1 |
|
2 |
SUBROUTINE DGEMV ( TRANS, M, N, ALPHA, A, LDA, X, INCX, |
3 |
* |
4 |
************************************************************************ |
5 |
* |
6 |
* File of the DOUBLE PRECISION Level-2 BLAS. |
7 |
* =========================================== |
8 |
* |
9 |
* SUBROUTINE DGEMV ( TRANS, M, N, ALPHA, A, LDA, X, INCX, |
10 |
* $ BETA, Y, INCY ) |
11 |
* |
12 |
* SUBROUTINE DGBMV ( TRANS, M, N, KL, KU, ALPHA, A, LDA, X, INCX, |
13 |
* $ BETA, Y, INCY ) |
14 |
* |
15 |
* SUBROUTINE DSYMV ( UPLO, N, ALPHA, A, LDA, X, INCX, |
16 |
* $ BETA, Y, INCY ) |
17 |
* |
18 |
* SUBROUTINE DSBMV ( UPLO, N, K, ALPHA, A, LDA, X, INCX, |
19 |
* $ BETA, Y, INCY ) |
20 |
* |
21 |
* SUBROUTINE DSPMV ( UPLO, N, ALPHA, AP, X, INCX, BETA, Y, INCY ) |
22 |
* |
23 |
* SUBROUTINE DTRMV ( UPLO, TRANS, DIAG, N, A, LDA, X, INCX ) |
24 |
* |
25 |
* SUBROUTINE DTBMV ( UPLO, TRANS, DIAG, N, K, A, LDA, X, INCX ) |
26 |
* |
27 |
* SUBROUTINE DTPMV ( UPLO, TRANS, DIAG, N, AP, X, INCX ) |
28 |
* |
29 |
* SUBROUTINE DTRSV ( UPLO, TRANS, DIAG, N, A, LDA, X, INCX ) |
30 |
* |
31 |
* SUBROUTINE DTBSV ( UPLO, TRANS, DIAG, N, K, A, LDA, X, INCX ) |
32 |
* |
33 |
* SUBROUTINE DTPSV ( UPLO, TRANS, DIAG, N, AP, X, INCX ) |
34 |
* |
35 |
* SUBROUTINE DGER ( M, N, ALPHA, X, INCX, Y, INCY, A, LDA ) |
36 |
* |
37 |
* SUBROUTINE DSYR ( UPLO, N, ALPHA, X, INCX, A, LDA ) |
38 |
* |
39 |
* SUBROUTINE DSPR ( UPLO, N, ALPHA, X, INCX, AP ) |
40 |
* |
41 |
* SUBROUTINE DSYR2 ( UPLO, N, ALPHA, X, INCX, Y, INCY, A, LDA ) |
42 |
* |
43 |
* SUBROUTINE DSPR2 ( UPLO, N, ALPHA, X, INCX, Y, INCY, AP ) |
44 |
* |
45 |
* See: |
46 |
* |
47 |
* Dongarra J. J., Du Croz J. J., Hammarling S. and Hanson R. J.. |
48 |
* An extended set of Fortran Basic Linear Algebra Subprograms. |
49 |
* |
50 |
* Technical Memoranda Nos. 41 (revision 3) and 81, Mathematics |
51 |
* and Computer Science Division, Argonne National Laboratory, |
52 |
* 9700 South Cass Avenue, Argonne, Illinois 60439, US. |
53 |
* |
54 |
* Or |
55 |
* |
56 |
* NAG Technical Reports TR3/87 and TR4/87, Numerical Algorithms |
57 |
* Group Ltd., NAG Central Office, 256 Banbury Road, Oxford |
58 |
* OX2 7DE, UK, and Numerical Algorithms Group Inc., 1101 31st |
59 |
* Street, Suite 100, Downers Grove, Illinois 60515-1263, USA. |
60 |
* |
61 |
************************************************************************ |
62 |
* |
63 |
$ BETA, Y, INCY ) |
64 |
* .. Scalar Arguments .. |
65 |
DOUBLE PRECISION ALPHA, BETA |
66 |
INTEGER INCX, INCY, LDA, M, N |
67 |
CHARACTER*1 TRANS |
68 |
* .. Array Arguments .. |
69 |
DOUBLE PRECISION A( LDA, * ), X( * ), Y( * ) |
70 |
* .. |
71 |
* |
72 |
* Purpose |
73 |
* ======= |
74 |
* |
75 |
* DGEMV performs one of the matrix-vector operations |
76 |
* |
77 |
* y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y, |
78 |
* |
79 |
* where alpha and beta are scalars, x and y are vectors and A is an |
80 |
* m by n matrix. |
81 |
* |
82 |
* Parameters |
83 |
* ========== |
84 |
* |
85 |
* TRANS - CHARACTER*1. |
86 |
* On entry, TRANS specifies the operation to be performed as |
87 |
* follows: |
88 |
* |
89 |
* TRANS = 'N' or 'n' y := alpha*A*x + beta*y. |
90 |
* |
91 |
* TRANS = 'T' or 't' y := alpha*A'*x + beta*y. |
92 |
* |
93 |
