| 1 |
SUBROUTINE DTRSV ( UPLO, TRANS, DIAG, N, A, LDA, X, INCX ) |
| 2 |
* |
| 3 |
************************************************************************ |
| 4 |
* |
| 5 |
* .. Scalar Arguments .. |
| 6 |
INTEGER INCX, LDA, N |
| 7 |
CHARACTER*1 DIAG, TRANS, UPLO |
| 8 |
* .. Array Arguments .. |
| 9 |
DOUBLE PRECISION A( LDA, N ), X( * ) |
| 10 |
* .. |
| 11 |
* |
| 12 |
* Purpose |
| 13 |
* ======= |
| 14 |
* |
| 15 |
* DTRSV solves one of the systems of equations |
| 16 |
* |
| 17 |
* A*x = b, or A'*x = b, |
| 18 |
* |
| 19 |
* where b and x are n element vectors and A is an n by n unit, or |
| 20 |
* non-unit, upper or lower triangular matrix. |
| 21 |
* |
| 22 |
* No test for singularity or near-singularity is included in this |
| 23 |
* routine. Such tests must be performed before calling this routine. |
| 24 |
* |
| 25 |
* Parameters |
| 26 |
* ========== |
| 27 |
* |
| 28 |
* UPLO - CHARACTER*1. |
| 29 |
* On entry, UPLO specifies whether the matrix is an upper or |
| 30 |
* lower triangular matrix as follows: |
| 31 |
* |
| 32 |
* UPLO = 'U' or 'u' A is an upper triangular matrix. |
| 33 |
* |
| 34 |
* UPLO = 'L' or 'l' A is a lower triangular matrix. |
| 35 |
* |
| 36 |
* Unchanged on exit. |
| 37 |
* |
| 38 |
* TRANS - CHARACTER*1. |
| 39 |
* On entry, TRANS specifies the equations to be solved as |
| 40 |
* follows: |
| 41 |
* |
| 42 |
* TRANS = 'N' or 'n' A*x = b. |
| 43 |
* |
| 44 |
* TRANS = 'T' or 't' A'*x = b. |
| 45 |
* |
| 46 |
* TRANS = 'C' or 'c' A'*x = b. |
| 47 |
* |
| 48 |
* Unchanged on exit. |
| 49 |
* |
| 50 |
* DIAG - CHARACTER*1. |
| 51 |
* On entry, DIAG specifies whether or not A is unit |
| 52 |
* triangular as follows: |
| 53 |
* |
| 54 |
* DIAG = 'U' or 'u' A is assumed to be unit triangular. |
| 55 |
* |
| 56 |
* DIAG = 'N' or 'n' A is not assumed to be unit |
| 57 |
* triangular. |
| 58 |
* |
| 59 |
* Unchanged on exit. |
| 60 |
* |
| 61 |
* N - INTEGER. |
| 62 |
* On entry, N specifies the order of the matrix A. |
| 63 |
* N must be at least zero. |
| 64 |
* Unchanged on exit. |
| 65 |
* |
| 66 |
* A - DOUBLE PRECISION array of DIMENSION ( LDA, n ). |
| 67 |
* Before entry with UPLO = 'U' or 'u', the leading n by n |
| 68 |
* upper triangular part of the array A must contain the upper |
| 69 |
* triangular matrix and the strictly lower triangular part of |
| 70 |
* A is not referenced. |
| 71 |
* Before entry with UPLO = 'L' or 'l', the leading n by n |
| 72 |
* lower triangular part of the array A must contain the lower |
| 73 |
* triangular matrix and the strictly upper triangular part of |
| 74 |
* A is not referenced. |
| 75 |
* Note that when DIAG = 'U' or 'u', the diagonal elements of |
| 76 |
* A are not referenced either, but are assumed to be unity. |
| 77 |
* Unchanged on exit. |
| 78 |
* |
| 79 |
* LDA - INTEGER. |
| 80 |
* On entry, LDA specifies the first dimension of A as declared |
| 81 |
* in the calling (sub) program. LDA must be at least |
| 82 |
