1 |
/* ASCEND modelling environment |
2 |
Copyright (C) 2006 Carnegie Mellon University |
3 |
|
4 |
This program is free software; you can redistribute it and/or modify |
5 |
it under the terms of the GNU General Public License as published by |
6 |
the Free Software Foundation; either version 2, or (at your option) |
7 |
any later version. |
8 |
|
9 |
This program is distributed in the hope that it will be useful, |
10 |
but WITHOUT ANY WARRANTY; without even the implied warranty of |
11 |
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
12 |
GNU General Public License for more details. |
13 |
|
14 |
You should have received a copy of the GNU General Public License |
15 |
along with this program; if not, write to the Free Software |
16 |
Foundation, Inc., 59 Temple Place - Suite 330, |
17 |
Boston, MA 02111-1307, USA. |
18 |
*//** |
19 |
@file |
20 |
Access to the IDA integrator for ASCEND. IDA is a DAE solver that comes |
21 |
as part of the GPL-licensed SUNDIALS solver package from LLNL. |
22 |
@see http://www.llnl.gov/casc/sundials/ |
23 |
*//* |
24 |
by John Pye, May 2006 |
25 |
*/ |
26 |
|
27 |
/* |
28 |
Be careful with the following. This file requires both the 'ida.h' from |
29 |
SUNDIALS as well as the 'ida.h' from ASCEND. Make sure that we're getting |
30 |
both of these; if you get problems check your build tool for the paths being |
31 |
passed to the C preprocessor. |
32 |
*/ |
33 |
|
34 |
/* standard includes */ |
35 |
#include <signal.h> |
36 |
|
37 |
/* ASCEND includes */ |
38 |
#include "ida.h" |
39 |
#include <utilities/error.h> |
40 |
#include <utilities/ascConfig.h> |
41 |
#include <utilities/ascSignal.h> |
42 |
#include <utilities/ascPanic.h> |
43 |
#include <compiler/instance_enum.h> |
44 |
#include "var.h" |
45 |
#include "rel.h" |
46 |
#include "discrete.h" |
47 |
#include "conditional.h" |
48 |
#include "logrel.h" |
49 |
#include "bnd.h" |
50 |
#include "linsol.h" |
51 |
#include "linsolqr.h" |
52 |
#include "slv_common.h" |
53 |
#include "slv_client.h" |
54 |
#include "relman.h" |
55 |
|
56 |
/* SUNDIALS includes */ |
57 |
#ifdef ASC_WITH_IDA |
58 |
# include <sundials/sundials_config.h> |
59 |
# include <sundials/sundials_dense.h> |
60 |
# include <ida/ida.h> |
61 |
# include <nvector/nvector_serial.h> |
62 |
# include <ida/ida_spgmr.h> |
63 |
# include <ida/ida_dense.h> |
64 |
# ifndef IDA_SUCCESS |
65 |
# error "Failed to include SUNDIALS IDA header file" |
66 |
# endif |
67 |
#endif |
68 |
|
69 |
/* |
70 |
for the benefit of build tools that didn't sniff the SUNDIALS version, we |
71 |
assume version 2.2.x (and thence possible errors). |
72 |
*/ |
73 |
#ifndef SUNDIALS_VERSION_MINOR |
74 |
# ifdef __GNUC__ |
75 |
# warning "GUESSING SUNDIALS VERSION 2.2" |
76 |
# endif |
77 |
# define SUNDIALS_VERSION_MINOR 2 |
78 |
#endif |
79 |
#ifndef SUNDIALS_VERSION_MAJOR |
80 |
# define SUNDIALS_VERSION_MAJOR 2 |
81 |
#endif |
82 |
|
83 |
/* check that we've got what we expect now */ |
84 |
#ifndef ASC_IDA_H |
85 |
# error "Failed to include ASCEND IDA header file" |
86 |
#endif |
87 |
|
88 |
#define FEX_DEBUG |
89 |
#define JEX_DEBUG |
90 |
|
91 |
/** |
92 |
Struct containing any stuff that IDA needs that doesn't fit into the |
93 |
common IntegratorSystem struct. |
94 |
*/ |
95 |
typedef struct{ |
96 |
struct rel_relation **rellist; /**< NULL terminated list of rels */ |
97 |
struct var_variable **varlist; /**< NULL terminated list of vars. ONLY USED FOR DEBUGGING -- get rid of it! */ |
98 |
int nrels; |
99 |
int safeeval; /**< whether to pass the 'safe' flag to relman_eval */ |
100 |
} IntegratorIdaData; |
101 |
|
102 |
/*------------------------------------------------------------- |
103 |
FORWARD DECLS |
104 |
*/ |
105 |
/* residual function forward declaration */ |
106 |
int integrator_ida_fex(realtype tt, N_Vector yy, N_Vector yp, N_Vector rr, void *res_data); |
107 |
|
108 |
int integrator_ida_jvex(realtype tt, N_Vector yy, N_Vector yp, N_Vector rr |
109 |
, N_Vector v, N_Vector Jv, realtype c_j |
110 |
, void *jac_data, N_Vector tmp1, N_Vector tmp2 |
111 |
); |
112 |
|
113 |
/* error handler forward declaration */ |
114 |
void integrator_ida_error(int error_code |
115 |
, const char *module, const char *function |
116 |
, char *msg, void *eh_data |
117 |
); |
118 |
|
119 |
int integrator_ida_djex(long int Neq, realtype tt |
120 |
, N_Vector yy, N_Vector yp, N_Vector rr |
