1 |
/* ASCEND modelling environment |
2 |
Copyright 1997, Carnegie Mellon University |
3 |
Copyright (C) 2006 Carnegie Mellon University |
4 |
|
5 |
This program is free software; you can redistribute it and/or modify |
6 |
it under the terms of the GNU General Public License as published by |
7 |
the Free Software Foundation; either version 2, or (at your option) |
8 |
any later version. |
9 |
|
10 |
This program is distributed in the hope that it will be useful, |
11 |
but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 |
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
13 |
GNU General Public License for more details. |
14 |
|
15 |
You should have received a copy of the GNU General Public License |
16 |
along with this program; if not, write to the Free Software |
17 |
Foundation, Inc., 59 Temple Place - Suite 330, |
18 |
Boston, MA 02111-1307, USA. |
19 |
*//** |
20 |
@file |
21 |
LSODE integrator. |
22 |
|
23 |
(old implementation notes:) |
24 |
|
25 |
As fortran io is unreliably portable (vc5+digital fortran) |
26 |
we have converted xerrwv to xascwv provided here. |
27 |
|
28 |
The lsode interface variable t is actually an array of |
29 |
2 doubles rather than just 1. The first is the the one |
30 |
used by lsode. The second is used by LSODE_FEX to tell |
31 |
what the last time it was called was. This is so the |
32 |
C driver can tell if it needs to resolve d to compute |
33 |
observation variables. If x[0]==x[1] we save ourselves |
34 |
a solve. |
35 |
|
36 |
@NOTE The above doesn't work since lsode doesn't use the same t internally |
37 |
that we hand it. |
38 |
|
39 |
*//* |
40 |
by Kirk Abbott and Ben Allan |
41 |
Created: 1/94 |
42 |
Version: $Revision: 1.29 $ |
43 |
Version control file: $RCSfile: Lsode.c,v $ |
44 |
Date last modified: $Date: 2000/01/25 02:26:31 $ |
45 |
Last modified by: $Author: ballan $ |
46 |
*/ |
47 |
|
48 |
#ifndef NO_SIGNAL_TRAPS |
49 |
#include <signal.h> |
50 |
#include <setjmp.h> |
51 |
#endif /* NO_SIGNAL_TRAPS */ |
52 |
|
53 |
#include <utilities/ascConfig.h> |
54 |
#include <utilities/error.h> |
55 |
#include <compiler/instance_enum.h> |
56 |
#include <utilities/ascSignal.h> |
57 |
#include <utilities/ascMalloc.h> |
58 |
#include <utilities/ascPanic.h> |
59 |
|
60 |
#include "slv_types.h" |
61 |
#include "mtx.h" |
62 |
#include "rel.h" |
63 |
#include "var.h" |
64 |
#include "discrete.h" |
65 |
#include "conditional.h" |
66 |
#include "bnd.h" |
67 |
#include "logrel.h" |
68 |
#include "slv_common.h" |
69 |
#include "linsol.h" |
70 |
#include "linsolqr.h" |
71 |
#include "slv_client.h" |
72 |
#include "slv_stdcalls.h" |
73 |
#include <packages/sensitivity.h> |
74 |
|
75 |
#include "integrator.h" |
76 |
#include "lsode.h" |
77 |
|
78 |
const IntegratorInternals integrator_lsode_internals = { |
79 |
integrator_lsode_create |
80 |
,integrator_lsode_params_default |
81 |
,integrator_analyse_ode /* note, this routine is back in integrator.c */ |
82 |
,integrator_lsode_solve |
83 |
,integrator_lsode_free |
84 |
,INTEG_LSODE |
85 |
,"LSODE" |
86 |
}; |
87 |
|
88 |
/* |
89 |
#include "Sensitivity.h" |
90 |
*//* see the packages dir */ |
91 |
|
92 |
/* |
93 |
* NOUNDERBARS --> FORTRAN compiler naming convention for subroutine |
94 |
* is wierd. WIN32/CRAY is treated as special case |
95 |
*/ |
96 |
#ifdef APOLLO |
97 |
#define NOUNDERBARS TRUE |
98 |
#endif |
99 |
#ifdef _HPUX_SOURCE |
100 |
#define NOUNDERBARS TRUE |
101 |
#endif |
102 |
/* AIX xlf will not suffix an underbar on a symbol |
103 |
* unless xlf is given the ``-qextname'' option |
104 |
*/ |
105 |
#ifdef _AIX |
106 |
#define NOUNDERBARS TRUE |
107 |
#endif |
108 |
|
109 |
#ifdef NOUNDERBARS |
110 |
#define LSODE lsode |
111 |
#define LSODE_JEX jex |
112 |
#define LSODE_FEX fex |
113 |
#define GETCOMMON get_lsode_common |
114 |
#define XASCWV xascwv |
115 |
#else |
116 |
/* sun, __alpha, __sgi, ... */ |
117 |
#define LSODE lsode_ |
118 |
#define LSODE_JEX jex_ |
119 |
#define LSODE_FEX fex_ |
120 |
#define GETCOMMON get_lsode_common_ |
121 |
#define XASCWV xascwv_ |
122 |
#endif |
123 |
|
124 |
#if defined(CRAY) || (defined(__WIN32__) && !defined(__MINGW32_VERSION)) |
125 |
#undef LSODE |
126 |
#undef LSODE_JEX |
127 |
#undef LSODE_FEX |
128 |
#undef GETCOMMON |
129 |
#undef XASCWV |
130 |
#define XASCWV XASCWV |
131 |
#define LSODE LSODE |
132 |
#define LSODE_JEX JEX |
133 |
#define LSODE_FEX FEX |
134 |
#define GETCOMMON GET_LSODE_COMMON |
135 |
#endif |
136 |
|
137 |
#define DOTIME FALSE |
138 |
|
139 |
/* definitions of lsode supported children of atoms, etc */ |
140 |
/********************************************************************/ |
141 |
/* solver_var children expected for state variables */ |
142 |
static symchar *g_symbols[2]; |
143 |
#define STATERTOL g_symbols[0] |
144 |
#define STATEATOL g_symbols[1] |
145 |
static |
146 |
void InitTolNames(void) |
147 |
{ |
148 |
STATERTOL = AddSymbol("ode_rtol"); |
149 |
STATEATOL = AddSymbol("ode_atol"); |
150 |
} |
151 |
|
152 |
/** |
153 |
Because LSODE doesn't seem to make an allowance for 'client data' we |
154 |
have to store this as a 'local global' and fish it out when we're in the |
