1 |
/* ASCEND modelling environment |
2 |
Copyright 1997, Carnegie Mellon University |
3 |
Copyright (C) 2006 Carnegie Mellon University |
4 |
|
5 |
This program is free software; you can redistribute it and/or modify |
6 |
it under the terms of the GNU General Public License as published by |
7 |
the Free Software Foundation; either version 2, or (at your option) |
8 |
any later version. |
9 |
|
10 |
This program is distributed in the hope that it will be useful, |
11 |
but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 |
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
13 |
GNU General Public License for more details. |
14 |
|
15 |
You should have received a copy of the GNU General Public License |
16 |
along with this program; if not, write to the Free Software |
17 |
Foundation, Inc., 59 Temple Place - Suite 330, |
18 |
Boston, MA 02111-1307, USA. |
19 |
*//** |
20 |
@file |
21 |
LSODE integrator. |
22 |
|
23 |
(old implementation notes:) |
24 |
|
25 |
As fortran io is unreliably portable (vc5+digital fortran) |
26 |
we have converted xerrwv to xascwv provided here. |
27 |
|
28 |
The lsode interface variable t is actually an array of |
29 |
2 doubles rather than just 1. The first is the the one |
30 |
used by lsode. The second is used by LSODE_FEX to tell |
31 |
what the last time it was called was. This is so the |
32 |
C driver can tell if it needs to resolve d to compute |
33 |
observation variables. If x[0]==x[1] we save ourselves |
34 |
a solve. |
35 |
|
36 |
@NOTE The above doesn't work since lsode doesn't use the same t internally |
37 |
that we hand it. |
38 |
|
39 |
*//* |
40 |
by Kirk Abbott and Ben Allan |
41 |
Created: 1/94 |
42 |
Version: $Revision: 1.29 $ |
43 |
Version control file: $RCSfile: Lsode.c,v $ |
44 |
Date last modified: $Date: 2000/01/25 02:26:31 $ |
45 |
Last modified by: $Author: ballan $ |
46 |
*/ |
47 |
|
48 |
#ifndef NO_SIGNAL_TRAPS |
49 |
#include <signal.h> |
50 |
#include <setjmp.h> |
51 |
#endif /* NO_SIGNAL_TRAPS */ |
52 |
|
53 |
#include <utilities/ascConfig.h> |
54 |
#include <utilities/error.h> |
55 |
#include <compiler/instance_enum.h> |
56 |
#include <utilities/ascSignal.h> |
57 |
#include <utilities/ascMalloc.h> |
58 |
#include <utilities/ascPanic.h> |
59 |
|
60 |
#include "slv_types.h" |
61 |
#include "mtx.h" |
62 |
#include "rel.h" |
63 |
#include "var.h" |
64 |
#include "discrete.h" |
65 |
#include "conditional.h" |
66 |
#include "bnd.h" |
67 |
#include "logrel.h" |
68 |
#include "slv_common.h" |
69 |
#include "linsol.h" |
70 |
#include "linsolqr.h" |
71 |
#include "slv_client.h" |
72 |
#include "slv_stdcalls.h" |
73 |
#include <packages/sensitivity.h> |
74 |
|
75 |
#include "integrator.h" |
76 |
#include "lsode.h" |
77 |
|
78 |
const IntegratorInternals integrator_lsode_internals = { |
79 |
integrator_lsode_create |
80 |
,integrator_lsode_params_default |
81 |
,integrator_analyse_ode /* note, this routine is back in integrator.c */ |
82 |
,integrator_lsode_solve |
83 |
,integrator_lsode_free |
84 |
,INTEG_LSODE |
85 |
,"LSODE" |
86 |
}; |
87 |
|
88 |
/* |
89 |
#include "Sensitivity.h" |
90 |
*//* see the packages dir */ |
91 |
|
92 |
/* |
93 |
* NOUNDERBARS --> FORTRAN compiler naming convention for subroutine |
94 |
* is wierd. WIN32/CRAY is treated as special case |
95 |
*/ |
96 |
#ifdef APOLLO |
97 |
#define NOUNDERBARS TRUE |
98 |
#endif |
99 |
#ifdef _HPUX_SOURCE |
100 |
#define NOUNDERBARS TRUE |
101 |
#endif |
102 |
/* AIX xlf will not suffix an underbar on a symbol |
103 |
* unless xlf is given the ``-qextname'' option |
104 |
*/ |
105 |
#ifdef _AIX |
106 |
#define NOUNDERBARS TRUE |
107 |
#endif |
108 |
|
109 |
#ifdef NOUNDERBARS |
110 |
#define LSODE lsode |
111 |
#define LSODE_JEX jex |
112 |
#define LSODE_FEX fex |
113 |
#define GETCOMMON get_lsode_common |
114 |
#define XASCWV xascwv |
115 |
#else |
116 |
/* sun, __alpha, __sgi, ... */ |
117 |
#define LSODE lsode_ |
118 |
#define LSODE_JEX jex_ |
119 |
#define LSODE_FEX fex_ |
120 |
#define GETCOMMON get_lsode_common_ |
121 |
#define XASCWV xascwv_ |
122 |
#endif |
123 |
|
124 |
#if defined(CRAY) || (defined(__WIN32__) && !defined(__MINGW32_VERSION)) |
125 |
#undef LSODE |
126 |
#undef LSODE_JEX |
127 |
#undef LSODE_FEX |
128 |
#undef GETCOMMON |
129 |
#undef XASCWV |
130 |
#define XASCWV XASCWV |
131 |
#define LSODE LSODE |
132 |
#define LSODE_JEX JEX |
133 |
#define LSODE_FEX FEX |
134 |
#define GETCOMMON GET_LSODE_COMMON |
135 |
#endif |
136 |
|
137 |
#define DOTIME FALSE |
138 |
|
139 |
/* definitions of lsode supported children of atoms, etc */ |
140 |
/********************************************************************/ |
141 |
/* solver_var children expected for state variables */ |
142 |
static symchar *g_symbols[2]; |
143 |
#define STATERTOL g_symbols[0] |
144 |
#define STATEATOL g_symbols[1] |
145 |
static |
146 |
void InitTolNames(void) |
147 |
{ |
148 |
STATERTOL = AddSymbol("ode_rtol"); |
149 |
STATEATOL = AddSymbol("ode_atol"); |
150 |
} |
151 |
|
152 |
/*-------------------------- |
153 |
Data space for use by LSODE |
154 |
*/ |
155 |
|
156 |
/** |
157 |
Because LSODE doesn't seem to make an allowance for 'client data' we |
158 |
have to store this as a 'local global' and fish it out when we're in the |
159 |
callbacks. |
160 |
*/ |
161 |
static IntegratorSystem *l_lsode_blsys = 0; |
162 |
|
163 |
typedef enum{ |
164 |
