| 1 |
SUBROUTINE DTRSM ( SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA, |
| 2 |
* |
| 3 |
************************************************************************ |
| 4 |
* |
| 5 |
$ B, LDB ) |
| 6 |
* .. Scalar Arguments .. |
| 7 |
CHARACTER*1 SIDE, UPLO, TRANSA, DIAG |
| 8 |
INTEGER M, N, LDA, LDB |
| 9 |
DOUBLE PRECISION ALPHA |
| 10 |
* .. Array Arguments .. |
| 11 |
DOUBLE PRECISION A( LDA, * ), B( LDB, * ) |
| 12 |
* .. |
| 13 |
* |
| 14 |
* Purpose |
| 15 |
* ======= |
| 16 |
* |
| 17 |
* DTRSM solves one of the matrix equations |
| 18 |
* |
| 19 |
* op( A )*X = alpha*B, or X*op( A ) = alpha*B, |
| 20 |
* |
| 21 |
* where alpha is a scalar, X and B are m by n matrices, A is a unit, or |
| 22 |
* non-unit, upper or lower triangular matrix and op( A ) is one of |
| 23 |
* |
| 24 |
* op( A ) = A or op( A ) = A'. |
| 25 |
* |
| 26 |
* The matrix X is overwritten on B. |
| 27 |
* |
| 28 |
* Parameters |
| 29 |
* ========== |
| 30 |
* |
| 31 |
* SIDE - CHARACTER*1. |
| 32 |
* On entry, SIDE specifies whether op( A ) appears on the left |
| 33 |
* or right of X as follows: |
| 34 |
* |
| 35 |
* SIDE = 'L' or 'l' op( A )*X = alpha*B. |
| 36 |
* |
| 37 |
* SIDE = 'R' or 'r' X*op( A ) = alpha*B. |
| 38 |
* |
| 39 |
* Unchanged on exit. |
| 40 |
* |
| 41 |
* UPLO - CHARACTER*1. |
| 42 |
* On entry, UPLO specifies whether the matrix A is an upper or |
| 43 |
* lower triangular matrix as follows: |
| 44 |
* |
| 45 |
* UPLO = 'U' or 'u' A is an upper triangular matrix. |
| 46 |
* |
| 47 |
* UPLO = 'L' or 'l' A is a lower triangular matrix. |
| 48 |
* |
| 49 |
* Unchanged on exit. |
| 50 |
* |
| 51 |
* TRANSA - CHARACTER*1. |
| 52 |
* On entry, TRANSA specifies the form of op( A ) to be used in |
| 53 |
* the matrix multiplication as follows: |
| 54 |
* |
| 55 |
* TRANSA = 'N' or 'n' op( A ) = A. |
| 56 |
* |
| 57 |
* TRANSA = 'T' or 't' op( A ) = A'. |
| 58 |
* |
| 59 |
* TRANSA = 'C' or 'c' op( A ) = A'. |
| 60 |
* |
| 61 |
* Unchanged on exit. |
| 62 |
* |
| 63 |
* DIAG - CHARACTER*1. |
| 64 |
* On entry, DIAG specifies whether or not A is unit triangular |
| 65 |
* as follows: |
| 66 |
* |
| 67 |
* DIAG = 'U' or 'u' A is assumed to be unit triangular. |
| 68 |
* |
| 69 |
* DIAG = 'N' or 'n' A is not assumed to be unit |
| 70 |
* triangular. |
| 71 |
* |
| 72 |
* Unchanged on exit. |
| 73 |
* |
| 74 |
* M - INTEGER. |
| 75 |
* On entry, M specifies the number of rows of B. M must be at |
| 76 |
* least zero. |
| 77 |
* Unchanged on exit. |
| 78 |
* |
| 79 |
* N - INTEGER. |
| 80 |
* On entry, N specifies the number of columns of B. N must be |
| 81 |
* at least zero. |
| 82 |
* Unchanged on exit. |
| 83 |
* |
| 84 |
* ALPHA - DOUBLE PRECISION. |
| 85 |
* On entry, ALPHA specifies the scalar alpha. When alpha is |
| 86 |
* zero then A is not referenced and B need not be set before |
| 87 |
* entry. |
| 88 |
* Unchanged on exit. |
| 89 |
* |
| 90 |
