1 |
************************************************************************ |
2 |
* |
3 |
* File mi65rmod fortran. |
4 |
* |
5 |
* m6bfgs m6bswp m6radd m6rcnd m6rdel |
6 |
* m6rmod m6rset m6rsol m6swap |
7 |
* |
8 |
*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
9 |
|
10 |
subroutine m6bfgs( maxr, n, nr, r, g, g2, p, v, |
11 |
$ step, told, tolz, inform ) |
12 |
|
13 |
implicit double precision (a-h,o-z) |
14 |
double precision r(nr), g(n), g2(n), p(n), v(n) |
15 |
|
16 |
* ------------------------------------------------------------------ |
17 |
* m6bfgs applies the BFGS update to the upper-triangular matrix r, |
18 |
* which holds the cholesky factor of the quasi-newton approximation |
19 |
* of the (projected) hessian. |
20 |
* |
21 |
* r contains a triangle of size ncolr = min( n, maxr ). |
22 |
* If n .gt. maxr, r also contains a diagonal of size n - maxr. |
23 |
* |
24 |
* p holds the search direction. It is overwritten. |
25 |
* v must satisfy r(t)*v = g. It is overwritten. |
26 |
* |
27 |
* On exit, |
28 |
* inform = 0 if no update was performed, |
29 |
* = 1 if the update was successful, |
30 |
* = 2 if it was nearly singular. |
31 |
* ------------------------------------------------------------------ |
32 |
|
33 |
intrinsic abs, min, sqrt |
34 |
parameter ( one = 1.0d+0 ) |
35 |
|
36 |
inform = 0 |
37 |
ncolr = min( n, maxr ) |
38 |
gtp = ddot ( n, g , 1, p, 1 ) |
39 |
gtp2 = ddot ( n, g2, 1, p, 1 ) |
40 |
if (gtp2 .le. 0.91*gtp) return |
41 |
|
42 |
delta1 = one / sqrt( abs( gtp ) ) |
43 |
delta2 = one / sqrt( step*(gtp2 - gtp) ) |
44 |
|
45 |
* Normalize v and change its sign. |
46 |
|
47 |
call dscal ( n, (- delta1), v, 1 ) |
48 |
|
49 |
* Avoid cancellation error in forming the new vector p. |
50 |
|
51 |
if ( abs( delta1/delta2 - one ) .ge. 0.5d+0) then |
52 |
do 100 j = 1, n |
53 |
p(j) = delta2*( g2(j) - g(j) ) + delta1*g(j) |
54 |
100 continue |
55 |
else |
56 |
d = delta1 - delta2 |
57 |
do 120 j = 1, n |
58 |
p(j) = delta2*g2(j) + d*g(j) |
59 |
120 continue |
60 |
end if |
61 |
|
62 |
* Find the last nonzero in v. |
63 |
|
64 |
do 450 ii = 1, ncolr |
65 |
lastv = ncolr + 1 - ii |
66 |
if (abs( v(lastv) ) .gt. tolz) go to 500 |
67 |
450 continue |
68 |
lastv = 1 |
69 |
|
70 |
* Triangularize r + v * p(t). |
71 |
|
72 |
500 call m6rmod( ncolr, nr, r, v, p, lastv, told, tolz, inform ) |
73 |
|
74 |
* Deal with surplus diagonals of r. |
75 |
|
76 |
if (n .gt. maxr) then |
77 |
j1 = maxr + 1 |
78 |
l = maxr*j1/2 |
79 |
do 650 j = j1, n |
80 |
l = l + 1 |
81 |
r(l) = r(l) + v(j)*p(j) |
82 |
650 continue |
83 |
end if |
84 |
|
85 |
* end of m6bfgs |
86 |
end |
87 |
|
88 |
*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
89 |
|
90 |
subroutine m6bswp( n, nr, r, v, w, lastv, told, tolz, inform ) |
91 |
|
92 |