lsode_none=0 /* true on first call */ |
165 |
, lsode_function /**< a function evaluation */ |
166 |
, lsode_derivative /**< a gradient evaluation */ |
167 |
} IntegratorLsodeLastCallType; |
168 |
/** |
169 |
Enumeration that tells ASCEND what was the most recent thing LSODE did. |
170 |
*/ |
171 |
|
172 |
typedef enum{ |
173 |
lsode_ok=0 /**< success */ |
174 |
, lsode_nok /**< bad return from func or grad */ |
175 |
} IntegratorLsodeStatusCode; |
176 |
/** |
177 |
Enumeration to tell ASCEND if anything failed in a FEX or JEX call. |
178 |
*/ |
179 |
|
180 |
typedef struct{ |
181 |
IntegratorLsodeLastCallType lastcall; /* type of last call; func or grad */ |
182 |
IntegratorLsodeStatusCode status; /* solve status */ |
183 |
char stop; /* stop requested? */ |
184 |
int partitioned; /* partioned func evals or not */ |
185 |
} IntegratorLsodeStatus; |
186 |
/**< |
187 |
Bits of data that LSODE needs to be able to send/recieve from inside a |
188 |
JEX or FEX call. |
189 |
*/ |
190 |
|
191 |
typedef struct IntegratorLsodeDataStruct{ |
192 |
long n_eqns; /**< dimension of state vector */ |
193 |
int *input_indices; /**< vector of state vars indexes */ |
194 |
int *output_indices; /**< vector of derivative var indexes */ |
195 |
struct var_variable **y_vars; /**< NULL terminated list of states vars */ |
196 |
struct var_variable **ydot_vars; /**< NULL terminated list of derivative vars*/ |
197 |
struct rel_relation **rlist; /**< NULL terminated list of relevant rels |
198 |
to be differentiated */ |
199 |
double **dydx_dx; /**< change in derivatives wrt states |
200 |
I prefer to call this: d(ydot)/dy */ |
201 |
|
202 |
IntegratorLsodeLastCallType lastcall; /* type of last call; func or grad */ |
203 |
IntegratorLsodeStatusCode status; /* solve status */ |
204 |
char stop; /* stop requested? */ |
205 |
int partitioned; /* partioned func evals or not */ |
206 |
|
207 |
} IntegratorLsodeData; |
208 |
|
209 |
/**< |
210 |
Global data structure for LSODE. |
211 |
|
212 |
@NOTE LSODE is not reentrant! @ENDNOTE |
213 |
*/ |
214 |
|
215 |
/** Macro to declare a local var and fetch the 'enginedata' stuff into it from l_lsode_blsys. */ |
216 |
#define LSODEDATA_GET(N) \ |
217 |
IntegratorLsodeData *N; \ |
218 |
asc_assert(l_lsode_blsys!=NULL); \ |
219 |
N = (IntegratorLsodeData *)l_lsode_blsys->enginedata; \ |
220 |
asc_assert(N!=NULL) |
221 |
|
222 |
/** Macro to set the globa l_lsode_blsys to the currently blsys ptr. */ |
223 |
#define LSODEDATA_SET(N) \ |
224 |
asc_assert(l_lsode_blsys==NULL); \ |
225 |
asc_assert(N!=NULL); \ |
226 |
l_lsode_blsys = N |
227 |
|
228 |
#define LSODEDATA_RELEASE() \ |
229 |
asc_assert(l_lsode_blsys!=NULL); \ |
230 |
l_lsode_blsys = NULL; |
231 |
|
232 |
/*---------------------------- |
233 |
Function types that LSODE wants to use |
234 |
*/ |
235 |
|
236 |
/** |
237 |
Type of function used to evaluate derivative system. |
238 |
*/ |
239 |
typedef void LsodeEvalFn(int *, double *, double *, double *); |
240 |
|
241 |
/** |
242 |
Type of function used to evaluate jacobian system. |
243 |
*/ |
244 |
typedef void LsodeJacobianFn(int *, double *, double *, int *, int *, double *, int *); |
245 |
|
246 |
/*---------------------------- |
247 |
forward declarations |
248 |
*/ |
249 |
|
250 |
int integrator_lsode_setup_diffs(IntegratorSystem *blsys); |
251 |
static double **lsode_densematrix_create(int nrows, int ncols); |
252 |
static void lsode_densematrix_destroy(double **matrix,int nrows); |
253 |
|
254 |
/** |
255 |
void LSODE(&fex, &neq, y, &x, &xend, &itol, reltol, abtol, &itask, |
256 |
&istate, &iopt ,rwork, &lrw, iwork, &liw, &jex, &mf); |
257 |
|
258 |
This is a prototype for the *fortran* LSODE function. |
259 |
|
260 |
No 'extern' here, so we want linker to complain if no static linkage. |
261 |
*/ |
262 |
void LSODE(LsodeEvalFn*,int *neq ,double *y ,double *x |
263 |
,double *xend |
264 |
,int *itol ,double *reltol ,double *abtol |
265 |
,int *itask ,int *istate ,int *iopt |
266 |
,double *rwork ,int *lrw |
267 |
,int *iwork ,int *liw |
268 |
,LsodeJacobianFn *jex ,int *mf |
269 |
); |
270 |
|
271 |
/*------------------------------------------------------ |
272 |
Memory allocation/free |
273 |
*/ |
274 |
|
275 |
void integrator_lsode_create(IntegratorSystem *blsys){ |
276 |
IntegratorLsodeData *d; |
277 |
d = ASC_NEW_CLEAR(IntegratorLsodeData); |
278 |
d->n_eqns=0; |
279 |
d->input_indices=NULL; |
280 |
d->output_indices=NULL; |
281 |
d->y_vars=NULL; |
282 |
d->ydot_vars=NULL; |
283 |
d->rlist=NULL; |
284 |
d->dydx_dx=NULL; |
285 |
blsys->enginedata=(void*)d; |
286 |
integrator_lsode_params_default(blsys); |
287 |
|
288 |
} |
289 |
|
290 |
/** |
291 |
Cleanup the data struct that belongs to LSODE |
292 |
*/ |
293 |
void integrator_lsode_free(void *enginedata){ |
294 |
IntegratorLsodeData d; |
295 |
d = *((IntegratorLsodeData *)enginedata); |
296 |
|
297 |
if(d.input_indices)ASC_FREE(d.input_indices); |
298 |
d.input_indices = NULL; |
299 |
|
300 |
if(d.output_indices)ASC_FREE(d.output_indices); |
301 |
d.output_indices = NULL; |
302 |
|
303 |
if(d.y_vars)ASC_FREE(d.y_vars); |
304 |
d.y_vars = NULL; |
305 |
|
306 |
if(d.ydot_vars)ASC_FREE(d.ydot_vars); |
307 |
d.ydot_vars = NULL; |
308 |
|
309 |
if(d.rlist)ASC_FREE(d.rlist); |
310 |
d.rlist = NULL; |
311 |
|
312 |
if(d.dydx_dx!=NULL){ |
313 |
lsode_densematrix_destroy(d.dydx_dx, d.n_eqns); |
314 |
d.dydx_dx = NULL; |
