1 |
/* ASCEND modelling environment |
2 |
Copyright (C) 2006 Carnegie Mellon University |
3 |
|
4 |
This program is free software; you can redistribute it and/or modify |
5 |
it under the terms of the GNU General Public License as published by |
6 |
the Free Software Foundation; either version 2, or (at your option) |
7 |
any later version. |
8 |
|
9 |
This program is distributed in the hope that it will be useful, |
10 |
but WITHOUT ANY WARRANTY; without even the implied warranty of |
11 |
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
12 |
GNU General Public License for more details. |
13 |
|
14 |
You should have received a copy of the GNU General Public License |
15 |
along with this program; if not, write to the Free Software |
16 |
Foundation, Inc., 59 Temple Place - Suite 330, |
17 |
Boston, MA 02111-1307, USA. |
18 |
*//** |
19 |
@file |
20 |
Access to the IDA integrator for ASCEND. IDA is a DAE solver that comes |
21 |
as part of the GPL-licensed SUNDIALS solver package from LLNL. |
22 |
|
23 |
IDA provides dense, banded and sparse solvers. At present this module only |
24 |
implements access to the dense and sparse solvers, using the *serial* |
25 |
vector methods. |
26 |
|
27 |
@see http://www.llnl.gov/casc/sundials/ |
28 |
*//* |
29 |
by John Pye, May 2006 |
30 |
*/ |
31 |
|
32 |
/* standard includes */ |
33 |
#include <signal.h> |
34 |
|
35 |
/* ASCEND includes */ |
36 |
#include "ida.h" |
37 |
#include "idalinear.h" |
38 |
#include <utilities/error.h> |
39 |
#include <utilities/ascConfig.h> |
40 |
#include <utilities/ascSignal.h> |
41 |
#include <utilities/ascPanic.h> |
42 |
#include <compiler/instance_enum.h> |
43 |
#include "var.h" |
44 |
#include "rel.h" |
45 |
#include "discrete.h" |
46 |
#include "conditional.h" |
47 |
#include "logrel.h" |
48 |
#include "bnd.h" |
49 |
#include "linsol.h" |
50 |
#include "linsolqr.h" |
51 |
#include "slv_common.h" |
52 |
#include "slv_client.h" |
53 |
#include "relman.h" |
54 |
|
55 |
/* SUNDIALS includes */ |
56 |
#ifdef ASC_WITH_IDA |
57 |
# include <sundials/sundials_config.h> |
58 |
# include <sundials/sundials_dense.h> |
59 |
# include <ida/ida.h> |
60 |
# include <nvector/nvector_serial.h> |
61 |
# include <ida/ida_spgmr.h> |
62 |
# include <ida/ida_spbcgs.h> |
63 |
# include <ida/ida_sptfqmr.h> |
64 |
# include <ida/ida_dense.h> |
65 |
# ifndef IDA_SUCCESS |
66 |
# error "Failed to include SUNDIALS IDA header file" |
67 |
# endif |
68 |
#endif |
69 |
|
70 |
#ifdef ASC_WITH_MMIO |
71 |
# include <mmio.h> |
72 |
#endif |
73 |
|
74 |
/* |
75 |
for cases where we don't have SUNDIALS_VERSION_MINOR defined, guess version 2.2 |
76 |
*/ |
77 |
#ifndef SUNDIALS_VERSION_MINOR |
78 |
# ifdef __GNUC__ |
79 |
# warning "GUESSING SUNDIALS VERSION 2.2" |
80 |
# endif |
81 |
# define SUNDIALS_VERSION_MINOR 2 |
82 |
#endif |
83 |
#ifndef SUNDIALS_VERSION_MAJOR |
84 |
# define SUNDIALS_VERSION_MAJOR 2 |
85 |
#endif |
86 |
|
87 |
/* check that we've got what we expect now */ |
88 |
#ifndef ASC_IDA_H |
89 |
# error "Failed to include ASCEND IDA header file" |
90 |
#endif |
91 |
|
92 |
/* #define FEX_DEBUG */ |
93 |
#define JEX_DEBUG |
94 |
#define SOLVE_DEBUG |
95 |
#define STATS_DEBUG |
96 |
#define PREC_DEBUG |
97 |
|
98 |
/** |
99 |
Everthing that the outside world needs to know about IDA |
100 |
*/ |
101 |
const IntegratorInternals integrator_ida_internals = { |
102 |
integrator_ida_create |
103 |
,integrator_ida_params_default |
104 |
,integrator_analyse_dae /* note, this routine is back in integrator.c */ |
105 |
,integrator_ida_solve |
106 |
,integrator_ida_free |
107 |
,INTEG_IDA |
108 |
,"IDA" |
109 |
}; |
110 |
|
111 |
/*------------------------------------------------------------- |
112 |
FORWARD DECLS |
113 |
*/ |
114 |
|
115 |
/* forward dec needed for IntegratorIdaPrecFreeFn */ |
116 |
struct IntegratorIdaDataStruct; |
117 |
|
118 |
/* functions for allocating storage for and freeing preconditioner data */ |
119 |
typedef void IntegratorIdaPrecCreateFn(IntegratorSystem *blsys); |
120 |
typedef void IntegratorIdaPrecFreeFn(struct IntegratorIdaDataStruct *enginedata); |
121 |
|
122 |
/** |
123 |
Struct containing any stuff that IDA needs that doesn't fit into the |
124 |
common IntegratorSystem struct. |
125 |
*/ |
126 |
typedef struct IntegratorIdaDataStruct{ |
127 |
struct rel_relation **rellist; /**< NULL terminated list of rels */ |
128 |
struct var_variable **varlist; /**< NULL terminated list of vars. ONLY USED FOR DEBUGGING -- get rid of it! */ |
129 |
struct bnd_boundary **bndlist; /**< NULL-terminated list of boundaries, for use in the root-finding code */ |
130 |
int nrels; |
131 |
int safeeval; /**< whether to pass the 'safe' flag to relman_eval */ |
132 |
var_filter_t vfilter; /**< Used to filter variables from varlist in relman_diff2 etc */ |
133 |
rel_filter_t rfilter; /**< Used to filter relations from rellist (@TODO needs work) */ |
134 |
void *precdata; /**< For use by the preconditioner */ |
135 |
IntegratorIdaPrecFreeFn *pfree; /**< Store instructions here on how to free precdata */ |
136 |
} IntegratorIdaData; |
137 |
|
138 |
typedef struct{ |
139 |
N_Vector PIii; /**< diagonal elements of the inversed Jacobi preconditioner */ |
140 |
} IntegratorIdaPrecDataJacobi; |
141 |
|
142 |
/** |
143 |
Hold all the function pointers associated with a particular preconditioner |
144 |
We don't need to store the 'pfree' function here as it is allocated to the enginedata struct |
145 |
by the pcreate function (ensures that corresponding 'free' and 'create' are always used) |
146 |
|
147 |
@note IDA uses a different convention for function pointer types, so no '*'. |
148 |
*/ |
149 |
typedef struct{ |
150 |
IntegratorIdaPrecCreateFn *pcreate; |
151 |
IDASpilsPrecSetupFn psetup; |
152 |
IDASpilsPrecSolveFn psolve; |
153 |
} IntegratorIdaPrec; |
154 |
|
155 |
/* residual function forward declaration */ |
156 |
int integrator_ida_fex(realtype tt, N_Vector yy, N_Vector yp, N_Vector rr, void *res_data); |
157 |
|
158 |
int integrator_ida_jvex(realtype tt, N_Vector yy, N_Vector yp, N_Vector rr |
159 |
, N_Vector v, N_Vector Jv, realtype c_j |
160 |
, void *jac_data, N_Vector tmp1, N_Vector tmp2 |
161 |
); |
162 |
|
163 |
/* error handler forward declaration */ |
164 |
void integrator_ida_error(int error_code |
165 |
, const char *module, const char *function |
166 |
, char *msg, void *eh_data |
167 |
); |
168 |
|
169 |
/* dense jacobian evaluation for IDADense dense direct linear solver */ |
170 |
int integrator_ida_djex(long int Neq, realtype tt |
171 |