* max( 1, n ). |
| 83 |
* Unchanged on exit. |
| 84 |
* |
| 85 |
* X - DOUBLE PRECISION array of dimension at least |
| 86 |
* ( 1 + ( n - 1 )*abs( INCX ) ). |
| 87 |
* Before entry, the incremented array X must contain the n |
| 88 |
* element right-hand side vector b. On exit, X is overwritten |
| 89 |
* with the solution vector x. |
| 90 |
* |
| 91 |
* INCX - INTEGER. |
| 92 |
* On entry, INCX specifies the increment for the elements of |
| 93 |
* X. INCX must not be zero. |
| 94 |
* Unchanged on exit. |
| 95 |
* |
| 96 |
* |
| 97 |
* Level 2 Blas routine. |
| 98 |
* |
| 99 |
* -- Written on 22-October-1986. |
| 100 |
* Jack Dongarra, Argonne National Lab. |
| 101 |
* Jeremy Du Croz, Nag Central Office. |
| 102 |
* Sven Hammarling, Nag Central Office. |
| 103 |
* Richard Hanson, Sandia National Labs. |
| 104 |
* |
| 105 |
* |
| 106 |
* .. Parameters .. |
| 107 |
DOUBLE PRECISION ZERO |
| 108 |
PARAMETER ( ZERO = 0.0D+0 ) |
| 109 |
* .. Local Scalars .. |
| 110 |
DOUBLE PRECISION TEMP |
| 111 |
INTEGER I, INFO, IX, J, JX, KX |
| 112 |
LOGICAL NOUNIT |
| 113 |
* .. External Functions .. |
| 114 |
LOGICAL LSAME |
| 115 |
EXTERNAL LSAME |
| 116 |
* .. External Subroutines .. |
| 117 |
EXTERNAL XERBLA |
| 118 |
* .. Intrinsic Functions .. |
| 119 |
INTRINSIC MAX |
| 120 |
* .. |
| 121 |
* .. Executable Statements .. |
| 122 |
* |
| 123 |
* Test the input parameters. |
| 124 |
* |
| 125 |
INFO = 0 |
| 126 |
IF ( .NOT.LSAME( UPLO , 'U' ).AND. |
| 127 |
$ .NOT.LSAME( UPLO , 'L' ) )THEN |
| 128 |
INFO = 1 |
| 129 |
ELSE IF( .NOT.LSAME( TRANS, 'N' ).AND. |
| 130 |
$ .NOT.LSAME( TRANS, 'T' ).AND. |
| 131 |
$ .NOT.LSAME( TRANS, 'C' ) )THEN |
| 132 |
INFO = 2 |
| 133 |
ELSE IF( .NOT.LSAME( DIAG , 'U' ).AND. |
| 134 |
$ .NOT.LSAME( DIAG , 'N' ) )THEN |
| 135 |
INFO = 3 |
| 136 |
ELSE IF( N.LT.0 )THEN |
| 137 |
INFO = 4 |
| 138 |
ELSE IF( LDA.LT.MAX( 1, N ) )THEN |
| 139 |
INFO = 6 |
| 140 |
ELSE IF( INCX.EQ.0 )THEN |
| 141 |
INFO = 8 |
| 142 |
END IF |
| 143 |
IF( INFO.NE.0 )THEN |
| 144 |
CALL XERBLA( 'DTRSV ', INFO ) |
| 145 |
RETURN |
| 146 |
END IF |
| 147 |
* |
| 148 |
* Quick return if possible. |
| 149 |
* |
| 150 |
IF( N.EQ.0 ) |
| 151 |
$ RETURN |
| 152 |
* |
| 153 |
NOUNIT = LSAME( DIAG, 'N' ) |
| 154 |
* |
| 155 |
* Set up the start point in X if the increment is not unity. This |
| 156 |
* will be ( N - 1 )*INCX too small for descending loops. |
| 157 |
* |
| 158 |
IF( INCX.LE.0 )THEN |
| 159 |
KX = 1 - ( N - 1 )*INCX |
| 160 |
ELSE IF( INCX.NE.1 )THEN |
| 161 |
KX = 1 |
| 162 |
END IF |
| 163 |
* |
| 164 |
* Start the operations. In this version the elements of A are |
| 165 |
* accessed sequentially with one pass through A. |
| 166 |
* |
| 167 |
IF( LSAME( TRANS, 'N' ) )THEN |
| 168 |
* |
| 169 |
* Form x := inv( A )*x. |
| 170 |
* |
| 171 |
IF( LSAME( UPLO, 'U' ) )THEN |
| 172 |
IF( INCX.EQ.1 )THEN |
| 173 |
DO 20, J = N, 1, -1 |
| 174 |
IF( X( J ).NE.ZERO )THEN |
| 175 |
IF( NOUNIT ) |
| 176 |