* A - DOUBLE PRECISION array of DIMENSION ( LDA, k ), where k is m |
| 91 |
* when SIDE = 'L' or 'l' and is n when SIDE = 'R' or 'r'. |
| 92 |
* Before entry with UPLO = 'U' or 'u', the leading k by k |
| 93 |
* upper triangular part of the array A must contain the upper |
| 94 |
* triangular matrix and the strictly lower triangular part of |
| 95 |
* A is not referenced. |
| 96 |
* Before entry with UPLO = 'L' or 'l', the leading k by k |
| 97 |
* lower triangular part of the array A must contain the lower |
| 98 |
* triangular matrix and the strictly upper triangular part of |
| 99 |
* A is not referenced. |
| 100 |
* Note that when DIAG = 'U' or 'u', the diagonal elements of |
| 101 |
* A are not referenced either, but are assumed to be unity. |
| 102 |
* Unchanged on exit. |
| 103 |
* |
| 104 |
* LDA - INTEGER. |
| 105 |
* On entry, LDA specifies the first dimension of A as declared |
| 106 |
* in the calling (sub) program. When SIDE = 'L' or 'l' then |
| 107 |
* LDA must be at least max( 1, m ), when SIDE = 'R' or 'r' |
| 108 |
* then LDA must be at least max( 1, n ). |
| 109 |
* Unchanged on exit. |
| 110 |
* |
| 111 |
* B - DOUBLE PRECISION array of DIMENSION ( LDB, n ). |
| 112 |
* Before entry, the leading m by n part of the array B must |
| 113 |
* contain the right-hand side matrix B, and on exit is |
| 114 |
* overwritten by the solution matrix X. |
| 115 |
* |
| 116 |
* LDB - INTEGER. |
| 117 |
* On entry, LDB specifies the first dimension of B as declared |
| 118 |
* in the calling (sub) program. LDB must be at least |
| 119 |
* max( 1, m ). |
| 120 |
* Unchanged on exit. |
| 121 |
* |
| 122 |
* |
| 123 |
* Level 3 Blas routine. |
| 124 |
* |
| 125 |
* |
| 126 |
* -- Written on 8-February-1989. |
| 127 |
* Jack Dongarra, Argonne National Laboratory. |
| 128 |
* Iain Duff, AERE Harwell. |
| 129 |
* Jeremy Du Croz, Numerical Algorithms Group Ltd. |
| 130 |
* Sven Hammarling, Numerical Algorithms Group Ltd. |
| 131 |
* |
| 132 |
* |
| 133 |
* .. External Functions .. |
| 134 |
LOGICAL LSAME |
| 135 |
EXTERNAL LSAME |
| 136 |
* .. External Subroutines .. |
| 137 |
EXTERNAL XERBLA |
| 138 |
* .. Intrinsic Functions .. |
| 139 |
INTRINSIC MAX |
| 140 |
* .. Local Scalars .. |
| 141 |
LOGICAL LSIDE, NOUNIT, UPPER |
| 142 |
INTEGER I, INFO, J, K, NROWA |
| 143 |
DOUBLE PRECISION TEMP |
| 144 |
* .. Parameters .. |
| 145 |
DOUBLE PRECISION ONE , ZERO |
| 146 |
PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 ) |
| 147 |
* .. |
| 148 |
* .. Executable Statements .. |
| 149 |
* |
| 150 |
* Test the input parameters. |
| 151 |
* |
| 152 |
LSIDE = LSAME( SIDE , 'L' ) |
| 153 |
IF( LSIDE )THEN |
| 154 |
NROWA = M |
| 155 |
ELSE |
| 156 |
NROWA = N |
| 157 |
END IF |
| 158 |
NOUNIT = LSAME( DIAG , 'N' ) |
| 159 |
UPPER = LSAME( UPLO , 'U' ) |
| 160 |
* |
| 161 |
INFO = 0 |
| 162 |
IF( ( .NOT.LSIDE ).AND. |
| 163 |
$ ( .NOT.LSAME( SIDE , 'R' ) ) )THEN |
| 164 |