155 |
callbacks. |
156 |
*/ |
157 |
IntegratorSystem *l_lsode_blsys; |
158 |
|
159 |
enum Lsode_enum { |
160 |
lsode_none, /* true on first call */ |
161 |
lsode_function, lsode_derivative, /* functions or gradients done */ |
162 |
lsode_sparse, lsode_dense, /* what type of backend should we */ |
163 |
lsode_band, /* use for the integrator */ |
164 |
lsode_ok, lsode_nok /* bad return from func or grad */ |
165 |
}; |
166 |
|
167 |
static struct Lsode_Data { |
168 |
enum Lsode_enum lastcall; /* type of last call; func or grad */ |
169 |
enum Lsode_enum status; /* solve status */ |
170 |
int partitioned; /* partioned func evals or not */ |
171 |
} lsodesys = {lsode_none, lsode_ok, 1}; |
172 |
|
173 |
|
174 |
/*-------------------------- |
175 |
Data space for use by LSODE |
176 |
*/ |
177 |
typedef struct IntegratorLsodeDataStruct{ |
178 |
long n_eqns; /**< dimension of state vector */ |
179 |
int *input_indices; /**< vector of state vars indexes */ |
180 |
int *output_indices; /**< vector of derivative var indexes */ |
181 |
struct var_variable **y_vars; /**< NULL terminated list of states vars */ |
182 |
struct var_variable **ydot_vars; /**< NULL terminated list of derivative vars*/ |
183 |
struct rel_relation **rlist; /**< NULL terminated list of relevant rels |
184 |
to be differentiated */ |
185 |
double **dydx_dx; /**< change in derivatives wrt states |
186 |
I prefer to call this: d(ydot)/dy */ |
187 |
} IntegratorLsodeData; |
188 |
|
189 |
|
190 |
/*---------------------------- |
191 |
Function types that LSODE wants to use |
192 |
*/ |
193 |
|
194 |
/** |
195 |
Type of function used to evaluate derivative system. |
196 |
*/ |
197 |
typedef void LsodeEvalFn(int *, double *, double *, double *); |
198 |
|
199 |
/** |
200 |
Type of function used to evaluate jacobian system. |
201 |
*/ |
202 |
typedef void LsodeJacobianFn(int *, double *, double *, int *, int *, double *, int *); |
203 |
|
204 |
/*---------------------------- |
205 |
forward declarations |
206 |
*/ |
207 |
|
208 |
int integrator_lsode_setup_diffs(IntegratorSystem *blsys); |
209 |
static double **lsode_densematrix_create(int nrows, int ncols); |
210 |
static void lsode_densematrix_destroy(double **matrix,int nrows); |
211 |
|
212 |
/** |
213 |
void LSODE(&fex, &neq, y, &x, &xend, &itol, reltol, abtol, &itask, |
214 |
&istate, &iopt ,rwork, &lrw, iwork, &liw, &jex, &mf); |
215 |
|
216 |
This is a prototype for the *fortran* LSODE function. |
217 |
|
218 |
No 'extern' here, so we want linker to complain if no static linkage. |
219 |
*/ |
220 |
void LSODE(LsodeEvalFn*,int *neq ,double *y ,double *x |
221 |
,double *xend |
222 |
,int *itol ,double *reltol ,double *abtol |
223 |
,int *itask ,int *istate ,int *iopt |
224 |
,double *rwork ,int *lrw |
225 |
,int *iwork ,int *liw |
226 |
,LsodeJacobianFn *jex ,int *mf |
227 |
); |
228 |
|
229 |
/*------------------------------------------------------ |
230 |
Memory allocation/free |
231 |
*/ |
232 |
|
233 |
void integrator_lsode_create(IntegratorSystem *blsys){ |
234 |
IntegratorLsodeData *d; |
235 |
d = ASC_NEW_CLEAR(IntegratorLsodeData); |
236 |
d->n_eqns=0; |
237 |
d->input_indices=NULL; |
238 |
d->output_indices=NULL; |
239 |
d->y_vars=NULL; |
240 |
d->ydot_vars=NULL; |
241 |
d->rlist=NULL; |
242 |
d->dydx_dx=NULL; |
243 |
blsys->enginedata=(void*)d; |
244 |
integrator_lsode_params_default(blsys); |
245 |
|
246 |
} |
247 |
|
248 |
/** |
249 |
Cleanup the data struct that belongs to LSODE |
250 |
*/ |
251 |
void integrator_lsode_free(void *enginedata){ |
252 |
IntegratorLsodeData d; |
253 |
d = *((IntegratorLsodeData *)enginedata); |
254 |
|
255 |
if(d.input_indices)ASC_FREE(d.input_indices); |
256 |
d.input_indices = NULL; |
257 |
|
258 |
if(d.output_indices)ASC_FREE(d.output_indices); |
259 |
d.output_indices = NULL; |
260 |
|
261 |
if(d.y_vars)ASC_FREE(d.y_vars); |
262 |
d.y_vars = NULL; |
263 |
|
264 |
if(d.ydot_vars)ASC_FREE(d.ydot_vars); |
265 |
d.ydot_vars = NULL; |
266 |
|
267 |
if(d.rlist)ASC_FREE(d.rlist); |
268 |
d.rlist = NULL; |
269 |
|
270 |
if(d.dydx_dx)lsode_densematrix_destroy(d.dydx_dx, d.n_eqns); |
271 |
d.dydx_dx = NULL; |
272 |
|
273 |
d.n_eqns = 0L; |
274 |
} |
275 |
|
276 |
/*------------------------------------------------------------------------------ |
277 |
PARAMETERS |
278 |
*/ |
279 |
|
280 |
enum ida_parameters{ |
281 |
LSODE_PARAM_TIMING |
282 |
,LSODE_PARAM_RTOLVECT |
283 |
,LSODE_PARAM_RTOL |
284 |
,LSODE_PARAM_ATOLVECT |
285 |
,LSODE_PARAM_ATOL |
286 |
,LSODE_PARAMS_SIZE |
287 |
}; |
288 |
|
289 |
/** |
290 |
Here the full set of parameters is defined, along with upper/lower bounds, |
291 |
etc. The values are stuck into the blsys->params structure. |
292 |
|
293 |
@return 0 on success |
294 |
*/ |
295 |
int integrator_lsode_params_default(IntegratorSystem *blsys){ |
296 |
|
297 |
asc_assert(blsys!=NULL); |
298 |
asc_assert(blsys->engine==INTEG_LSODE); |
299 |
slv_parameters_t *p; |
300 |
p = &(blsys->params); |
301 |
|
302 |
slv_destroy_parms(p); |
303 |
|
304 |
if(p->parms==NULL){ |
305 |
CONSOLE_DEBUG("params NULL"); |
306 |
p->parms = ASC_NEW_ARRAY(struct slv_parameter, LSODE_PARAMS_SIZE); |