implicit double precision (a-h,o-z) |
93 |
double precision r(nr), v(n), w(n) |
94 |
|
95 |
* ------------------------------------------------------------------ |
96 |
* m6bswp modifies the upper-triangular matrix r |
97 |
* to account for a basis exchange in which the lastv-th |
98 |
* superbasic variable becomes basic. r is changed to |
99 |
* r + v*w(t), which is triangularized by r1mod, |
100 |
* where v is the lastv-th column of r, and w is input. |
101 |
* ------------------------------------------------------------------ |
102 |
|
103 |
* Set v = lastv-th column of r and find its norm. |
104 |
|
105 |
l = (lastv - 1)*lastv/2 |
106 |
call dcopy ( lastv, r(l+1), 1, v, 1 ) |
107 |
vnorm = dasum ( lastv, v, 1 ) |
108 |
call m6rmod( n, nr, r, v, w, lastv, |
109 |
$ (vnorm*told), (vnorm*tolz), inform ) |
110 |
|
111 |
* end of m6bswp |
112 |
end |
113 |
|
114 |
*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
115 |
|
116 |
subroutine m6radd( maxr, nr, ns, r ) |
117 |
|
118 |
implicit double precision (a-h,o-z) |
119 |
double precision r(nr) |
120 |
|
121 |
* ------------------------------------------------------------------ |
122 |
* m6radd adds column ns to the upper triangular matrix r. |
123 |
* In this version (Sep 1984) it is just a unit vector. |
124 |
* |
125 |
* Modified Jan 1983 to add a diagonal only, if ns .gt. maxr. |
126 |
* ------------------------------------------------------------------ |
127 |
|
128 |
parameter ( zero = 0.0d+0, one = 1.0d+0 ) |
129 |
|
130 |
if (ns .eq. 1) then |
131 |
r(1) = one |
132 |
else if (ns .le. maxr) then |
133 |
ldiag1 = (ns - 1)*ns/2 |
134 |
ldiag2 = ldiag1 + ns |
135 |
call dload ( ns, zero, r(ldiag1+1), 1 ) |
136 |
r(ldiag2) = one |
137 |
else |
138 |
ldiag2 = maxr*(maxr + 1)/2 + (ns - maxr) |
139 |
r(ldiag2) = one |
140 |
end if |
141 |
|
142 |
* end of m6radd |
143 |
end |
144 |
|
145 |
*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
146 |
|
147 |
subroutine m6rcnd( maxr, nr, ns, r, dmax, dmin, cond ) |
148 |
|
149 |
implicit double precision (a-h,o-z) |
150 |
double precision r(nr) |
151 |
|
152 |
* ------------------------------------------------------------------ |
153 |
* m6rcnd finds the largest and smallest diagonals of the |
154 |
* upper triangular matrix r, and returns the square of their ratio. |
155 |
* This is a lower bound on the condition number of r(t)*r. |
156 |
* ------------------------------------------------------------------ |
157 |
|
158 |
intrinsic abs, max, min |
159 |
|
160 |
ncolr = min( maxr, ns ) |
161 |
dmax = abs( r(1) ) |
162 |
dmin = dmax |
163 |
|
164 |
if (ncolr .gt. 1) then |
165 |
l = 1 |
166 |
do 100 j = 2, ncolr |
167 |
l = l + j |
168 |
d = abs( r(l) ) |
169 |
dmax = max( dmax, d ) |
170 |
dmin = min( dmin, d ) |
171 |
100 continue |
172 |
end if |