INFO = 1 |
| 165 |
ELSE IF( ( .NOT.UPPER ).AND. |
| 166 |
$ ( .NOT.LSAME( UPLO , 'L' ) ) )THEN |
| 167 |
INFO = 2 |
| 168 |
ELSE IF( ( .NOT.LSAME( TRANSA, 'N' ) ).AND. |
| 169 |
$ ( .NOT.LSAME( TRANSA, 'T' ) ).AND. |
| 170 |
$ ( .NOT.LSAME( TRANSA, 'C' ) ) )THEN |
| 171 |
INFO = 3 |
| 172 |
ELSE IF( ( .NOT.LSAME( DIAG , 'U' ) ).AND. |
| 173 |
$ ( .NOT.LSAME( DIAG , 'N' ) ) )THEN |
| 174 |
INFO = 4 |
| 175 |
ELSE IF( M .LT.0 )THEN |
| 176 |
INFO = 5 |
| 177 |
ELSE IF( N .LT.0 )THEN |
| 178 |
INFO = 6 |
| 179 |
ELSE IF( LDA.LT.MAX( 1, NROWA ) )THEN |
| 180 |
INFO = 9 |
| 181 |
ELSE IF( LDB.LT.MAX( 1, M ) )THEN |
| 182 |
INFO = 11 |
| 183 |
END IF |
| 184 |
IF( INFO.NE.0 )THEN |
| 185 |
CALL XERBLA( 'DTRSM ', INFO ) |
| 186 |
RETURN |
| 187 |
END IF |
| 188 |
* |
| 189 |
* Quick return if possible. |
| 190 |
* |
| 191 |
IF( N.EQ.0 ) |
| 192 |
$ RETURN |
| 193 |
* |
| 194 |
* And when alpha.eq.zero. |
| 195 |
* |
| 196 |
IF( ALPHA.EQ.ZERO )THEN |
| 197 |
DO 20, J = 1, N |
| 198 |
DO 10, I = 1, M |
| 199 |
B( I, J ) = ZERO |
| 200 |
10 CONTINUE |
| 201 |
20 CONTINUE |
| 202 |
RETURN |
| 203 |
END IF |
| 204 |
* |
| 205 |
* Start the operations. |
| 206 |
* |
| 207 |
IF( LSIDE )THEN |
| 208 |
IF( LSAME( TRANSA, 'N' ) )THEN |
| 209 |
* |
| 210 |
* Form B := alpha*inv( A )*B. |
| 211 |
* |
| 212 |
IF( UPPER )THEN |
| 213 |
DO 60, J = 1, N |
| 214 |
IF( ALPHA.NE.ONE )THEN |
| 215 |
DO 30, I = 1, M |
| 216 |
B( I, J ) = ALPHA*B( I, J ) |
| 217 |
30 CONTINUE |
| 218 |
END IF |
| 219 |
DO 50, K = M, 1, -1 |
| 220 |
IF( B( K, J ).NE.ZERO )THEN |
| 221 |
IF( NOUNIT ) |
| 222 |
$ B( K, J ) = B( K, J )/A( K, K ) |
| 223 |
DO 40, I = 1, K - 1 |
| 224 |
B( I, J ) = B( I, J ) - B( K, J )*A( I, K ) |
| 225 |
40 CONTINUE |
| 226 |
END IF |
| 227 |
50 CONTINUE |
| 228 |
60 CONTINUE |
| 229 |
ELSE |
| 230 |
DO 100, J = 1, N |
| 231 |
IF( ALPHA.NE.ONE )THEN |
| 232 |
DO 70, I = 1, M |
| 233 |
B( I, J ) = ALPHA*B( I, J ) |
| 234 |
70 CONTINUE |
| 235 |
END IF |
| 236 |
DO 90 K = 1, M |
| 237 |
IF( B( K, J ).NE.ZERO )THEN |
| 238 |
IF( NOUNIT ) |
| 239 |
$ B( K, J ) = B( K, J )/A( K, K ) |
| 240 |
DO 80, I = K + 1, M |
| 241 |
B( I, J ) = B( I, J ) - B( K, J )*A( I, K ) |
| 242 |
80 CONTINUE |
| 243 |
END IF |
| 244 |
90 CONTINUE |
| 245 |
100 CONTINUE |
| 246 |
END IF |
| 247 |
ELSE |
| 248 |
* |
| 249 |
* Form B := alpha*inv( A' )*B. |
| 250 |
* |
| 251 |
IF( UPPER )THEN |
| 252 |
DO 130, J = 1, N |
| 253 |
DO 120, I = 1, M |
| 254 |
TEMP = ALPHA*B( I, J ) |
| 255 |
DO 110, K = 1, I - 1 |
| 256 |
TEMP = TEMP - A( K, I )*B( K, J ) |
| 257 |
110 CONTINUE |
| 258 |
IF( NOUNIT ) |
| 259 |
$ TEMP = TEMP/A( I, I ) |
| 260 |
B( I, J ) = TEMP |
| 261 |
120 CONTINUE |
| 262 |
130 CONTINUE |
| 263 |
ELSE |
| 264 |
DO 160, J = 1, N |
| 265 |
DO 150, I = M, 1, -1 |
| 266 |
TEMP = ALPHA*B( I, J ) |
| 267 |
DO 140, K = I + 1, M |
| 268 |
TEMP = TEMP - A( K, I )*B( K, J ) |
| 269 |
140 CONTINUE |