307 |
if(p->parms==NULL)return -1; |
308 |
p->dynamic_parms = 1; |
309 |
}else{ |
310 |
asc_assert(p->num_parms == LSODE_PARAMS_SIZE); |
311 |
CONSOLE_DEBUG("reusing parm memory"); |
312 |
} |
313 |
|
314 |
/* reset the number of parameters to zero so that we can check it at the end */ |
315 |
p->num_parms = 0; |
316 |
|
317 |
slv_param_bool(p,LSODE_PARAM_TIMING |
318 |
,(SlvParameterInitBool){{"timing" |
319 |
,"Output timing statistics?",1,NULL |
320 |
}, TRUE} |
321 |
); |
322 |
|
323 |
slv_param_bool(p,LSODE_PARAM_ATOLVECT |
324 |
,(SlvParameterInitBool){{"atolvect" |
325 |
,"Use 'ode_atol' values as specified for each var?",1 |
326 |
,"If TRUE, values of 'ode_atol' are taken from your model and used " |
327 |
" in the integration. If FALSE, a scalar absolute tolerance (atol)" |
328 |
" is shared by all variables." |
329 |
}, TRUE } |
330 |
); |
331 |
|
332 |
slv_param_real(p,LSODE_PARAM_ATOL |
333 |
,(SlvParameterInitReal){{"atol" |
334 |
,"Scalar absolute error tolerance",1 |
335 |
,"Default value of the scalar absolute error tolerance (for cases" |
336 |
" where not specified in oda_atol var property. See 'lsode.f' for" |
337 |
" details" |
338 |
}, 1e-6, DBL_MIN, DBL_MAX } |
339 |
); |
340 |
|
341 |
slv_param_bool(p,LSODE_PARAM_RTOLVECT |
342 |
,(SlvParameterInitBool){{"rtolvect" |
343 |
,"Use 'ode_rtol' values as specified for each var?",1 |
344 |
,"If TRUE, values of 'ode_atol' are taken from your model and used " |
345 |
" in the integration. If FALSE, a scalar absolute tolerance (rtol)" |
346 |
" is shared by all variables." |
347 |
}, TRUE } |
348 |
); |
349 |
|
350 |
slv_param_real(p,LSODE_PARAM_RTOL |
351 |
,(SlvParameterInitReal){{"rtol" |
352 |
,"Scalar relative error tolerance",1 |
353 |
,"Default value of the scalar relative error tolerance (for cases" |
354 |
" where not specified in oda_rtol var property. See 'lsode.f' for" |
355 |
" details" |
356 |
}, 1e-6, DBL_MIN, DBL_MAX } |
357 |
); |
358 |
|
359 |
asc_assert(p->num_parms == LSODE_PARAMS_SIZE); |
360 |
|
361 |
CONSOLE_DEBUG("Created %d params", p->num_parms); |
362 |
|
363 |
return 0; |
364 |
} |
365 |
|
366 |
/*--------------------------------------------------------- |
367 |
Couple of matrix methods...? |
368 |
*/ |
369 |
|
370 |
static double **lsode_densematrix_create(int nrows, int ncols){ |
371 |
int c; |
372 |
double **result; |
373 |
assert(nrows>0); |
374 |
assert(ncols>0); |
375 |
result = ASC_NEW_ARRAY(double *, nrows); |
376 |
for (c=0;c<nrows;c++) { |
377 |
result[c] = ASC_NEW_ARRAY_CLEAR(double, ncols); |
378 |
} |
379 |
return result; |
380 |
} |
381 |
|
382 |
static void lsode_densematrix_destroy(double **matrix,int nrows){ |
383 |
int c; |
384 |
if (matrix) { |
385 |
for (c=0;c<nrows;c++) { |
386 |
if (matrix[c]) { |
387 |
ascfree((char *)matrix[c]); |
388 |
} |
389 |
} |
390 |
ascfree((char *)matrix); |
391 |
} |
392 |
} |
393 |
|
394 |
/*------------------------------------------------------------------------------ |
395 |
PROBLEM ANALYSIS |
396 |
*/ |
397 |
|
398 |
/** |
399 |
@TODO needs work. Assumes struct Instance* and struct var_variable* |
400 |
are synonymous, which demonstrates the need for a method to take |
401 |
an instance and ask the solvers for its global or local index |
402 |
if var and inst are decoupled. |
403 |
*/ |
404 |
int integrator_lsode_setup_diffs(IntegratorSystem *blsys) { |
405 |
/* long n_eqns; */ |
406 |
unsigned long nch,i; |
407 |
|
408 |
struct var_variable **vp; |
409 |
int *ip; |
410 |
|
411 |
IntegratorLsodeData *enginedata; |
412 |
enginedata = (IntegratorLsodeData *)blsys->enginedata; |
413 |
assert(enginedata!=NULL); |
414 |
|
415 |
assert(enginedata->n_eqns==blsys->n_y); |
416 |
|
417 |
/* |
418 |
Put the |
419 |
Let us now process what we consider *inputs* to the problem as |
420 |
far as ASCEND is concerned; i.e. the state vars or the y_vars's |
421 |
if you prefer. |
422 |
*/ |
423 |
nch = enginedata->n_eqns; |
424 |
|
425 |
|
426 |
vp = enginedata->y_vars; |
427 |
ip = enginedata->input_indices; |
428 |
for (i=0;i<nch;i++) { |
429 |
*vp = (struct var_variable *)blsys->y[i]; |
430 |
*ip = var_sindex(*vp); |
431 |
vp++; |
432 |
ip++; |
433 |
} |
434 |
*vp = NULL; /* terminate */ |
435 |
|
436 |
/* |
437 |
Let us now go for the outputs, ie the derivative terms. |
438 |
*/ |
439 |
vp = enginedata->ydot_vars; |
440 |
ip = enginedata->output_indices; |
441 |
for (i=0;i<nch;i++) { |
442 |
*vp = (struct var_variable *)blsys->ydot[i]; |
443 |
*ip = var_sindex(*vp); |
444 |
vp++; /* dont assume that a var is synonymous with */ |
445 |
ip++; /* an Instance; that might/will change soon */ |
446 |
} |
447 |
*vp = NULL; /* terminate */ |
448 |
|
449 |
return 0; |
450 |
} |
451 |
|
452 |
/** |
453 |
allocates, fills, and returns the atol vector based on LSODE |
454 |
|
455 |
State variables missing child ode_rtol will be defaulted to ATOL |
456 |
*/ |
457 |
static double *lsode_get_atol( IntegratorSystem *blsys) { |
458 |
|
459 |
struct Instance *tol; |
460 |
double *atoli; |
461 |
int i,len; |
462 |
double atol; |
463 |
|
464 |
len = blsys->n_y; |
465 |
atoli = ASC_NEW_ARRAY(double, blsys->n_y); /* changed, this was n_y+1 before, dunnowi -- JP */ |