* TRANS = 'C' or 'c' y := alpha*A'*x + beta*y. |
94 |
* |
95 |
* Unchanged on exit. |
96 |
* |
97 |
* M - INTEGER. |
98 |
* On entry, M specifies the number of rows of the matrix A. |
99 |
* M must be at least zero. |
100 |
* Unchanged on exit. |
101 |
* |
102 |
* N - INTEGER. |
103 |
* On entry, N specifies the number of columns of the matrix A. |
104 |
* N must be at least zero. |
105 |
* Unchanged on exit. |
106 |
* |
107 |
* ALPHA - DOUBLE PRECISION. |
108 |
* On entry, ALPHA specifies the scalar alpha. |
109 |
* Unchanged on exit. |
110 |
* |
111 |
* A - DOUBLE PRECISION array of DIMENSION ( LDA, n ). |
112 |
* Before entry, the leading m by n part of the array A must |
113 |
* contain the matrix of coefficients. |
114 |
* Unchanged on exit. |
115 |
* |
116 |
* LDA - INTEGER. |
117 |
* On entry, LDA specifies the first dimension of A as declared |
118 |
* in the calling (sub) program. LDA must be at least |
119 |
* max( 1, m ). |
120 |
* Unchanged on exit. |
121 |
* |
122 |
* X - DOUBLE PRECISION array of DIMENSION at least |
123 |
* ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n' |
124 |
* and at least |
125 |
* ( 1 + ( m - 1 )*abs( INCX ) ) otherwise. |
126 |
* Before entry, the incremented array X must contain the |
127 |
* vector x. |
128 |
* Unchanged on exit. |
129 |
* |
130 |
* INCX - INTEGER. |
131 |
* On entry, INCX specifies the increment for the elements of |
132 |
* X. INCX must not be zero. |
133 |
* Unchanged on exit. |
134 |
* |
135 |
* BETA - DOUBLE PRECISION. |
136 |
* On entry, BETA specifies the scalar beta. When BETA is |
137 |
* supplied as zero then Y need not be set on input. |
138 |
* Unchanged on exit. |
139 |
* |
140 |
* Y - DOUBLE PRECISION array of DIMENSION at least |
141 |
* ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n' |
142 |
* and at least |
143 |
* ( 1 + ( n - 1 )*abs( INCY ) ) otherwise. |
144 |
* Before entry with BETA non-zero, the incremented array Y |
145 |
* must contain the vector y. On exit, Y is overwritten by the |
146 |
* updated vector y. |
147 |
* |
148 |
* INCY - INTEGER. |
149 |
* On entry, INCY specifies the increment for the elements of |
150 |
* Y. INCY must not be zero. |
151 |
* Unchanged on exit. |
152 |
* |
153 |
* |
154 |
* Level 2 Blas routine. |
155 |
* |
156 |
* -- Written on 22-October-1986. |
157 |
* Jack Dongarra, Argonne National Lab. |
158 |
* Jeremy Du Croz, Nag Central Office. |
159 |
* Sven Hammarling, Nag Central Office. |
160 |
* Richard Hanson, Sandia National Labs. |
161 |
* |
162 |
* |
163 |
* .. Parameters .. |
164 |
DOUBLE PRECISION ONE , ZERO |
165 |
PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 ) |
166 |
* .. Local Scalars .. |
167 |
DOUBLE PRECISION TEMP |
168 |
INTEGER I, INFO, IX, IY, J, JX, JY, KX, KY, LENX, LENY |
169 |
* .. External Functions .. |
170 |
LOGICAL LSAME |
171 |
EXTERNAL LSAME |
172 |
* .. External Subroutines .. |
173 |
EXTERNAL XERBLA |
174 |
* .. Intrinsic Functions .. |
175 |
INTRINSIC MAX |
176 |
* .. |
177 |
* .. Executable Statements .. |
178 |
* |
179 |
* Test the input parameters. |
180 |
* |
181 |
INFO = 0 |
182 |
IF ( .NOT.LSAME( TRANS, 'N' ).AND. |
183 |
$ .NOT.LSAME( TRANS, 'T' ).AND. |
184 |
$ .NOT.LSAME( TRANS, 'C' ) )THEN |
