| 1 |
|
| 2 |
SUBROUTINE DGEMV ( TRANS, M, N, ALPHA, A, LDA, X, INCX, |
| 3 |
* |
| 4 |
************************************************************************ |
| 5 |
* |
| 6 |
* File of the DOUBLE PRECISION Level-2 BLAS. |
| 7 |
* =========================================== |
| 8 |
* |
| 9 |
* SUBROUTINE DGEMV ( TRANS, M, N, ALPHA, A, LDA, X, INCX, |
| 10 |
* $ BETA, Y, INCY ) |
| 11 |
* |
| 12 |
* SUBROUTINE DGBMV ( TRANS, M, N, KL, KU, ALPHA, A, LDA, X, INCX, |
| 13 |
* $ BETA, Y, INCY ) |
| 14 |
* |
| 15 |
* SUBROUTINE DSYMV ( UPLO, N, ALPHA, A, LDA, X, INCX, |
| 16 |
* $ BETA, Y, INCY ) |
| 17 |
* |
| 18 |
* SUBROUTINE DSBMV ( UPLO, N, K, ALPHA, A, LDA, X, INCX, |
| 19 |
* $ BETA, Y, INCY ) |
| 20 |
* |
| 21 |
* SUBROUTINE DSPMV ( UPLO, N, ALPHA, AP, X, INCX, BETA, Y, INCY ) |
| 22 |
* |
| 23 |
* SUBROUTINE DTRMV ( UPLO, TRANS, DIAG, N, A, LDA, X, INCX ) |
| 24 |
* |
| 25 |
* SUBROUTINE DTBMV ( UPLO, TRANS, DIAG, N, K, A, LDA, X, INCX ) |
| 26 |
* |
| 27 |
* SUBROUTINE DTPMV ( UPLO, TRANS, DIAG, N, AP, X, INCX ) |
| 28 |
* |
| 29 |
* SUBROUTINE DTRSV ( UPLO, TRANS, DIAG, N, A, LDA, X, INCX ) |
| 30 |
* |
| 31 |
* SUBROUTINE DTBSV ( UPLO, TRANS, DIAG, N, K, A, LDA, X, INCX ) |
| 32 |
* |
| 33 |
* SUBROUTINE DTPSV ( UPLO, TRANS, DIAG, N, AP, X, INCX ) |
| 34 |
* |
| 35 |
* SUBROUTINE DGER ( M, N, ALPHA, X, INCX, Y, INCY, A, LDA ) |
| 36 |
* |
| 37 |
* SUBROUTINE DSYR ( UPLO, N, ALPHA, X, INCX, A, LDA ) |
| 38 |
* |
| 39 |
* SUBROUTINE DSPR ( UPLO, N, ALPHA, X, INCX, AP ) |
| 40 |
* |
| 41 |
* SUBROUTINE DSYR2 ( UPLO, N, ALPHA, X, INCX, Y, INCY, A, LDA ) |
| 42 |
* |
| 43 |
* SUBROUTINE DSPR2 ( UPLO, N, ALPHA, X, INCX, Y, INCY, AP ) |
| 44 |
* |
| 45 |
* See: |
| 46 |
* |
| 47 |
* Dongarra J. J., Du Croz J. J., Hammarling S. and Hanson R. J.. |
| 48 |
* An extended set of Fortran Basic Linear Algebra Subprograms. |
| 49 |
* |
| 50 |
* Technical Memoranda Nos. 41 (revision 3) and 81, Mathematics |
| 51 |
* and Computer Science Division, Argonne National Laboratory, |
| 52 |
* 9700 South Cass Avenue, Argonne, Illinois 60439, US. |
| 53 |
* |
| 54 |
* Or |
| 55 |
* |
| 56 |
* NAG Technical Reports TR3/87 and TR4/87, Numerical Algorithms |
| 57 |
* Group Ltd., NAG Central Office, 256 Banbury Road, Oxford |
| 58 |
* OX2 7DE, UK, and Numerical Algorithms Group Inc., 1101 31st |
| 59 |
* Street, Suite 100, Downers Grove, Illinois 60515-1263, USA. |
| 60 |
* |
| 61 |
************************************************************************ |
| 62 |
* |
| 63 |
$ BETA, Y, INCY ) |
| 64 |
* .. Scalar Arguments .. |
| 65 |
DOUBLE PRECISION ALPHA, BETA |