466 |
if (atoli == NULL) { |
467 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"Insufficient memory"); |
468 |
return atoli; |
469 |
} |
470 |
|
471 |
if(!SLV_PARAM_BOOL(&(blsys->params),LSODE_PARAM_ATOLVECT)){ |
472 |
atol = SLV_PARAM_REAL(&(blsys->params),LSODE_PARAM_ATOL); |
473 |
CONSOLE_DEBUG("Using ATOL = %f for all vars", atol); |
474 |
for(i=0; i<len; ++i){ |
475 |
atoli[i] = atol; |
476 |
} |
477 |
}else{ |
478 |
InitTolNames(); |
479 |
for (i=0; i<len; i++) { |
480 |
|
481 |
tol = ChildByChar(var_instance(blsys->y[i]),STATEATOL); |
482 |
if (tol == NULL || !AtomAssigned(tol) ) { |
483 |
atoli[i] = SLV_PARAM_REAL(&(blsys->params),LSODE_PARAM_ATOL); |
484 |
ERROR_REPORTER_HERE(ASC_PROG_WARNING,"Assuming atol = %3g" |
485 |
"for ode_atol child undefined for state variable %ld." |
486 |
,atoli[i], blsys->y_id[i] |
487 |
); |
488 |
} else { |
489 |
atoli[i] = RealAtomValue(tol); |
490 |
CONSOLE_DEBUG("Using atol %3g for state variable %ld.",atoli[i], blsys->y_id[i]); |
491 |
} |
492 |
} |
493 |
} |
494 |
return atoli; |
495 |
} |
496 |
|
497 |
/** |
498 |
Allocates, fills, and returns the rtol vector based on LSODE |
499 |
|
500 |
State variables missing child ode_rtol will be defaulted to RTOL |
501 |
*/ |
502 |
static double *lsode_get_rtol( IntegratorSystem *blsys) { |
503 |
|
504 |
struct Instance *tol; |
505 |
double rtol, *rtoli; |
506 |
int i,len; |
507 |
|
508 |
len = blsys->n_y; |
509 |
rtoli = ASC_NEW_ARRAY(double, blsys->n_y+1); |
510 |
if (rtoli == NULL) { |
511 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"Insufficient memory"); |
512 |
return rtoli; |
513 |
} |
514 |
if(!SLV_PARAM_BOOL(&(blsys->params),LSODE_PARAM_RTOLVECT)){ |
515 |
rtol = SLV_PARAM_REAL(&(blsys->params),LSODE_PARAM_RTOL); |
516 |
CONSOLE_DEBUG("Using RTOL = %f for all vars", rtol); |
517 |
for(i=0; i<len; ++i){ |
518 |
rtoli[i] = rtol; |
519 |
} |
520 |
}else{ |
521 |
InitTolNames(); |
522 |
for (i=0; i<len; i++) { |
523 |
tol = ChildByChar(var_instance(blsys->y[i]),STATERTOL); |
524 |
if (tol == NULL || !AtomAssigned(tol) ) { |
525 |
rtoli[i] = SLV_PARAM_REAL(&(blsys->params),LSODE_PARAM_RTOL); |
526 |
|
527 |
ERROR_REPORTER_HERE(ASC_PROG_WARNING,"Assuming rtol = %3g" |
528 |
"for ode_rtol child undefined for state variable %ld." |
529 |
,rtoli[i], blsys->y_id[i] |
530 |
); |
531 |
|
532 |
} else { |
533 |
rtoli[i] = RealAtomValue(tol); |
534 |
} |
535 |
} |
536 |
} |
537 |
rtoli[len] = SLV_PARAM_REAL(&(blsys->params),LSODE_PARAM_RTOL); |
538 |
return rtoli; |
539 |
} |
540 |
|
541 |
/* |
542 |
Write out a a status message based on the istate parameter. |
543 |
*/ |
544 |
static void lsode_write_istate( int istate) { |
545 |
switch (istate) { |
546 |
case -1: |
547 |
FPRINTF(ASCERR,"Excess steps taken on this call (perhaps wrong MF)."); |
548 |
break; |
549 |
case -2: |
550 |
FPRINTF(ASCERR,"Excess accuracy requested (tolerances too small)."); |
551 |
break; |
552 |
case -3: |
553 |
FPRINTF(ASCERR,"Illegal input detected (see console)."); |
554 |
break; |
555 |
case -4: |
556 |
FPRINTF(ASCERR,"Repeated error test failures (check all inputs)."); |
557 |
break; |
558 |
case -5: |
559 |
FPRINTF(ASCERR,"Repeated convergence failures (perhaps bad Jacobian supplied, or wrong choice of MF or tolerances)."); |
560 |
break; |
561 |
case -6: |
562 |
FPRINTF(ASCERR,"Error weight became zero during problem (solution component i vanished, and atol or atol(i) = 0)."); |
563 |
break; |
564 |
case -7: |
565 |
FPRINTF(ASCERR,"Interrupted? User cancelled operation?"); |
566 |
break; |
567 |
default: |
568 |
FPRINTF(ASCERR,"Unknown 'istate' error code %d from LSODE.",istate); |
569 |
break; |
570 |
} |
571 |
} |
572 |
|
573 |
/** |
574 |
Free memory allocated for the LSODE, but first check. |
575 |
*/ |
576 |
static void lsode_free_mem(double *y, double *reltol, double *abtol, double *rwork, |
577 |
int *iwork, double *obs, double *dydx) |
578 |
{ |
579 |
if (y != NULL) { |
580 |
ascfree((double *)y); |
581 |
} |
582 |
if (reltol != NULL) { |
583 |
ascfree((double *)reltol); |
584 |
} |
585 |
if (abtol != NULL) { |
586 |
ascfree((double *)abtol); |
587 |
} |
588 |
if (rwork != NULL) { |
589 |
ascfree((double *)rwork); |
590 |
} |
591 |
if (iwork != NULL) { |
592 |
ascfree((int *)iwork); |
593 |
} |
594 |
if (obs != NULL) { |
595 |
ascfree((double *)obs); |
596 |
} |
597 |
if (dydx != NULL) { |
598 |
ascfree((double *)dydx); |
599 |
} |
600 |
} |
601 |
|
602 |
/* |
603 |
********************************************************************* |
604 |
* This code is provided for the benefit of a temporary |
605 |
* fix for the derivative problem in Lsode. |
606 |
* The proper permanent fix for lsode is to dump it in favor of |
607 |
* cvode or dassl. |
608 |
* Extended 7/95 baa to deal with linsolqr and lsode. |
609 |
* It is assumed the system has been solved at the current point. |
610 |
********************************************************************* |
611 |
*/ |
612 |
int lsode_derivatives(slv_system_t sys, double **dy_dx, |
613 |
int *inputs_ndx_list, int ninputs, |
614 |
int *outputs_ndx_list, int noutputs) |