315 |
} |
316 |
|
317 |
d.n_eqns = 0L; |
318 |
} |
319 |
|
320 |
/*------------------------------------------------------------------------------ |
321 |
PARAMETERS |
322 |
*/ |
323 |
|
324 |
enum ida_parameters{ |
325 |
LSODE_PARAM_TIMING |
326 |
,LSODE_PARAM_RTOLVECT |
327 |
,LSODE_PARAM_RTOL |
328 |
,LSODE_PARAM_ATOLVECT |
329 |
,LSODE_PARAM_ATOL |
330 |
,LSODE_PARAMS_SIZE |
331 |
}; |
332 |
|
333 |
/** |
334 |
Here the full set of parameters is defined, along with upper/lower bounds, |
335 |
etc. The values are stuck into the blsys->params structure. |
336 |
|
337 |
@return 0 on success |
338 |
*/ |
339 |
int integrator_lsode_params_default(IntegratorSystem *blsys){ |
340 |
|
341 |
asc_assert(blsys!=NULL); |
342 |
asc_assert(blsys->engine==INTEG_LSODE); |
343 |
slv_parameters_t *p; |
344 |
p = &(blsys->params); |
345 |
|
346 |
slv_destroy_parms(p); |
347 |
|
348 |
if(p->parms==NULL){ |
349 |
p->parms = ASC_NEW_ARRAY(struct slv_parameter, LSODE_PARAMS_SIZE); |
350 |
if(p->parms==NULL)return -1; |
351 |
p->dynamic_parms = 1; |
352 |
}else{ |
353 |
asc_assert(p->num_parms == LSODE_PARAMS_SIZE); |
354 |
} |
355 |
|
356 |
/* reset the number of parameters to zero so that we can check it at the end */ |
357 |
p->num_parms = 0; |
358 |
|
359 |
slv_param_bool(p,LSODE_PARAM_TIMING |
360 |
,(SlvParameterInitBool){{"timing" |
361 |
,"Output timing statistics?",1,NULL |
362 |
}, TRUE} |
363 |
); |
364 |
|
365 |
slv_param_bool(p,LSODE_PARAM_ATOLVECT |
366 |
,(SlvParameterInitBool){{"atolvect" |
367 |
,"Use 'ode_atol' values as specified for each var?",1 |
368 |
,"If TRUE, values of 'ode_atol' are taken from your model and used " |
369 |
" in the integration. If FALSE, a scalar absolute tolerance (atol)" |
370 |
" is shared by all variables." |
371 |
}, TRUE } |
372 |
); |
373 |
|
374 |
slv_param_real(p,LSODE_PARAM_ATOL |
375 |
,(SlvParameterInitReal){{"atol" |
376 |
,"Scalar absolute error tolerance",1 |
377 |
,"Default value of the scalar absolute error tolerance (for cases" |
378 |
" where not specified in oda_atol var property. See 'lsode.f' for" |
379 |
" details" |
380 |
}, 1e-6, DBL_MIN, DBL_MAX } |
381 |
); |
382 |
|
383 |
slv_param_bool(p,LSODE_PARAM_RTOLVECT |
384 |
,(SlvParameterInitBool){{"rtolvect" |
385 |
,"Use 'ode_rtol' values as specified for each var?",1 |
386 |
,"If TRUE, values of 'ode_atol' are taken from your model and used " |
387 |
" in the integration. If FALSE, a scalar absolute tolerance (rtol)" |
388 |
" is shared by all variables." |
389 |
}, TRUE } |
390 |
); |
391 |
|
392 |
slv_param_real(p,LSODE_PARAM_RTOL |
393 |
,(SlvParameterInitReal){{"rtol" |
394 |
,"Scalar relative error tolerance",1 |
395 |
,"Default value of the scalar relative error tolerance (for cases" |
396 |
" where not specified in oda_rtol var property. See 'lsode.f' for" |
397 |
" details" |
398 |
}, 1e-6, DBL_MIN, DBL_MAX } |
399 |
); |
400 |
|
401 |
asc_assert(p->num_parms == LSODE_PARAMS_SIZE); |
402 |
return 0; |
403 |
} |
404 |
|
405 |
/*--------------------------------------------------------- |
406 |
Couple of matrix methods...? |
407 |
*/ |
408 |
|
409 |
static double **lsode_densematrix_create(int nrows, int ncols){ |
410 |
int c; |
411 |
double **result; |
412 |
assert(nrows>0); |
413 |
assert(ncols>0); |
414 |
result = ASC_NEW_ARRAY(double *, nrows); |
415 |
for (c=0;c<nrows;c++) { |
416 |
result[c] = ASC_NEW_ARRAY_CLEAR(double, ncols); |
417 |
} |
418 |
return result; |
419 |
} |
420 |
|
421 |
static void lsode_densematrix_destroy(double **matrix,int nrows){ |
422 |
int c; |
423 |
if (matrix) { |
424 |
for (c=0;c<nrows;c++) { |
425 |
if (matrix[c]) { |
426 |
ascfree((char *)matrix[c]); |
427 |
} |
428 |
} |
429 |
ascfree((char *)matrix); |
430 |
} |
431 |
} |
432 |
|
433 |
/*------------------------------------------------------------------------------ |
434 |
PROBLEM ANALYSIS |
435 |
*/ |
436 |
|
437 |
/** |
438 |
@TODO needs work. Assumes struct Instance* and struct var_variable* |
439 |
are synonymous, which demonstrates the need for a method to take |
440 |
an instance and ask the solvers for its global or local index |
441 |
if var and inst are decoupled. |
442 |
*/ |
443 |
int integrator_lsode_setup_diffs(IntegratorSystem *blsys) { |
444 |
/* long n_eqns; */ |
445 |
unsigned long nch,i; |
446 |
|
447 |
struct var_variable **vp; |
448 |
int *ip; |
449 |
|
450 |
IntegratorLsodeData *enginedata; |
451 |
asc_assert(blsys!=NULL); |
452 |
enginedata = (IntegratorLsodeData *)blsys->enginedata; |
453 |
|
454 |
assert(enginedata->n_eqns==blsys->n_y); |
455 |
|
456 |
/* |
457 |
Put the |
458 |
Let us now process what we consider *inputs* to the problem as |
459 |
far as ASCEND is concerned; i.e. the state vars or the y_vars's |
460 |
if you prefer. |
461 |
*/ |
462 |
nch = enginedata->n_eqns; |
463 |
|
464 |
vp = enginedata->y_vars; |
465 |
ip = enginedata->input_indices; |
466 |
for (i=0;i<nch;i++) { |
467 |
*vp = (struct var_variable *)blsys->y[i]; |
468 |
*ip = var_sindex(*vp); |
469 |
vp++; |
470 |
ip++; |
471 |
} |
472 |
*vp = NULL; /* terminate */ |
473 |
|
474 |
/* |
475 |
Let us now go for the outputs, ie the derivative terms. |
476 |
*/ |
477 |
vp = enginedata->ydot_vars; |
478 |
ip = enginedata->output_indices; |
479 |
for (i=0;i<nch;i++) { |
480 |
*vp = (struct var_variable *)blsys->ydot[i]; |
481 |
*ip = var_sindex(*vp); |
482 |
vp++; /* dont assume that a var is synonymous with */ |