121 |
, realtype c_j, void *jac_data, DenseMat Jac |
122 |
, N_Vector tmp1, N_Vector tmp2, N_Vector tmp3 |
123 |
); |
124 |
|
125 |
/*------------------------------------------------------------- |
126 |
SETUP/TEARDOWN ROUTINES |
127 |
*/ |
128 |
void integrator_ida_create(IntegratorSystem *blsys){ |
129 |
CONSOLE_DEBUG("ALLOCATING IDA ENGINE DATA"); |
130 |
IntegratorIdaData *enginedata; |
131 |
enginedata = ASC_NEW(IntegratorIdaData); |
132 |
enginedata->rellist = NULL; |
133 |
enginedata->varlist = NULL; |
134 |
enginedata->safeeval = 0; |
135 |
blsys->enginedata = (void *)enginedata; |
136 |
integrator_ida_params_default(blsys); |
137 |
} |
138 |
|
139 |
void integrator_ida_free(void *enginedata){ |
140 |
CONSOLE_DEBUG("DELETING IDA ENGINE DATA"); |
141 |
IntegratorIdaData *d = (IntegratorIdaData *)enginedata; |
142 |
/* note, we don't own the rellist, so don't need to free it */ |
143 |
ASC_FREE(d); |
144 |
} |
145 |
|
146 |
IntegratorIdaData *integrator_ida_enginedata(IntegratorSystem *blsys){ |
147 |
IntegratorIdaData *d; |
148 |
assert(blsys!=NULL); |
149 |
assert(blsys->enginedata!=NULL); |
150 |
assert(blsys->engine==INTEG_IDA); |
151 |
d = ((IntegratorIdaData *)(blsys->enginedata)); |
152 |
return d; |
153 |
} |
154 |
|
155 |
/*------------------------------------------------------------- |
156 |
PARAMETERS FOR IDA |
157 |
*/ |
158 |
|
159 |
enum ida_parameters{ |
160 |
IDA_PARAM_LINSOLVER |
161 |
,IDA_PARAM_AUTODIFF |
162 |
,IDA_PARAM_SAFEEVAL |
163 |
,IDA_PARAM_RTOL |
164 |
,IDA_PARAM_ATOL |
165 |
,IDA_PARAM_ATOLVECT |
166 |
,IDA_PARAM_GSMODIFIED |
167 |
,IDA_PARAMS_SIZE |
168 |
}; |
169 |
|
170 |
/** |
171 |
Here the full set of parameters is defined, along with upper/lower bounds, |
172 |
etc. The values are stuck into the blsys->params structure. |
173 |
|
174 |
@return 0 on success |
175 |
*/ |
176 |
int integrator_ida_params_default(IntegratorSystem *blsys){ |
177 |
asc_assert(blsys!=NULL); |
178 |
asc_assert(blsys->engine==INTEG_IDA); |
179 |
slv_parameters_t *p; |
180 |
p = &(blsys->params); |
181 |
|
182 |
slv_destroy_parms(p); |
183 |
|
184 |
if(p->parms==NULL){ |
185 |
CONSOLE_DEBUG("params NULL"); |
186 |
p->parms = ASC_NEW_ARRAY(struct slv_parameter, IDA_PARAMS_SIZE); |
187 |
if(p->parms==NULL)return -1; |
188 |
p->dynamic_parms = 1; |
189 |
}else{ |
190 |
CONSOLE_DEBUG("params not NULL"); |
191 |
} |
192 |
|
193 |
/* reset the number of parameters to zero so that we can check it at the end */ |
194 |
p->num_parms = 0; |
195 |
|
196 |
slv_param_bool(p,IDA_PARAM_AUTODIFF |
197 |
,(SlvParameterInitBool){{"autodiff" |
198 |
,"Use auto-diff?",1 |
199 |
,"Use automatic differentiation of expressions (1) or use numerical derivatives (0)" |
200 |
}, TRUE} |
201 |
); |
202 |
|
203 |
slv_param_bool(p,IDA_PARAM_SAFEEVAL |
204 |
,(SlvParameterInitBool){{"safeeval" |
205 |
,"Use safe evaluation?",1 |
206 |
,"Use 'safe' function evaluation routines (TRUE) or allow ASCEND to " |
207 |
"throw SIGFPE errors which will then halt integration." |
208 |
}, FALSE} |
209 |
); |
210 |
|
211 |
|
212 |
slv_param_bool(p,IDA_PARAM_ATOLVECT |
213 |
,(SlvParameterInitBool){{"atolvect" |
214 |
,"Use 'ode_atol' values as specified?",1 |
215 |
,"If TRUE, values of 'ode_atol' are taken from your model and used " |
216 |
" in the integration. If FALSE, a scalar absolute tolerance value" |
217 |
" is shared by all variables. See IDA manual, section 5.5.1" |
218 |
}, TRUE } |
219 |
); |
220 |
|
221 |
slv_param_real(p,IDA_PARAM_ATOL |
222 |
,(SlvParameterInitReal){{"atol" |
223 |
,"Scalar absolute error tolerance",1 |
224 |
,"Value of the scalar absolute error tolerance. See also 'atolvect'." |
225 |
" See IDA manual, section 5.5.1" |
226 |
}, 1e-5, DBL_MIN, DBL_MAX } |
227 |
); |
228 |
|
229 |
slv_param_real(p,IDA_PARAM_RTOL |
230 |
,(SlvParameterInitReal){{"rtol" |
231 |
,"Scalar relative error tolerance",1 |
232 |
,"Value of the scalar relative error tolerance." |
233 |
" See IDA manual, section 5.5.1" |
234 |
}, 1e-4, 0, DBL_MAX } |
235 |
); |
236 |
|
237 |
slv_param_char(p,IDA_PARAM_LINSOLVER |
238 |
,(SlvParameterInitChar){{"linsolver" |
239 |
,"Linear solver",1 |
240 |
,"See IDA manual, section 5.5.3." |
241 |
}, "SPGMR"}, (char *[]){"DENSE","BAND","SPGMR",NULL} |
242 |
); |
243 |
|
244 |
slv_param_bool(p,IDA_PARAM_GSMODIFIED |
245 |
,(SlvParameterInitBool){{"gsmodified" |
246 |
,"Use modified Gram-Schmidt orthogonalisation in SPGMR?",2 |