173 |
|
174 |
cond = (dmax/dmin)**2 |
175 |
|
176 |
* end of m6rcnd |
177 |
end |
178 |
|
179 |
*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
180 |
|
181 |
subroutine m6rdel( m, maxr, nr, ns, ms, |
182 |
$ kb, bbl, bbu, grd, r, rg, x, jq, rset ) |
183 |
|
184 |
implicit double precision (a-h,o-z) |
185 |
integer kb(ms) |
186 |
double precision bbl(ms), bbu(ms), grd(ms) |
187 |
double precision r(nr), rg(ns), x(ms) |
188 |
logical rset |
189 |
|
190 |
* ------------------------------------------------------------------ |
191 |
* m6rdel deletes the jq-th superbasic variable from r |
192 |
* and from various arrays kb, bbl, bbu, grd, rg, x. |
193 |
* ------------------------------------------------------------------ |
194 |
|
195 |
common /m1eps / eps,eps0,eps1,eps2,eps3,eps4,eps5,plinfy |
196 |
|
197 |
intrinsic abs, max, min, sqrt |
198 |
parameter ( zero = 0.0d+0 ) |
199 |
|
200 |
if (jq .eq. ns) return |
201 |
if (.not. rset) go to 500 |
202 |
|
203 |
* Delete the jq-th column of r and triangularize the |
204 |
* remaining columns using a partial forward sweep of rotations. |
205 |
|
206 |
ncolr = min( maxr, ns ) |
207 |
k = jq*(jq + 1)/2 |
208 |
|
209 |
do 50 i = jq + 1, ncolr |
210 |
k = k + i |
211 |
t1 = r(k-1) |
212 |
t2 = r(k) |
213 |
d = sqrt( t1*t1 + t2*t2 ) |
214 |
r(k-1) = d |
215 |
if (i .eq. ncolr) go to 20 |
216 |
sn = t2/d |
217 |
cs = t1/d |
218 |
if (abs( cs ) .le. eps0) cs = zero |
219 |
j1 = i + 1 |
220 |
k1 = k + i |
221 |
do 10 j = j1, ncolr |
222 |
t1 = r(k1-1) |
223 |
t2 = r(k1) |
224 |
r(k1-1) = cs*t1 + sn*t2 |
225 |
r(k1) = sn*t1 - cs*t2 |
226 |
k1 = k1 + j |
227 |
10 continue |
228 |
20 k1 = i - 1 |
229 |
j2 = k - i |
230 |
j1 = j2 - i + 2 |
231 |
do 30 j = j1, j2 |
232 |
r(j) = r(j+k1) |
233 |
30 continue |
234 |
50 continue |
235 |
|
236 |
* If necessary, clear out the last column of r. |
237 |
|
238 |
if (ns .gt. maxr) then |
239 |
lastr = maxr*(maxr + 1)/2 |
240 |
l = lastr - maxr + 1 |
241 |
if (jq .le. maxr) call dload ( maxr, zero, r(l), 1 ) |
242 |
|
243 |
* Shift surplus diagonals of r to the left. |
244 |
|
245 |
j1 = max( maxr, jq ) |
246 |
j2 = ns - 1 |
247 |
l = lastr + (j1 - maxr) |
248 |
do 320 j = j1, j2 |
249 |
r(l) = r(l+1) |
250 |
320 continue |
251 |
end if |
252 |
|
253 |
* Shift all the arrays one place to the left. |
254 |
|
255 |
500 j2 = ns - 1 |
256 |
do 550 j = jq, j2 |
257 |
rg(j) = rg(j+1) |
258 |
k = m + j |
259 |
kb(k) = kb(k+1) |
260 |
bbl(k) = bbl(k+1) |
261 |
bbu(k) = bbu(k+1) |
262 |
grd(k) = grd(k+1) |
263 |
x(k) = x(k+1) |
264 |
550 continue |
265 |
|
266 |
* end of m6rdel |
267 |
end |
268 |
|
269 |
*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
270 |
|
271 |
subroutine m6rmod( n, nr, r, v, w, lastv, told, tolz, inform ) |
272 |
|
273 |
implicit double precision (a-h,o-z) |