615 |
{ |
616 |
static int n_calls = 0; |
617 |
linsolqr_system_t lqr_sys; /* stuff for the linear system & matrix */ |
618 |
mtx_matrix_t mtx; |
619 |
int32 capacity; |
620 |
real64 *scratch_vector = NULL; |
621 |
int result=0; |
622 |
|
623 |
(void)NumberFreeVars(NULL); /* used to re-init the system */ |
624 |
(void)NumberIncludedRels(NULL); /* used to re-init the system */ |
625 |
if (!sys) { |
626 |
FPRINTF(stderr,"The solve system does not exist !\n"); |
627 |
return 1; |
628 |
} |
629 |
|
630 |
result = Compute_J(sys); |
631 |
if (result) { |
632 |
FPRINTF(stderr,"Early termination due to failure in calc Jacobian\n"); |
633 |
return 1; |
634 |
} |
635 |
|
636 |
lqr_sys = slv_get_linsolqr_sys(sys); /* get the linear system */ |
637 |
if (lqr_sys==NULL) { |
638 |
FPRINTF(stderr,"Early termination due to missing linsolqr system.\n"); |
639 |
return 1; |
640 |
} |
641 |
mtx = slv_get_sys_mtx(sys); /* get the matrix */ |
642 |
if (mtx==NULL) { |
643 |
FPRINTF(stderr,"Early termination due to missing mtx in linsolqr.\n"); |
644 |
return 1; |
645 |
} |
646 |
capacity = mtx_capacity(mtx); |
647 |
scratch_vector = ASC_NEW_ARRAY_CLEAR(real64,capacity); |
648 |
linsolqr_add_rhs(lqr_sys,scratch_vector,FALSE); |
649 |
|
650 |
result = LUFactorJacobian(sys); |
651 |
if (result) { |
652 |
FPRINTF(stderr,"Early termination due to failure in LUFactorJacobian\n"); |
653 |
goto error; |
654 |
} |
655 |
result = Compute_dy_dx_smart(sys, scratch_vector, dy_dx, |
656 |
inputs_ndx_list, ninputs, |
657 |
outputs_ndx_list, noutputs); |
658 |
|
659 |
linsolqr_remove_rhs(lqr_sys,scratch_vector); |
660 |
if (result) { |
661 |
FPRINTF(stderr,"Early termination due to failure in Compute_dy_dx\n"); |
662 |
goto error; |
663 |
} |
664 |
|
665 |
error: |
666 |
n_calls++; |
667 |
if (scratch_vector) { |
668 |
ascfree((char *)scratch_vector); |
669 |
} |
670 |
return result; |
671 |
} |
672 |
|
673 |
/** |
674 |
The current way that we are getting the derivatives (if the problem |
675 |
was solved partitioned) messes up the slv_system so that we *have* |
676 |
to do a *presolve* rather than a simply a *resolve* before doing |
677 |
function calls. This code below attempts to handle these cases. |
678 |
*/ |
679 |
static void LSODE_FEX( int *n_eq ,double *t ,double *y ,double *ydot) |
680 |
{ |
681 |
slv_status_t status; |
682 |
|
683 |
/* slv_parameters_t parameters; pity lsode doesn't allow error returns */ |
684 |
/* int i; */ |
685 |
unsigned long res; |
686 |
|
687 |
#if DOTIME |
688 |
double time1,time2; |
689 |
#endif |
690 |
|
691 |
/* CONSOLE_DEBUG("Calling for a function evaluation"); */ |
692 |
|
693 |
#if DOTIME |
694 |
CONSOLE_DEBUG("Calling for a function evaluation"); |
695 |
time1 = tm_cpu_time(); |
696 |
#endif |
697 |
|
698 |
/* |
699 |
t[1]=t[0]; can't do this. lsode calls us with a different t than the t we sent in. |
700 |
*/ |
701 |
integrator_set_t(l_lsode_blsys, t[0]); |
702 |
integrator_set_y(l_lsode_blsys, y); |
703 |
|
704 |
#if DOTIME |
705 |
time2 = tm_cpu_time(); |
706 |
#endif |
707 |
|
708 |
switch(lsodesys.lastcall) { |
709 |
case lsode_none: /* first call */ |
710 |
CONSOLE_DEBUG("FIRST CALL..."); |
711 |
|
712 |
case lsode_derivative: |
713 |
if (lsodesys.partitioned) { |
714 |
/* CONSOLE_DEBUG("PRE-SOLVE"); */ |
715 |
slv_presolve(l_lsode_blsys->system); |
716 |
} else { |
717 |
/** @TODO this doesn't ever seem to be called */ |
718 |
CONSOLE_DEBUG("RE-SOLVE"); |
719 |
slv_resolve(l_lsode_blsys->system); |
720 |
} |
721 |
break; |
722 |
default: |
723 |
case lsode_function: |
724 |
slv_resolve(l_lsode_blsys->system); |
725 |
break; |
726 |
} |
727 |
|
728 |
slv_solve(l_lsode_blsys->system); |
729 |
slv_get_status(l_lsode_blsys->system, &status); |
730 |
if(slv_check_bounds(l_lsode_blsys->system,0,-1,"")){ |
731 |
lsodesys.status = lsode_nok; |
732 |
} |
733 |
|
734 |
/* pass the solver status to the integrator */ |
735 |
res = integrator_checkstatus(status); |
736 |
|
737 |
#if DOTIME |
738 |
time2 = tm_cpu_time() - time2; |
739 |
#endif |
740 |
|
741 |
if(res){ |
742 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"Failed to solve for derivatives (%d)",res); |
743 |
#if 0 |
744 |
ERROR_REPORTER_START_HERE(ASC_PROG_ERR); |
745 |
FPRINTF(ASCERR,"Unable to compute the vector of derivatives with the following values for the state variables:\n"); |
746 |
for (i = 0; i< *n_eq; i++) { |
747 |
FPRINTF(ASCERR,"y[%4d] = %f\n",i, y[i]); |
748 |
} |
749 |
error_reporter_end_flush(); |
750 |
#endif |
751 |
lsodesys.status = lsode_nok; |
752 |
}else{ |
753 |
lsodesys.status = lsode_ok; |
754 |
} |
755 |
integrator_get_ydot(l_lsode_blsys, ydot); |
756 |
|
757 |
lsodesys.lastcall = lsode_function; |
758 |
#if DOTIME |
759 |
time1 = tm_cpu_time() - time1; |
760 |
CONSOLE_DEBUG("Function evalulation has been completed in time %g. True function call time = %g",time1,time2); |
761 |
#endif |
762 |
} |
763 |
|
764 |
/** |
765 |
Evaluate the jacobian |
766 |
*/ |
767 |
static void LSODE_JEX(int *neq ,double *t, double *y, |
768 |
int *ml ,int *mu ,double *pd, int *nrpd) |
769 |
{ |
770 |
int nok = 0; |
771 |
int i,j; |
772 |
|
773 |