247 |
,"TRUE = GS_MODIFIED, FALSE = GS_CLASSICAL. See IDA manual section 5.5.6.6" |
248 |
}, TRUE} |
249 |
); |
250 |
|
251 |
asc_assert(p->num_parms == IDA_PARAMS_SIZE); |
252 |
|
253 |
CONSOLE_DEBUG("Created %d params", p->num_parms); |
254 |
|
255 |
return 0; |
256 |
} |
257 |
|
258 |
/*------------------------------------------------------------- |
259 |
MAIN IDA SOLVER ROUTINE, see IDA manual, sec 5.4, p. 27 ff. |
260 |
*/ |
261 |
|
262 |
/* return 1 on success */ |
263 |
int integrator_ida_solve( |
264 |
IntegratorSystem *blsys |
265 |
, unsigned long start_index |
266 |
, unsigned long finish_index |
267 |
){ |
268 |
void *ida_mem; |
269 |
int size, flag, t_index; |
270 |
realtype t0, reltol, abstol, t, tret, tout1; |
271 |
N_Vector y0, yp0, abstolvect, ypret, yret; |
272 |
IntegratorIdaData *enginedata; |
273 |
char *linsolver; |
274 |
|
275 |
CONSOLE_DEBUG("STARTING IDA..."); |
276 |
|
277 |
enginedata = integrator_ida_enginedata(blsys); |
278 |
|
279 |
enginedata->safeeval = SLV_PARAM_BOOL(&(blsys->params),IDA_PARAM_SAFEEVAL); |
280 |
CONSOLE_DEBUG("safeeval = %d",enginedata->safeeval); |
281 |
|
282 |
/* store reference to list of relations (in enginedata) */ |
283 |
enginedata->nrels = slv_get_num_solvers_rels(blsys->system); |
284 |
enginedata->rellist = slv_get_solvers_rel_list(blsys->system); |
285 |
enginedata->varlist = slv_get_solvers_var_list(blsys->system); |
286 |
CONSOLE_DEBUG("Number of relations: %d",enginedata->nrels); |
287 |
CONSOLE_DEBUG("Number of dependent vars: %ld",blsys->n_y); |
288 |
size = blsys->n_y; |
289 |
|
290 |
if(enginedata->nrels!=size){ |
291 |
ERROR_REPORTER_HERE(ASC_USER_ERROR,"Integration problem is not square (%d rels, %d vars)", enginedata->nrels, size); |
292 |
return 0; /* failure */ |
293 |
} |
294 |
|
295 |
/* retrieve initial values from the system */ |
296 |
|
297 |
/** @TODO fix this, the starting time != first sample */ |
298 |
t0 = integrator_get_t(blsys); |
299 |
CONSOLE_DEBUG("RETRIEVED t0 = %f",t0); |
300 |
|
301 |
CONSOLE_DEBUG("RETRIEVING y0"); |
302 |
|
303 |
y0 = N_VNew_Serial(size); |
304 |
integrator_get_y(blsys,NV_DATA_S(y0)); |
305 |
|
306 |
CONSOLE_DEBUG("RETRIEVING yp0"); |
307 |
|
308 |
yp0 = N_VNew_Serial(size); |
309 |
integrator_get_ydot(blsys,NV_DATA_S(yp0)); |
310 |
|
311 |
N_VPrint_Serial(yp0); |
312 |
CONSOLE_DEBUG("yp0 is at %p",&yp0); |
313 |
|
314 |
/* create IDA object */ |
315 |
ida_mem = IDACreate(); |
316 |
|
317 |
/* relative error tolerance */ |
318 |
reltol = SLV_PARAM_REAL(&(blsys->params),IDA_PARAM_RTOL); |
319 |
CONSOLE_DEBUG("rtol = %8.2e",reltol); |
320 |
|
321 |
/* allocate internal memory */ |
322 |
if(SLV_PARAM_BOOL(&(blsys->params),IDA_PARAM_ATOLVECT)){ |
323 |
/* vector of absolute tolerances */ |
324 |
CONSOLE_DEBUG("USING VECTOR OF ATOL VALUES"); |
325 |
abstolvect = N_VNew_Serial(size); |
326 |
integrator_get_atol(blsys,NV_DATA_S(abstolvect)); |
327 |
|
328 |
flag = IDAMalloc(ida_mem, &integrator_ida_fex, t0, y0, yp0, IDA_SV, reltol, abstolvect); |
329 |
|
330 |
N_VDestroy_Serial(abstolvect); |
331 |
}else{ |
332 |
/* scalar absolute tolerance (one value for all) */ |
333 |
CONSOLE_DEBUG("USING SCALAR ATOL VALUE = %8.2e",abstol); |
334 |
abstol = SLV_PARAM_REAL(&(blsys->params),IDA_PARAM_ATOL); |
335 |
flag = IDAMalloc(ida_mem, &integrator_ida_fex, t0, y0, yp0, IDA_SS, reltol, &abstol); |
336 |
} |
337 |
|
338 |
if(flag==IDA_MEM_NULL){ |
339 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"ida_mem is NULL"); |
340 |
return 0; |
341 |
}else if(flag==IDA_MEM_FAIL){ |
342 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"Unable to allocate memory (IDAMalloc)"); |
343 |
return 0; |
344 |
}else if(flag==IDA_ILL_INPUT){ |
345 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"Invalid input to IDAMalloc"); |
346 |
return 0; |
347 |
}/* else success */ |
348 |
|
349 |
/* set optional inputs... */ |
350 |
IDASetErrHandlerFn(ida_mem, &integrator_ida_error, (void *)blsys); |
351 |
IDASetRdata(ida_mem, (void *)blsys); |
352 |
IDASetMaxStep(ida_mem, integrator_get_maxstep(blsys)); |
353 |
IDASetInitStep(ida_mem, integrator_get_stepzero(blsys)); |
354 |
IDASetMaxNumSteps(ida_mem, integrator_get_maxsubsteps(blsys)); |
355 |
if(integrator_get_minstep(blsys)>0){ |
356 |
ERROR_REPORTER_HERE(ASC_PROG_NOTE,"IDA does not support minstep (ignored)\n"); |
357 |
} |
358 |