, N_Vector yy, N_Vector yp, N_Vector rr |
172 |
, realtype c_j, void *jac_data, DenseMat Jac |
173 |
, N_Vector tmp1, N_Vector tmp2, N_Vector tmp3 |
174 |
); |
175 |
|
176 |
/* sparse jacobian evaluation for ASCEND's sparse direct solver */ |
177 |
IntegratorSparseJacFn integrator_ida_sjex; |
178 |
|
179 |
typedef struct{ |
180 |
long nsteps; |
181 |
long nrevals; |
182 |
long nlinsetups; |
183 |
long netfails; |
184 |
int qlast, qcur; |
185 |
realtype hinused, hlast, hcur; |
186 |
realtype tcur; |
187 |
} IntegratorIdaStats; |
188 |
|
189 |
int integrator_ida_stats(void *ida_mem, IntegratorIdaStats *s); |
190 |
void integrator_ida_write_stats(IntegratorIdaStats *stats); |
191 |
void integrator_ida_write_incidence(IntegratorSystem *blsys); |
192 |
/*------ |
193 |
Jacobi preconditioner -- experimental |
194 |
*/ |
195 |
|
196 |
int integrator_ida_psetup_jacobi(realtype tt, |
197 |
N_Vector yy, N_Vector yp, N_Vector rr, |
198 |
realtype c_j, void *prec_data, |
199 |
N_Vector tmp1, N_Vector tmp2, |
200 |
N_Vector tmp3 |
201 |
); |
202 |
|
203 |
int integrator_ida_psolve_jacobi(realtype tt, |
204 |
N_Vector yy, N_Vector yp, N_Vector rr, |
205 |
N_Vector rvec, N_Vector zvec, |
206 |
realtype c_j, realtype delta, void *prec_data, |
207 |
N_Vector tmp |
208 |
); |
209 |
|
210 |
void integrator_ida_pcreate_jacobi(IntegratorSystem *blsys); |
211 |
|
212 |
void integrator_ida_pfree_jacobi(IntegratorIdaData *enginedata); |
213 |
|
214 |
static const IntegratorIdaPrec prec_jacobi = { |
215 |
integrator_ida_pcreate_jacobi |
216 |
, integrator_ida_psetup_jacobi |
217 |
, integrator_ida_psolve_jacobi |
218 |
}; |
219 |
|
220 |
/*------------------------------------------------------------- |
221 |
SETUP/TEARDOWN ROUTINES |
222 |
*/ |
223 |
void integrator_ida_create(IntegratorSystem *blsys){ |
224 |
CONSOLE_DEBUG("ALLOCATING IDA ENGINE DATA"); |
225 |
IntegratorIdaData *enginedata; |
226 |
enginedata = ASC_NEW(IntegratorIdaData); |
227 |
enginedata->rellist = NULL; |
228 |
enginedata->varlist = NULL; |
229 |
enginedata->safeeval = 0; |
230 |
enginedata->vfilter.matchbits = VAR_SVAR | VAR_ACTIVE | VAR_FIXED; |
231 |
enginedata->vfilter.matchvalue = VAR_SVAR | VAR_ACTIVE; |
232 |
enginedata->pfree = NULL; |
233 |
|
234 |
enginedata->rfilter.matchbits = REL_EQUALITY | REL_INCLUDED | REL_ACTIVE; |
235 |
enginedata->rfilter.matchvalue = REL_EQUALITY | REL_INCLUDED | REL_ACTIVE; |
236 |
|
237 |
blsys->enginedata = (void *)enginedata; |
238 |
|
239 |
integrator_ida_params_default(blsys); |
240 |
} |
241 |
|
242 |
void integrator_ida_free(void *enginedata){ |
243 |
CONSOLE_DEBUG("DELETING IDA ENGINE DATA"); |
244 |
IntegratorIdaData *d = (IntegratorIdaData *)enginedata; |
245 |
if(d->pfree){ |
246 |
/* free the preconditioner data, whatever it happens to be */ |
247 |
(d->pfree)(enginedata); |
248 |
} |
249 |
/* note, we don't own the rellist, so don't need to free it */ |
250 |
ASC_FREE(d); |
251 |
} |
252 |
|
253 |
IntegratorIdaData *integrator_ida_enginedata(IntegratorSystem *blsys){ |
254 |
IntegratorIdaData *d; |
255 |
assert(blsys!=NULL); |
256 |
assert(blsys->enginedata!=NULL); |
257 |
assert(blsys->engine==INTEG_IDA); |
258 |
d = ((IntegratorIdaData *)(blsys->enginedata)); |
259 |
return d; |
260 |
} |
261 |
|
262 |
/*------------------------------------------------------------- |
263 |
PARAMETERS FOR IDA |
264 |
*/ |
265 |
|
266 |
enum ida_parameters{ |
267 |
IDA_PARAM_LINSOLVER |
268 |
,IDA_PARAM_MAXL |
269 |
,IDA_PARAM_AUTODIFF |
270 |
,IDA_PARAM_CALCIC |
271 |
,IDA_PARAM_SAFEEVAL |
272 |
,IDA_PARAM_RTOL |
273 |
,IDA_PARAM_ATOL |
274 |
,IDA_PARAM_ATOLVECT |
275 |
,IDA_PARAM_GSMODIFIED |
276 |
,IDA_PARAM_MAXNCF |
277 |
,IDA_PARAM_PREC |
278 |
,IDA_PARAMS_SIZE |
279 |
}; |
280 |
|
281 |
/** |
282 |
Here the full set of parameters is defined, along with upper/lower bounds, |
283 |
etc. The values are stuck into the blsys->params structure. |
284 |
|
285 |
To add a new parameter, first give it a name IDA_PARAM_* in thge above enum ida_parameters |
286 |
list. Then add a slv_param_*(...) statement below to define the type, description and range |
287 |
for the new parameter. |
288 |
|
289 |
@return 0 on success |
290 |
*/ |
291 |
int integrator_ida_params_default(IntegratorSystem *blsys){ |
292 |
asc_assert(blsys!=NULL); |
293 |
asc_assert(blsys->engine==INTEG_IDA); |
294 |
slv_parameters_t *p; |
295 |
p = &(blsys->params); |
296 |
|
297 |
slv_destroy_parms(p); |
298 |
|
299 |
if(p->parms==NULL){ |
300 |
CONSOLE_DEBUG("params NULL"); |
301 |
p->parms = ASC_NEW_ARRAY(struct slv_parameter, IDA_PARAMS_SIZE); |
302 |
if(p->parms==NULL)return -1; |
303 |
p->dynamic_parms = 1; |
304 |
}else{ |
305 |
CONSOLE_DEBUG("params not NULL"); |
306 |
} |
307 |
|
308 |
/* reset the number of parameters to zero so that we can check it at the end */ |
309 |
p->num_parms = 0; |
310 |
|
311 |
slv_param_bool(p,IDA_PARAM_AUTODIFF |
312 |
,(SlvParameterInitBool){{"autodiff" |
313 |
,"Use auto-diff?",1 |
314 |
,"Use automatic differentiation of expressions (1) or use numerical derivatives (0)" |
315 |
}, TRUE} |
316 |
); |
317 |
|
318 |
slv_param_char(p,IDA_PARAM_CALCIC |
319 |
,(SlvParameterInitChar){{"calcic" |
320 |
,"Initial conditions calcuation",1 |
321 |
,"Use specified values of ydot to solve for inital y (Y)," |
322 |
" or use the the values of the differential variables (yd) to solve" |
323 |
" for the pure algebraic variables (ya) along with the derivatives" |
324 |
" of the differential variables (yddot) (YA_YDP), or else don't solve" |
325 |
" the intial conditions at all (NONE). See IDA manual p 41 (IDASetId)" |
326 |
}, "YA_YDP"}, (char *[]){"Y", "YA_YDP", "NONE"} |
327 |
); |
328 |
|
329 |
slv_param_bool(p,IDA_PARAM_SAFEEVAL |
330 |
,(SlvParameterInitBool){{"safeeval" |
331 |
,"Use safe evaluation?",1 |
332 |
,"Use 'safe' function evaluation routines (TRUE) or allow ASCEND to " |
333 |
"throw SIGFPE errors which will then halt integration." |
334 |
}, FALSE} |
335 |
); |
336 |
|
337 |
|
338 |
slv_param_bool(p,IDA_PARAM_ATOLVECT |
339 |
,(SlvParameterInitBool){{"atolvect" |
340 |
,"Use 'ode_atol' values as specified?",1 |
341 |
,"If TRUE, values of 'ode_atol' are taken from your model and used " |
342 |
" in the integration. If FALSE, a scalar absolute tolerance value" |
343 |
" is shared by all variables. See IDA manual, section 5.5.1" |
344 |
}, TRUE } |
345 |
); |
346 |
|
347 |
slv_param_real(p,IDA_PARAM_ATOL |
348 |
,(SlvParameterInitReal){{"atol" |
349 |
,"Scalar absolute error tolerance",1 |
350 |