IntegratorLsodeData enginedata=*((IntegratorLsodeData *)l_lsode_blsys->enginedata); |
774 |
|
775 |
UNUSED_PARAMETER(t); |
776 |
UNUSED_PARAMETER(y); |
777 |
UNUSED_PARAMETER(ml); |
778 |
UNUSED_PARAMETER(mu); |
779 |
|
780 |
/* CONSOLE_DEBUG("Calling for a gradient evaluation"); */ |
781 |
#if DOTIME |
782 |
double time1; |
783 |
|
784 |
CONSOLE_DEBUG("Calling for a gradient evaluation"); |
785 |
time1 = tm_cpu_time(); |
786 |
#endif |
787 |
/* |
788 |
* Make the real call. |
789 |
*/ |
790 |
nok = lsode_derivatives(l_lsode_blsys->system |
791 |
, enginedata.dydx_dx |
792 |
, enginedata.input_indices |
793 |
, *neq |
794 |
, enginedata.output_indices |
795 |
, *nrpd |
796 |
); |
797 |
|
798 |
if (nok) { |
799 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"Error in computing the derivatives for the system. Failing..."); |
800 |
lsodesys.status = lsode_nok; |
801 |
lsodesys.lastcall = lsode_derivative; |
802 |
return; |
803 |
} else { |
804 |
lsodesys.status = lsode_ok; |
805 |
lsodesys.lastcall = lsode_derivative; |
806 |
} |
807 |
/* |
808 |
Map data from C based matrix to Fortan matrix. |
809 |
We will send in a column major ordering vector for pd. |
810 |
*/ |
811 |
for (j=0;j<*neq;j++) { /* loop through columnns */ |
812 |
for (i=0;i<*nrpd;i++){ /* loop through rows */ |
813 |
/* CONSOLE_DEBUG("JAC[r=%d,c=%d]=%f",i,j,enginedata.dydx_dx[i][j]); */ |
814 |
*pd++ = enginedata.dydx_dx[i][j]; |
815 |
} |
816 |
} |
817 |
|
818 |
#if DOTIME |
819 |
time1 = tm_cpu_time() - time1; |
820 |
CONSOLE_DEBUG("Time to do gradient evaluation %g",time1); |
821 |
#endif |
822 |
|
823 |
return; |
824 |
} |
825 |
|
826 |
/** |
827 |
The public function: here we do the actual integration, I guess. |
828 |
|
829 |
Return 0 on success |
830 |
*/ |
831 |
int integrator_lsode_solve(IntegratorSystem *blsys |
832 |
, unsigned long start_index, unsigned long finish_index |
833 |
){ |
834 |
slv_status_t status; |
835 |
slv_parameters_t params; |
836 |
IntegratorLsodeData *d; |
837 |
|
838 |
double x[2]; |
839 |
double xend,xprev; |
840 |
unsigned long nsamples, neq; |
841 |
long nobs; |
842 |
int itol, itask, mf, lrw, liw; |
843 |
unsigned long index; |
844 |
int istate, iopt; |
845 |
double * rwork; |
846 |
int * iwork; |
847 |
double *y, *abtol, *reltol, *obs, *dydx; |
848 |
int my_neq; |
849 |
FILE *y_out =NULL; |
850 |
FILE *obs_out =NULL; |
851 |
int reporterstatus; |
852 |
|
853 |
/* store the local variable so that we can get at stuff from inside LSODE_FEX. */ |
854 |
l_lsode_blsys = blsys; |
855 |
|
856 |
d = (IntegratorLsodeData *)(blsys->enginedata); |
857 |
|
858 |
/* the numer of equations must be equal to blsys->n_y, the number of states */ |
859 |
d->n_eqns = blsys->n_y; |
860 |
assert(d->n_eqns>0); |
861 |
|
862 |
d->input_indices = ASC_NEW_ARRAY_CLEAR(int, d->n_eqns); |
863 |
d->output_indices = ASC_NEW_ARRAY_CLEAR(int, d->n_eqns); |
864 |
d->dydx_dx = lsode_densematrix_create(d->n_eqns,d->n_eqns); |
865 |
|
866 |
d->y_vars = ASC_NEW_ARRAY(struct var_variable *,d->n_eqns+1); |
867 |
d->ydot_vars = ASC_NEW_ARRAY(struct var_variable *, d->n_eqns+1); |
868 |
|
869 |
integrator_lsode_setup_diffs(blsys); |
870 |
|
871 |
/* this is a lie, but we will keep it. |
872 |
We handle any linsol/linsolqr based solver. */ |
873 |
if (strcmp(slv_solver_name(slv_get_selected_solver(blsys->system)),"QRSlv") != 0) { |
874 |
ERROR_REPORTER_NOLINE(ASC_USER_ERROR,"QRSlv must be selected before integration."); |
875 |
return 1; |
876 |
} |
877 |
|
878 |
slv_get_status(l_lsode_blsys->system, &status); |
879 |
|
880 |
if (status.struct_singular) { |
881 |
ERROR_REPORTER_HERE(ASC_USER_ERROR,"Integration will not be performed. The system is structurally singular."); |
882 |
lsodesys.status = lsode_nok; |
883 |
return 2; |
884 |
} |
885 |
|
886 |
#if defined(STATIC_LSOD) || defined (DYNAMIC_LSOD) |
887 |
|
888 |
/* here we assume integrators.c is in charge of dynamic loading */ |
889 |
|
890 |
slv_get_parameters(blsys->system,¶ms); |
891 |
lsodesys.partitioned = 1; |
892 |
|
893 |
nsamples = integrator_getnsamples(blsys); |
894 |
if (nsamples <2) { |
895 |
ERROR_REPORTER_HERE(ASC_USER_ERROR,"Integration will not be performed. The system has no end sample time defined."); |
896 |
lsodesys.status = lsode_nok; |
897 |
return 3; |
898 |
} |
899 |
neq = blsys->n_y; |
900 |
nobs = blsys->n_obs; |
901 |
|
902 |
/* samplelist_debug(blsys->samples); */ |
903 |
|
904 |
/* x[0] = integrator_get_t(blsys); */ |
905 |
x[0] = integrator_getsample(blsys, 0); |
906 |
x[1] = x[0]-1; /* make sure we don't start with wierd x[1] */ |
907 |
lrw = 22 + 9*neq + neq*neq; |
908 |
rwork = ASC_NEW_ARRAY_CLEAR(double, lrw+1); |
909 |
liw = 20 + neq; |
910 |
iwork = ASC_NEW_ARRAY_CLEAR(int, liw+1); |
911 |
y = integrator_get_y(blsys, NULL); |
912 |
reltol = lsode_get_rtol(blsys); |
913 |
abtol = lsode_get_atol(blsys); |
914 |
obs = integrator_get_observations(blsys, NULL); |
915 |
dydx = ASC_NEW_ARRAY_CLEAR(double, neq+1); |
916 |
if (!y || !obs || !abtol || !reltol || !rwork || !iwork || !dydx) { |
917 |
lsode_free_mem(y,reltol,abtol,rwork,iwork,obs,dydx); |
918 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"Insufficient memory for lsode."); |