/* there's no capability for setting *minimum* step size in IDA */ |
359 |
|
360 |
|
361 |
/* attach linear solver module, using the default value of maxl */ |
362 |
linsolver = SLV_PARAM_CHAR(&(blsys->params),IDA_PARAM_LINSOLVER); |
363 |
CONSOLE_DEBUG("ASSIGNING LINEAR SOLVER '%s'",linsolver); |
364 |
if(strcmp(linsolver,"SPGMR")==0){ |
365 |
CONSOLE_DEBUG("USING 'SCALED PRECONDITIONER GMRES' LINEAR SOLVER"); |
366 |
flag = IDASpgmr(ida_mem, 0); |
367 |
if(flag==IDASPILS_MEM_NULL){ |
368 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"ida_mem is NULL"); |
369 |
return 0; |
370 |
}else if(flag==IDASPILS_MEM_FAIL){ |
371 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"Unable to allocate memory (IDASpgmr)"); |
372 |
return 0; |
373 |
}/* else success */ |
374 |
|
375 |
/* assign the J*v function */ |
376 |
if(SLV_PARAM_BOOL(&(blsys->params),IDA_PARAM_AUTODIFF)){ |
377 |
CONSOLE_DEBUG("USING AUTODIFF"); |
378 |
flag = IDASpilsSetJacTimesVecFn(ida_mem, &integrator_ida_jvex, (void *)blsys); |
379 |
if(flag==IDASPILS_MEM_NULL){ |
380 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"ida_mem is NULL"); |
381 |
return 0; |
382 |
}else if(flag==IDASPILS_LMEM_NULL){ |
383 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"IDASPILS linear solver has not been initialized"); |
384 |
return 0; |
385 |
}/* else success */ |
386 |
}else{ |
387 |
CONSOLE_DEBUG("USING NUMERICAL DIFF"); |
388 |
} |
389 |
|
390 |
/* select Gram-Schmidt orthogonalisation */ |
391 |
if(SLV_PARAM_BOOL(&(blsys->params),IDA_PARAM_GSMODIFIED)){ |
392 |
CONSOLE_DEBUG("USING MODIFIED GS"); |
393 |
flag = IDASpilsSetGSType(ida_mem,MODIFIED_GS); |
394 |
if(flag!=IDASPILS_SUCCESS){ |
395 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"Failed to set GS_MODIFIED"); |
396 |
return 0; |
397 |
} |
398 |
}else{ |
399 |
CONSOLE_DEBUG("USING CLASSICAL GS"); |
400 |
flag = IDASpilsSetGSType(ida_mem,CLASSICAL_GS); |
401 |
if(flag!=IDASPILS_SUCCESS){ |
402 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"Failed to set GS_MODIFIED"); |
403 |
return 0; |
404 |
} |
405 |
} |
406 |
}else if(strcmp(linsolver,"DENSE")==0){ |
407 |
CONSOLE_DEBUG("DENSE DIRECT SOLVER, size = %d",size); |
408 |
flag = IDADense(ida_mem, size); |
409 |
switch(flag){ |
410 |
case IDADENSE_SUCCESS: break; |
411 |
case IDADENSE_MEM_NULL: ERROR_REPORTER_HERE(ASC_PROG_ERR,"ida_mem is NULL"); return 0; |
412 |
case IDADENSE_ILL_INPUT: ERROR_REPORTER_HERE(ASC_PROG_ERR,"IDADENSE is not compatible with current nvector module"); return 0; |
413 |
case IDADENSE_MEM_FAIL: ERROR_REPORTER_HERE(ASC_PROG_ERR,"Memory allocation failed for IDADENSE"); return 0; |
414 |
default: ERROR_REPORTER_HERE(ASC_PROG_ERR,"bad return"); return 0; |
415 |
} |
416 |
|
417 |
if(SLV_PARAM_BOOL(&(blsys->params),IDA_PARAM_AUTODIFF)){ |
418 |
CONSOLE_DEBUG("USING AUTODIFF"); |
419 |
flag = IDADenseSetJacFn(ida_mem, &integrator_ida_djex, (void *)blsys); |
420 |
switch(flag){ |
421 |
case IDADENSE_SUCCESS: break; |
422 |
default: ERROR_REPORTER_HERE(ASC_PROG_ERR,"Failed IDADenseSetJacFn"); return 0; |
423 |
} |
424 |
}else{ |
425 |
CONSOLE_DEBUG("USING NUMERICAL DIFF"); |
426 |
} |
427 |
}else{ |
428 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"Unknown IDA linear solver choice '%s'",linsolver); |
429 |
return 0; |
430 |
} |
431 |
|
432 |
/* set linear solver optional inputs... |
433 |
|
434 |
...nothing here at the moment... |
435 |
|
436 |
*/ |
437 |
|
438 |
#if 0 |
439 |
/* correct initial values, given derivatives */ |
440 |
blsys->currentstep=0; |
441 |
t_index=start_index; |
442 |
tout1 = samplelist_get(blsys->samples, t_index); |
443 |
|
444 |
CONSOLE_DEBUG("SOLVING INITIAL CONDITIONS IDACalcIC (tout1 = %f)", tout1); |
445 |
|
446 |
# if SUNDIALS_VERSION_MAJOR==2 && SUNDIALS_VERSION_MINOR==3 |
447 |
/* note the new API from version 2.3 and onwards */ |
448 |
flag = IDACalcIC(ida_mem, IDA_Y_INIT, tout1); |
449 |
# else |
450 |
flag = IDACalcIC(ida_mem, t0, y0, yp0, IDA_Y_INIT, tout1); |
451 |
# endif |
452 |
|
453 |
if(flag!=IDA_SUCCESS){ |
454 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"Unable to solve initial values (IDACalcIC)"); |
455 |
return 0; |
456 |
}/* else success */ |
457 |
|
458 |
CONSOLE_DEBUG("INITIAL CONDITIONS SOLVED :-)"); |
459 |
#endif |
460 |
|
461 |
/* optionally, specify ROO-FINDING PROBLEM */ |
462 |
|
463 |
/* -- set up the IntegratorReporter */ |
464 |