,"Value of the scalar absolute error tolerance. See also 'atolvect'." |
351 |
" See IDA manual, sections 5.5.1 and 5.5.2 'Advice on choice and use of tolerances'" |
352 |
}, 1e-5, DBL_MIN, DBL_MAX } |
353 |
); |
354 |
|
355 |
slv_param_real(p,IDA_PARAM_RTOL |
356 |
,(SlvParameterInitReal){{"rtol" |
357 |
,"Scalar relative error tolerance",1 |
358 |
,"Value of the scalar relative error tolerance. (Note that for IDA," |
359 |
" it's not possible to set per-variable relative tolerances as it is" |
360 |
" with LSODE)." |
361 |
" See IDA manual, section 5.5.2 'Advice on choice and use of tolerances'" |
362 |
}, 1e-4, 0, DBL_MAX } |
363 |
); |
364 |
|
365 |
slv_param_char(p,IDA_PARAM_LINSOLVER |
366 |
,(SlvParameterInitChar){{"linsolver" |
367 |
,"Linear solver",1 |
368 |
,"See IDA manual, section 5.5.3. Choose 'ASCEND' to use the linsolqr" |
369 |
" direct linear solver bundled with ASCEND, 'DENSE' to use the dense" |
370 |
" solver bundled with IDA, or one of the Krylov solvers SPGMR, SPBCG" |
371 |
" or SPTFQMR (which still need preconditioners to be implemented" |
372 |
" before they can be very useful." |
373 |
}, "SPGMR"}, (char *[]){"ASCEND","DENSE","BAND","SPGMR","SPBCG","SPTFQMR",NULL} |
374 |
); |
375 |
|
376 |
slv_param_int(p,IDA_PARAM_MAXL |
377 |
,(SlvParameterInitInt){{"maxl" |
378 |
,"Maximum Krylov dimension",0 |
379 |
,"The maximum dimension of Krylov space used by the linear solver" |
380 |
" (for SPGMR, SPBCG, SPTFQMR) with IDA. See IDA manual section 5.5." |
381 |
" The default of 0 results in IDA using its internal default, which" |
382 |
" is currently a value of 5." |
383 |
}, 0, 0, 20 } |
384 |
); |
385 |
|
386 |
slv_param_bool(p,IDA_PARAM_GSMODIFIED |
387 |
,(SlvParameterInitBool){{"gsmodified" |
388 |
,"Gram-Schmidt Orthogonalisation Scheme", 2 |
389 |
,"TRUE = GS_MODIFIED, FALSE = GS_CLASSICAL. See IDA manual section" |
390 |
" 5.5.6.6. Only applies when linsolve=SPGMR is selected." |
391 |
}, TRUE} |
392 |
); |
393 |
|
394 |
slv_param_int(p,IDA_PARAM_MAXNCF |
395 |
,(SlvParameterInitInt){{"maxncf" |
396 |
,"Max nonlinear solver convergence failures per step", 2 |
397 |
,"Maximum number of allowable nonlinear solver convergence failures" |
398 |
" on one step. See IDA manual section 5.5.6.1." |
399 |
}, 10,0,1000 } |
400 |
); |
401 |
|
402 |
slv_param_char(p,IDA_PARAM_PREC |
403 |
,(SlvParameterInitChar){{"prec" |
404 |
,"Preconditioner",1 |
405 |
,"See IDA manual, section section 5.6.8." |
406 |
},"NONE"}, (char *[]){"NONE","DIAG",NULL} |
407 |
); |
408 |
|
409 |
asc_assert(p->num_parms == IDA_PARAMS_SIZE); |
410 |
|
411 |
CONSOLE_DEBUG("Created %d params", p->num_parms); |
412 |
|
413 |
return 0; |
414 |
} |
415 |
|
416 |
/*------------------------------------------------------------- |
417 |
MAIN IDA SOLVER ROUTINE, see IDA manual, sec 5.4, p. 27 ff. |
418 |
*/ |
419 |
|
420 |
static double div1(double a, double b){ |
421 |
return a/b; |
422 |
} |
423 |
|
424 |
typedef int IdaFlagFn(void *,int *); |
425 |
typedef char *IdaFlagNameFn(int); |
426 |
|
427 |
/* return 0 on success */ |
428 |
int integrator_ida_solve( |
429 |
IntegratorSystem *blsys |
430 |
, unsigned long start_index |
431 |
, unsigned long finish_index |
432 |
){ |
433 |
void *ida_mem; |
434 |
int size, flag, flag1, t_index; |
435 |
realtype t0, reltol, abstol, t, tret, tout1; |
436 |
N_Vector y0, yp0, abstolvect, ypret, yret, id; |
437 |
IntegratorIdaData *enginedata; |
438 |
char *linsolver; |
439 |
int maxl; |
440 |
IdaFlagFn *flagfn; |
441 |
IdaFlagNameFn *flagnamefn; |
442 |
const char *flagfntype; |
443 |
char *pname = NULL; |
444 |
char *varname; |
445 |
int i; |
446 |
const IntegratorIdaPrec *prec = NULL; |
447 |
int icopt; /* initial conditions strategy */ |
448 |
|
449 |
CONSOLE_DEBUG("STARTING IDA..."); |
450 |
|
451 |
enginedata = integrator_ida_enginedata(blsys); |
452 |
|
453 |
enginedata->safeeval = SLV_PARAM_BOOL(&(blsys->params),IDA_PARAM_SAFEEVAL); |
454 |
CONSOLE_DEBUG("safeeval = %d",enginedata->safeeval); |
455 |
|
456 |
/* store reference to list of relations (in enginedata) */ |
457 |
enginedata->nrels = slv_get_num_solvers_rels(blsys->system); |
458 |
enginedata->rellist = slv_get_solvers_rel_list(blsys->system); |
459 |
enginedata->varlist = slv_get_solvers_var_list(blsys->system); |
460 |
enginedata->bndlist = slv_get_solvers_bnd_list(blsys->system); |
461 |
|
462 |
CONSOLE_DEBUG("Number of relations: %d",enginedata->nrels); |
463 |
CONSOLE_DEBUG("Number of dependent vars: %ld",blsys->n_y); |
464 |
size = blsys->n_y; |
465 |
|
466 |
if(enginedata->nrels!=size){ |
467 |
ERROR_REPORTER_HERE(ASC_USER_ERROR,"Integration problem is not square (%d rels, %d vars)", enginedata->nrels, size); |
468 |
return 1; /* failure */ |
469 |
} |
470 |
|
471 |
/* retrieve initial values from the system */ |
472 |
|
473 |
/** @TODO fix this, the starting time != first sample */ |
474 |
t0 = integrator_get_t(blsys); |
475 |
CONSOLE_DEBUG("RETRIEVED t0 = %f",t0); |
476 |
|
477 |
CONSOLE_DEBUG("RETRIEVING y0"); |
478 |
|
479 |
y0 = N_VNew_Serial(size); |
480 |
integrator_get_y(blsys,NV_DATA_S(y0)); |
481 |
|
482 |
#ifdef SOLVE_DEBUG |
483 |
CONSOLE_DEBUG("RETRIEVING yp0"); |
484 |
#endif |
485 |
|
486 |
yp0 = N_VNew_Serial(size); |
487 |
integrator_get_ydot(blsys,NV_DATA_S(yp0)); |
488 |
|
489 |
#ifdef SOLVE_DEBUG |
490 |
N_VPrint_Serial(yp0); |
491 |
CONSOLE_DEBUG("yp0 is at %p",&yp0); |
492 |
#endif |
493 |
|
494 |
/* create IDA object */ |
495 |
ida_mem = IDACreate(); |
496 |
|
497 |
/* relative error tolerance */ |
498 |
reltol = SLV_PARAM_REAL(&(blsys->params),IDA_PARAM_RTOL); |
499 |
CONSOLE_DEBUG("rtol = %8.2e",reltol); |
500 |
|
501 |
/* allocate internal memory */ |
502 |
if(SLV_PARAM_BOOL(&(blsys->params),IDA_PARAM_ATOLVECT)){ |
503 |
/* vector of absolute tolerances */ |
504 |
CONSOLE_DEBUG("USING VECTOR OF ATOL VALUES"); |
505 |
abstolvect = N_VNew_Serial(size); |
506 |
integrator_get_atol(blsys,NV_DATA_S(abstolvect)); |
507 |
|
508 |
flag = IDAMalloc(ida_mem, &integrator_ida_fex, t0, y0, yp0, IDA_SV, reltol, abstolvect); |
509 |
|
510 |
N_VDestroy_Serial(abstolvect); |
511 |
}else{ |
512 |
/* scalar absolute tolerance (one value for all) */ |
513 |
abstol = SLV_PARAM_REAL(&(blsys->params),IDA_PARAM_ATOL); |
514 |
CONSOLE_DEBUG("USING SCALAR ATOL VALUE = %8.2e",abstol); |
515 |
flag = IDAMalloc(ida_mem, &integrator_ida_fex, t0, y0, yp0, IDA_SS, reltol, &abstol); |
516 |
} |
517 |
|
518 |
if(flag==IDA_MEM_NULL){ |
519 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"ida_mem is NULL"); |
520 |
return 2; |
521 |
}else if(flag==IDA_MEM_FAIL){ |
