; |
1145 |
nominal := 10.0{lb_mole*s}; |
1146 |
END mole_sec; |
1147 |
|
1148 |
(* D I F F E R E N T I A L S *) |
1149 |
|
1150 |
ATOM rate REFINES solver_var |
1151 |
DIMENSION T^-1 |
1152 |
DEFAULT 0{s^-1}; |
1153 |
lower_bound := -1e50{s^-1}; |
1154 |
upper_bound := 1e50{s^-1}; |
1155 |
nominal := 1{s^-1}; |
1156 |
END rate; |
1157 |
|
1158 |
(* M E C H A N I C AL P R O P E R T I E S |
1159 |
---------------------------------------- *) |
1160 |
|
1161 |
ATOM deflection REFINES solver_var (* to facilitate different display units for small values *) |
1162 |
DIMENSION L |
1163 |
DEFAULT 1 {mm}; |
1164 |
lower_bound := -10{m}; |
1165 |
upper_bound := 10{m}; |
1166 |
nominal := 5{mm}; |
1167 |
END deflection; |
1168 |
|
1169 |
ATOM second_moment_of_area REFINES solver_var (* for use in beam bending problems *) |
1170 |
DIMENSION L^4 |
1171 |
DEFAULT 6.67e5 {mm^4}; (* for 150UB14 Universal Beam, AISC (Australia) *) |
1172 |
lower_bound := 0 {mm^4}; |
1173 |
upper_bound := 10000e6 {mm^4}; |
1174 |
nominal := 1e6 {mm^4}; (* this may be too high still *) |
1175 |
END second_moment_of_area; |
1176 |
|
1177 |
ATOM polar_moment_of_inertia REFINES solver_var (* for use in torsion problems *) |
1178 |
DIMENSION L^4 |
1179 |
DEFAULT 28.2e3 {mm^4}; (* for 150UB14 Universal Beam, AISC (Australia) *) |
1180 |
lower_bound := 0 {mm^4}; |
1181 |
upper_bound := 10000e3 {mm^4}; |
1182 |
nominal := 100e3 {mm^4}; (* this may be too high still *) |
1183 |
END polar_moment_of_inertia; |
1184 |
|
1185 |
CONSTANT second_moment_of_area_constant |
1186 |
REFINES real_constant DIMENSION L^4; |
1187 |
|
1188 |
CONSTANT length_constant |
1189 |
REFINES real_constant DIMENSION L; |
1190 |
|
1191 |
CONSTANT area_constant |
1192 |
REFINES real_constant DIMENSION L^2; |
1193 |
|
1194 |
ATOM moment REFINES solver_var |
1195 |
DIMENSION M*L^2/T^2 |
1196 |
DEFAULT 1 {kN*m}; |
1197 |
lower_bound := -1e5 {kN*m}; |
1198 |
upper_bound := 1e5 {kN*m}; |
1199 |
nominal := 1 {kN*m}; |
1200 |
END moment; |
1201 |
|
1202 |
ATOM stress REFINES solver_var |
1203 |
DIMENSION M/L/T^2 |
1204 |
DEFAULT 1.0 {MPa}; |
1205 |
lower_bound := -5000 {MPa}; |
1206 |
upper_bound := 5000 {MPa}; |
1207 |
nominal := 1.0 {MPa}; |
1208 |
END stress; |