| 66 |
INTEGER INCX, INCY, LDA, M, N |
| 67 |
CHARACTER*1 TRANS |
| 68 |
* .. Array Arguments .. |
| 69 |
DOUBLE PRECISION A( LDA, * ), X( * ), Y( * ) |
| 70 |
* .. |
| 71 |
* |
| 72 |
* Purpose |
| 73 |
* ======= |
| 74 |
* |
| 75 |
* DGEMV performs one of the matrix-vector operations |
| 76 |
* |
| 77 |
* y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y, |
| 78 |
* |
| 79 |
* where alpha and beta are scalars, x and y are vectors and A is an |
| 80 |
* m by n matrix. |
| 81 |
* |
| 82 |
* Parameters |
| 83 |
* ========== |
| 84 |
* |
| 85 |
* TRANS - CHARACTER*1. |
| 86 |
* On entry, TRANS specifies the operation to be performed as |
| 87 |
* follows: |
| 88 |
* |
| 89 |
* TRANS = 'N' or 'n' y := alpha*A*x + beta*y. |
| 90 |
* |
| 91 |
* TRANS = 'T' or 't' y := alpha*A'*x + beta*y. |
| 92 |
* |
| 93 |
* TRANS = 'C' or 'c' y := alpha*A'*x + beta*y. |
| 94 |
* |
| 95 |
* Unchanged on exit. |
| 96 |
* |
| 97 |
* M - INTEGER. |
| 98 |
* On entry, M specifies the number of rows of the matrix A. |
| 99 |
* M must be at least zero. |
| 100 |
* Unchanged on exit. |
| 101 |
* |
| 102 |
* N - INTEGER. |
| 103 |
* On entry, N specifies the number of columns of the matrix A. |
| 104 |
* N must be at least zero. |
| 105 |
* Unchanged on exit. |
| 106 |
* |
| 107 |
* ALPHA - DOUBLE PRECISION. |
| 108 |
* On entry, ALPHA specifies the scalar alpha. |
| 109 |
* Unchanged on exit. |
| 110 |
* |
| 111 |
* A - DOUBLE PRECISION array of DIMENSION ( LDA, n ). |
| 112 |
* Before entry, the leading m by n part of the array A must |
| 113 |
* contain the matrix of coefficients. |
| 114 |
* Unchanged on exit. |
| 115 |
* |
| 116 |
* LDA - INTEGER. |
| 117 |
* On entry, LDA specifies the first dimension of A as declared |
| 118 |
* in the calling (sub) program. LDA must be at least |
| 119 |
* max( 1, m ). |
| 120 |
* Unchanged on exit. |
| 121 |
* |
| 122 |
* X - DOUBLE PRECISION array of DIMENSION at least |
| 123 |
* ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n' |
| 124 |
* and at least |
| 125 |
* ( 1 + ( m - 1 )*abs( INCX ) ) otherwise. |
| 126 |
* Before entry, the incremented array X must contain the |
| 127 |
* vector x. |
| 128 |
* Unchanged on exit. |
| 129 |
* |
| 130 |
* INCX - INTEGER. |
| 131 |
* On entry, INCX specifies the increment for the elements of |
| 132 |
* X. INCX must not be zero. |
| 133 |
* Unchanged on exit. |
| 134 |
* |
| 135 |
* BETA - DOUBLE PRECISION. |
| 136 |
* On entry, BETA specifies the scalar beta. When BETA is |
| 137 |
* supplied as zero then Y need not be set on input. |
| 138 |
