| 1 |
SUBROUTINE DGEMM ( TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB, |
| 2 |
$ BETA, C, LDC ) |
| 3 |
* .. Scalar Arguments .. |
| 4 |
CHARACTER*1 TRANSA, TRANSB |
| 5 |
INTEGER M, N, K, LDA, LDB, LDC |
| 6 |
DOUBLE PRECISION ALPHA, BETA |
| 7 |
* .. Array Arguments .. |
| 8 |
DOUBLE PRECISION A( LDA, * ), B( LDB, * ), C( LDC, * ) |
| 9 |
* .. |
| 10 |
* |
| 11 |
* Purpose |
| 12 |
* ======= |
| 13 |
* |
| 14 |
* DGEMM performs one of the matrix-matrix operations |
| 15 |
* |
| 16 |
* C := alpha*op( A )*op( B ) + beta*C, |
| 17 |
* |
| 18 |
* where op( X ) is one of |
| 19 |
* |
| 20 |
* op( X ) = X or op( X ) = X', |
| 21 |
* |
| 22 |
* alpha and beta are scalars, and A, B and C are matrices, with op( A ) |
| 23 |
* an m by k matrix, op( B ) a k by n matrix and C an m by n matrix. |
| 24 |
* |
| 25 |
* Parameters |
| 26 |
* ========== |
| 27 |
* |
| 28 |
* TRANSA - CHARACTER*1. |
| 29 |
* On entry, TRANSA specifies the form of op( A ) to be used in |
| 30 |
* the matrix multiplication as follows: |
| 31 |
* |
| 32 |
* TRANSA = 'N' or 'n', op( A ) = A. |
| 33 |
* |
| 34 |
* TRANSA = 'T' or 't', op( A ) = A'. |
| 35 |
* |
| 36 |
* TRANSA = 'C' or 'c', op( A ) = A'. |
| 37 |
* |
| 38 |
* Unchanged on exit. |
| 39 |
* |
| 40 |
* TRANSB - CHARACTER*1. |
| 41 |
* On entry, TRANSB specifies the form of op( B ) to be used in |
| 42 |
* the matrix multiplication as follows: |
| 43 |
* |
| 44 |
* TRANSB = 'N' or 'n', op( B ) = B. |
| 45 |
* |
| 46 |
* TRANSB = 'T' or 't', op( B ) = B'. |
| 47 |
* |
| 48 |
* TRANSB = 'C' or 'c', op( B ) = B'. |
| 49 |
* |
| 50 |
* Unchanged on exit. |
| 51 |
* |
| 52 |
* M - INTEGER. |
| 53 |
* On entry, M specifies the number of rows of the matrix |
| 54 |
* op( A ) and of the matrix C. M must be at least zero. |
| 55 |
* Unchanged on exit. |
| 56 |
* |
| 57 |
* N - INTEGER. |
| 58 |
* On entry, N specifies the number of columns of the matrix |
| 59 |
* op( B ) and the number of columns of the matrix C. N must be |
| 60 |
* at least zero. |
| 61 |
* Unchanged on exit. |
| 62 |
* |
| 63 |
* K - INTEGER. |
| 64 |
* On entry, K specifies the number of columns of the matrix |
| 65 |
* op( A ) and the number of rows of the matrix op( B ). K must |
| 66 |
* be at least zero. |
| 67 |
* Unchanged on exit. |
| 68 |
* |
| 69 |
* ALPHA - DOUBLE PRECISION. |
| 70 |
* On entry, ALPHA specifies the scalar alpha. |
| 71 |
* Unchanged on exit. |
| 72 |
* |
| 73 |
* A - DOUBLE PRECISION array of DIMENSION ( LDA, ka ), where ka is |