185 |
INFO = 1 |
186 |
ELSE IF( M.LT.0 )THEN |
187 |
INFO = 2 |
188 |
ELSE IF( N.LT.0 )THEN |
189 |
INFO = 3 |
190 |
ELSE IF( LDA.LT.MAX( 1, M ) )THEN |
191 |
INFO = 6 |
192 |
ELSE IF( INCX.EQ.0 )THEN |
193 |
INFO = 8 |
194 |
ELSE IF( INCY.EQ.0 )THEN |
195 |
INFO = 11 |
196 |
END IF |
197 |
IF( INFO.NE.0 )THEN |
198 |
CALL XERBLA( 'DGEMV ', INFO ) |
199 |
RETURN |
200 |
END IF |
201 |
* |
202 |
* Quick return if possible. |
203 |
* |
204 |
IF( ( M.EQ.0 ).OR.( N.EQ.0 ).OR. |
205 |
$ ( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) ) |
206 |
$ RETURN |
207 |
* |
208 |
* Set LENX and LENY, the lengths of the vectors x and y, and set |
209 |
* up the start points in X and Y. |
210 |
* |
211 |
IF( LSAME( TRANS, 'N' ) )THEN |
212 |
LENX = N |
213 |
LENY = M |
214 |
ELSE |
215 |
LENX = M |
216 |
LENY = N |
217 |
END IF |
218 |
IF( INCX.GT.0 )THEN |
219 |
KX = 1 |
220 |
ELSE |
221 |
KX = 1 - ( LENX - 1 )*INCX |
222 |
END IF |
223 |
IF( INCY.GT.0 )THEN |
224 |
KY = 1 |
225 |
ELSE |
226 |
KY = 1 - ( LENY - 1 )*INCY |
227 |
END IF |
228 |
* |
229 |
* Start the operations. In this version the elements of A are |
230 |
* accessed sequentially with one pass through A. |
231 |
* |
232 |
* First form y := beta*y. |
233 |
* |
234 |
IF( BETA.NE.ONE )THEN |
235 |
IF( INCY.EQ.1 )THEN |
236 |
IF( BETA.EQ.ZERO )THEN |
237 |
DO 10, I = 1, LENY |
238 |
Y( I ) = ZERO |
239 |
10 CONTINUE |
240 |
ELSE |
241 |
DO 20, I = 1, LENY |
242 |
Y( I ) = BETA*Y( I ) |
243 |
20 CONTINUE |
244 |
END IF |
245 |
ELSE |
246 |
IY = KY |
247 |
IF( BETA.EQ.ZERO )THEN |
248 |
DO 30, I = 1, LENY |
249 |
Y( IY ) = ZERO |
250 |
IY = IY + INCY |
251 |
30 CONTINUE |
252 |
ELSE |
253 |
DO 40, I = 1, LENY |
254 |
Y( IY ) = BETA*Y( IY ) |
255 |
IY = IY + INCY |
256 |
40 CONTINUE |
257 |
END IF |
258 |
END IF |
259 |
END IF |
260 |
IF( ALPHA.EQ.ZERO ) |
261 |
$ RETURN |
262 |
IF( LSAME( TRANS, 'N' ) )THEN |
263 |
* |
264 |
* Form y := alpha*A*x + y. |
265 |
* |
266 |
JX = KX |
267 |
IF( INCY.EQ.1 )THEN |
268 |
DO 60, J = 1, N |
269 |
IF( X( JX ).NE.ZERO )THEN |
270 |
TEMP = ALPHA*X( JX ) |
271 |
DO 50, I = 1, M |
272 |
Y( I ) = Y( I ) + TEMP*A( I, J ) |
273 |
50 CONTINUE |
274 |
END IF |
275 |
JX = JX + INCX |
276 |
60 CONTINUE |
277 |
ELSE |
278 |
DO 80, J = 1, N |
279 |
IF( X( JX ).NE.ZERO )THEN |
280 |
TEMP = ALPHA*X( JX ) |
281 |
IY = KY |
282 |
DO 70, I = 1, M |
283 |
Y( IY ) = Y( IY ) + TEMP*A( I, J ) |
284 |
IY = IY + INCY |
285 |
70 CONTINUE |
286 |
END IF |
287 |
JX = JX + INCX |
288 |
80 CONTINUE |
289 |
END IF |
290 |
ELSE |
291 |
* |
292 |
* Form y := alpha*A'*x + y. |
293 |
* |
294 |
JY = KY |
295 |
IF( INCX.EQ.1 )THEN |
296 |
DO 100, J = 1, N |
297 |
TEMP = ZERO |
298 |
DO 90, I = 1, M |
299 |
TEMP = TEMP + A( I, J )*X( I ) |
300 |
90 CONTINUE |
301 |
Y( JY ) = Y( JY ) + ALPHA*TEMP |
302 |
JY = JY + INCY |
303 |
100 CONTINUE |
304 |
ELSE |
305 |
DO 120, J = 1, N |
306 |
TEMP = ZERO |
307 |
IX = KX |
308 |
DO 110, I = 1, M |
309 |
TEMP = TEMP + A( I, J )*X( IX ) |
310 |
IX = IX + INCX |
311 |
110 CONTINUE |
312 |
Y( JY ) = Y( JY ) + ALPHA*TEMP |
313 |
JY = JY + INCY |
314 |
120 CONTINUE |
315 |
END IF |
316 |
END IF |
317 |
* |
318 |
RETURN |
319 |
* |
320 |
* End of DGEMV . |
321 |
* |
322 |
END |