522 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"Unable to allocate memory (IDAMalloc)"); |
523 |
return 3; |
524 |
}else if(flag==IDA_ILL_INPUT){ |
525 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"Invalid input to IDAMalloc"); |
526 |
return 4; |
527 |
}/* else success */ |
528 |
|
529 |
/* set optional inputs... */ |
530 |
IDASetErrHandlerFn(ida_mem, &integrator_ida_error, (void *)blsys); |
531 |
IDASetRdata(ida_mem, (void *)blsys); |
532 |
IDASetMaxStep(ida_mem, integrator_get_maxstep(blsys)); |
533 |
IDASetInitStep(ida_mem, integrator_get_stepzero(blsys)); |
534 |
IDASetMaxNumSteps(ida_mem, integrator_get_maxsubsteps(blsys)); |
535 |
if(integrator_get_minstep(blsys)>0){ |
536 |
ERROR_REPORTER_HERE(ASC_PROG_NOTE,"IDA does not support minstep (ignored)\n"); |
537 |
} |
538 |
|
539 |
CONSOLE_DEBUG("MAXNCF = %d",SLV_PARAM_INT(&blsys->params,IDA_PARAM_MAXNCF)); |
540 |
IDASetMaxConvFails(ida_mem,SLV_PARAM_INT(&blsys->params,IDA_PARAM_MAXNCF)); |
541 |
|
542 |
/* there's no capability for setting *minimum* step size in IDA */ |
543 |
|
544 |
|
545 |
/* attach linear solver module, using the default value of maxl */ |
546 |
linsolver = SLV_PARAM_CHAR(&(blsys->params),IDA_PARAM_LINSOLVER); |
547 |
CONSOLE_DEBUG("ASSIGNING LINEAR SOLVER '%s'",linsolver); |
548 |
if(strcmp(linsolver,"ASCEND")==0){ |
549 |
CONSOLE_DEBUG("ASCEND DIRECT SOLVER, size = %d",size); |
550 |
IDAASCEND(ida_mem,size); |
551 |
IDAASCENDSetJacFn(ida_mem, &integrator_ida_sjex, (void *)blsys); |
552 |
|
553 |
flagfntype = "IDAASCEND"; |
554 |
flagfn = &IDAASCENDGetLastFlag; |
555 |
flagnamefn = &IDAASCENDGetReturnFlagName; |
556 |
|
557 |
}else if(strcmp(linsolver,"DENSE")==0){ |
558 |
CONSOLE_DEBUG("DENSE DIRECT SOLVER, size = %d",size); |
559 |
flag = IDADense(ida_mem, size); |
560 |
switch(flag){ |
561 |
case IDADENSE_SUCCESS: break; |
562 |
case IDADENSE_MEM_NULL: ERROR_REPORTER_HERE(ASC_PROG_ERR,"ida_mem is NULL"); return 5; |
563 |
case IDADENSE_ILL_INPUT: ERROR_REPORTER_HERE(ASC_PROG_ERR,"IDADENSE is not compatible with current nvector module"); return 5; |
564 |
case IDADENSE_MEM_FAIL: ERROR_REPORTER_HERE(ASC_PROG_ERR,"Memory allocation failed for IDADENSE"); return 5; |
565 |
default: ERROR_REPORTER_HERE(ASC_PROG_ERR,"bad return"); return 5; |
566 |
} |
567 |
|
568 |
if(SLV_PARAM_BOOL(&(blsys->params),IDA_PARAM_AUTODIFF)){ |
569 |
CONSOLE_DEBUG("USING AUTODIFF"); |
570 |
flag = IDADenseSetJacFn(ida_mem, &integrator_ida_djex, (void *)blsys); |
571 |
switch(flag){ |
572 |
case IDADENSE_SUCCESS: break; |
573 |
default: ERROR_REPORTER_HERE(ASC_PROG_ERR,"Failed IDADenseSetJacFn"); return 6; |
574 |
} |
575 |
}else{ |
576 |
CONSOLE_DEBUG("USING NUMERICAL DIFF"); |
577 |
} |
578 |
|
579 |
flagfntype = "IDADENSE"; |
580 |
flagfn = &IDADenseGetLastFlag; |
581 |
flagnamefn = &IDADenseGetReturnFlagName; |
582 |
}else{ |
583 |
/* remaining methods are all SPILS */ |
584 |
CONSOLE_DEBUG("IDA SPILS"); |
585 |
|
586 |
maxl = SLV_PARAM_INT(&(blsys->params),IDA_PARAM_MAXL); |
587 |
CONSOLE_DEBUG("maxl = %d",maxl); |
588 |
|
589 |
/* what preconditioner? */ |
590 |
pname = SLV_PARAM_CHAR(&(blsys->params),IDA_PARAM_PREC); |
591 |
if(strcmp(pname,"NONE")==0){ |
592 |
prec = NULL; |
593 |
}else if(strcmp(pname,"JACOBI")==0){ |
594 |
prec = &prec_jacobi; |
595 |
}else{ |
596 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"Invalid preconditioner choice '%s'",pname); |
597 |
return 7; |
598 |
} |
599 |
|
600 |
/* which SPILS linear solver? */ |
601 |
if(strcmp(linsolver,"SPGMR")==0){ |
602 |
CONSOLE_DEBUG("IDA SPGMR"); |
603 |
flag = IDASpgmr(ida_mem, maxl); /* 0 means use the default max Krylov dimension of 5 */ |
604 |
}else if(strcmp(linsolver,"SPBCG")==0){ |
605 |
CONSOLE_DEBUG("IDA SPBCG"); |
606 |
flag = IDASpbcg(ida_mem, maxl); |
607 |
}else if(strcmp(linsolver,"SPTFQMR")==0){ |
608 |
CONSOLE_DEBUG("IDA SPTFQMR"); |
609 |
flag = IDASptfqmr(ida_mem,maxl); |
610 |
}else{ |
611 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"Unknown IDA linear solver choice '%s'",linsolver); |
612 |
return 8; |
613 |
} |
614 |
|
615 |
if(prec){ |
616 |
/* assign the preconditioner to the linear solver */ |
617 |
(prec->pcreate)(blsys); |
618 |
IDASpilsSetPreconditioner(ida_mem,prec->psetup,prec->psolve,(void *)blsys); |
619 |
CONSOLE_DEBUG("PRECONDITIONER = %s",pname); |
620 |
}else{ |
621 |
CONSOLE_DEBUG("No preconditioner"); |
622 |
} |
623 |
|
624 |
flagfntype = "IDASPILS"; |
625 |
flagfn = &IDASpilsGetLastFlag; |
626 |
flagnamefn = &IDASpilsGetReturnFlagName; |
627 |
|
628 |
if(flag==IDASPILS_MEM_NULL){ |
629 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"ida_mem is NULL"); |
630 |
return 9; |
631 |
}else if(flag==IDASPILS_MEM_FAIL){ |
632 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"Unable to allocate memory (IDASpgmr)"); |
633 |
return 9; |
634 |
}/* else success */ |
635 |
|
636 |
/* assign the J*v function */ |
637 |
if(SLV_PARAM_BOOL(&(blsys->params),IDA_PARAM_AUTODIFF)){ |
638 |
CONSOLE_DEBUG("USING AUTODIFF"); |
639 |
flag = IDASpilsSetJacTimesVecFn(ida_mem, &integrator_ida_jvex, (void *)blsys); |
640 |
if(flag==IDASPILS_MEM_NULL){ |
641 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"ida_mem is NULL"); |
642 |
return 10; |
643 |
}else if(flag==IDASPILS_LMEM_NULL){ |
644 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"IDASPILS linear solver has not been initialized"); |
645 |
return 10; |
646 |
}/* else success */ |
647 |
}else{ |
648 |
CONSOLE_DEBUG("USING NUMERICAL DIFF"); |
649 |
} |
650 |
|
651 |
if(strcmp(linsolver,"SPGMR")==0){ |
652 |
/* select Gram-Schmidt orthogonalisation */ |
653 |
if(SLV_PARAM_BOOL(&(blsys->params),IDA_PARAM_GSMODIFIED)){ |
654 |
CONSOLE_DEBUG("USING MODIFIED GS"); |
655 |
flag = IDASpilsSetGSType(ida_mem,MODIFIED_GS); |
656 |
if(flag!=IDASPILS_SUCCESS){ |
657 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"Failed to set GS_MODIFIED"); |
658 |
return 11; |
659 |
} |
660 |
}else{ |
661 |
CONSOLE_DEBUG("USING CLASSICAL GS"); |
662 |
flag = IDASpilsSetGSType(ida_mem,CLASSICAL_GS); |
663 |
if(flag!=IDASPILS_SUCCESS){ |
664 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"Failed to set GS_MODIFIED"); |
665 |
return 11; |
666 |
} |
667 |
} |
668 |
} |
669 |
} |
670 |
|
671 |
/* set linear solver optional inputs... |
672 |
...nothing here at the moment... |
673 |
*/ |
674 |
|
675 |
/* calculate initial conditions */ |
676 |
icopt = 0; |
677 |
if(strcmp(SLV_PARAM_CHAR(&blsys->params,IDA_PARAM_CALCIC),"Y")==0){ |
678 |
CONSOLE_DEBUG("Solving initial conditions using values of yddot"); |