| 74 |
* k when TRANSA = 'N' or 'n', and is m otherwise. |
| 75 |
* Before entry with TRANSA = 'N' or 'n', the leading m by k |
| 76 |
* part of the array A must contain the matrix A, otherwise |
| 77 |
* the leading k by m part of the array A must contain the |
| 78 |
* matrix A. |
| 79 |
* Unchanged on exit. |
| 80 |
* |
| 81 |
* LDA - INTEGER. |
| 82 |
* On entry, LDA specifies the first dimension of A as declared |
| 83 |
* in the calling (sub) program. When TRANSA = 'N' or 'n' then |
| 84 |
* LDA must be at least max( 1, m ), otherwise LDA must be at |
| 85 |
* least max( 1, k ). |
| 86 |
* Unchanged on exit. |
| 87 |
* |
| 88 |
* B - DOUBLE PRECISION array of DIMENSION ( LDB, kb ), where kb is |
| 89 |
* n when TRANSB = 'N' or 'n', and is k otherwise. |
| 90 |
* Before entry with TRANSB = 'N' or 'n', the leading k by n |
| 91 |
* part of the array B must contain the matrix B, otherwise |
| 92 |
* the leading n by k part of the array B must contain the |
| 93 |
* matrix B. |
| 94 |
* Unchanged on exit. |
| 95 |
* |
| 96 |
* LDB - INTEGER. |
| 97 |
* On entry, LDB specifies the first dimension of B as declared |
| 98 |
* in the calling (sub) program. When TRANSB = 'N' or 'n' then |
| 99 |
* LDB must be at least max( 1, k ), otherwise LDB must be at |
| 100 |
* least max( 1, n ). |
| 101 |
* Unchanged on exit. |
| 102 |
* |
| 103 |
* BETA - DOUBLE PRECISION. |
| 104 |
* On entry, BETA specifies the scalar beta. When BETA is |
| 105 |
* supplied as zero then C need not be set on input. |
| 106 |
* Unchanged on exit. |
| 107 |
* |
| 108 |
* C - DOUBLE PRECISION array of DIMENSION ( LDC, n ). |
| 109 |
* Before entry, the leading m by n part of the array C must |
| 110 |
* contain the matrix C, except when beta is zero, in which |
| 111 |
* case C need not be set on entry. |
| 112 |
* On exit, the array C is overwritten by the m by n matrix |
| 113 |
* ( alpha*op( A )*op( B ) + beta*C ). |
| 114 |
* |
| 115 |
* LDC - INTEGER. |
| 116 |
* On entry, LDC specifies the first dimension of C as declared |
| 117 |
* in the calling (sub) program. LDC must be at least |
| 118 |
* max( 1, m ). |
| 119 |
* Unchanged on exit. |
| 120 |
* |
| 121 |
* |
| 122 |
* Level 3 Blas routine. |
| 123 |
* |
| 124 |
* -- Written on 8-February-1989. |
| 125 |
* Jack Dongarra, Argonne National Laboratory. |
| 126 |
* Iain Duff, AERE Harwell. |
| 127 |
* Jeremy Du Croz, Numerical Algorithms Group Ltd. |
| 128 |
* Sven Hammarling, Numerical Algorithms Group Ltd. |
| 129 |
* |
| 130 |