483 |
ip++; /* an Instance; that might/will change soon */ |
484 |
} |
485 |
*vp = NULL; /* terminate */ |
486 |
|
487 |
return 0; |
488 |
} |
489 |
|
490 |
/** |
491 |
allocates, fills, and returns the atol vector based on LSODE |
492 |
|
493 |
State variables missing child ode_rtol will be defaulted to ATOL |
494 |
*/ |
495 |
static double *lsode_get_atol( IntegratorSystem *blsys) { |
496 |
|
497 |
struct Instance *tol; |
498 |
double *atoli; |
499 |
int i,len; |
500 |
double atol; |
501 |
|
502 |
len = blsys->n_y; |
503 |
atoli = ASC_NEW_ARRAY(double, blsys->n_y); /* changed, this was n_y+1 before, dunnowi -- JP */ |
504 |
if (atoli == NULL) { |
505 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"Insufficient memory"); |
506 |
return atoli; |
507 |
} |
508 |
|
509 |
if(!SLV_PARAM_BOOL(&(blsys->params),LSODE_PARAM_ATOLVECT)){ |
510 |
atol = SLV_PARAM_REAL(&(blsys->params),LSODE_PARAM_ATOL); |
511 |
CONSOLE_DEBUG("Using ATOL = %f for all vars", atol); |
512 |
for(i=0; i<len; ++i){ |
513 |
atoli[i] = atol; |
514 |
} |
515 |
}else{ |
516 |
InitTolNames(); |
517 |
for (i=0; i<len; i++) { |
518 |
|
519 |
tol = ChildByChar(var_instance(blsys->y[i]),STATEATOL); |
520 |
if (tol == NULL || !AtomAssigned(tol) ) { |
521 |
atoli[i] = SLV_PARAM_REAL(&(blsys->params),LSODE_PARAM_ATOL); |
522 |
ERROR_REPORTER_HERE(ASC_PROG_WARNING,"Assuming atol = %3g" |
523 |
"for ode_atol child undefined for state variable %ld." |
524 |
,atoli[i], blsys->y_id[i] |
525 |
); |
526 |
} else { |
527 |
atoli[i] = RealAtomValue(tol); |
528 |
CONSOLE_DEBUG("Using atol %3g for state variable %ld.",atoli[i], blsys->y_id[i]); |
529 |
} |
530 |
} |
531 |
} |
532 |
return atoli; |
533 |
} |
534 |
|
535 |
/** |
536 |
Allocates, fills, and returns the rtol vector based on LSODE |
537 |
|
538 |
State variables missing child ode_rtol will be defaulted to RTOL |
539 |
*/ |
540 |
static double *lsode_get_rtol( IntegratorSystem *blsys) { |
541 |
|
542 |
struct Instance *tol; |
543 |
double rtol, *rtoli; |
544 |
int i,len; |
545 |
|
546 |
len = blsys->n_y; |
547 |
rtoli = ASC_NEW_ARRAY(double, blsys->n_y+1); |
548 |
if (rtoli == NULL) { |
549 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"Insufficient memory"); |
550 |
return rtoli; |
551 |
} |
552 |
if(!SLV_PARAM_BOOL(&(blsys->params),LSODE_PARAM_RTOLVECT)){ |
553 |
rtol = SLV_PARAM_REAL(&(blsys->params),LSODE_PARAM_RTOL); |
554 |
CONSOLE_DEBUG("Using RTOL = %f for all vars", rtol); |
555 |
for(i=0; i<len; ++i){ |
556 |
rtoli[i] = rtol; |
557 |
} |
558 |
}else{ |
559 |
InitTolNames(); |
560 |
for (i=0; i<len; i++) { |
561 |
tol = ChildByChar(var_instance(blsys->y[i]),STATERTOL); |
562 |
if (tol == NULL || !AtomAssigned(tol) ) { |
563 |
rtoli[i] = SLV_PARAM_REAL(&(blsys->params),LSODE_PARAM_RTOL); |
564 |
|
565 |
ERROR_REPORTER_HERE(ASC_PROG_WARNING,"Assuming rtol = %3g" |
566 |
"for ode_rtol child undefined for state variable %ld." |
567 |
,rtoli[i], blsys->y_id[i] |
568 |
); |
569 |
|
570 |
} else { |
571 |
rtoli[i] = RealAtomValue(tol); |
572 |
} |
573 |
} |
574 |
} |
575 |
rtoli[len] = SLV_PARAM_REAL(&(blsys->params),LSODE_PARAM_RTOL); |
576 |
return rtoli; |
577 |
} |
578 |
|
579 |
/* |
580 |
Write out a a status message based on the istate parameter. |
581 |
*/ |
582 |
static void lsode_write_istate( int istate) { |
583 |
switch (istate) { |
584 |
case -1: |
585 |
FPRINTF(ASCERR,"Excess steps taken on this call" |
586 |
" (perhaps wrong MF)."); break; |
587 |
case -2: |
588 |
FPRINTF(ASCERR,"Excess accuracy requested" |
589 |
" (tolerances too small)."); break; |
590 |
case -3: |
591 |
FPRINTF(ASCERR,"Illegal input detected" |
592 |
" (see console)."); break; |
593 |
case -4: |
594 |
FPRINTF(ASCERR,"Repeated error test failures" |
595 |
" (check all inputs)."); break; |
596 |
case -5: |
597 |
FPRINTF(ASCERR,"Repeated convergence failures" |
598 |
" (perhaps bad Jacobian supplied, or wrong choice of MF or tolerances)."); break; |
599 |
case -6: |
600 |
FPRINTF(ASCERR,"Error weight became zero during problem" |
601 |
" (solution component i vanished, and atol or atol(i) = 0)."); break; |
602 |
case -7: |
603 |
FPRINTF(ASCERR,"Interrupted? User cancelled operation?"); break; |
604 |
case -8: |
605 |
FPRINTF(ASCERR,"Error in nonlinear solver"); break; |
606 |
default: |
607 |
FPRINTF(ASCERR,"Unknown 'istate' error code %d from LSODE.",istate); |
608 |
break; |
609 |
} |
610 |
} |
611 |
|
612 |
/** |
613 |
Free memory allocated for the LSODE, but first check. |
614 |
*/ |
615 |
static void lsode_free_mem(double *y, double *reltol, double *abtol, double *rwork, |
616 |
int *iwork, double *obs, double *dydx) |
617 |
{ |
618 |
if (y != NULL) { |
619 |
ascfree((double *)y); |
620 |
} |
621 |
if (reltol != NULL) { |
622 |
ascfree((double *)reltol); |
623 |
} |
624 |
if (abtol != NULL) { |
625 |
ascfree((double *)abtol); |
626 |
} |
627 |
if (rwork != NULL) { |
628 |
ascfree((double *)rwork); |
629 |
} |
630 |
if (iwork != NULL) { |
631 |
ascfree((int *)iwork); |
632 |
} |
633 |
if (obs != NULL) { |
634 |
ascfree((double *)obs); |
635 |
} |
636 |
if (dydx != NULL) { |
637 |
ascfree((double *)dydx); |
638 |
} |
639 |
} |
640 |
|
641 |
/** |
642 |
"Temporary" derivative evaluation routine (pre 1995!). |
643 |
|
644 |
Ben says: "The proper permanent fix for lsode is to dump it in favor of |
645 |
cvode or dassl." (so: see ida.c) |
646 |
|
647 |