679 |
icopt = IDA_Y_INIT; |
680 |
asc_assert(icopt!=0); |
681 |
}else if(strcmp(SLV_PARAM_CHAR(&blsys->params,IDA_PARAM_CALCIC),"YA_YDP")==0){ |
682 |
CONSOLE_DEBUG("Solving initial conditions using values of yd"); |
683 |
icopt = IDA_YA_YDP_INIT; |
684 |
asc_assert(icopt!=0); |
685 |
id = N_VNew_Serial(blsys->n_y); |
686 |
for(i=0; i < blsys->n_y; ++i){ |
687 |
if(blsys->ydot[i] == NULL){ |
688 |
NV_Ith_S(id,i) = 0.0; |
689 |
varname = var_make_name(blsys->system,blsys->y[i]); |
690 |
CONSOLE_DEBUG("y[%d] = '%s' is pure algebraic",i,varname); |
691 |
ASC_FREE(varname); |
692 |
}else{ |
693 |
CONSOLE_DEBUG("y[%d] is differential",i); |
694 |
NV_Ith_S(id,i) = 1.0; |
695 |
} |
696 |
} |
697 |
IDASetId(ida_mem, id); |
698 |
N_VDestroy_Serial(id); |
699 |
}else{ |
700 |
ERROR_REPORTER_HERE(ASC_PROG_WARNING,"Not solving initial conditions: check current residuals"); |
701 |
} |
702 |
|
703 |
if(icopt){ |
704 |
blsys->currentstep=0; |
705 |
t_index=start_index + 1; |
706 |
tout1 = samplelist_get(blsys->samples, t_index); |
707 |
|
708 |
CONSOLE_DEBUG("SOLVING INITIAL CONDITIONS IDACalcIC (tout1 = %f)", tout1); |
709 |
|
710 |
/* catch SIGFPE if desired to */ |
711 |
if(enginedata->safeeval){ |
712 |
CONSOLE_DEBUG("SETTING TO IGNORE SIGFPE..."); |
713 |
Asc_SignalHandlerPush(SIGFPE,SIG_IGN); |
714 |
}else{ |
715 |
#ifdef FEX_DEBUG |
716 |
CONSOLE_DEBUG("SETTING TO CATCH SIGFPE..."); |
717 |
#endif |
718 |
Asc_SignalHandlerPushDefault(SIGFPE); |
719 |
} |
720 |
if (setjmp(g_fpe_env)==0) { |
721 |
|
722 |
//CONSOLE_DEBUG("Raising signal..."); |
723 |
//CONSOLE_DEBUG("1/0 = %f", div1(1.0,0.0)); |
724 |
//CONSOLE_DEBUG("Still here..."); |
725 |
|
726 |
/* correct initial values, given derivatives */ |
727 |
# if SUNDIALS_VERSION_MAJOR==2 && SUNDIALS_VERSION_MINOR==3 |
728 |
/* note the new API from version 2.3 and onwards */ |
729 |
flag = IDACalcIC(ida_mem, icopt, tout1); |
730 |
# else |
731 |
flag = IDACalcIC(ida_mem, t0, y0, yp0, icopt, tout1); |
732 |
# endif |
733 |
|
734 |
switch(flag){ |
735 |
case IDA_SUCCESS: |
736 |
CONSOLE_DEBUG("Initial conditions solved OK"); |
737 |
break; |
738 |
|
739 |
case IDA_LSETUP_FAIL: |
740 |
case IDA_LINIT_FAIL: |
741 |
case IDA_LSOLVE_FAIL: |
742 |
case IDA_NO_RECOVERY: |
743 |
flag1 = -999; |
744 |
flag = (flagfn)(ida_mem,&flag1); |
745 |
if(flag){ |
746 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"Unable to retrieve error code from %s (err %d)",flagfntype,flag); |
747 |
return 12; |
748 |
} |
749 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"%s returned flag '%s' (value = %d)",flagfntype,(flagnamefn)(flag1),flag1); |
750 |
return 12; |
751 |
|
752 |
default: |
753 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"Failed to solve initial condition (IDACalcIC)"); |
754 |
return 12; |
755 |
} |
756 |
}else{ |
757 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"Floating point error while solving initial conditions"); |
758 |
return 13; |
759 |
} |
760 |
|
761 |
if(enginedata->safeeval){ |
762 |
Asc_SignalHandlerPop(SIGFPE,SIG_IGN); |
763 |
}else{ |
764 |
CONSOLE_DEBUG("pop..."); |
765 |
Asc_SignalHandlerPopDefault(SIGFPE); |
766 |
CONSOLE_DEBUG("...pop"); |
767 |
} |
768 |
|
769 |
} |
770 |
|
771 |
/* optionally, specify ROO-FINDING PROBLEM */ |
772 |
|
773 |
/* -- set up the IntegratorReporter */ |
774 |
integrator_output_init(blsys); |
775 |
|
776 |
/* -- store the initial values of all the stuff */ |
777 |
integrator_output_write(blsys); |
778 |
integrator_output_write_obs(blsys); |
779 |
|
780 |
/* specify where the returned values should be stored */ |
781 |
yret = y0; |
782 |
ypret = yp0; |
783 |
|
784 |
/* advance solution in time, return values as yret and derivatives as ypret */ |
785 |
blsys->currentstep=1; |
786 |
for(t_index=start_index+1;t_index <= finish_index;++t_index, ++blsys->currentstep){ |
787 |
t = samplelist_get(blsys->samples, t_index); |
788 |
t0 = integrator_get_t(blsys); |
789 |
asc_assert(t > t0); |
790 |
|
791 |
#ifdef SOLVE_DEBUG |
792 |
CONSOLE_DEBUG("Integrating from t0 = %f to t = %f", t0, t); |
793 |
#endif |
794 |
|
795 |
flag = IDASolve(ida_mem, t, &tret, yret, ypret, IDA_NORMAL); |
796 |
|
797 |
/* pass the values of everything back to the compiler */ |
798 |
integrator_set_t(blsys, (double)tret); |
799 |
integrator_set_y(blsys, NV_DATA_S(yret)); |
800 |
integrator_set_ydot(blsys, NV_DATA_S(ypret)); |
801 |
|
802 |
if(flag<0){ |
803 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"Failed to solve t = %f (IDASolve), error %d", t, flag); |
804 |
break; |
805 |
} |
806 |
|
807 |
/* -- do something so that blsys knows the values of tret, yret and ypret */ |
808 |
|
809 |
/* -- store the current values of all the stuff */ |
810 |
integrator_output_write(blsys); |
811 |
integrator_output_write_obs(blsys); |
812 |
} |
813 |
|
814 |
/* -- close the IntegratorReporter */ |
815 |
integrator_output_close(blsys); |
816 |
|
817 |
/* get optional outputs */ |
818 |
#ifdef STATS_DEBUG |
819 |
IntegratorIdaStats stats; |
820 |
if(IDA_SUCCESS == integrator_ida_stats(ida_mem, &stats)){ |
821 |
integrator_ida_write_stats(&stats); |
822 |
} |
823 |
#endif |
824 |
|
825 |
/* free solution memory */ |
826 |
N_VDestroy_Serial(yret); |
827 |
N_VDestroy_Serial(ypret); |
828 |
|
829 |
/* free solver memory */ |
830 |
IDAFree(ida_mem); |
831 |
|
832 |
if(flag < 0){ |
833 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"Solving aborted while attempting t = %f", t); |
834 |
return 14; |
835 |
} |
836 |
|
837 |
/* all done, success */ |
838 |
return 0; |
839 |
} |
840 |
|
841 |
/*-------------------------------------------------- |
842 |
RESIDUALS AND JACOBIAN |
843 |
*/ |
844 |
/** |
845 |
Function to evaluate system residuals, in the form required for IDA. |
846 |
|
847 |
Given tt, yy and yp, we need to evaluate and return rr. |
848 |
|
849 |
@param tt current value of indep variable (time) |
850 |
@param yy current values of dependent variable vector |
851 |
@param yp current values of derivatives of dependent variables |
852 |
@param rr the output residual vector (is we're returning data to) |
853 |
@param res_data pointer to our stuff (blsys in this case). |
854 |
|
855 |
@return 0 on success, positive on recoverable error, and |
856 |
negative on unrecoverable error. |
857 |
*/ |
858 |
int integrator_ida_fex(realtype tt, N_Vector yy, N_Vector yp, N_Vector rr, void *res_data){ |
859 |
IntegratorSystem *blsys; |
860 |
IntegratorIdaData *enginedata; |
861 |
int i, calc_ok, is_error; |
862 |
struct rel_relation** relptr; |