* |
| 131 |
* .. External Functions .. |
| 132 |
LOGICAL LSAME |
| 133 |
EXTERNAL LSAME |
| 134 |
* .. External Subroutines .. |
| 135 |
EXTERNAL XERBLA |
| 136 |
* .. Intrinsic Functions .. |
| 137 |
INTRINSIC MAX |
| 138 |
* .. Local Scalars .. |
| 139 |
LOGICAL NOTA, NOTB |
| 140 |
INTEGER I, INFO, J, L, NCOLA, NROWA, NROWB |
| 141 |
DOUBLE PRECISION TEMP |
| 142 |
* .. Parameters .. |
| 143 |
DOUBLE PRECISION ONE , ZERO |
| 144 |
PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 ) |
| 145 |
* .. |
| 146 |
* .. Executable Statements .. |
| 147 |
* |
| 148 |
* Set NOTA and NOTB as true if A and B respectively are not |
| 149 |
* transposed and set NROWA, NCOLA and NROWB as the number of rows |
| 150 |
* and columns of A and the number of rows of B respectively. |
| 151 |
* |
| 152 |
NOTA = LSAME( TRANSA, 'N' ) |
| 153 |
NOTB = LSAME( TRANSB, 'N' ) |
| 154 |
IF( NOTA )THEN |
| 155 |
NROWA = M |
| 156 |
NCOLA = K |
| 157 |
ELSE |
| 158 |
NROWA = K |
| 159 |
NCOLA = M |
| 160 |
END IF |
| 161 |
IF( NOTB )THEN |
| 162 |
NROWB = K |
| 163 |
ELSE |
| 164 |
NROWB = N |
| 165 |
END IF |
| 166 |
* |
| 167 |
* Test the input parameters. |
| 168 |
* |
| 169 |
INFO = 0 |
| 170 |
IF( ( .NOT.NOTA ).AND. |
| 171 |
$ ( .NOT.LSAME( TRANSA, 'C' ) ).AND. |
| 172 |
$ ( .NOT.LSAME( TRANSA, 'T' ) ) )THEN |
| 173 |
INFO = 1 |
| 174 |
ELSE IF( ( .NOT.NOTB ).AND. |
| 175 |
$ ( .NOT.LSAME( TRANSB, 'C' ) ).AND. |
| 176 |
$ ( .NOT.LSAME( TRANSB, 'T' ) ) )THEN |
| 177 |
INFO = 2 |
| 178 |
ELSE IF( M .LT.0 )THEN |
| 179 |
INFO = 3 |
| 180 |
ELSE IF( N .LT.0 )THEN |
| 181 |
INFO = 4 |
| 182 |
ELSE IF( K .LT.0 )THEN |
| 183 |
INFO = 5 |
| 184 |
ELSE IF( LDA.LT.MAX( 1, NROWA ) )THEN |
| 185 |
INFO = 8 |
| 186 |
ELSE IF( LDB.LT.MAX( 1, NROWB ) )THEN |
| 187 |
INFO = 10 |
| 188 |
ELSE IF( LDC.LT.MAX( 1, M ) )THEN |
| 189 |
INFO = 13 |
| 190 |
END IF |
| 191 |
IF( INFO.NE.0 )THEN |
| 192 |
CALL XERBLA( 'DGEMM ', INFO ) |
| 193 |
RETURN |
| 194 |
END IF |
| 195 |
* |
| 196 |
* Quick return if possible. |
| 197 |
* |
| 198 |
IF( ( M.EQ.0 ).OR.( N.EQ.0 ).OR. |
| 199 |
$ ( ( ( ALPHA.EQ.ZERO ).OR.( K.EQ.0 ) ).AND.( BETA.EQ.ONE ) ) ) |
| 200 |
$ RETURN |
| 201 |
* |
| 202 |
* And if alpha.eq.zero. |
| 203 |
* |
| 204 |
IF( ALPHA.EQ.ZERO )THEN |
| 205 |
IF( BETA.EQ.ZERO )THEN |
| 206 |
DO 20, J = 1, N |
| 207 |
DO 10, I = 1, M |
| 208 |
C( I, J ) = ZERO |
| 209 |
10 CONTINUE |
| 210 |
20 CONTINUE |
| 211 |
ELSE |
| 212 |
DO 40, J = 1, N |
| 213 |
DO 30, I = 1, M |
| 214 |
C( I, J ) = BETA*C( I, J ) |