274 |
double precision r(nr), v(n), w(n) |
275 |
|
276 |
* ------------------------------------------------------------------ |
277 |
* m6rmod modifies the upper-triangular matrix r so that |
278 |
* q*(r + v*w(t)) is upper triangular, where q is orthogonal, |
279 |
* v and w are vectors, and the new r overwrites the old. |
280 |
* |
281 |
* q is the product of two sweeps of plane rotations (not stored). |
282 |
* These affect the lastv-th row of r, which is temporarily held |
283 |
* in the vector v. Thus, v is overwritten. w is not altered. |
284 |
* |
285 |
* lastv points to the last nonzero of v. The value lastv = n |
286 |
* would always be ok, but sometimes it is known to be less |
287 |
* than n, so q reduces to two partial sweeps of |
288 |
* rotations. |
289 |
* |
290 |
* told is a tolerance on the lastv-th diagonal of r. |
291 |
* tolz is a tolerance for negligible elements in v. |
292 |
* |
293 |
* On exit, |
294 |
* inform = 1 if the diagonal of r is larger than told, |
295 |
* = 2 if not (in which case it is reset to told). |
296 |
* ------------------------------------------------------------------ |
297 |
|
298 |
intrinsic sqrt |
299 |
parameter ( zero = 0.0d+0 ) |
300 |
|
301 |
vlast = v(lastv) |
302 |
lm1 = lastv - 1 |
303 |
lastr = lastv*(lastv + 1)/2 |
304 |
|
305 |
* Copy the lastv-th row of r into the end of v. |
306 |
|
307 |
l = lastr |
308 |
do 100 j = lastv, n |
309 |
v(j) = r(l) |
310 |
l = l + j |
311 |
100 continue |
312 |
|
313 |
* Reduce v to a multiple of e(lastv) |
314 |
* using a partial backward sweep of rotations. |
315 |
* This fills in the lastv-th row of r (held in v). |
316 |
|
317 |
v2 = vlast**2 |
318 |
ldiag = lastr |
319 |
|
320 |
do 300 ii = 1, lm1 |
321 |
i = lastv - ii |
322 |
ldiag = ldiag - i - 1 |
323 |
s = v(i) |
324 |
v(i) = zero |
325 |
if (abs(s) .le. tolz) go to 300 |
326 |
v2 = s**2 + v2 |
327 |
root = sqrt(v2) |
328 |
cs = vlast/root |
329 |
sn = s/root |
330 |
vlast = root |
331 |
l = ldiag |
332 |
|
333 |
do 200 j = i, n |
334 |
s = v(j) |
335 |
t = r(l) |
336 |
v(j) = cs*s + sn*t |
337 |
r(l) = sn*s - cs*t |
338 |
l = l + j |
339 |
200 continue |
340 |
300 continue |
341 |
|
342 |
* Set v = v + vlast*w. |
343 |
|
344 |
call daxpy ( n, vlast, w, 1, v, 1 ) |
345 |
|
346 |
* Eliminate the front of the lastv-th row of r (held in v) |
347 |
* using a partial forward sweep of rotations. |
348 |
|
349 |
ldiag = 0 |
350 |
|
351 |
do 700 i = 1, lm1 |
352 |
ldiag = ldiag + i |
353 |
t = v(i) |
354 |
if (abs(t) .le. tolz) go to 700 |
355 |
s = r(ldiag) |
356 |
root = sqrt(s**2 + t**2) |
357 |
cs = s/root |
358 |
sn = t/root |
359 |
r(ldiag) = root |
360 |
l = ldiag + i |
361 |
|
362 |
do 600 j = i + 1, n |
363 |
s = r(l) |
364 |
t = v(j) |
365 |
r(l) = cs*s + sn*t |
366 |
v(j) = sn*s - cs*t |