@return 0 on success |
648 |
|
649 |
@NOTE It is assumed the system has been solved at the current point. @ENDNOTE |
650 |
*/ |
651 |
int integrator_lsode_derivatives(IntegratorSystem *blsys |
652 |
, int ninputs |
653 |
, int noutputs |
654 |
){ |
655 |
static int n_calls = 0; |
656 |
linsolqr_system_t linsys; /* stuff for the linear system & matrix */ |
657 |
mtx_matrix_t mtx; |
658 |
int32 capacity; |
659 |
real64 *scratch_vector = NULL; |
660 |
int result=0; |
661 |
IntegratorLsodeData *enginedata; |
662 |
|
663 |
asc_assert(blsys!=NULL); |
664 |
enginedata = (IntegratorLsodeData *)blsys->enginedata; |
665 |
asc_assert(enginedata!=NULL); |
666 |
asc_assert(enginedata->dydx_dx!=NULL); |
667 |
asc_assert(enginedata->input_indices!=NULL); |
668 |
|
669 |
double **dy_dx = enginedata->dydx_dx; |
670 |
int *inputs_ndx_list = enginedata->input_indices; |
671 |
int *outputs_ndx_list = enginedata->output_indices; |
672 |
asc_assert(ninputs == blsys->n_y); |
673 |
|
674 |
(void)NumberFreeVars(NULL); /* used to re-init the system */ |
675 |
(void)NumberIncludedRels(NULL); /* used to re-init the system */ |
676 |
if (!blsys->system) { |
677 |
FPRINTF(stderr,"The solve system does not exist !\n"); |
678 |
return 1; |
679 |
} |
680 |
|
681 |
result = Compute_J(blsys->system); |
682 |
if (result) { |
683 |
FPRINTF(stderr,"Early termination due to failure in calc Jacobian\n"); |
684 |
return 1; |
685 |
} |
686 |
|
687 |
linsys = slv_get_linsolqr_sys(blsys->system); /* get the linear system */ |
688 |
if (linsys==NULL) { |
689 |
FPRINTF(stderr,"Early termination due to missing linsolqr system.\n"); |
690 |
return 1; |
691 |
} |
692 |
mtx = slv_get_sys_mtx(blsys->system); /* get the matrix */ |
693 |
if (mtx==NULL) { |
694 |
FPRINTF(stderr,"Early termination due to missing mtx in linsolqr.\n"); |
695 |
return 1; |
696 |
} |
697 |
capacity = mtx_capacity(mtx); |
698 |
scratch_vector = ASC_NEW_ARRAY_CLEAR(real64,capacity); |
699 |
linsolqr_add_rhs(linsys,scratch_vector,FALSE); |
700 |
|
701 |
result = LUFactorJacobian(blsys->system); |
702 |
if (result) { |
703 |
FPRINTF(stderr,"Early termination due to failure in LUFactorJacobian\n"); |
704 |
goto error; |
705 |
} |
706 |
result = Compute_dy_dx_smart(blsys->system, scratch_vector, dy_dx, |
707 |
inputs_ndx_list, ninputs, |
708 |
outputs_ndx_list, noutputs); |
709 |
|
710 |
linsolqr_remove_rhs(linsys,scratch_vector); |
711 |
if (result) { |
712 |
FPRINTF(stderr,"Early termination due to failure in Compute_dy_dx\n"); |
713 |
goto error; |
714 |
} |
715 |
|
716 |
error: |
717 |
n_calls++; |
718 |
if (scratch_vector) { |
719 |
ascfree((char *)scratch_vector); |
720 |
} |
721 |
return result; |
722 |
} |
723 |
|
724 |
/** |
725 |
The current way that we are getting the derivatives (if the problem |
726 |
was solved partitioned) messes up the slv_system so that we *have* |
727 |
to do a *presolve* rather than a simply a *resolve* before doing |
728 |
function calls. This code below attempts to handle these cases. |
729 |
*/ |
730 |
static void LSODE_FEX( int *n_eq ,double *t ,double *y ,double *ydot){ |
731 |
slv_status_t status; |
732 |
LSODEDATA_GET(lsodedata); |
733 |
|
734 |
/* slv_parameters_t parameters; pity lsode doesn't allow error returns */ |
735 |
/* int i; */ |
736 |
unsigned long res; |
737 |
|
738 |
#if DOTIME |
739 |
double time1,time2; |
740 |
#endif |
741 |
|
742 |
/* CONSOLE_DEBUG("Calling for a function evaluation"); */ |
743 |
|
744 |
#if DOTIME |
745 |
CONSOLE_DEBUG("Calling for a function evaluation"); |
746 |
time1 = tm_cpu_time(); |
747 |
#endif |
748 |
|
749 |
/* |
750 |
t[1]=t[0]; can't do this. lsode calls us with a different t than the t we sent in. |
751 |
*/ |
752 |
integrator_set_t(l_lsode_blsys, t[0]); |
753 |
integrator_set_y(l_lsode_blsys, y); |
754 |
|
755 |
#if DOTIME |
756 |
time2 = tm_cpu_time(); |
757 |
#endif |
758 |
|
759 |
switch(lsodedata->lastcall) { |
760 |
case lsode_none: /* first call */ |
761 |
CONSOLE_DEBUG("FIRST CALL..."); |
762 |
|
763 |
case lsode_derivative: |
764 |
if (lsodedata->partitioned) { |
765 |
/* CONSOLE_DEBUG("PRE-SOLVE"); */ |
766 |
slv_presolve(l_lsode_blsys->system); |
767 |
} else { |
768 |
/** @TODO this doesn't ever seem to be called */ |
769 |
CONSOLE_DEBUG("RE-SOLVE"); |
770 |
slv_resolve(l_lsode_blsys->system); |
771 |
} |
772 |
break; |
773 |
default: |
774 |
case lsode_function: |
775 |
slv_resolve(l_lsode_blsys->system); |
776 |
break; |
777 |
} |
778 |
|
779 |
slv_solve(l_lsode_blsys->system); |
780 |
slv_get_status(l_lsode_blsys->system, &status); |
781 |
if(slv_check_bounds(l_lsode_blsys->system,0,-1,"")){ |
782 |
lsodedata->status = lsode_nok; |
783 |
} |
784 |
|
785 |
/* pass the solver status to the integrator */ |
786 |
res = integrator_checkstatus(status); |
787 |
|
788 |
#if DOTIME |
789 |
time2 = tm_cpu_time() - time2; |
790 |
#endif |
791 |
|
792 |
if(res){ |
793 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"Failed to solve for derivatives (%d)",res); |
794 |
#if 0 |
795 |
ERROR_REPORTER_START_HERE(ASC_PROG_ERR); |
796 |
FPRINTF(ASCERR,"Unable to compute the vector of derivatives with the following values for the state variables:\n"); |
797 |
for (i = 0; i< *n_eq; i++) { |
798 |
FPRINTF(ASCERR,"y[%4d] = %f\n",i, y[i]); |
799 |
} |
800 |
error_reporter_end_flush(); |
801 |
#endif |
802 |
lsodedata->stop = 1; |
803 |
lsodedata->status = lsode_nok; |
804 |