$ X( J ) = X( J )/A( J, J ) |
| 177 |
TEMP = X( J ) |
| 178 |
DO 10, I = J - 1, 1, -1 |
| 179 |
X( I ) = X( I ) - TEMP*A( I, J ) |
| 180 |
10 CONTINUE |
| 181 |
END IF |
| 182 |
20 CONTINUE |
| 183 |
ELSE |
| 184 |
JX = KX + ( N - 1 )*INCX |
| 185 |
DO 40, J = N, 1, -1 |
| 186 |
IF( X( JX ).NE.ZERO )THEN |
| 187 |
IF( NOUNIT ) |
| 188 |
$ X( JX ) = X( JX )/A( J, J ) |
| 189 |
TEMP = X( JX ) |
| 190 |
IX = JX |
| 191 |
DO 30, I = J - 1, 1, -1 |
| 192 |
IX = IX - INCX |
| 193 |
X( IX ) = X( IX ) - TEMP*A( I, J ) |
| 194 |
30 CONTINUE |
| 195 |
END IF |
| 196 |
JX = JX - INCX |
| 197 |
40 CONTINUE |
| 198 |
END IF |
| 199 |
ELSE |
| 200 |
IF( INCX.EQ.1 )THEN |
| 201 |
DO 60, J = 1, N |
| 202 |
IF( X( J ).NE.ZERO )THEN |
| 203 |
IF( NOUNIT ) |
| 204 |
$ X( J ) = X( J )/A( J, J ) |
| 205 |
TEMP = X( J ) |
| 206 |
DO 50, I = J + 1, N |
| 207 |
X( I ) = X( I ) - TEMP*A( I, J ) |
| 208 |
50 CONTINUE |
| 209 |
END IF |
| 210 |
60 CONTINUE |
| 211 |
ELSE |
| 212 |
JX = KX |
| 213 |
DO 80, J = 1, N |
| 214 |
IF( X( JX ).NE.ZERO )THEN |
| 215 |
IF( NOUNIT ) |
| 216 |
$ X( JX ) = X( JX )/A( J, J ) |
| 217 |
TEMP = X( JX ) |
| 218 |
IX = JX |
| 219 |
DO 70, I = J + 1, N |
| 220 |
IX = IX + INCX |
| 221 |
X( IX ) = X( IX ) - TEMP*A( I, J ) |
| 222 |
70 CONTINUE |
| 223 |
END IF |
| 224 |
JX = JX + INCX |
| 225 |
80 CONTINUE |
| 226 |
END IF |
| 227 |
END IF |
| 228 |
ELSE |
| 229 |
* |
| 230 |
* Form x := inv( A' )*x. |
| 231 |
* |
| 232 |
IF( LSAME( UPLO, 'U' ) )THEN |
| 233 |
IF( INCX.EQ.1 )THEN |
| 234 |
DO 100, J = 1, N |
| 235 |
TEMP = X( J ) |
| 236 |
DO 90, I = 1, J - 1 |
| 237 |
TEMP = TEMP - A( I, J )*X( I ) |
| 238 |
90 CONTINUE |
| 239 |
IF( NOUNIT ) |
| 240 |
$ TEMP = TEMP/A( J, J ) |
| 241 |
X( J ) = TEMP |
| 242 |
100 CONTINUE |
| 243 |
ELSE |
| 244 |
JX = KX |
| 245 |
DO 120, J = 1, N |
| 246 |
TEMP = X( JX ) |
| 247 |
IX = KX |
| 248 |
DO 110, I = 1, J - 1 |
| 249 |
TEMP = TEMP - A( I, J )*X( IX ) |
| 250 |
IX = IX + INCX |
| 251 |
110 CONTINUE |
| 252 |
IF( NOUNIT ) |
| 253 |
$ TEMP = TEMP/A( J, J ) |
| 254 |
X( JX ) = TEMP |
| 255 |
JX = JX + INCX |
| 256 |
120 CONTINUE |
| 257 |
END IF |
| 258 |
ELSE |
| 259 |
IF( INCX.EQ.1 )THEN |
| 260 |
DO 140, J = N, 1, -1 |
| 261 |
TEMP = X( J ) |
| 262 |
DO 130, I = N, J + 1, -1 |
| 263 |
TEMP = TEMP - A( I, J )*X( I ) |
| 264 |
130 CONTINUE |
| 265 |
IF( NOUNIT ) |
| 266 |
$ TEMP = TEMP/A( J, J ) |
| 267 |
X( J ) = TEMP |
| 268 |
140 CONTINUE |
| 269 |
ELSE |
| 270 |
KX = KX + ( N - 1 )*INCX |
| 271 |
JX = KX |
| 272 |
DO 160, J = N, 1, -1 |
| 273 |
TEMP = X( JX ) |
| 274 |
IX = KX |
| 275 |
DO 150, I = N, J + 1, -1 |
| 276 |
TEMP = TEMP - A( I, J )*X( IX ) |
| 277 |
IX = IX - INCX |
| 278 |
150 CONTINUE |
| 279 |
IF( NOUNIT ) |
| 280 |
$ TEMP = TEMP/A( J, J ) |
| 281 |
X( JX ) = TEMP |
| 282 |
JX = JX - INCX |
| 283 |
160 CONTINUE |
| 284 |
END IF |
| 285 |
END IF |
| 286 |
END IF |
| 287 |
* |
| 288 |
RETURN |
| 289 |
* |
| 290 |
* End of DTRSV . |
| 291 |
* |
| 292 |
END |