1 |
SUBROUTINE DGEMM ( TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB, |
2 |
$ BETA, C, LDC ) |
3 |
* .. Scalar Arguments .. |
4 |
CHARACTER*1 TRANSA, TRANSB |
5 |
INTEGER M, N, K, LDA, LDB, LDC |
6 |
DOUBLE PRECISION ALPHA, BETA |
7 |
* .. Array Arguments .. |
8 |
DOUBLE PRECISION A( LDA, * ), B( LDB, * ), C( LDC, * ) |
9 |
* .. |
10 |
* |
11 |
* Purpose |
12 |
* ======= |
13 |
* |
14 |
* DGEMM performs one of the matrix-matrix operations |
15 |
* |
16 |
* C := alpha*op( A )*op( B ) + beta*C, |
17 |
* |
18 |
* where op( X ) is one of |
19 |
* |
20 |
* op( X ) = X or op( X ) = X', |
21 |
* |
22 |
* alpha and beta are scalars, and A, B and C are matrices, with op( A ) |
23 |
* an m by k matrix, op( B ) a k by n matrix and C an m by n matrix. |
24 |
* |
25 |
* Parameters |
26 |
* ========== |
27 |
* |
28 |
* TRANSA - CHARACTER*1. |
29 |
* On entry, TRANSA specifies the form of op( A ) to be used in |
30 |
* the matrix multiplication as follows: |
31 |
* |
32 |
* TRANSA = 'N' or 'n', op( A ) = A. |
33 |
* |
34 |
* TRANSA = 'T' or 't', op( A ) = A'. |
35 |
* |
36 |
* TRANSA = 'C' or 'c', op( A ) = A'. |
37 |
* |
38 |
* Unchanged on exit. |
39 |
* |
40 |
* TRANSB - CHARACTER*1. |
41 |
* On entry, TRANSB specifies the form of op( B ) to be used in |
42 |
* the matrix multiplication as follows: |
43 |
* |
44 |
* TRANSB = 'N' or 'n', op( B ) = B. |
45 |
* |
46 |
* TRANSB = 'T' or 't', op( B ) = B'. |
47 |
* |
48 |
* TRANSB = 'C' or 'c', op( B ) = B'. |
49 |
* |
50 |
* Unchanged on exit. |
51 |
* |
52 |
* M - INTEGER. |
53 |
* On entry, M specifies the number of rows of the matrix |
54 |
* op( A ) and of the matrix C. M must be at least zero. |
55 |
* Unchanged on exit. |
56 |
* |
57 |
* N - INTEGER. |
58 |
* On entry, N specifies the number of columns of the matrix |
59 |
* op( B ) and the number of columns of the matrix C. N must be |
60 |
* at least zero. |
61 |
* Unchanged on exit. |
62 |
* |
63 |
* K - INTEGER. |
64 |
* On entry, K specifies the number of columns of the matrix |
65 |
* op( A ) and the number of rows of the matrix op( B ). K must |
66 |
* be at least zero. |
67 |
* Unchanged on exit. |
68 |
* |
69 |
* ALPHA - DOUBLE PRECISION. |
70 |
* On entry, ALPHA specifies the scalar alpha. |
71 |
* Unchanged on exit. |
72 |
* |
73 |
* A - DOUBLE PRECISION array of DIMENSION ( LDA, ka ), where ka is |
74 |
* k when TRANSA = 'N' or 'n', and is m otherwise. |
75 |
* Before entry with TRANSA = 'N' or 'n', the leading m by k |
76 |
* part of the array A must contain the matrix A, otherwise |
77 |
* the leading k by m part of the array A must contain the |
78 |
* matrix A. |
79 |
* Unchanged on exit. |
80 |
* |
81 |
* LDA - INTEGER. |
82 |
* On entry, LDA specifies the first dimension of A as declared |
83 |
* in the calling (sub) program. When TRANSA = 'N' or 'n' then |
84 |
* LDA must be at least max( 1, m ), otherwise LDA must be at |
85 |
* least max( 1, k ). |
86 |
* Unchanged on exit. |
87 |
* |
88 |
* B - DOUBLE PRECISION array of DIMENSION ( LDB, kb ), where kb is |
89 |
* n when TRANSB = 'N' or 'n', and is k otherwise. |
90 |