integrator_output_init(blsys); |
465 |
|
466 |
/* -- store the initial values of all the stuff */ |
467 |
integrator_output_write(blsys); |
468 |
integrator_output_write_obs(blsys); |
469 |
|
470 |
/* specify where the returned values should be stored */ |
471 |
yret = y0; |
472 |
ypret = yp0; |
473 |
|
474 |
/* advance solution in time, return values as yret and derivatives as ypret */ |
475 |
blsys->currentstep=1; |
476 |
for(t_index=start_index;t_index <= finish_index;++t_index, ++blsys->currentstep){ |
477 |
t = samplelist_get(blsys->samples, t_index); |
478 |
|
479 |
/* CONSOLE_DEBUG("SOLVING UP TO t = %f", t); */ |
480 |
|
481 |
flag = IDASolve(ida_mem, t, &tret, yret, ypret, IDA_NORMAL); |
482 |
|
483 |
/* pass the values of everything back to the compiler */ |
484 |
integrator_set_t(blsys, (double)tret); |
485 |
integrator_set_y(blsys, NV_DATA_S(yret)); |
486 |
integrator_set_ydot(blsys, NV_DATA_S(ypret)); |
487 |
|
488 |
if(flag<0){ |
489 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"Failed to solve t = %f (IDASolve), error %d", t, flag); |
490 |
break; |
491 |
} |
492 |
|
493 |
/* -- do something so that blsys knows the values of tret, yret and ypret */ |
494 |
|
495 |
/* -- store the current values of all the stuff */ |
496 |
integrator_output_write(blsys); |
497 |
integrator_output_write_obs(blsys); |
498 |
} |
499 |
|
500 |
/* -- close the IntegratorReporter */ |
501 |
integrator_output_close(blsys); |
502 |
|
503 |
if(flag < 0){ |
504 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"Solving aborted while attempting t = %f", t); |
505 |
return 0; |
506 |
} |
507 |
|
508 |
/* get optional outputs */ |
509 |
|
510 |
/* free solution memory */ |
511 |
N_VDestroy_Serial(yret); |
512 |
N_VDestroy_Serial(ypret); |
513 |
|
514 |
/* free solver memory */ |
515 |
IDAFree(ida_mem); |
516 |
|
517 |
/* all done */ |
518 |
return 1; |
519 |
} |
520 |
|
521 |
/*-------------------------------------------------- |
522 |
RESIDUALS AND JACOBIAN |
523 |
*/ |
524 |
/** |
525 |
Function to evaluate system residuals, in the form required for IDA. |
526 |
|
527 |
Given tt, yy and yp, we need to evaluate and return rr. |
528 |
|
529 |
@param tt current value of indep variable (time) |
530 |
@param yy current values of dependent variable vector |
531 |
@param yp current values of derivatives of dependent variables |
532 |
@param rr the output residual vector (is we're returning data to) |
533 |
@param res_data pointer to our stuff (blsys in this case). |
534 |
|
535 |
@return 0 on success, positive on recoverable error, and |
536 |
negative on unrecoverable error. |
537 |
*/ |
538 |
int integrator_ida_fex(realtype tt, N_Vector yy, N_Vector yp, N_Vector rr, void *res_data){ |
539 |
IntegratorSystem *blsys; |
540 |
IntegratorIdaData *enginedata; |
541 |
int i, calc_ok, is_error; |
542 |
struct rel_relation** relptr; |
543 |
double resid; |
544 |
char *relname; |
545 |
#ifdef FEX_DEBUG |
546 |
char *varname; |
547 |
#endif |
548 |
|
549 |
blsys = (IntegratorSystem *)res_data; |
550 |
enginedata = integrator_ida_enginedata(blsys); |
551 |
|
552 |
#ifdef FEX_DEBUG |
553 |
/* fprintf(stderr,"\n\n"); */ |
554 |
CONSOLE_DEBUG("EVALUTE RESIDUALS..."); |
555 |
#endif |
556 |
|
557 |
/* pass the values of everything back to the compiler */ |
558 |
integrator_set_t(blsys, (double)tt); |
559 |
integrator_set_y(blsys, NV_DATA_S(yy)); |
560 |
integrator_set_ydot(blsys, NV_DATA_S(yp)); |
561 |
|
562 |
if(NV_LENGTH_S(rr)!=enginedata->nrels){ |
563 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"Invalid residuals nrels!=length(rr)"); |
564 |
return -1; /* unrecoverable */ |
565 |
} |
566 |
|
567 |
/** |
568 |
@TODO does this function (fex) do bounds checking already? |
569 |
*/ |
570 |
|
571 |
/* evaluate each residual in the rellist */ |
572 |
is_error = 0; |
573 |
relptr = enginedata->rellist; |
574 |
|
575 |
Asc_SignalHandlerPush(SIGFPE,SIG_IGN); |
576 |
if (setjmp(g_fpe_env)==0) { |
577 |
for(i=0, relptr = enginedata->rellist; |
578 |
i< enginedata->nrels && relptr != NULL; |
579 |
++i, ++relptr |
580 |
){ |
581 |
resid = relman_eval(*relptr, &calc_ok, enginedata->safeeval); |
582 |
|
583 |
NV_Ith_S(rr,i) = resid; |
584 |
if(!calc_ok){ |
585 |
relname = rel_make_name(blsys->system, *relptr); |
586 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"Calculation error in rel '%s'",relname); |
587 |
ASC_FREE(relname); |