919 |
lsodesys.status = lsode_nok; |
920 |
return 4; |
921 |
} |
922 |
|
923 |
/* |
924 |
Prepare args and call lsode. |
925 |
*/ |
926 |
itol = 4; |
927 |
itask = 1; |
928 |
istate = 1; |
929 |
iopt = 1; |
930 |
rwork[4] = integrator_get_stepzero(blsys); |
931 |
rwork[5] = integrator_get_maxstep(blsys); |
932 |
rwork[6] = integrator_get_minstep(blsys); |
933 |
iwork[5] = integrator_get_maxsubsteps(blsys); |
934 |
mf = 21; /* 21 = BDF with exact jacobian. 22 = BDF with finite diff Jacobian */ |
935 |
|
936 |
if(x[0] > integrator_getsample(blsys, 2)){ |
937 |
ERROR_REPORTER_HERE(ASC_USER_ERROR,"Invalid initialisation time: exceeds second timestep value"); |
938 |
return 5; |
939 |
} |
940 |
|
941 |
/* put the values from derivative system into the record */ |
942 |
integrator_setsample(blsys, start_index, x[0]); |
943 |
|
944 |
integrator_output_init(blsys); |
945 |
|
946 |
/* -- store the initial values of all the stuff */ |
947 |
integrator_output_write(blsys); |
948 |
integrator_output_write_obs(blsys); |
949 |
|
950 |
my_neq = (int)neq; |
951 |
|
952 |
/* |
953 |
First time entering lsode, x is input. After that, |
954 |
lsode uses x as output (y output is y(x)). To drive |
955 |
the loop ahead in time, all we need to do is keep upping |
956 |
xend. |
957 |
*/ |
958 |
|
959 |
blsys->currentstep = 0; |
960 |
for (index = start_index; index < finish_index; index++, blsys->currentstep++) { |
961 |
xend = integrator_getsample(blsys, index+1); |
962 |
xprev = x[0]; |
963 |
asc_assert(xend > xprev); |
964 |
/* CONSOLE_DEBUG("LSODE call #%lu: x = [%f,%f]", index,xprev,xend); */ |
965 |
|
966 |
# ifndef NO_SIGNAL_TRAPS |
967 |
if (SETJMP(g_fpe_env)==0) { |
968 |
# endif /* NO_SIGNAL_TRAPS */ |
969 |
|
970 |
/* CONSOLE_DEBUG("Calling LSODE with end-time = %f",xend); */ |
971 |
/* |
972 |
switch(mf){ |
973 |
case 10: |
974 |
CONSOLE_DEBUG("Non-stiff (Adams) method; no Jacobian will be used"); break; |
975 |
case 21: |
976 |
CONSOLE_DEBUG("Stiff (BDF) method, user-supplied full Jacobian"); break; |
977 |
case 22: |
978 |
CONSOLE_DEBUG("Stiff (BDF) method, internally generated full Jacobian"); break; |
979 |
case 24: |
980 |
CONSOLE_DEBUG("Stiff (BDF) method, user-supplied banded jacobian"); break; |
981 |
case 25: |
982 |
CONSOLE_DEBUG("Stiff (BDF) method, internally generated banded jacobian"); break; |
983 |
default: |
984 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"Invalid method id %d for LSODE",mf); |
985 |
return 0; * failure * |
986 |
} |
987 |
*/ |
988 |
|
989 |
LSODE(&(LSODE_FEX), &my_neq, y, x, &xend, |
990 |
&itol, reltol, abtol, &itask, &istate, |
991 |
&iopt ,rwork, &lrw, iwork, &liw, &(LSODE_JEX), &mf); |
992 |
|
993 |
|
994 |
# ifndef NO_SIGNAL_TRAPS |
995 |
} else { |
996 |
FPRINTF(stderr, |
997 |
"Integration terminated due to float error in LSODE call.\n"); |
998 |
lsode_free_mem(y,reltol,abtol,rwork,iwork,obs,dydx); |
999 |
lsodesys.status = lsode_ok; /* clean up before we go */ |
1000 |
lsodesys.lastcall = lsode_none; |
1001 |
if (y_out!=NULL) { |
1002 |
fclose(y_out); |
1003 |
} |
1004 |
if (obs_out!=NULL) { |
1005 |
fclose(obs_out); |
1006 |
} |
1007 |
return 6; |
1008 |
} |
1009 |
# endif /* NO_SIGNAL_TRAPS */ |
1010 |
|
1011 |
/* CONSOLE_DEBUG("AFTER %lu LSODE CALL\n", index); */ |
1012 |
/* this check is better done in fex,jex, but lsode takes no status */ |
1013 |
if (Solv_C_CheckHalt()) { |
1014 |
if (istate >= 0) { |
1015 |
istate=-7; |
1016 |
} |
1017 |
} |
1018 |
|
1019 |
if (istate < 0 ) { |
1020 |
/* some kind of error occurred... */ |
1021 |
ERROR_REPORTER_START_HERE(ASC_PROG_ERR); |
1022 |
lsode_write_istate(istate); |
1023 |
FPRINTF(ASCERR, "\nFurthest point reached was t = %g.\n",x[0]); |
1024 |
error_reporter_end_flush(); |
1025 |
|
1026 |
lsode_free_mem(y,reltol,abtol,rwork,iwork,obs,dydx); |
1027 |
integrator_output_close(blsys); |
1028 |
return 7; |
1029 |
} |
1030 |
|
1031 |
if (lsodesys.status==lsode_nok) { |
1032 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"Integration terminated due to an error in derivative computations."); |
1033 |
lsode_free_mem(y,reltol,abtol,rwork,iwork,obs,dydx); |
1034 |
lsodesys.status = lsode_ok; /* clean up before we go */ |
1035 |
lsodesys.lastcall = lsode_none; |
1036 |
integrator_output_close(blsys); |
1037 |
return 8; |
1038 |
} |
1039 |
|
1040 |
integrator_setsample(blsys, index+1, x[0]); |
1041 |
/* record when lsode actually came back */ |
1042 |
integrator_set_t(blsys, x[0]); |
1043 |
integrator_set_y(blsys, y); |
1044 |
/* put x,y in d in case lsode got x,y by interpolation, as it does */ |
1045 |
|
1046 |
reporterstatus = integrator_output_write(blsys); |
1047 |
|
1048 |
if(reporterstatus==0){ |
1049 |
ERROR_REPORTER_HERE(ASC_USER_ERROR,"Integration cancelled"); |
1050 |
lsode_free_mem(y,reltol,abtol,rwork,iwork,obs,dydx); |
1051 |
lsodesys.status = lsode_ok; |
1052 |
lsodesys.lastcall = lsode_none; |
1053 |
integrator_output_close(blsys); |
1054 |
return 9; |
1055 |
} |
1056 |
|
1057 |
if (nobs > 0) { |
1058 |
# ifndef NO_SIGNAL_TRAPS |
1059 |
if (SETJMP(g_fpe_env)==0) { |
1060 |
# endif /* NO_SIGNAL_TRAPS */ |
1061 |
|
1062 |