* Unchanged on exit. |
| 139 |
* |
| 140 |
* Y - DOUBLE PRECISION array of DIMENSION at least |
| 141 |
* ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n' |
| 142 |
* and at least |
| 143 |
* ( 1 + ( n - 1 )*abs( INCY ) ) otherwise. |
| 144 |
* Before entry with BETA non-zero, the incremented array Y |
| 145 |
* must contain the vector y. On exit, Y is overwritten by the |
| 146 |
* updated vector y. |
| 147 |
* |
| 148 |
* INCY - INTEGER. |
| 149 |
* On entry, INCY specifies the increment for the elements of |
| 150 |
* Y. INCY must not be zero. |
| 151 |
* Unchanged on exit. |
| 152 |
* |
| 153 |
* |
| 154 |
* Level 2 Blas routine. |
| 155 |
* |
| 156 |
* -- Written on 22-October-1986. |
| 157 |
* Jack Dongarra, Argonne National Lab. |
| 158 |
* Jeremy Du Croz, Nag Central Office. |
| 159 |
* Sven Hammarling, Nag Central Office. |
| 160 |
* Richard Hanson, Sandia National Labs. |
| 161 |
* |
| 162 |
* |
| 163 |
* .. Parameters .. |
| 164 |
DOUBLE PRECISION ONE , ZERO |
| 165 |
PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 ) |
| 166 |
* .. Local Scalars .. |
| 167 |
DOUBLE PRECISION TEMP |
| 168 |
INTEGER I, INFO, IX, IY, J, JX, JY, KX, KY, LENX, LENY |
| 169 |
* .. External Functions .. |
| 170 |
LOGICAL LSAME |
| 171 |
EXTERNAL LSAME |
| 172 |
* .. External Subroutines .. |
| 173 |
EXTERNAL XERBLA |
| 174 |
* .. Intrinsic Functions .. |
| 175 |
INTRINSIC MAX |
| 176 |
* .. |
| 177 |
* .. Executable Statements .. |
| 178 |
* |
| 179 |
* Test the input parameters. |
| 180 |
* |
| 181 |
INFO = 0 |
| 182 |
IF ( .NOT.LSAME( TRANS, 'N' ).AND. |
| 183 |
$ .NOT.LSAME( TRANS, 'T' ).AND. |
| 184 |
$ .NOT.LSAME( TRANS, 'C' ) )THEN |
| 185 |
INFO = 1 |
| 186 |
ELSE IF( M.LT.0 )THEN |
| 187 |
INFO = 2 |
| 188 |
ELSE IF( N.LT.0 )THEN |
| 189 |
INFO = 3 |
| 190 |
ELSE IF( LDA.LT.MAX( 1, M ) )THEN |
| 191 |
INFO = 6 |
| 192 |
ELSE IF( INCX.EQ.0 )THEN |
| 193 |
INFO = 8 |
| 194 |
ELSE IF( INCY.EQ.0 )THEN |
| 195 |
INFO = 11 |
| 196 |
END IF |
| 197 |
IF( INFO.NE.0 )THEN |
| 198 |
CALL XERBLA( 'DGEMV ', INFO ) |
| 199 |
RETURN |
| 200 |
END IF |
| 201 |
* |
| 202 |
* Quick return if possible. |
| 203 |
* |
| 204 |
IF( ( M.EQ.0 ).OR.( N.EQ.0 ).OR. |
| 205 |
$ ( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) ) |
| 206 |
$ RETURN |
| 207 |
* |
| 208 |
* Set LENX and LENY, the lengths of the vectors x and y, and set |
| 209 |
* up the start points in X and Y. |
| 210 |
* |
| 211 |
IF( LSAME( TRANS, 'N' ) )THEN |
| 212 |
LENX = N |
| 213 |
LENY = M |
| 214 |
ELSE |
| 215 |
LENX = M |
| 216 |
LENY = N |
| 217 |
END IF |
| 218 |
IF( INCX.GT.0 )THEN |