863 |
double resid; |
864 |
char *relname; |
865 |
#ifdef FEX_DEBUG |
866 |
char *varname; |
867 |
char diffname[30]; |
868 |
#endif |
869 |
|
870 |
blsys = (IntegratorSystem *)res_data; |
871 |
enginedata = integrator_ida_enginedata(blsys); |
872 |
|
873 |
#ifdef FEX_DEBUG |
874 |
/* fprintf(stderr,"\n\n"); */ |
875 |
CONSOLE_DEBUG("EVALUTE RESIDUALS..."); |
876 |
#endif |
877 |
|
878 |
/* pass the values of everything back to the compiler */ |
879 |
integrator_set_t(blsys, (double)tt); |
880 |
integrator_set_y(blsys, NV_DATA_S(yy)); |
881 |
integrator_set_ydot(blsys, NV_DATA_S(yp)); |
882 |
|
883 |
if(NV_LENGTH_S(rr)!=enginedata->nrels){ |
884 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"Invalid residuals nrels!=length(rr)"); |
885 |
return -1; /* unrecoverable */ |
886 |
} |
887 |
|
888 |
/** |
889 |
@TODO does this function (fex) do bounds checking already? |
890 |
*/ |
891 |
|
892 |
/* evaluate each residual in the rellist */ |
893 |
is_error = 0; |
894 |
relptr = enginedata->rellist; |
895 |
|
896 |
if(enginedata->safeeval){ |
897 |
Asc_SignalHandlerPush(SIGFPE,SIG_IGN); |
898 |
}else{ |
899 |
#ifdef FEX_DEBUG |
900 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"SETTING TO CATCH SIGFPE..."); |
901 |
#endif |
902 |
Asc_SignalHandlerPushDefault(SIGFPE); |
903 |
} |
904 |
|
905 |
if (SETJMP(g_fpe_env)==0) { |
906 |
for(i=0, relptr = enginedata->rellist; |
907 |
i< enginedata->nrels && relptr != NULL; |
908 |
++i, ++relptr |
909 |
){ |
910 |
resid = relman_eval(*relptr, &calc_ok, enginedata->safeeval); |
911 |
|
912 |
NV_Ith_S(rr,i) = resid; |
913 |
if(!calc_ok){ |
914 |
relname = rel_make_name(blsys->system, *relptr); |
915 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"Calculation error in rel '%s'",relname); |
916 |
ASC_FREE(relname); |
917 |
/* presumable some output already made? */ |
918 |
is_error = 1; |
919 |
}/*else{ |
920 |
CONSOLE_DEBUG("Calc OK"); |
921 |
}*/ |
922 |
} |
923 |
}else{ |
924 |
relname = rel_make_name(blsys->system, *relptr); |
925 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"Floating point error (SIGFPE) in rel '%s'",relname); |
926 |
ASC_FREE(relname); |
927 |
is_error = 1; |
928 |
} |
929 |
|
930 |
if(enginedata->safeeval){ |
931 |
Asc_SignalHandlerPop(SIGFPE,SIG_IGN); |
932 |
}else{ |
933 |
Asc_SignalHandlerPopDefault(SIGFPE); |
934 |
} |
935 |
|
936 |
#ifdef FEX_DEBUG |
937 |
/* output residuals to console */ |
938 |
CONSOLE_DEBUG("RESIDUAL OUTPUT"); |
939 |
fprintf(stderr,"index\t%25s\t%25s\t%s\n","y","ydot","resid"); |
940 |
for(i=0; i<blsys->n_y; ++i){ |
941 |
varname = var_make_name(blsys->system,blsys->y[i]); |
942 |
fprintf(stderr,"%d\t%15s=%10f\t",i,varname,NV_Ith_S(yy,i)); |
943 |
if(blsys->ydot[i]){ |
944 |
varname = var_make_name(blsys->system,blsys->ydot[i]); |
945 |
fprintf(stderr,"%15s=%10f\t",varname,NV_Ith_S(yp,i)); |
946 |
}else{ |
947 |
snprintf(diffname,99,"diff(%s)",varname); |
948 |
fprintf(stderr,"%15s=%10f\t",diffname,NV_Ith_S(yp,i)); |
949 |
} |
950 |
ASC_FREE(varname); |
951 |
relname = rel_make_name(blsys->system,enginedata->rellist[i]); |
952 |
fprintf(stderr,"'%s'=%f (%p)\n",relname,NV_Ith_S(rr,i),enginedata->rellist[i]); |
953 |
} |
954 |
#endif |
955 |
|
956 |
if(is_error){ |
957 |
return 1; |
958 |
} |
959 |
|
960 |
#ifdef FEX_DEBUG |
961 |
CONSOLE_DEBUG("RESIDUAL OK"); |
962 |
#endif |
963 |
return 0; |
964 |
} |
965 |
|
966 |
/** |
967 |
Dense Jacobian evaluation. Only suitable for small problems! |
968 |
*/ |
969 |
int integrator_ida_djex(long int Neq, realtype tt |
970 |
, N_Vector yy, N_Vector yp, N_Vector rr |
971 |
, realtype c_j, void *jac_data, DenseMat Jac |
972 |
, N_Vector tmp1, N_Vector tmp2, N_Vector tmp3 |
973 |
){ |
974 |
IntegratorSystem *blsys; |
975 |
IntegratorIdaData *enginedata; |
976 |
char *relname; |
977 |
#ifdef DJEX_DEBUG |
978 |
char *varname; |
979 |
#endif |
980 |
int status; |
981 |
struct rel_relation **relptr; |
982 |
int i; |
983 |
double *derivatives; |
984 |
int *variables; |
985 |
int count, j; |
986 |
long var_yindex; |
987 |
|
988 |
blsys = (IntegratorSystem *)jac_data; |
989 |
enginedata = integrator_ida_enginedata(blsys); |
990 |
|
991 |
/* allocate space for returns from relman_diff2: we *should* be able to use 'tmp1' and 'tmp2' here... */ |
992 |
variables = ASC_NEW_ARRAY(int, NV_LENGTH_S(yy) * 2); |
993 |
derivatives = ASC_NEW_ARRAY(double, NV_LENGTH_S(yy) * 2); |
994 |
|
995 |
/* pass the values of everything back to the compiler */ |
996 |
integrator_set_t(blsys, (double)tt); |
997 |
integrator_set_y(blsys, NV_DATA_S(yy)); |
998 |
integrator_set_ydot(blsys, NV_DATA_S(yp)); |
999 |
|
1000 |
#ifdef DJEX_DEBUG |
1001 |
/* print vars */ |
1002 |
for(i=0; i < blsys->n_y; ++i){ |
1003 |
varname = var_make_name(blsys->system, blsys->y[i]); |
1004 |
CONSOLE_DEBUG("%s = %f = %f",varname,NV_Ith_S(yy,i),var_value(blsys->y[i])); |
1005 |
ASC_FREE(varname); |
1006 |
} |
1007 |
|
1008 |
/* print derivatives */ |
1009 |
for(i=0; i < blsys->n_y; ++i){ |
1010 |
if(blsys->ydot[i]){ |
1011 |
varname = var_make_name(blsys->system, blsys->ydot[i]); |
1012 |
CONSOLE_DEBUG("%s = %f =%f",varname,NV_Ith_S(yp,i),var_value(blsys->ydot[i])); |
1013 |
ASC_FREE(varname); |
1014 |
}else{ |
1015 |
varname = var_make_name(blsys->system, blsys->y[i]); |
1016 |
CONSOLE_DEBUG("diff(%s) = %f",varname,NV_Ith_S(yp,i)); |
1017 |
ASC_FREE(varname); |
1018 |
} |
1019 |
} |
1020 |
|
1021 |
/* print step size */ |
1022 |
CONSOLE_DEBUG("<c_j> = %f",c_j); |
1023 |
#endif |
1024 |
|
1025 |
/* build up the dense jacobian matrix... */ |
1026 |
status = 0; |
1027 |
for(i=0, relptr = enginedata->rellist; |
1028 |
i< enginedata->nrels && relptr != NULL; |
1029 |
++i, ++relptr |
1030 |
){ |
1031 |
/* get derivatives for this particular relation */ |
1032 |
status = relman_diff2(*relptr, &enginedata->vfilter, derivatives, variables, &count, enginedata->safeeval); |
1033 |
|
1034 |
if(status){ |
1035 |
relname = rel_make_name(blsys->system, *relptr); |
1036 |
CONSOLE_DEBUG("ERROR calculating derivatives for relation '%s'",relname); |
1037 |
ASC_FREE(relname); |
1038 |
break; |
1039 |
} |
1040 |
|
1041 |
/* output what's going on here ... */ |
1042 |
#ifdef DJEX_DEBUG |
1043 |
relname = rel_make_name(blsys->system, *relptr); |
1044 |
CONSOLE_DEBUG("RELATION %d '%s'",i,relname); |
1045 |
fprintf(stderr,"%d: '%s': ",i,relname); |
1046 |
ASC_FREE(relname); |
1047 |
for(j=0;j<count;++j){ |
1048 |
varname = var_make_name(blsys->system, enginedata->varlist[variables[j]]); |
1049 |
var_yindex = blsys->y_id[variables[j]]; |