* Before entry with TRANSB = 'N' or 'n', the leading k by n |
91 |
* part of the array B must contain the matrix B, otherwise |
92 |
* the leading n by k part of the array B must contain the |
93 |
* matrix B. |
94 |
* Unchanged on exit. |
95 |
* |
96 |
* LDB - INTEGER. |
97 |
* On entry, LDB specifies the first dimension of B as declared |
98 |
* in the calling (sub) program. When TRANSB = 'N' or 'n' then |
99 |
* LDB must be at least max( 1, k ), otherwise LDB must be at |
100 |
* least max( 1, n ). |
101 |
* Unchanged on exit. |
102 |
* |
103 |
* BETA - DOUBLE PRECISION. |
104 |
* On entry, BETA specifies the scalar beta. When BETA is |
105 |
* supplied as zero then C need not be set on input. |
106 |
* Unchanged on exit. |
107 |
* |
108 |
* C - DOUBLE PRECISION array of DIMENSION ( LDC, n ). |
109 |
* Before entry, the leading m by n part of the array C must |
110 |
* contain the matrix C, except when beta is zero, in which |
111 |
* case C need not be set on entry. |
112 |
* On exit, the array C is overwritten by the m by n matrix |
113 |
* ( alpha*op( A )*op( B ) + beta*C ). |
114 |
* |
115 |
* LDC - INTEGER. |
116 |
* On entry, LDC specifies the first dimension of C as declared |
117 |
* in the calling (sub) program. LDC must be at least |
118 |
* max( 1, m ). |
119 |
* Unchanged on exit. |
120 |
* |
121 |
* |
122 |
* Level 3 Blas routine. |
123 |
* |
124 |
* -- Written on 8-February-1989. |
125 |
* Jack Dongarra, Argonne National Laboratory. |
126 |
* Iain Duff, AERE Harwell. |
127 |
* Jeremy Du Croz, Numerical Algorithms Group Ltd. |
128 |
* Sven Hammarling, Numerical Algorithms Group Ltd. |
129 |
* |
130 |
* |
131 |
* .. External Functions .. |
132 |
LOGICAL LSAME |
133 |
EXTERNAL LSAME |
134 |
* .. External Subroutines .. |
135 |
EXTERNAL XERBLA |
136 |
* .. Intrinsic Functions .. |
137 |
INTRINSIC MAX |
138 |
* .. Local Scalars .. |
139 |
LOGICAL NOTA, NOTB |
140 |
INTEGER I, INFO, J, L, NCOLA, NROWA, NROWB |
141 |
DOUBLE PRECISION TEMP |
142 |
* .. Parameters .. |
143 |
DOUBLE PRECISION ONE , ZERO |
144 |
PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 ) |
145 |
* .. |
146 |
* .. Executable Statements .. |
147 |
* |
148 |
* Set NOTA and NOTB as true if A and B respectively are not |
149 |
* transposed and set NROWA, NCOLA and NROWB as the number of rows |
150 |
* and columns of A and the number of rows of B respectively. |
151 |
* |
152 |
NOTA = LSAME( TRANSA, 'N' ) |
153 |
NOTB = LSAME( TRANSB, 'N' ) |
154 |
IF( NOTA )THEN |
155 |
NROWA = M |
156 |
NCOLA = K |
157 |
ELSE |
158 |
NROWA = K |
159 |
NCOLA = M |
160 |
END IF |
161 |
IF( NOTB )THEN |
162 |
NROWB = K |
163 |
ELSE |
164 |
NROWB = N |
165 |
END IF |
166 |
* |
167 |
* Test the input parameters. |
168 |
* |
169 |
INFO = 0 |
170 |
IF( ( .NOT.NOTA ).AND. |
171 |
$ ( .NOT.LSAME( TRANSA, 'C' ) ).AND. |
172 |
$ ( .NOT.LSAME( TRANSA, 'T' ) ) )THEN |
173 |
INFO = 1 |
174 |
ELSE IF( ( .NOT.NOTB ).AND. |
175 |
$ ( .NOT.LSAME( TRANSB, 'C' ) ).AND. |
176 |
$ ( .NOT.LSAME( TRANSB, 'T' ) ) )THEN |
177 |
INFO = 2 |
178 |
ELSE IF( M .LT.0 )THEN |
179 |
INFO = 3 |
180 |
ELSE IF( N .LT.0 )THEN |
181 |
INFO = 4 |
182 |
ELSE IF( K .LT.0 )THEN |