}else{ |
805 |
lsodedata->status = lsode_ok; |
806 |
/* ERROR_REPORTER_HERE(ASC_PROG_NOTE,"lsodedata->status = %d",lsodedata->status); */ |
807 |
} |
808 |
integrator_get_ydot(l_lsode_blsys, ydot); |
809 |
|
810 |
lsodedata->lastcall = lsode_function; |
811 |
#if DOTIME |
812 |
time1 = tm_cpu_time() - time1; |
813 |
CONSOLE_DEBUG("Function evalulation has been completed in time %g. True function call time = %g",time1,time2); |
814 |
#endif |
815 |
} |
816 |
|
817 |
/** |
818 |
Evaluate the jacobian |
819 |
*/ |
820 |
static void LSODE_JEX(int *neq ,double *t, double *y |
821 |
, int *ml ,int *mu ,double *pd, int *nrpd |
822 |
){ |
823 |
int nok = 0; |
824 |
int i,j; |
825 |
|
826 |
LSODEDATA_GET(lsodedata); |
827 |
|
828 |
UNUSED_PARAMETER(t); |
829 |
UNUSED_PARAMETER(y); |
830 |
UNUSED_PARAMETER(ml); |
831 |
UNUSED_PARAMETER(mu); |
832 |
|
833 |
/* CONSOLE_DEBUG("Calling for a gradient evaluation"); */ |
834 |
#if DOTIME |
835 |
double time1; |
836 |
|
837 |
CONSOLE_DEBUG("Calling for a gradient evaluation"); |
838 |
time1 = tm_cpu_time(); |
839 |
#endif |
840 |
/* |
841 |
* Make the real call. |
842 |
*/ |
843 |
|
844 |
nok = integrator_lsode_derivatives(l_lsode_blsys |
845 |
, *neq |
846 |
, *nrpd |
847 |
); |
848 |
|
849 |
if(nok){ |
850 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"Error in computing the derivatives for the system. Failing..."); |
851 |
lsodedata->status = lsode_nok; |
852 |
lsodedata->lastcall = lsode_derivative; |
853 |
lsodedata->stop = 1; |
854 |
return; |
855 |
}else{ |
856 |
lsodedata->status = lsode_ok; |
857 |
lsodedata->lastcall = lsode_derivative; |
858 |
} |
859 |
/* |
860 |
Map data from C based matrix to Fortan matrix. |
861 |
We will send in a column major ordering vector for pd. |
862 |
*/ |
863 |
for (j=0;j<*neq;j++) { /* loop through columnns */ |
864 |
for (i=0;i<*nrpd;i++){ /* loop through rows */ |
865 |
/* CONSOLE_DEBUG("JAC[r=%d,c=%d]=%f",i,j,lsodedata.dydx_dx[i][j]); */ |
866 |
*pd++ = lsodedata->dydx_dx[i][j]; |
867 |
} |
868 |
} |
869 |
|
870 |
#if DOTIME |
871 |
time1 = tm_cpu_time() - time1; |
872 |
CONSOLE_DEBUG("Time to do gradient evaluation %g",time1); |
873 |
#endif |
874 |
|
875 |
return; |
876 |
} |
877 |
|
878 |
/** |
879 |
The public function: here we do the actual integration, I guess. |
880 |
|
881 |
Return 0 on success |
882 |
*/ |
883 |
int integrator_lsode_solve(IntegratorSystem *blsys |
884 |
, unsigned long start_index, unsigned long finish_index |
885 |
){ |
886 |
slv_status_t status; |
887 |
slv_parameters_t params; |
888 |
IntegratorLsodeData *d; |
889 |
|
890 |
double x[2]; |
891 |
double xend,xprev; |
892 |
unsigned long nsamples, neq; |
893 |
long nobs; |
894 |
int itol, itask, mf, lrw, liw; |
895 |
unsigned long index; |
896 |
int istate, iopt; |
897 |
double * rwork; |
898 |
int * iwork; |
899 |
double *y, *abtol, *reltol, *obs, *dydx; |
900 |
int my_neq; |
901 |
int reporterstatus; |
902 |
|
903 |
d = (IntegratorLsodeData *)(blsys->enginedata); |
904 |
|
905 |
/* the numer of equations must be equal to blsys->n_y, the number of states */ |
906 |
d->n_eqns = blsys->n_y; |
907 |
assert(d->n_eqns>0); |
908 |
|
909 |
d->input_indices = ASC_NEW_ARRAY_CLEAR(int, d->n_eqns); |
910 |
d->output_indices = ASC_NEW_ARRAY_CLEAR(int, d->n_eqns); |
911 |
d->dydx_dx = lsode_densematrix_create(d->n_eqns,d->n_eqns); |
912 |
|
913 |
d->y_vars = ASC_NEW_ARRAY(struct var_variable *,d->n_eqns+1); |
914 |
d->ydot_vars = ASC_NEW_ARRAY(struct var_variable *, d->n_eqns+1); |
915 |
|
916 |
integrator_lsode_setup_diffs(blsys); |
917 |
|
918 |
/* this is a lie, but we will keep it. |
919 |
We handle any linsol/linsolqr based solver. */ |
920 |
if(strcmp(slv_solver_name(slv_get_selected_solver(blsys->system)),"QRSlv") != 0) { |
921 |
ERROR_REPORTER_NOLINE(ASC_USER_ERROR,"QRSlv must be selected before integration."); |
922 |
return 1; |
923 |
} |
924 |
|
925 |
CONSOLE_DEBUG("Solver selected is '%s'",slv_solver_name(slv_get_selected_solver(blsys->system))); |
926 |
|
927 |
slv_get_status(blsys->system, &status); |
928 |
|
929 |
if (status.struct_singular) { |
930 |
ERROR_REPORTER_HERE(ASC_USER_ERROR,"Integration will not be performed. The system is structurally singular."); |
931 |
d->status = lsode_nok; |
932 |
return 2; |
933 |
} |
934 |
|
935 |
#if defined(STATIC_LSOD) || defined (DYNAMIC_LSOD) |
936 |
|
937 |
/* here we assume integrators.c is in charge of dynamic loading */ |
938 |
|
939 |
slv_get_parameters(blsys->system,¶ms); |
940 |
d->partitioned = 1; |
941 |
d->stop = 0; /* clear 'stop' flag */ |
942 |
|
943 |
nsamples = integrator_getnsamples(blsys); |
944 |
if (nsamples <2) { |
945 |
ERROR_REPORTER_HERE(ASC_USER_ERROR,"Integration will not be performed. The system has no end sample time defined."); |
946 |
d->status = lsode_nok; |
947 |
return 3; |
948 |
} |
949 |
neq = blsys->n_y; |
950 |
nobs = blsys->n_obs; |
951 |
|
952 |
/* samplelist_debug(blsys->samples); */ |
953 |
|
954 |
/* x[0] = integrator_get_t(blsys); */ |
955 |
x[0] = integrator_getsample(blsys, 0); |
956 |
x[1] = x[0]-1; /* make sure we don't start with wierd x[1] */ |
957 |
lrw = 22 + 9*neq + neq*neq; |
958 |
rwork = ASC_NEW_ARRAY_CLEAR(double, lrw+1); |
959 |
liw = 20 + neq; |
960 |
iwork = ASC_NEW_ARRAY_CLEAR(int, liw+1); |
961 |
y = integrator_get_y(blsys, NULL); |
962 |
reltol = lsode_get_rtol(blsys); |
963 |
abtol = lsode_get_atol(blsys); |
964 |