588 |
/* presumable some output already made? */ |
589 |
is_error = 1; |
590 |
} |
591 |
} |
592 |
}else{ |
593 |
relname = rel_make_name(blsys->system, *relptr); |
594 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"Floating point error (SIGFPE) in rel '%s'",relname); |
595 |
ASC_FREE(relname); |
596 |
is_error = 1; |
597 |
} |
598 |
Asc_SignalHandlerPop(SIGFPE,SIG_IGN); |
599 |
|
600 |
#ifdef FEX_DEBUG |
601 |
/* output residuals to console */ |
602 |
CONSOLE_DEBUG("RESIDUAL OUTPUT"); |
603 |
fprintf(stderr,"index\t%20s\t%20s\t%s\n","y","ydot","resid"); |
604 |
for(i=0; i<blsys->n_y; ++i){ |
605 |
varname = var_make_name(blsys->system,blsys->y[i]); |
606 |
fprintf(stderr,"%d\t%10s=%10f\t",i,varname,NV_Ith_S(yy,i)); |
607 |
if(blsys->ydot[i]){ |
608 |
varname = var_make_name(blsys->system,blsys->ydot[i]); |
609 |
fprintf(stderr,"%10s=%10f\t",varname,NV_Ith_S(yp,i)); |
610 |
}else{ |
611 |
fprintf(stderr,"diff(%4s)=%10f\t",varname,NV_Ith_S(yp,i)); |
612 |
} |
613 |
ASC_FREE(varname); |
614 |
relname = rel_make_name(blsys->system,enginedata->rellist[i]); |
615 |
fprintf(stderr,"'%s'=%f\n",relname,NV_Ith_S(rr,i)); |
616 |
} |
617 |
#endif |
618 |
|
619 |
if(is_error){ |
620 |
return 1; |
621 |
} |
622 |
|
623 |
#ifdef FEX_DEBUG |
624 |
CONSOLE_DEBUG("RESIDUAL OK"); |
625 |
#endif |
626 |
return 0; |
627 |
} |
628 |
|
629 |
/** |
630 |
Dense Jacobian evaluation. Only suitable for small problems! |
631 |
*/ |
632 |
int integrator_ida_djex(long int Neq, realtype tt |
633 |
, N_Vector yy, N_Vector yp, N_Vector rr |
634 |
, realtype c_j, void *jac_data, DenseMat Jac |
635 |
, N_Vector tmp1, N_Vector tmp2, N_Vector tmp3 |
636 |
){ |
637 |
IntegratorSystem *blsys; |
638 |
IntegratorIdaData *enginedata; |
639 |
char *relname; |
640 |
#ifdef JEX_DEBUG |
641 |
char *varname; |
642 |
#endif |
643 |
int status; |
644 |
struct rel_relation **relptr; |
645 |
int i; |
646 |
var_filter_t filter = {VAR_SVAR, VAR_SVAR}; |
647 |
double *derivatives; |
648 |
int *variables; |
649 |
int count, j, var_yindex; |
650 |
|
651 |
blsys = (IntegratorSystem *)jac_data; |
652 |
enginedata = integrator_ida_enginedata(blsys); |
653 |
|
654 |
/* allocate space for returns from relman_diff2: we *should* be able to use 'tmp1' and 'tmp2' here... */ |
655 |
variables = ASC_NEW_ARRAY(int, NV_LENGTH_S(yy) * 2); |
656 |
derivatives = ASC_NEW_ARRAY(double, NV_LENGTH_S(yy) * 2); |
657 |
|
658 |
/* pass the values of everything back to the compiler */ |
659 |
integrator_set_t(blsys, (double)tt); |
660 |
integrator_set_y(blsys, NV_DATA_S(yy)); |
661 |
integrator_set_ydot(blsys, NV_DATA_S(yp)); |
662 |
|
663 |
#ifdef JEX_DEBUG |
664 |
/* print vars */ |
665 |
for(i=0; i < blsys->n_y; ++i){ |
666 |
varname = var_make_name(blsys->system, blsys->y[i]); |
667 |
CONSOLE_DEBUG("%s = %f = %f",varname,NV_Ith_S(yy,i),var_value(blsys->y[i])); |
668 |
ASC_FREE(varname); |
669 |
} |
670 |
|
671 |
/* print derivatives */ |
672 |
for(i=0; i < blsys->n_y; ++i){ |
673 |
if(blsys->ydot[i]){ |
674 |
varname = var_make_name(blsys->system, blsys->ydot[i]); |
675 |
CONSOLE_DEBUG("%s = %f =%f",varname,NV_Ith_S(yp,i),var_value(blsys->ydot[i])); |
676 |
ASC_FREE(varname); |
677 |
}else{ |
678 |
varname = var_make_name(blsys->system, blsys->y[i]); |
679 |
CONSOLE_DEBUG("diff(%s) = %f",varname,NV_Ith_S(yp,i)); |
680 |
ASC_FREE(varname); |
681 |
} |
682 |
} |
683 |
|
684 |
/* print step size */ |
685 |
CONSOLE_DEBUG("<c_j> = %f",c_j); |
686 |
#endif |
687 |
|
688 |
/* build up the dense jacobian matrix... */ |
689 |
status = 0; |
690 |
for(i=0, relptr = enginedata->rellist; |
691 |
i< enginedata->nrels && relptr != NULL; |
692 |
++i, ++relptr |
693 |
){ |
694 |
/* get derivatives for this particular relation */ |
695 |
status = relman_diff2(*relptr, &filter, derivatives, variables, &count, enginedata->safeeval); |
696 |
|
697 |
if(status){ |
698 |
relname = rel_make_name(blsys->system, *relptr); |
699 |
CONSOLE_DEBUG("ERROR calculating derivatives for relation '%s'",relname); |
700 |
ASC_FREE(relname); |
701 |
break; |
702 |
} |
703 |
|
704 |
/* output what's going on here ... */ |
705 |
#ifdef JEX_DEBUG |
706 |
relname = rel_make_name(blsys->system, *relptr); |
707 |
CONSOLE_DEBUG("RELATION %d '%s'",i,relname); |
708 |
fprintf(stderr,"%d: '%s': ",i,relname); |
709 |
ASC_FREE(relname); |
710 |
for(j=0;j<count;++j){ |
711 |
varname = var_make_name(blsys->system, enginedata->varlist[variables[j]]); |