| 215 |
30 CONTINUE |
| 216 |
40 CONTINUE |
| 217 |
END IF |
| 218 |
RETURN |
| 219 |
END IF |
| 220 |
* |
| 221 |
* Start the operations. |
| 222 |
* |
| 223 |
IF( NOTB )THEN |
| 224 |
IF( NOTA )THEN |
| 225 |
* |
| 226 |
* Form C := alpha*A*B + beta*C. |
| 227 |
* |
| 228 |
DO 90, J = 1, N |
| 229 |
IF( BETA.EQ.ZERO )THEN |
| 230 |
DO 50, I = 1, M |
| 231 |
C( I, J ) = ZERO |
| 232 |
50 CONTINUE |
| 233 |
ELSE IF( BETA.NE.ONE )THEN |
| 234 |
DO 60, I = 1, M |
| 235 |
C( I, J ) = BETA*C( I, J ) |
| 236 |
60 CONTINUE |
| 237 |
END IF |
| 238 |
DO 80, L = 1, K |
| 239 |
IF( B( L, J ).NE.ZERO )THEN |
| 240 |
TEMP = ALPHA*B( L, J ) |
| 241 |
DO 70, I = 1, M |
| 242 |
C( I, J ) = C( I, J ) + TEMP*A( I, L ) |
| 243 |
70 CONTINUE |
| 244 |
END IF |
| 245 |
80 CONTINUE |
| 246 |
90 CONTINUE |
| 247 |
ELSE |
| 248 |
* |
| 249 |
* Form C := alpha*A'*B + beta*C |
| 250 |
* |
| 251 |
DO 120, J = 1, N |
| 252 |
DO 110, I = 1, M |
| 253 |
TEMP = ZERO |
| 254 |
DO 100, L = 1, K |
| 255 |
TEMP = TEMP + A( L, I )*B( L, J ) |
| 256 |
100 CONTINUE |
| 257 |
IF( BETA.EQ.ZERO )THEN |
| 258 |
C( I, J ) = ALPHA*TEMP |
| 259 |
ELSE |
| 260 |
C( I, J ) = ALPHA*TEMP + BETA*C( I, J ) |
| 261 |
END IF |
| 262 |
110 CONTINUE |
| 263 |
120 CONTINUE |
| 264 |
END IF |
| 265 |
ELSE |
| 266 |
IF( NOTA )THEN |
| 267 |
* |
| 268 |
* Form C := alpha*A*B' + beta*C |
| 269 |
* |
| 270 |
DO 170, J = 1, N |
| 271 |
IF( BETA.EQ.ZERO )THEN |
| 272 |
DO 130, I = 1, M |
| 273 |
C( I, J ) = ZERO |
| 274 |
130 CONTINUE |
| 275 |
ELSE IF( BETA.NE.ONE )THEN |
| 276 |
DO 140, I = 1, M |
| 277 |
C( I, J ) = BETA*C( I, J ) |
| 278 |
140 CONTINUE |
| 279 |
END IF |
| 280 |
DO 160, L = 1, K |
| 281 |
IF( B( J, L ).NE.ZERO )THEN |
| 282 |
TEMP = ALPHA*B( J, L ) |
| 283 |
DO 150, I = 1, M |
| 284 |
C( I, J ) = C( I, J ) + TEMP*A( I, L ) |
| 285 |
150 CONTINUE |
| 286 |
END IF |
| 287 |
160 CONTINUE |
| 288 |
170 CONTINUE |
| 289 |
ELSE |
| 290 |
* |
| 291 |
* Form C := alpha*A'*B' + beta*C |
| 292 |
* |
| 293 |
DO 200, J = 1, N |
| 294 |
DO 190, I = 1, M |
| 295 |
TEMP = ZERO |
| 296 |
DO 180, L = 1, K |
| 297 |
TEMP = TEMP + A( L, I )*B( J, L ) |
| 298 |
180 CONTINUE |
| 299 |
IF( BETA.EQ.ZERO )THEN |
| 300 |
C( I, J ) = ALPHA*TEMP |
| 301 |
ELSE |
| 302 |
C( I, J ) = ALPHA*TEMP + BETA*C( I, J ) |
| 303 |
END IF |
| 304 |
190 CONTINUE |
| 305 |
200 CONTINUE |
| 306 |
END IF |
| 307 |
END IF |
| 308 |
* |
| 309 |
RETURN |
| 310 |
* |
| 311 |
* End of DGEMM . |
| 312 |
* |
| 313 |
END |
| 314 |
|