367 |
l = l + j |
368 |
600 continue |
369 |
700 continue |
370 |
|
371 |
* Insert the new lastv-th row of r. |
372 |
|
373 |
l = lastr |
374 |
do 900 j = lastv, n |
375 |
r(l) = v(j) |
376 |
l = l + j |
377 |
900 continue |
378 |
|
379 |
* Test for (unlikely) singularity. |
380 |
|
381 |
inform = 1 |
382 |
if (abs( r(lastr) ) .le. told) then |
383 |
inform = 2 |
384 |
r(lastr) = told |
385 |
end if |
386 |
|
387 |
* end of m6rmod |
388 |
end |
389 |
|
390 |
*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
391 |
|
392 |
subroutine m6rset( maxr, nr, ns, r, cond ) |
393 |
|
394 |
implicit double precision (a-h,o-z) |
395 |
double precision r(nr) |
396 |
|
397 |
* ------------------------------------------------------------------ |
398 |
* m6rset alters r, the upper-triangular factor of the |
399 |
* approximation to the reduced hessian. |
400 |
* |
401 |
* If r(1) = zero, r does not exist. |
402 |
* In this case, r is initialized to the identity matrix. |
403 |
* |
404 |
* Otherwise, r already exists and we attempt to make it better |
405 |
* conditioned by scaling its columns by the square roots of its |
406 |
* current diagonals. |
407 |
* ------------------------------------------------------------------ |
408 |
|
409 |
common /m1file/ iread,iprint,isumm |
410 |
|
411 |
intrinsic abs, max, min, sqrt |
412 |
parameter ( zero = 0.0d+0, one = 1.0d+0 ) |
413 |
|
414 |
cond = one |
415 |
ncolr = min( maxr, ns ) |
416 |
if (ncolr .eq. 0 ) return |
417 |
|
418 |
dmax = abs( r(1) ) |
419 |
if (dmax .eq. zero) then |
420 |
|
421 |
* Set r = the identity. |
422 |
|
423 |
l = ncolr*(ncolr + 1)/2 |
424 |
call dload ( l, zero, r, 1 ) |
425 |
ldiag = 0 |
426 |
|
427 |
do 100 k = 1, ncolr |
428 |
ldiag = ldiag + k |
429 |
r(ldiag) = one |
430 |
100 continue |
431 |
|
432 |
do 120 k = maxr + 1, ns |
433 |
ldiag = ldiag + 1 |
434 |
r(ldiag) = one |
435 |
120 continue |
436 |
else |
437 |
|
438 |
* Scale the columns of r. |
439 |
|
440 |
dmin = dmax |
441 |
ldiag = 0 |
442 |
|
443 |
do 250 k = 1, ncolr |
444 |
l = ldiag + 1 |
445 |
ldiag = ldiag + k |
446 |
diag = abs( r(ldiag) ) |
447 |
dmax = max( dmax, diag ) |
448 |
dmin = min( dmin, diag ) |
449 |
s = one / sqrt( diag ) |
450 |
do 240 i = l, ldiag |
451 |
r(i) = r(i)*s |
452 |
240 continue |
453 |
250 continue |
454 |
|
455 |
cond = dmax / dmin |
456 |
if (iprint .gt. 0) write(iprint, 2000) dmax, dmin, cond |
457 |
end if |
458 |
return |
459 |
|
460 |
2000 format(/ ' XXX Hessian modified. Diags =', 1p, 2e11.2, |
461 |
$ ', Cond R(t)*R =', e11.2) |
462 |
|
463 |
* end of m6rset |
464 |
end |
465 |
|
466 |
*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
467 |
|
468 |
subroutine m6rsol( mode, maxr, nr, ns, r, y ) |
469 |
|
470 |
implicit double precision (a-h,o-z) |
471 |
double precision r(nr), y(ns) |