712 |
var_yindex = blsys->y_id[variables[j]]; |
713 |
if(var_yindex >=0){ |
714 |
fprintf(stderr," var[%d]='%s'=y[%d]",variables[j],varname,var_yindex); |
715 |
}else{ |
716 |
fprintf(stderr," var[%d]='%s'=ydot[%d]",variables[j],varname,-var_yindex-1); |
717 |
} |
718 |
ASC_FREE(varname); |
719 |
} |
720 |
fprintf(stderr,"\n"); |
721 |
#endif |
722 |
/* insert values into the Jacobian row in appropriate spots (can assume Jac starts with zeros -- IDA manual) */ |
723 |
for(j=0; j < count; ++j){ |
724 |
var_yindex = blsys->y_id[variables[j]]; |
725 |
if(var_yindex >= 0){ |
726 |
asc_assert(blsys->y[var_yindex]==enginedata->varlist[variables[j]]); |
727 |
DENSE_ELEM(Jac,i,var_yindex) += derivatives[j]; |
728 |
}else{ |
729 |
asc_assert(blsys->ydot[-var_yindex-1]==enginedata->varlist[variables[j]]); |
730 |
DENSE_ELEM(Jac,i,-var_yindex-1) += derivatives[j] * c_j; |
731 |
} |
732 |
} |
733 |
} |
734 |
|
735 |
#ifdef JEX_DEBUG |
736 |
CONSOLE_DEBUG("PRINTING JAC"); |
737 |
fprintf(stderr,"\t"); |
738 |
for(j=0; j < blsys->n_y; ++j){ |
739 |
if(j)fprintf(stderr,"\t"); |
740 |
varname = var_make_name(blsys->system,blsys->y[j]); |
741 |
fprintf(stderr,"%11s",varname); |
742 |
ASC_FREE(varname); |
743 |
} |
744 |
fprintf(stderr,"\n"); |
745 |
for(i=0; i < enginedata->nrels; ++i){ |
746 |
relname = rel_make_name(blsys->system, enginedata->rellist[i]); |
747 |
fprintf(stderr,"%s\t",relname); |
748 |
ASC_FREE(relname); |
749 |
|
750 |
for(j=0; j < blsys->n_y; ++j){ |
751 |
if(j)fprintf(stderr,"\t"); |
752 |
fprintf(stderr,"%11.2e",DENSE_ELEM(Jac,i,j)); |
753 |
} |
754 |
fprintf(stderr,"\n"); |
755 |
} |
756 |
#endif |
757 |
|
758 |
if(status){ |
759 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"There were derivative evaluation errors in the dense jacobian"); |
760 |
return 1; |
761 |
} |
762 |
|
763 |
#ifdef FEX_DEBUG |
764 |
CONSOLE_DEBUG("DJEX RETURNING 0"); |
765 |
#endif |
766 |
return 0; |
767 |
} |
768 |
|
769 |
/** |
770 |
Function to evaluate the product J*v, in the form required for IDA (see IDASpilsSetJacTimesVecFn) |
771 |
|
772 |
Given tt, yy, yp, rr and v, we need to evaluate and return Jv. |
773 |
|
774 |
@param tt current value of the independent variable (time, t) |
775 |
@param yy current value of the dependent variable vector, y(t). |
776 |
@param yp current value of y'(t). |
777 |
@param rr current value of the residual vector F(t, y, y'). |
778 |
@param v the vector by which the Jacobian must be multiplied to the right. |
779 |
@param Jv the output vector computed |
780 |
@param c_j the scalar in the system Jacobian, proportional to the inverse of the step size ($ \alpha$ in Eq. (3.5) ). |
781 |
@param jac_data pointer to our stuff (blsys in this case, passed into IDA via IDASp*SetJacTimesVecFn.) |
782 |
@param tmp1 @see tmp2 |
783 |
@param tmp2 (as well as tmp1) pointers to memory allocated for variables of type N_Vector for use here as temporary storage or work space. |
784 |
@return 0 on success |
785 |
*/ |
786 |
int integrator_ida_jvex(realtype tt, N_Vector yy, N_Vector yp, N_Vector rr |
787 |
, N_Vector v, N_Vector Jv, realtype c_j |
788 |
, void *jac_data, N_Vector tmp1, N_Vector tmp2 |
789 |
){ |
790 |
IntegratorSystem *blsys; |
791 |
IntegratorIdaData *enginedata; |
792 |
int i, j, is_error=0; |
793 |
struct rel_relation** relptr; |
794 |
char *relname, *varname; |
795 |
int status; |
796 |
double Jv_i; |
797 |
int var_yindex; |
798 |
|
799 |
int *variables; |
800 |
double *derivatives; |
801 |
var_filter_t filter; |
802 |
int count; |
803 |
|
804 |
#ifdef JEX_DEBUG |
805 |
CONSOLE_DEBUG("EVALUATING JACOBIAN..."); |
806 |
#endif |
807 |
|
808 |
blsys = (IntegratorSystem *)jac_data; |
809 |
enginedata = integrator_ida_enginedata(blsys); |
810 |
|
811 |
/* pass the values of everything back to the compiler */ |
812 |
integrator_set_t(blsys, (double)tt); |
813 |
integrator_set_y(blsys, NV_DATA_S(yy)); |
814 |
integrator_set_ydot(blsys, NV_DATA_S(yp)); |
815 |
/* no real use for residuals (rr) here, I don't think? */ |
816 |
|
817 |
/* allocate space for returns from relman_diff2: we *should* be able to use 'tmp1' and 'tmp2' here... */ |
818 |
variables = ASC_NEW_ARRAY(int, NV_LENGTH_S(yy) * 2); |
819 |
derivatives = ASC_NEW_ARRAY(double, NV_LENGTH_S(yy) * 2); |
820 |
|
821 |
/* evaluate the derivatives... */ |
822 |
/* J = dG_dy = dF_dy + alpha * dF_dyp */ |