obs = integrator_get_observations(blsys, NULL); |
965 |
dydx = ASC_NEW_ARRAY_CLEAR(double, neq+1); |
966 |
if (!y || !obs || !abtol || !reltol || !rwork || !iwork || !dydx) { |
967 |
lsode_free_mem(y,reltol,abtol,rwork,iwork,obs,dydx); |
968 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"Insufficient memory for lsode."); |
969 |
d->status = lsode_nok; |
970 |
return 4; |
971 |
} |
972 |
|
973 |
/* |
974 |
Prepare args and call lsode. |
975 |
*/ |
976 |
itol = 4; |
977 |
itask = 1; |
978 |
istate = 1; |
979 |
iopt = 1; |
980 |
rwork[4] = integrator_get_stepzero(blsys); |
981 |
rwork[5] = integrator_get_maxstep(blsys); |
982 |
rwork[6] = integrator_get_minstep(blsys); |
983 |
iwork[5] = integrator_get_maxsubsteps(blsys); |
984 |
mf = 21; /* 21 = BDF with exact jacobian. 22 = BDF with finite diff Jacobian */ |
985 |
|
986 |
if(x[0] > integrator_getsample(blsys, 2)){ |
987 |
ERROR_REPORTER_HERE(ASC_USER_ERROR,"Invalid initialisation time: exceeds second timestep value"); |
988 |
return 5; |
989 |
} |
990 |
|
991 |
/* put the values from derivative system into the record */ |
992 |
integrator_setsample(blsys, start_index, x[0]); |
993 |
|
994 |
integrator_output_init(blsys); |
995 |
|
996 |
/* -- store the initial values of all the stuff */ |
997 |
integrator_output_write(blsys); |
998 |
integrator_output_write_obs(blsys); |
999 |
|
1000 |
my_neq = (int)neq; |
1001 |
|
1002 |
/* |
1003 |
First time entering lsode, x is input. After that, |
1004 |
lsode uses x as output (y output is y(x)). To drive |
1005 |
the loop ahead in time, all we need to do is keep upping |
1006 |
xend. |
1007 |
*/ |
1008 |
|
1009 |
blsys->currentstep = 0; |
1010 |
for (index = start_index; index < finish_index; index++, blsys->currentstep++) { |
1011 |
xend = integrator_getsample(blsys, index+1); |
1012 |
xprev = x[0]; |
1013 |
asc_assert(xend > xprev); |
1014 |
/* CONSOLE_DEBUG("LSODE call #%lu: x = [%f,%f]", index,xprev,xend); */ |
1015 |
|
1016 |
# ifndef NO_SIGNAL_TRAPS |
1017 |
if (SETJMP(g_fpe_env)==0) { |
1018 |
# endif /* NO_SIGNAL_TRAPS */ |
1019 |
|
1020 |
/* CONSOLE_DEBUG("Calling LSODE with end-time = %f",xend); */ |
1021 |
/* |
1022 |
switch(mf){ |
1023 |
case 10: |
1024 |
CONSOLE_DEBUG("Non-stiff (Adams) method; no Jacobian will be used"); break; |
1025 |
case 21: |
1026 |
CONSOLE_DEBUG("Stiff (BDF) method, user-supplied full Jacobian"); break; |
1027 |
case 22: |
1028 |
CONSOLE_DEBUG("Stiff (BDF) method, internally generated full Jacobian"); break; |
1029 |
case 24: |
1030 |
CONSOLE_DEBUG("Stiff (BDF) method, user-supplied banded jacobian"); break; |
1031 |
case 25: |
1032 |
CONSOLE_DEBUG("Stiff (BDF) method, internally generated banded jacobian"); break; |
1033 |
default: |
1034 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"Invalid method id %d for LSODE",mf); |
1035 |
return 0; * failure * |
1036 |
} |
1037 |
*/ |
1038 |
|
1039 |
/* provides some rudimentary locking to prevent reentrance*/ |
1040 |
LSODEDATA_SET(blsys); |
1041 |
|
1042 |
LSODE(&(LSODE_FEX), &my_neq, y, x, &xend, |
1043 |
&itol, reltol, abtol, &itask, &istate, |
1044 |
&iopt ,rwork, &lrw, iwork, &liw, &(LSODE_JEX), &mf); |
1045 |
|
1046 |
/* clear the global var */ |
1047 |
LSODEDATA_RELEASE(); |
1048 |
|
1049 |
# ifndef NO_SIGNAL_TRAPS |
1050 |
}else{ |
1051 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"Integration terminated due to float error in LSODE call."); |
1052 |
lsode_free_mem(y,reltol,abtol,rwork,iwork,obs,dydx); |
1053 |
d->status = lsode_ok; /* clean up before we go */ |
1054 |
d->lastcall = lsode_none; |
1055 |
return 6; |
1056 |
} |
1057 |
# endif /* NO_SIGNAL_TRAPS */ |
1058 |
|
1059 |
/* CONSOLE_DEBUG("AFTER %lu LSODE CALL\n", index); */ |
1060 |
/* this check is better done in fex,jex, but lsode takes no status */ |
1061 |
/* if (Solv_C_CheckHalt()) { |
1062 |
if (istate >= 0) { |
1063 |
istate=-7; |
1064 |
} |
1065 |
} |
1066 |
*/ |
1067 |
if(d->stop){ |
1068 |
istate=-8; |
1069 |
} |
1070 |
|
1071 |
if (istate < 0 ) { |
1072 |
/* some kind of error occurred... */ |
1073 |
ERROR_REPORTER_START_HERE(ASC_PROG_ERR); |
1074 |
lsode_write_istate(istate); |
1075 |
FPRINTF(ASCERR, "\nFurthest point reached was t = %g.\n",x[0]); |
1076 |
error_reporter_end_flush(); |
1077 |
|
1078 |
lsode_free_mem(y,reltol,abtol,rwork,iwork,obs,dydx); |
1079 |
integrator_output_close(blsys); |
1080 |
return 7; |
1081 |
} |
1082 |
|
1083 |
if (d->status==lsode_nok) { |
1084 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"Integration terminated due to an error in derivative computations."); |
1085 |
lsode_free_mem(y,reltol,abtol,rwork,iwork,obs,dydx); |
1086 |
d->status = lsode_ok; /* clean up before we go */ |
1087 |
d->lastcall = lsode_none; |
1088 |
integrator_output_close(blsys); |
1089 |
return 8; |
1090 |
} |
1091 |
|
1092 |
integrator_setsample(blsys, index+1, x[0]); |
1093 |
/* record when lsode actually came back */ |
1094 |
integrator_set_t(blsys, x[0]); |
1095 |
integrator_set_y(blsys, y); |
1096 |
/* put x,y in d in case lsode got x,y by interpolation, as it does */ |
1097 |
|
1098 |
reporterstatus = integrator_output_write(blsys); |
1099 |
|
1100 |
if(reporterstatus==0){ |
1101 |
ERROR_REPORTER_HERE(ASC_USER_ERROR,"Integration cancelled"); |
1102 |
lsode_free_mem(y,reltol,abtol,rwork,iwork,obs,dydx); |
1103 |
d->status = lsode_ok; |
1104 |
d->lastcall = lsode_none; |
1105 |