1050 |
if(var_yindex >=0){ |
1051 |
fprintf(stderr," var[%d]='%s'=y[%ld]",variables[j],varname,var_yindex); |
1052 |
}else{ |
1053 |
fprintf(stderr," var[%d]='%s'=ydot[%ld]",variables[j],varname,-var_yindex-1); |
1054 |
} |
1055 |
ASC_FREE(varname); |
1056 |
} |
1057 |
fprintf(stderr,"\n"); |
1058 |
#endif |
1059 |
/* insert values into the Jacobian row in appropriate spots (can assume Jac starts with zeros -- IDA manual) */ |
1060 |
for(j=0; j < count; ++j){ |
1061 |
var_yindex = blsys->y_id[variables[j]]; |
1062 |
/* the SUNDIALS headers seem not to store 'N' on Windows */ |
1063 |
ASC_ASSERT_RANGE(var_yindex, -blsys->n_y, blsys->n_y); |
1064 |
|
1065 |
if(var_yindex >= 0){ |
1066 |
asc_assert(blsys->y[var_yindex]==enginedata->varlist[variables[j]]); |
1067 |
DENSE_ELEM(Jac,i,var_yindex) += derivatives[j]; |
1068 |
}else{ |
1069 |
asc_assert(blsys->ydot[-var_yindex-1]==enginedata->varlist[variables[j]]); |
1070 |
DENSE_ELEM(Jac,i,-var_yindex-1) += derivatives[j] * c_j; |
1071 |
} |
1072 |
} |
1073 |
} |
1074 |
|
1075 |
#ifdef DJEX_DEBUG |
1076 |
CONSOLE_DEBUG("PRINTING JAC"); |
1077 |
fprintf(stderr,"\t"); |
1078 |
for(j=0; j < blsys->n_y; ++j){ |
1079 |
if(j)fprintf(stderr,"\t"); |
1080 |
varname = var_make_name(blsys->system,blsys->y[j]); |
1081 |
fprintf(stderr,"%11s",varname); |
1082 |
ASC_FREE(varname); |
1083 |
} |
1084 |
fprintf(stderr,"\n"); |
1085 |
for(i=0; i < enginedata->nrels; ++i){ |
1086 |
relname = rel_make_name(blsys->system, enginedata->rellist[i]); |
1087 |
fprintf(stderr,"%s\t",relname); |
1088 |
ASC_FREE(relname); |
1089 |
|
1090 |
for(j=0; j < blsys->n_y; ++j){ |
1091 |
if(j)fprintf(stderr,"\t"); |
1092 |
fprintf(stderr,"%11.2e",DENSE_ELEM(Jac,i,j)); |
1093 |
} |
1094 |
fprintf(stderr,"\n"); |
1095 |
} |
1096 |
#endif |
1097 |
|
1098 |
if(status){ |
1099 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"There were derivative evaluation errors in the dense jacobian"); |
1100 |
return 1; |
1101 |
} |
1102 |
|
1103 |
#ifdef DJEX_DEBUG |
1104 |
CONSOLE_DEBUG("DJEX RETURNING 0"); |
1105 |
#endif |
1106 |
return 0; |
1107 |
} |
1108 |
|
1109 |
/** |
1110 |
Function to evaluate the product J*v, in the form required for IDA (see IDASpilsSetJacTimesVecFn) |
1111 |
|
1112 |
Given tt, yy, yp, rr and v, we need to evaluate and return Jv. |
1113 |
|
1114 |
@param tt current value of the independent variable (time, t) |
1115 |
@param yy current value of the dependent variable vector, y(t). |
1116 |
@param yp current value of y'(t). |
1117 |
@param rr current value of the residual vector F(t, y, y'). |
1118 |
@param v the vector by which the Jacobian must be multiplied to the right. |
1119 |
@param Jv the output vector computed |
1120 |
@param c_j the scalar in the system Jacobian, proportional to the inverse of the step size ($ \alpha$ in Eq. (3.5) ). |
1121 |
@param jac_data pointer to our stuff (blsys in this case, passed into IDA via IDASp*SetJacTimesVecFn.) |
1122 |
@param tmp1 @see tmp2 |
1123 |
@param tmp2 (as well as tmp1) pointers to memory allocated for variables of type N_Vector for use here as temporary storage or work space. |
1124 |
@return 0 on success |
1125 |
*/ |
1126 |
int integrator_ida_jvex(realtype tt, N_Vector yy, N_Vector yp, N_Vector rr |
1127 |
, N_Vector v, N_Vector Jv, realtype c_j |
1128 |
, void *jac_data, N_Vector tmp1, N_Vector tmp2 |
1129 |
){ |
1130 |
IntegratorSystem *blsys; |
1131 |
IntegratorIdaData *enginedata; |
1132 |
int i, j, is_error=0; |
1133 |
struct rel_relation** relptr; |
1134 |
char *relname; |
1135 |
int status; |
1136 |
double Jv_i; |
1137 |
long var_yindex; |
1138 |
|
1139 |
int *variables; |
1140 |
double *derivatives; |
1141 |
int count; |
1142 |
#ifdef JEX_DEBUG |
1143 |
CONSOLE_DEBUG("EVALUATING JACOBIAN..."); |
1144 |
#endif |
1145 |
|
1146 |
blsys = (IntegratorSystem *)jac_data; |
1147 |
enginedata = integrator_ida_enginedata(blsys); |
1148 |
|
1149 |
/* pass the values of everything back to the compiler */ |
1150 |
integrator_set_t(blsys, (double)tt); |
1151 |
integrator_set_y(blsys, NV_DATA_S(yy)); |
1152 |
integrator_set_ydot(blsys, NV_DATA_S(yp)); |
1153 |
/* no real use for residuals (rr) here, I don't think? */ |
1154 |
|
1155 |
/* allocate space for returns from relman_diff2: we *should* be able to use 'tmp1' and 'tmp2' here... */ |
1156 |
|
1157 |
i = NV_LENGTH_S(yy) * 2; |
1158 |
#ifdef JEX_DEBUG |
1159 |
CONSOLE_DEBUG("Allocating 'variables' with length %d",i); |
1160 |
#endif |
1161 |
variables = ASC_NEW_ARRAY(int, i); |
1162 |
derivatives = ASC_NEW_ARRAY(double, i); |
1163 |
|
1164 |
/* evaluate the derivatives... */ |
1165 |
/* J = dG_dy = dF_dy + alpha * dF_dyp */ |
1166 |
|
1167 |
Asc_SignalHandlerPushDefault(SIGFPE); |
1168 |
if (SETJMP(g_fpe_env)==0) { |
1169 |
for(i=0, relptr = enginedata->rellist; |
1170 |
i< enginedata->nrels && relptr != NULL; |
1171 |
++i, ++relptr |
1172 |
){ |
1173 |
/* get derivatives for this particular relation */ |
1174 |
status = relman_diff2(*relptr, &enginedata->vfilter, derivatives, variables, &count, enginedata->safeeval); |
1175 |
#ifdef JEX_DEBUG |
1176 |
CONSOLE_DEBUG("Got derivatives against %d matching variables, status = %d", count,status); |
1177 |
#endif |
1178 |
|
1179 |
if(status){ |
1180 |
relname = rel_make_name(blsys->system, *relptr); |
1181 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"Calculation error in rel '%s'",relname); |
1182 |
ASC_FREE(relname); |
1183 |
is_error = 1; |
1184 |
break; |
1185 |
} |
1186 |
|
1187 |
/* |
1188 |
Now we have the derivatives wrt each alg/diff variable in the |
1189 |
present equation. variables[] points into the varlist. need |
1190 |
a mapping from the varlist to the y and ydot lists. |
1191 |
*/ |
1192 |
|
1193 |
Jv_i = 0; |
1194 |
for(j=0; j < count; ++j){ |
1195 |
/* CONSOLE_DEBUG("j = %d, variables[j] = %d, n_y = %ld", j, variables[j], blsys->n_y); |
1196 |
varname = var_make_name(blsys->system, enginedata->varlist[variables[j]]); |
1197 |
if(varname){ |
1198 |
CONSOLE_DEBUG("Variable %d '%s' derivative = %f", variables[j],varname,derivatives[j]); |
1199 |
ASC_FREE(varname); |
1200 |
}else{ |
1201 |
CONSOLE_DEBUG("Variable %d (UNKNOWN!): derivative = %f",variables[j],derivatives[j]); |
1202 |
} |
1203 |
*/ |
1204 |
|
1205 |
/* we don't calculate derivatives wrt indep var */ |
1206 |
asc_assert(variables[j]>=0); |
1207 |
if(enginedata->varlist[variables[j]] == blsys->x) continue; |
1208 |
|
1209 |
var_yindex = blsys->y_id[variables[j]]; |
1210 |
#ifdef JEX_DEBUG |
1211 |
CONSOLE_DEBUG("j = %d: variables[j] = %d, y_id = %ld",j,variables[j],var_yindex); |
