1 |
C dgbfa.f |
2 |
C is freely available from netlib. It is not subject to any GNU License |
3 |
C set by the authors of the ASCEND math programming system. |
4 |
C $Date: 1996/04/30 18:17:11 $ $Revision: 1.1.1.1 $ |
5 |
C |
6 |
subroutine dgbfa(abd,lda,n,ml,mu,ipvt,info) |
7 |
integer lda,n,ml,mu,ipvt(1),info |
8 |
double precision abd(lda,1) |
9 |
c |
10 |
c dgbfa factors a double precision band matrix by elimination. |
11 |
c |
12 |
c dgbfa is usually called by dgbco, but it can be called |
13 |
c directly with a saving in time if rcond is not needed. |
14 |
c |
15 |
c on entry |
16 |
c |
17 |
c abd double precision(lda, n) |
18 |
c contains the matrix in band storage. the columns |
19 |
c of the matrix are stored in the columns of abd and |
20 |
c the diagonals of the matrix are stored in rows |
21 |
c ml+1 through 2*ml+mu+1 of abd . |
22 |
c see the comments below for details. |
23 |
c |
24 |
c lda integer |
25 |
c the leading dimension of the array abd . |
26 |
c lda must be .ge. 2*ml + mu + 1 . |
27 |
c |
28 |
c n integer |
29 |
c the order of the original matrix. |
30 |
c |
31 |
c ml integer |
32 |
c number of diagonals below the main diagonal. |
33 |
c 0 .le. ml .lt. n . |
34 |
c |
35 |
c mu integer |
36 |
c number of diagonals above the main diagonal. |
37 |
c 0 .le. mu .lt. n . |
38 |
c more efficient if ml .le. mu . |
39 |
c on return |
40 |
c |
41 |
c abd an upper triangular matrix in band storage and |
42 |
c the multipliers which were used to obtain it. |
43 |
c the factorization can be written a = l*u where |
44 |
c l is a product of permutation and unit lower |
45 |
c triangular matrices and u is upper triangular. |
46 |
c |
47 |
c ipvt integer(n) |
48 |
c an integer vector of pivot indices. |
49 |
c |
50 |
c info integer |
51 |
c = 0 normal value. |
52 |
c = k if u(k,k) .eq. 0.0 . this is not an error |
53 |
c condition for this subroutine, but it does |
54 |
c indicate that dgbsl will divide by zero if |
55 |
c called. use rcond in dgbco for a reliable |
56 |
c indication of singularity. |
57 |
c |
58 |
c band storage |
59 |
c |
60 |
c if a is a band matrix, the following program segment |
61 |
c will set up the input. |
62 |
c |
63 |
c ml = (band width below the diagonal) |
64 |
c mu = (band width above the diagonal) |
65 |
c m = ml + mu + 1 |
66 |
c do 20 j = 1, n |
67 |
c i1 = max0(1, j-mu) |
68 |
c i2 = min0(n, j+ml) |
69 |
c do 10 i = i1, i2 |
70 |
c k = i - j + m |
71 |
c abd(k,j) = a(i,j) |
72 |
c 10 continue |
73 |
c 20 continue |
74 |
c |
75 |
c this uses rows ml+1 through 2*ml+mu+1 of abd . |
76 |
c in addition, the first ml rows in abd are used for |
77 |
c elements generated during the triangularization. |
78 |
c the total number of rows needed in abd is 2*ml+mu+1 . |
79 |
c the ml+mu by ml+mu upper left triangle and the |
80 |
c ml by ml lower right triangle are not referenced. |
81 |
c |
82 |
c linpack. this version dated 08/14/78 . |
83 |
c cleve moler, university of new mexico, argonne national lab. |
84 |
c |
85 |
c subroutines and functions |
86 |
c |
87 |
c blas daxpy,dscal,idamax |
88 |
c fortran max0,min0 |
89 |
c |
90 |
c internal variables |
91 |
c |
92 |
double precision t |
93 |
integer i,idamax,i0,j,ju,jz,j0,j1,k,kp1,l,lm,m,mm,nm1 |
94 |
c |
95 |
c |
96 |
m = ml + mu + 1 |
97 |
info = 0 |
98 |
c |
99 |
c zero initial fill-in columns |
100 |
c |
101 |
j0 = mu + 2 |
102 |
j1 = min0(n,m) - 1 |
103 |
if (j1 .lt. j0) go to 30 |
104 |
do 20 jz = j0, j1 |
105 |
i0 = m + 1 - jz |
106 |
do 10 i = i0, ml |
107 |
abd(i,jz) = 0.0d0 |
108 |
10 continue |
109 |
20 continue |
110 |
30 continue |
111 |
jz = j1 |
112 |
ju = 0 |
113 |
c |
114 |
c gaussian elimination with partial pivoting |
115 |
c |
116 |
nm1 = n - 1 |
117 |
if (nm1 .lt. 1) go to 130 |
118 |
do 120 k = 1, nm1 |
119 |
kp1 = k + 1 |
120 |
c |
121 |
c zero next fill-in column |
122 |
c |
123 |
jz = jz + 1 |
124 |
if (jz .gt. n) go to 50 |
125 |
if (ml .lt. 1) go to 50 |
126 |
do 40 i = 1, ml |
127 |
abd(i,jz) = 0.0d0 |
128 |
40 continue |
129 |
50 continue |
130 |
c |
131 |
c find l = pivot index |
132 |
c |
133 |
lm = min0(ml,n-k) |
134 |
l = idamax(lm+1,abd(m,k),1) + m - 1 |
135 |
ipvt(k) = l + k - m |
136 |
c |
137 |
c zero pivot implies this column already triangularized |
138 |
c |
139 |
if (abd(l,k) .eq. 0.0d0) go to 100 |
140 |
c |
141 |
c interchange if necessary |
142 |
c |
143 |
if (l .eq. m) go to 60 |
144 |
t = abd(l,k) |
145 |
abd(l,k) = abd(m,k) |
146 |
abd(m,k) = t |
147 |
60 continue |
148 |
c |
149 |
c compute multipliers |
150 |
c |
151 |
t = -1.0d0/abd(m,k) |
152 |
call dscal(lm,t,abd(m+1,k),1) |
153 |
c |
154 |
c row elimination with column indexing |
155 |
c |
156 |
ju = min0(max0(ju,mu+ipvt(k)),n) |
157 |
mm = m |
158 |
if (ju .lt. kp1) go to 90 |
159 |
do 80 j = kp1, ju |
160 |
l = l - 1 |
161 |
mm = mm - 1 |
162 |
t = abd(l,j) |
163 |
if (l .eq. mm) go to 70 |
164 |
abd(l,j) = abd(mm,j) |
165 |
abd(mm,j) = t |
166 |
70 continue |
167 |
call daxpy(lm,t,abd(m+1,k),1,abd(mm+1,j),1) |
168 |
80 continue |
169 |
90 continue |
170 |
go to 110 |
171 |
100 continue |
172 |
info = k |
173 |
110 continue |
174 |
120 continue |
175 |
130 continue |
176 |
ipvt(n) = n |
177 |
if (abd(m,n) .eq. 0.0d0) info = n |
178 |
return |
179 |
end |