823 |
|
824 |
filter.matchbits = VAR_SVAR; |
825 |
filter.matchvalue = VAR_SVAR; |
826 |
|
827 |
Asc_SignalHandlerPush(SIGFPE,SIG_IGN); |
828 |
if (setjmp(g_fpe_env)==0) { |
829 |
for(i=0, relptr = enginedata->rellist; |
830 |
i< enginedata->nrels && relptr != NULL; |
831 |
++i, ++relptr |
832 |
){ |
833 |
/* get derivatives for this particular relation */ |
834 |
status = relman_diff2(*relptr, &filter, derivatives, variables, &count, enginedata->safeeval); |
835 |
/* CONSOLE_DEBUG("Got derivatives against %d matching variables", count); */ |
836 |
|
837 |
if(status){ |
838 |
relname = rel_make_name(blsys->system, *relptr); |
839 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"Calculation error in rel '%s'",relname); |
840 |
ASC_FREE(relname); |
841 |
is_error = 1; |
842 |
break; |
843 |
} |
844 |
|
845 |
/* |
846 |
Now we have the derivatives wrt each alg/diff variable in the |
847 |
present equation. variables[] points into the varlist. need |
848 |
a mapping from the varlist to the y and ydot lists. |
849 |
*/ |
850 |
|
851 |
Jv_i = 0; |
852 |
for(j=0; j < count; ++j){ |
853 |
/* CONSOLE_DEBUG("j = %d, variables[j] = %d, n_y = %ld", j, variables[j], blsys->n_y); |
854 |
varname = var_make_name(blsys->system, enginedata->varlist[variables[j]]); |
855 |
if(varname){ |
856 |
CONSOLE_DEBUG("Variable %d '%s' derivative = %f", variables[j],varname,derivatives[j]); |
857 |
ASC_FREE(varname); |
858 |
}else{ |
859 |
CONSOLE_DEBUG("Variable %d (UNKNOWN!): derivative = %f",variables[j],derivatives[j]); |
860 |
} |
861 |
*/ |
862 |
|
863 |
var_yindex = blsys->y_id[variables[j]]; |
864 |
/* CONSOLE_DEBUG("j = %d: variables[j] = %d, y_id = %d",j,variables[j],var_yindex); */ |
865 |
|
866 |
if(var_yindex >= 0){ |
867 |
#ifdef JEX_DEBUG |
868 |
asc_assert(blsys->y[var_yindex]==enginedata->varlist[variables[j]]); |
869 |
fprintf(stderr,"Jv[%d] += %f (dF[%d]/dy[%d] = %f, v[%d] = %f)\n", i |
870 |
, derivatives[j] * NV_Ith_S(v,var_yindex) |
871 |
, i, var_yindex, derivatives[j] |
872 |
, var_yindex, NV_Ith_S(v,var_yindex) |
873 |
); |
874 |
#endif |
875 |
Jv_i += derivatives[j] * NV_Ith_S(v,var_yindex); |
876 |
}else{ |
877 |
#ifdef JEX_DEBUG |
878 |
fprintf(stderr,"Jv[%d] += %f (dF[%d]/dydot[%d] = %f, v[%d] = %f)\n", i |
879 |
, derivatives[j] * NV_Ith_S(v,-var_yindex-1) |
880 |
, i, -var_yindex-1, derivatives[j] |
881 |
, -var_yindex-1, NV_Ith_S(v,-var_yindex-1) |
882 |
); |
883 |
#endif |
884 |
asc_assert(blsys->ydot[-var_yindex-1]==enginedata->varlist[variables[j]]); |
885 |
Jv_i += derivatives[j] * NV_Ith_S(v,-var_yindex-1) * c_j; |
886 |
} |
887 |
} |
888 |
|
889 |
NV_Ith_S(Jv,i) = Jv_i; |
890 |
#ifdef JEX_DEBUG |
891 |
relname = rel_make_name(blsys->system, *relptr); |
892 |
CONSOLE_DEBUG("'%s': Jv[%d] = %f", relname, i, NV_Ith_S(Jv,i)); |
893 |
ASC_FREE(relname); |
894 |
return 1; |
895 |
#endif |
896 |
} |
897 |
}else{ |
898 |
relname = rel_make_name(blsys->system, *relptr); |
899 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"Floating point error (SIGFPE) in rel '%s'",relname); |
900 |
ASC_FREE(relname); |
901 |
is_error = 1; |
902 |
} |
903 |
Asc_SignalHandlerPop(SIGFPE,SIG_IGN); |
904 |
|
905 |
if(is_error){ |
906 |
CONSOLE_DEBUG("SOME ERRORS FOUND IN EVALUATION"); |
907 |
return 1; |
908 |
} |
909 |
return 0; |
910 |
} |
911 |
|
912 |
/*---------------------------------------------- |
913 |
ERROR REPORTING |
914 |
*/ |
915 |
/** |
916 |
Error message reporter function to be passed to IDA. All error messages |
917 |
will trigger a call to this function, so we should find everything |
918 |
appearing on the console (in the case of Tcl/Tk) or in the errors/warnings |
919 |
panel (in the case of PyGTK). |
920 |
*/ |
921 |
void integrator_ida_error(int error_code |
922 |
, const char *module, const char *function |
923 |
, char *msg, void *eh_data |
924 |
){ |
925 |
IntegratorSystem *blsys; |
926 |
error_severity_t sev; |
927 |
|
928 |
/* cast back the IntegratorSystem, just in case we need it */ |
929 |
blsys = (IntegratorSystem *)eh_data; |
930 |
|
931 |
/* severity depends on the sign of the error_code value */ |
932 |
if(error_code <= 0){ |
933 |
sev = ASC_PROG_ERR; |
934 |
}else{ |
935 |
sev = ASC_PROG_WARNING; |
936 |
} |
937 |
|
938 |
/* use our all-purpose error reporting to get stuff back to the GUI */ |
939 |
error_reporter(sev,module,0,function,"%s (error %d)",msg,error_code); |
940 |
} |