| 270 |
IF( NOUNIT ) |
| 271 |
$ TEMP = TEMP/A( I, I ) |
| 272 |
B( I, J ) = TEMP |
| 273 |
150 CONTINUE |
| 274 |
160 CONTINUE |
| 275 |
END IF |
| 276 |
END IF |
| 277 |
ELSE |
| 278 |
IF( LSAME( TRANSA, 'N' ) )THEN |
| 279 |
* |
| 280 |
* Form B := alpha*B*inv( A ). |
| 281 |
* |
| 282 |
IF( UPPER )THEN |
| 283 |
DO 210, J = 1, N |
| 284 |
IF( ALPHA.NE.ONE )THEN |
| 285 |
DO 170, I = 1, M |
| 286 |
B( I, J ) = ALPHA*B( I, J ) |
| 287 |
170 CONTINUE |
| 288 |
END IF |
| 289 |
DO 190, K = 1, J - 1 |
| 290 |
IF( A( K, J ).NE.ZERO )THEN |
| 291 |
DO 180, I = 1, M |
| 292 |
B( I, J ) = B( I, J ) - A( K, J )*B( I, K ) |
| 293 |
180 CONTINUE |
| 294 |
END IF |
| 295 |
190 CONTINUE |
| 296 |
IF( NOUNIT )THEN |
| 297 |
TEMP = ONE/A( J, J ) |
| 298 |
DO 200, I = 1, M |
| 299 |
B( I, J ) = TEMP*B( I, J ) |
| 300 |
200 CONTINUE |
| 301 |
END IF |
| 302 |
210 CONTINUE |
| 303 |
ELSE |
| 304 |
DO 260, J = N, 1, -1 |
| 305 |
IF( ALPHA.NE.ONE )THEN |
| 306 |
DO 220, I = 1, M |
| 307 |
B( I, J ) = ALPHA*B( I, J ) |
| 308 |
220 CONTINUE |
| 309 |
END IF |
| 310 |
DO 240, K = J + 1, N |
| 311 |
IF( A( K, J ).NE.ZERO )THEN |
| 312 |
DO 230, I = 1, M |
| 313 |
B( I, J ) = B( I, J ) - A( K, J )*B( I, K ) |
| 314 |
230 CONTINUE |
| 315 |
END IF |
| 316 |
240 CONTINUE |
| 317 |
IF( NOUNIT )THEN |
| 318 |
TEMP = ONE/A( J, J ) |
| 319 |
DO 250, I = 1, M |
| 320 |
B( I, J ) = TEMP*B( I, J ) |
| 321 |
250 CONTINUE |
| 322 |
END IF |
| 323 |
260 CONTINUE |
| 324 |
END IF |
| 325 |
ELSE |
| 326 |
* |
| 327 |
* Form B := alpha*B*inv( A' ). |
| 328 |
* |
| 329 |
IF( UPPER )THEN |
| 330 |
DO 310, K = N, 1, -1 |
| 331 |
IF( NOUNIT )THEN |
| 332 |
TEMP = ONE/A( K, K ) |
| 333 |
DO 270, I = 1, M |
| 334 |
B( I, K ) = TEMP*B( I, K ) |
| 335 |
270 CONTINUE |
| 336 |
END IF |
| 337 |
DO 290, J = 1, K - 1 |
| 338 |
IF( A( J, K ).NE.ZERO )THEN |
| 339 |
TEMP = A( J, K ) |
| 340 |
DO 280, I = 1, M |
| 341 |
B( I, J ) = B( I, J ) - TEMP*B( I, K ) |
| 342 |
280 CONTINUE |
| 343 |
END IF |
| 344 |
290 CONTINUE |
| 345 |
IF( ALPHA.NE.ONE )THEN |
| 346 |
DO 300, I = 1, M |
| 347 |
B( I, K ) = ALPHA*B( I, K ) |
| 348 |
300 CONTINUE |
| 349 |
END IF |
| 350 |
310 CONTINUE |
| 351 |
ELSE |
| 352 |
DO 360, K = 1, N |
| 353 |
IF( NOUNIT )THEN |
| 354 |
TEMP = ONE/A( K, K ) |
| 355 |
DO 320, I = 1, M |
| 356 |
B( I, K ) = TEMP*B( I, K ) |
| 357 |
320 CONTINUE |
| 358 |
END IF |
| 359 |
DO 340, J = K + 1, N |
| 360 |
IF( A( J, K ).NE.ZERO )THEN |
| 361 |
TEMP = A( J, K ) |
| 362 |
DO 330, I = 1, M |
| 363 |
B( I, J ) = B( I, J ) - TEMP*B( I, K ) |
| 364 |
330 CONTINUE |
| 365 |
END IF |
| 366 |
340 CONTINUE |
| 367 |
IF( ALPHA.NE.ONE )THEN |
| 368 |
DO 350, I = 1, M |
| 369 |
B( I, K ) = ALPHA*B( I, K ) |
| 370 |
350 CONTINUE |
| 371 |
END IF |
| 372 |
360 CONTINUE |
| 373 |
END IF |
| 374 |
END IF |
| 375 |
END IF |
| 376 |
* |
| 377 |
RETURN |
| 378 |
* |
| 379 |
* End of DTRSM . |
| 380 |
* |
| 381 |
END |