/* solve for obs since d isn't necessarily already |
1063 |
computed there though lsode's x and y may be. |
1064 |
Note that since lsode usually steps beyond xend |
1065 |
x1 usually wouldn't be x0 precisely if the x1/x0 |
1066 |
scheme worked, which it doesn't anyway. */ |
1067 |
|
1068 |
LSODE_FEX(&my_neq, x, y, dydx); |
1069 |
|
1070 |
/* calculate observations, if any, at returned x and y. */ |
1071 |
obs = integrator_get_observations(blsys, obs); |
1072 |
|
1073 |
integrator_output_write_obs(blsys); |
1074 |
|
1075 |
# ifndef NO_SIGNAL_TRAPS |
1076 |
} else { |
1077 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"Integration terminated due to float error in LSODE FEX call."); |
1078 |
lsode_free_mem(y,reltol,abtol,rwork,iwork,obs,dydx); |
1079 |
lsodesys.status = lsode_ok; /* clean up before we go */ |
1080 |
lsodesys.lastcall = lsode_none; |
1081 |
integrator_output_close(blsys); |
1082 |
return 10; |
1083 |
} |
1084 |
# endif /* NO_SIGNAL_TRAPS */ |
1085 |
} |
1086 |
/* CONSOLE_DEBUG("Integration completed from %3g to %3g.",xprev,x[0]); */ |
1087 |
} |
1088 |
|
1089 |
CONSOLE_DEBUG("..."); |
1090 |
CONSOLE_DEBUG("Number of steps taken: %1d.", iwork[10]); |
1091 |
CONSOLE_DEBUG("Number of function evaluations: %1d.", iwork[11]); |
1092 |
CONSOLE_DEBUG("Number of Jacobian evaluations: %1d.", iwork[12]); |
1093 |
CONSOLE_DEBUG("..."); |
1094 |
|
1095 |
|
1096 |
lsode_free_mem(y,reltol,abtol,rwork,iwork,obs,dydx); |
1097 |
|
1098 |
/* |
1099 |
* return the system to its original state. |
1100 |
*/ |
1101 |
|
1102 |
lsodesys.status = lsode_ok; |
1103 |
lsodesys.lastcall = lsode_none; |
1104 |
|
1105 |
integrator_output_close(blsys); |
1106 |
|
1107 |
CONSOLE_DEBUG("--- LSODE done ---"); |
1108 |
return 0; /* success */ |
1109 |
|
1110 |
#else /* STATIC_LSOD || DYNAMIC_LSOD */ |
1111 |
|
1112 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"Integration will not be performed. LSODE binary not available."); |
1113 |
lsodesys.status = lsode_nok; |
1114 |
return 11; |
1115 |
|
1116 |
#endif |
1117 |
} |
1118 |
|
1119 |
/** |
1120 |
Function XASCWV is an error reporting function replacing the XERRWV |
1121 |
routine in lsode.f. The call signature is the same with the original Fortran |
1122 |
function. |
1123 |
|
1124 |
@see the comments for 'xerrwv' from lsode.f, with which XASCWV is compatible... |
1125 |
|
1126 |
@param msg = the message (hollerith literal or integer array). |
1127 |
@param nmes = the length of msg (number of characters). |
1128 |
@param nerr = the error number (not used). |
1129 |
@param level = the error level.. |
1130 |
0 or 1 means recoverable (control returns to caller). |
1131 |
2 means fatal (run is aborted--see note below). |
1132 |
@param ni = number of integers (0, 1, or 2) to be printed with message. |
1133 |
@param i1,i2 = integers to be printed, depending on ni. |
1134 |
@param nr = number of reals (0, 1, or 2) to be printed with message. |
1135 |
@param r1,r2 = reals to be printed, depending on nr. |
1136 |
*/ |
1137 |
void XASCWV( char *msg, /* pointer to start of message */ |
1138 |
int *nmes, /* the length of msg (number of characters) */ |
1139 |
int *nerr, /* the error number (not used). */ |
1140 |
int *level, |
1141 |
int *ni, |
1142 |
int *i1, |
1143 |
int *i2, |
1144 |
int *nr, |
1145 |
double *r1, |
1146 |
double *r2 |
1147 |
){ |
1148 |
static double r1last; |
1149 |
|
1150 |
asc_assert(*level!=2); // LSODE doesn't give level 2 in our version. |
1151 |
|
1152 |
switch(*nerr){ |
1153 |
case 52: |
1154 |
if(*nr==2){ |
1155 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"Illegal t = %f, not in range (t - hu,t) = (%f,%f)", r1last, *r1, *r2); |
1156 |
return; |
1157 |
}else if(*nr==1){ |
1158 |
r1last = *r1; |
1159 |
return; |
1160 |
} break; |
1161 |
case 204: |
1162 |
if(*nr==0 && *ni==0)return; |
1163 |
if(*nr==2){ |
1164 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"Error test failed repeatedly or with abs(h)=hmin.\nt=%f and step size h=%f",*r1,*r2); |
1165 |
return; |
1166 |
} break; |
1167 |
case 205: |
1168 |
if(*nr==2){ |
1169 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"Corrector convergence test failed repeatedly or with abs(h)=hmin.\nt=%f and step size h=%f",*r1,*r2); |
1170 |
return; |
1171 |
} break; |
1172 |
case 27: |
1173 |
if(*nr==1 && *ni==1){ |
1174 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"Trouble with INTDY: itask = %d, tout = %f", *i1, *r1); |
1175 |
return; |
1176 |
} break; |
1177 |
} |
1178 |
|
1179 |
ERROR_REPORTER_START_NOLINE(ASC_PROG_ERR); |
1180 |
|
1181 |
/* note that %.*s means that a string length (integer) and string pointer are being required */ |
1182 |
FPRINTF(stderr,"LSODE error: (%d) %.*s",*nerr,*nmes,msg); |
1183 |
if (*ni == 1) { |
1184 |
FPRINTF(stderr,"\nwhere i1 = %d",*i1); |
1185 |
} |
1186 |
if (*ni == 2) { |
1187 |
FPRINTF(stderr,"\nwhere i1 = %d, i2 = %d",*i1,*i2); |
1188 |
} |
1189 |
if (*nr == 1) { |
1190 |
FPRINTF(stderr,"\nwhere r1 = %.13g", *r1); |
1191 |
} |
1192 |
if (*nr == 2) { |
1193 |
FPRINTF(stderr,"\nwhere r1 = %.13g, r2 = %.13g", *r1,*r2); |
1194 |
} |
1195 |
error_reporter_end_flush(); |
1196 |
} |