| 219 |
KX = 1 |
| 220 |
ELSE |
| 221 |
KX = 1 - ( LENX - 1 )*INCX |
| 222 |
END IF |
| 223 |
IF( INCY.GT.0 )THEN |
| 224 |
KY = 1 |
| 225 |
ELSE |
| 226 |
KY = 1 - ( LENY - 1 )*INCY |
| 227 |
END IF |
| 228 |
* |
| 229 |
* Start the operations. In this version the elements of A are |
| 230 |
* accessed sequentially with one pass through A. |
| 231 |
* |
| 232 |
* First form y := beta*y. |
| 233 |
* |
| 234 |
IF( BETA.NE.ONE )THEN |
| 235 |
IF( INCY.EQ.1 )THEN |
| 236 |
IF( BETA.EQ.ZERO )THEN |
| 237 |
DO 10, I = 1, LENY |
| 238 |
Y( I ) = ZERO |
| 239 |
10 CONTINUE |
| 240 |
ELSE |
| 241 |
DO 20, I = 1, LENY |
| 242 |
Y( I ) = BETA*Y( I ) |
| 243 |
20 CONTINUE |
| 244 |
END IF |
| 245 |
ELSE |
| 246 |
IY = KY |
| 247 |
IF( BETA.EQ.ZERO )THEN |
| 248 |
DO 30, I = 1, LENY |
| 249 |
Y( IY ) = ZERO |
| 250 |
IY = IY + INCY |
| 251 |
30 CONTINUE |
| 252 |
ELSE |
| 253 |
DO 40, I = 1, LENY |
| 254 |
Y( IY ) = BETA*Y( IY ) |
| 255 |
IY = IY + INCY |
| 256 |
40 CONTINUE |
| 257 |
END IF |
| 258 |
END IF |
| 259 |
END IF |
| 260 |
IF( ALPHA.EQ.ZERO ) |
| 261 |
$ RETURN |
| 262 |
IF( LSAME( TRANS, 'N' ) )THEN |
| 263 |
* |
| 264 |
* Form y := alpha*A*x + y. |
| 265 |
* |
| 266 |
JX = KX |
| 267 |
IF( INCY.EQ.1 )THEN |
| 268 |
DO 60, J = 1, N |
| 269 |
IF( X( JX ).NE.ZERO )THEN |
| 270 |
TEMP = ALPHA*X( JX ) |
| 271 |
DO 50, I = 1, M |
| 272 |
Y( I ) = Y( I ) + TEMP*A( I, J ) |
| 273 |
50 CONTINUE |
| 274 |
END IF |
| 275 |
JX = JX + INCX |
| 276 |
60 CONTINUE |
| 277 |
ELSE |
| 278 |
DO 80, J = 1, N |
| 279 |
IF( X( JX ).NE.ZERO )THEN |
| 280 |
TEMP = ALPHA*X( JX ) |
| 281 |
IY = KY |
| 282 |
DO 70, I = 1, M |
| 283 |
Y( IY ) = Y( IY ) + TEMP*A( I, J ) |
| 284 |
IY = IY + INCY |
| 285 |
70 CONTINUE |
| 286 |
END IF |
| 287 |
JX = JX + INCX |
| 288 |
80 CONTINUE |
| 289 |
END IF |
| 290 |
ELSE |
| 291 |
* |
| 292 |
* Form y := alpha*A'*x + y. |
| 293 |
* |
| 294 |
JY = KY |
| 295 |
IF( INCX.EQ.1 )THEN |
| 296 |
DO 100, J = 1, N |
| 297 |
TEMP = ZERO |
| 298 |
DO 90, I = 1, M |
| 299 |
TEMP = TEMP + A( I, J )*X( I ) |
| 300 |
90 CONTINUE |
| 301 |
Y( JY ) = Y( JY ) + ALPHA*TEMP |
| 302 |
JY = JY + INCY |
| 303 |
100 CONTINUE |
| 304 |
ELSE |
| 305 |
DO 120, J = 1, N |
| 306 |
TEMP = ZERO |
| 307 |
IX = KX |
| 308 |
DO 110, I = 1, M |
| 309 |
TEMP = TEMP + A( I, J )*X( IX ) |
| 310 |
IX = IX + INCX |
| 311 |
110 CONTINUE |
| 312 |
Y( JY ) = Y( JY ) + ALPHA*TEMP |
| 313 |
JY = JY + INCY |
| 314 |
120 CONTINUE |
| 315 |
END IF |
| 316 |
END IF |
| 317 |
* |
| 318 |
RETURN |
| 319 |
* |
| 320 |
* End of DGEMV . |
| 321 |
* |
| 322 |
END |