integrator_output_close(blsys); |
1106 |
return 9; |
1107 |
} |
1108 |
|
1109 |
if (nobs > 0) { |
1110 |
# ifndef NO_SIGNAL_TRAPS |
1111 |
if (SETJMP(g_fpe_env)==0) { |
1112 |
# endif /* NO_SIGNAL_TRAPS */ |
1113 |
|
1114 |
/* solve for obs since d isn't necessarily already |
1115 |
computed there though lsode's x and y may be. |
1116 |
Note that since lsode usually steps beyond xend |
1117 |
x1 usually wouldn't be x0 precisely if the x1/x0 |
1118 |
scheme worked, which it doesn't anyway. */ |
1119 |
|
1120 |
LSODEDATA_SET(blsys); |
1121 |
LSODE_FEX(&my_neq, x, y, dydx); |
1122 |
LSODEDATA_RELEASE(); |
1123 |
|
1124 |
/* calculate observations, if any, at returned x and y. */ |
1125 |
obs = integrator_get_observations(blsys, obs); |
1126 |
|
1127 |
integrator_output_write_obs(blsys); |
1128 |
|
1129 |
# ifndef NO_SIGNAL_TRAPS |
1130 |
} else { |
1131 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"Integration terminated due to float error in LSODE FEX call."); |
1132 |
lsode_free_mem(y,reltol,abtol,rwork,iwork,obs,dydx); |
1133 |
d->status = lsode_ok; /* clean up before we go */ |
1134 |
d->lastcall = lsode_none; |
1135 |
integrator_output_close(blsys); |
1136 |
return 10; |
1137 |
} |
1138 |
# endif /* NO_SIGNAL_TRAPS */ |
1139 |
} |
1140 |
/* CONSOLE_DEBUG("Integration completed from %3g to %3g.",xprev,x[0]); */ |
1141 |
} |
1142 |
|
1143 |
CONSOLE_DEBUG("..."); |
1144 |
CONSOLE_DEBUG("Number of steps taken: %1d.", iwork[10]); |
1145 |
CONSOLE_DEBUG("Number of function evaluations: %1d.", iwork[11]); |
1146 |
CONSOLE_DEBUG("Number of Jacobian evaluations: %1d.", iwork[12]); |
1147 |
CONSOLE_DEBUG("..."); |
1148 |
|
1149 |
|
1150 |
lsode_free_mem(y,reltol,abtol,rwork,iwork,obs,dydx); |
1151 |
|
1152 |
/* |
1153 |
* return the system to its original state. |
1154 |
*/ |
1155 |
|
1156 |
d->status = lsode_ok; |
1157 |
d->lastcall = lsode_none; |
1158 |
|
1159 |
integrator_output_close(blsys); |
1160 |
|
1161 |
CONSOLE_DEBUG("--- LSODE done ---"); |
1162 |
return 0; /* success */ |
1163 |
|
1164 |
#else /* STATIC_LSOD || DYNAMIC_LSOD */ |
1165 |
|
1166 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"Integration will not be performed. LSODE binary not available."); |
1167 |
d->status = lsode_nok; |
1168 |
return 11; |
1169 |
|
1170 |
#endif |
1171 |
} |
1172 |
|
1173 |
/** |
1174 |
Function XASCWV is an error reporting function replacing the XERRWV |
1175 |
routine in lsode.f. The call signature is the same with the original Fortran |
1176 |
function. |
1177 |
|
1178 |
@see the comments for 'xerrwv' from lsode.f, with which XASCWV is compatible... |
1179 |
|
1180 |
@param msg = the message (hollerith literal or integer array). |
1181 |
@param nmes = the length of msg (number of characters). |
1182 |
@param nerr = the error number (not used). |
1183 |
@param level = the error level.. |
1184 |
0 or 1 means recoverable (control returns to caller). |
1185 |
2 means fatal (run is aborted--see note below). |
1186 |
@param ni = number of integers (0, 1, or 2) to be printed with message. |
1187 |
@param i1,i2 = integers to be printed, depending on ni. |
1188 |
@param nr = number of reals (0, 1, or 2) to be printed with message. |
1189 |
@param r1,r2 = reals to be printed, depending on nr. |
1190 |
*/ |
1191 |
void XASCWV( char *msg, /* pointer to start of message */ |
1192 |
int *nmes, /* the length of msg (number of characters) */ |
1193 |
int *nerr, /* the error number (not used). */ |
1194 |
int *level, |
1195 |
int *ni, |
1196 |
int *i1, |
1197 |
int *i2, |
1198 |
int *nr, |
1199 |
double *r1, |
1200 |
double *r2 |
1201 |
){ |
1202 |
static double r1last; |
1203 |
|
1204 |
asc_assert(*level!=2); // LSODE doesn't give level 2 in our version. |
1205 |
|
1206 |
switch(*nerr){ |
1207 |
case 52: |
1208 |
if(*nr==2){ |
1209 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"Illegal t = %f, not in range (t - hu,t) = (%f,%f)", r1last, *r1, *r2); |
1210 |
return; |
1211 |
}else if(*nr==1){ |
1212 |
r1last = *r1; |
1213 |
return; |
1214 |
} break; |
1215 |
case 204: |
1216 |
if(*nr==0 && *ni==0)return; |
1217 |
if(*nr==2){ |
1218 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"Error test failed repeatedly or with abs(h)=hmin.\nt=%f and step size h=%f",*r1,*r2); |
1219 |
return; |
1220 |
} break; |
1221 |
case 205: |
1222 |
if(*nr==2){ |
1223 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"Corrector convergence test failed repeatedly or with abs(h)=hmin.\nt=%f and step size h=%f",*r1,*r2); |
1224 |
return; |
1225 |
} break; |
1226 |
case 27: |
1227 |
if(*nr==1 && *ni==1){ |
1228 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"Trouble with INTDY: itask = %d, tout = %f", *i1, *r1); |
1229 |
return; |
1230 |
} break; |
1231 |
} |
1232 |
|
1233 |
ERROR_REPORTER_START_NOLINE(ASC_PROG_ERR); |
1234 |
|
1235 |
/* note that %.*s means that a string length (integer) and string pointer are being required */ |
1236 |
FPRINTF(stderr,"LSODE error: (%d) %.*s",*nerr,*nmes,msg); |
1237 |
if (*ni == 1) { |
1238 |
FPRINTF(stderr,"\nwhere i1 = %d",*i1); |
1239 |
} |
1240 |
if (*ni == 2) { |
1241 |
FPRINTF(stderr,"\nwhere i1 = %d, i2 = %d",*i1,*i2); |
1242 |
} |
1243 |
if (*nr == 1) { |
1244 |
FPRINTF(stderr,"\nwhere r1 = %.13g", *r1); |
1245 |
} |
1246 |
if (*nr == 2) { |
1247 |
FPRINTF(stderr,"\nwhere r1 = %.13g, r2 = %.13g", *r1,*r2); |
1248 |
} |
1249 |
error_reporter_end_flush(); |
1250 |
} |