472 |
|
473 |
* ------------------------------------------------------------------ |
474 |
* m6rsol solves R*x = y or R(t)*x = y, where R is an |
475 |
* upper-triangular matrix stored by columns in r(nr). |
476 |
* The solution x overwrites y. |
477 |
* ------------------------------------------------------------------ |
478 |
|
479 |
intrinsic min |
480 |
|
481 |
ncolr = min( maxr, ns ) |
482 |
|
483 |
if (mode .eq. 1) then |
484 |
|
485 |
* mode = 1 -- solve R*y = y. |
486 |
|
487 |
l = ncolr*(ncolr + 1)/2 |
488 |
do 120 i = ncolr, 2, -1 |
489 |
t = y(i) / r(l) |
490 |
y(i) = t |
491 |
l = l - i |
492 |
call daxpy ( i-1, (-t), r(l+1), 1, y, 1 ) |
493 |
120 continue |
494 |
y(1) = y(1) / r(1) |
495 |
else |
496 |
|
497 |
* mode = 2 -- solve R(t)*y = y. |
498 |
|
499 |
y(1) = y(1) / r(1) |
500 |
l = 1 |
501 |
do 220 i = 2, ncolr |
502 |
t = ddot ( i-1, r(l+1), 1, y, 1 ) |
503 |
l = l + i |
504 |
y(i) = (y(i) - t) / r(l) |
505 |
220 continue |
506 |
end if |
507 |
|
508 |
* Deal with surplus diagonals of r. |
509 |
|
510 |
if (ns .gt. maxr) then |
511 |
l = maxr*i/2 |
512 |
do 320 j = maxr + 1, ns |
513 |
l = l + 1 |
514 |
y(j) = y(j) / r(l) |
515 |
320 continue |
516 |
end if |
517 |
|
518 |
* end of m6rsol |
519 |
end |
520 |
|
521 |
*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
522 |
|
523 |
subroutine m6swap( m, maxr, nr, ns, ms, |
524 |
$ kb, bbl, bbu, grd, r, rg, x ) |
525 |
|
526 |
implicit double precision (a-h,o-z) |
527 |
integer kb(ms) |
528 |
double precision bbl(ms), bbu(ms), grd(ms) |
529 |
double precision r(nr), rg(ns), x(ms) |
530 |
|
531 |
* ------------------------------------------------------------------ |
532 |
* m6swap (superbasic swap) finds the largest reduced gradient in |
533 |
* the range rg(maxr+1), ..., rg(ns) and swaps it into position |
534 |
* maxr + 1 (so we know where it is). |
535 |
* ------------------------------------------------------------------ |
536 |
|
537 |
k1 = maxr + 1 |
538 |
if (ns .gt. k1) then |
539 |
nz2 = ns - maxr |
540 |
k2 = maxr + idamax( nz2, rg(k1), 1 ) |
541 |
if (k2 .gt. k1) then |
542 |
j = m + k1 |
543 |
k = m + k2 |
544 |
lastr = maxr*k1/2 |
545 |
ldiag1 = lastr + 1 |
546 |
ldiag2 = lastr + (k2 - maxr) |
547 |
|
548 |
rdiag1 = r(ldiag1) |
549 |
rg1 = rg(k1) |
550 |
j1 = kb(j) |
551 |
bl1 = bbl(j) |
552 |
bu1 = bbu(j) |
553 |
grd1 = grd(j) |
554 |
x1 = x(j) |
555 |
|
556 |
r(ldiag1) = r(ldiag2) |
557 |
rg(k1) = rg(k2) |
558 |
kb(j) = kb(k) |
559 |
bbl(j) = bbl(k) |
560 |
bbu(j) = bbu(k) |
561 |
grd(j) = grd(k) |
562 |
x(j) = x(k) |
563 |
|
564 |
r(ldiag2) = rdiag1 |
565 |
rg(k2) = rg1 |
566 |
kb(k) = j1 |
567 |
bbl(k) = bl1 |
568 |
bbu(k) = bu1 |
569 |
grd(k) = grd1 |
570 |
x(k) = x1 |
571 |
end if |
572 |
end if |
573 |
|
574 |
* end of m6swap |
575 |
end |