183 |
INFO = 5 |
184 |
ELSE IF( LDA.LT.MAX( 1, NROWA ) )THEN |
185 |
INFO = 8 |
186 |
ELSE IF( LDB.LT.MAX( 1, NROWB ) )THEN |
187 |
INFO = 10 |
188 |
ELSE IF( LDC.LT.MAX( 1, M ) )THEN |
189 |
INFO = 13 |
190 |
END IF |
191 |
IF( INFO.NE.0 )THEN |
192 |
CALL XERBLA( 'DGEMM ', INFO ) |
193 |
RETURN |
194 |
END IF |
195 |
* |
196 |
* Quick return if possible. |
197 |
* |
198 |
IF( ( M.EQ.0 ).OR.( N.EQ.0 ).OR. |
199 |
$ ( ( ( ALPHA.EQ.ZERO ).OR.( K.EQ.0 ) ).AND.( BETA.EQ.ONE ) ) ) |
200 |
$ RETURN |
201 |
* |
202 |
* And if alpha.eq.zero. |
203 |
* |
204 |
IF( ALPHA.EQ.ZERO )THEN |
205 |
IF( BETA.EQ.ZERO )THEN |
206 |
DO 20, J = 1, N |
207 |
DO 10, I = 1, M |
208 |
C( I, J ) = ZERO |
209 |
10 CONTINUE |
210 |
20 CONTINUE |
211 |
ELSE |
212 |
DO 40, J = 1, N |
213 |
DO 30, I = 1, M |
214 |
C( I, J ) = BETA*C( I, J ) |
215 |
30 CONTINUE |
216 |
40 CONTINUE |
217 |
END IF |
218 |
RETURN |
219 |
END IF |
220 |
* |
221 |
* Start the operations. |
222 |
* |
223 |
IF( NOTB )THEN |
224 |
IF( NOTA )THEN |
225 |
* |
226 |
* Form C := alpha*A*B + beta*C. |
227 |
* |
228 |
DO 90, J = 1, N |
229 |
IF( BETA.EQ.ZERO )THEN |
230 |
DO 50, I = 1, M |
231 |
C( I, J ) = ZERO |
232 |
50 CONTINUE |
233 |
ELSE IF( BETA.NE.ONE )THEN |
234 |
DO 60, I = 1, M |
235 |
C( I, J ) = BETA*C( I, J ) |
236 |
60 CONTINUE |
237 |
END IF |
238 |
DO 80, L = 1, K |
239 |
IF( B( L, J ).NE.ZERO )THEN |
240 |
TEMP = ALPHA*B( L, J ) |
241 |
DO 70, I = 1, M |
242 |
C( I, J ) = C( I, J ) + TEMP*A( I, L ) |
243 |
70 CONTINUE |
244 |
END IF |
245 |
80 CONTINUE |
246 |
90 CONTINUE |
247 |
ELSE |
248 |
* |
249 |
* Form C := alpha*A'*B + beta*C |
250 |
* |
251 |
DO 120, J = 1, N |
252 |
DO 110, I = 1, M |
253 |
TEMP = ZERO |
254 |
DO 100, L = 1, K |
255 |
TEMP = TEMP + A( L, I )*B( L, J ) |
256 |
100 CONTINUE |
257 |
IF( BETA.EQ.ZERO )THEN |
258 |
C( I, J ) = ALPHA*TEMP |
259 |
ELSE |
260 |
C( I, J ) = ALPHA*TEMP + BETA*C( I, J ) |
261 |
END IF |
262 |
110 CONTINUE |
263 |
120 CONTINUE |
264 |
END IF |
265 |
ELSE |
266 |
IF( NOTA )THEN |
267 |
* |
268 |
* Form C := alpha*A*B' + beta*C |
269 |
* |
270 |
DO 170, J = 1, N |
271 |
IF( BETA.EQ.ZERO )THEN |
272 |
DO 130, I = 1, M |
273 |
C( I, J ) = ZERO |
274 |
130 CONTINUE |
275 |
ELSE IF( BETA.NE.ONE )THEN |
276 |
DO 140, I = 1, M |
277 |
C( I, J ) = BETA*C( I, J ) |
278 |
140 CONTINUE |
279 |
END IF |
280 |
DO 160, L = 1, K |
281 |
IF( B( J, L ).NE.ZERO )THEN |
282 |
TEMP = ALPHA*B( J, L ) |
283 |
DO 150, I = 1, M |
284 |
C( I, J ) = C( I, J ) + TEMP*A( I, L ) |
285 |
150 CONTINUE |
286 |
END IF |
287 |
160 CONTINUE |
288 |
170 CONTINUE |
289 |
ELSE |
290 |
* |
291 |
* Form C := alpha*A'*B' + beta*C |
292 |
* |
293 |
DO 200, J = 1, N |
294 |
DO 190, I = 1, M |
295 |
TEMP = ZERO |
296 |
DO 180, L = 1, K |
297 |
TEMP = TEMP + A( L, I )*B( J, L ) |
298 |
180 CONTINUE |
299 |
IF( BETA.EQ.ZERO )THEN |
300 |
C( I, J ) = ALPHA*TEMP |
301 |
ELSE |
302 |
C( I, J ) = ALPHA*TEMP + BETA*C( I, J ) |
303 |
END IF |
304 |
190 CONTINUE |
305 |
200 CONTINUE |
306 |
END IF |
307 |
END IF |
308 |
* |
309 |
RETURN |
310 |
* |
311 |
* End of DGEMM . |
312 |
* |
313 |
END |
314 |
|