1212 |
#endif |
1213 |
|
1214 |
ASC_ASSERT_RANGE(-var_yindex-1, -NV_LENGTH_S(v),NV_LENGTH_S(v)); |
1215 |
|
1216 |
if(var_yindex >= 0){ |
1217 |
#ifdef JEX_DEBUG |
1218 |
asc_assert(blsys->y[var_yindex]==enginedata->varlist[variables[j]]); |
1219 |
fprintf(stderr,"Jv[%d] += %f (dF[%d]/dy[%ld] = %f, v[%ld] = %f)\n", i |
1220 |
, derivatives[j] * NV_Ith_S(v,var_yindex) |
1221 |
, i, var_yindex, derivatives[j] |
1222 |
, var_yindex, NV_Ith_S(v,var_yindex) |
1223 |
); |
1224 |
#endif |
1225 |
Jv_i += derivatives[j] * NV_Ith_S(v,var_yindex); |
1226 |
}else{ |
1227 |
#ifdef JEX_DEBUG |
1228 |
fprintf(stderr,"Jv[%d] += %f (dF[%d]/dydot[%ld] = %f, v[%ld] = %f)\n", i |
1229 |
, derivatives[j] * NV_Ith_S(v,-var_yindex-1) |
1230 |
, i, -var_yindex-1, derivatives[j] |
1231 |
, -var_yindex-1, NV_Ith_S(v,-var_yindex-1) |
1232 |
); |
1233 |
#endif |
1234 |
asc_assert(blsys->ydot[-var_yindex-1]==enginedata->varlist[variables[j]]); |
1235 |
Jv_i += derivatives[j] * NV_Ith_S(v,-var_yindex-1) * c_j; |
1236 |
} |
1237 |
} |
1238 |
|
1239 |
NV_Ith_S(Jv,i) = Jv_i; |
1240 |
#ifdef JEX_DEBUG |
1241 |
CONSOLE_DEBUG("rel = %p",*relptr); |
1242 |
relname = rel_make_name(blsys->system, *relptr); |
1243 |
CONSOLE_DEBUG("'%s': Jv[%d] = %f", relname, i, NV_Ith_S(Jv,i)); |
1244 |
//ASC_FREE(relname); |
1245 |
return 1; |
1246 |
#endif |
1247 |
} |
1248 |
}else{ |
1249 |
relname = rel_make_name(blsys->system, *relptr); |
1250 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"Floating point error (SIGFPE) in rel '%s'",relname); |
1251 |
ASC_FREE(relname); |
1252 |
is_error = 1; |
1253 |
} |
1254 |
Asc_SignalHandlerPopDefault(SIGFPE); |
1255 |
|
1256 |
if(is_error){ |
1257 |
CONSOLE_DEBUG("SOME ERRORS FOUND IN EVALUATION"); |
1258 |
return 1; |
1259 |
} |
1260 |
return 0; |
1261 |
} |
1262 |
|
1263 |
/* sparse jacobian evaluation for IDAASCEND sparse direct linear solver */ |
1264 |
int integrator_ida_sjex(long int Neq, realtype tt |
1265 |
, N_Vector yy, N_Vector yp, N_Vector rr |
1266 |
, realtype c_j, void *jac_data, mtx_matrix_t Jac |
1267 |
, N_Vector tmp1, N_Vector tmp2, N_Vector tmp3 |
1268 |
){ |
1269 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"Not implemented"); |
1270 |
return -1; |
1271 |
} |
1272 |
|
1273 |
/*---------------------------------------------- |
1274 |
JACOBI PRECONDITIONER -- EXPERIMENTAL. |
1275 |
*/ |
1276 |
|
1277 |
void integrator_ida_pcreate_jacobi(IntegratorSystem *blsys){ |
1278 |
IntegratorIdaData * enginedata =blsys->enginedata; |
1279 |
IntegratorIdaPrecDataJacobi *precdata; |
1280 |
precdata = ASC_NEW(IntegratorIdaPrecDataJacobi); |
1281 |
|
1282 |
asc_assert(blsys->n_y); |
1283 |
precdata->PIii = N_VNew_Serial(blsys->n_y); |
1284 |
|
1285 |
enginedata->pfree = &integrator_ida_pfree_jacobi; |
1286 |
enginedata->precdata = precdata; |
1287 |
CONSOLE_DEBUG("Allocated memory for Jacobi preconditioner"); |
1288 |
} |
1289 |
|
1290 |
void integrator_ida_pfree_jacobi(IntegratorIdaData *enginedata){ |
1291 |
if(enginedata->precdata){ |
1292 |
IntegratorIdaPrecDataJacobi *precdata = (IntegratorIdaPrecDataJacobi *)enginedata->precdata; |
1293 |
N_VDestroy_Serial(precdata->PIii); |
1294 |
|
1295 |
ASC_FREE(precdata); |
1296 |
enginedata->precdata = NULL; |
1297 |
CONSOLE_DEBUG("Freed memory for Jacobi preconditioner"); |
1298 |
} |
1299 |
enginedata->pfree = NULL; |
1300 |
} |
1301 |
|
1302 |
/** |
1303 |
EXPERIMENTAL. Jacobi preconditioner for use with IDA Krylov solvers |
1304 |
|
1305 |
'setup' function. |
1306 |
*/ |
1307 |
int integrator_ida_psetup_jacobi(realtype tt, |
1308 |
N_Vector yy, N_Vector yp, N_Vector rr, |
1309 |
realtype c_j, void *p_data, |
1310 |
N_Vector tmp1, N_Vector tmp2, |
1311 |
N_Vector tmp3 |
1312 |
){ |
1313 |
int i, j; |
1314 |
IntegratorSystem *blsys; |
1315 |
IntegratorIdaData *enginedata; |
1316 |
IntegratorIdaPrecDataJacobi *precdata; |
1317 |
struct rel_relation **relptr; |
1318 |
|
1319 |
blsys = (IntegratorSystem *)p_data; |
1320 |
enginedata = blsys->enginedata; |
1321 |
precdata = (IntegratorIdaPrecDataJacobi *)(enginedata->precdata); |
1322 |
double *derivatives; |
1323 |
int *variables; |
1324 |
int count, status; |
1325 |
char *relname; |
1326 |
int var_yindex; |
1327 |
|
1328 |
CONSOLE_DEBUG("Setting up Jacobi preconditioner"); |
1329 |
|
1330 |
variables = ASC_NEW_ARRAY(int, NV_LENGTH_S(yy) * 2); |
1331 |
derivatives = ASC_NEW_ARRAY(double, NV_LENGTH_S(yy) * 2); |
1332 |
|
1333 |
/** |
1334 |
@TODO FIXME here we are using the very inefficient and contorted approach |
1335 |
of calculating the whole jacobian, then extracting just the diagonal elements. |
1336 |
*/ |
1337 |
|
1338 |
for(i=0, relptr = enginedata->rellist; |
1339 |
i< enginedata->nrels && relptr != NULL; |
1340 |
++i, ++relptr |
1341 |
){ |
1342 |
|
1343 |
/* get derivatives for this particular relation */ |
1344 |
status = relman_diff2(*relptr, &enginedata->vfilter, derivatives, variables, &count, enginedata->safeeval); |
1345 |
if(status){ |
1346 |
relname = rel_make_name(blsys->system, *relptr); |
1347 |
CONSOLE_DEBUG("ERROR calculating preconditioner derivatives for relation '%s'",relname); |
1348 |
ASC_FREE(relname); |
1349 |
break; |
1350 |
} |
1351 |
/* CONSOLE_DEBUG("Got %d derivatives from relation %d",count,i); */ |
1352 |
/* find the diagonal elements */ |
1353 |
for(j=0; j<count; ++j){ |
1354 |
if(variables[j]==i){ |
1355 |
var_yindex = blsys->y_id[variables[j]]; |
1356 |
if(var_yindex >= 0){ |
1357 |
NV_Ith_S(precdata->PIii, i) = 1./derivatives[j]; |
1358 |
}else{ |
1359 |
NV_Ith_S(precdata->PIii, i) = 1./(c_j * derivatives[j]); |
1360 |
} |
1361 |
} |
1362 |
} |
1363 |
#ifdef PREC_DEBUG |
1364 |
CONSOLE_DEBUG("PI[%d] = %f",i,NV_Ith_S(precdata->PIii,i)); |
1365 |
#endif |
1366 |
} |
1367 |
|
1368 |
if(status){ |
1369 |
CONSOLE_DEBUG("Error found when evaluating derivatives"); |
1370 |
return 1; /* recoverable */ |
1371 |
} |
1372 |
|
1373 |
integrator_ida_write_incidence(blsys); |
1374 |
|
1375 |
ASC_FREE(variables); |
1376 |
ASC_FREE(derivatives); |
1377 |
|
1378 |
return 0; |
1379 |
}; |
1380 |
|
1381 |
/** |
1382 |
EXPERIMENTAL. Jacobi preconditioner for use with IDA Krylov solvers |
1383 |
|
1384 |
'solve' function. |
1385 |
*/ |
1386 |
int integrator_ida_psolve_jacobi(realtype tt, |
1387 |
N_Vector yy, N_Vector yp, N_Vector rr, |
1388 |
N_Vector rvec, N_Vector zvec, |
1389 |
realtype c_j, realtype delta, void *p_data, |
1390 |
N_Vector tmp |
1391 |
){ |
1392 |
IntegratorSystem *blsys; |
1393 |
IntegratorIdaData *data; |
1394 |
IntegratorIdaPrecDataJacobi *precdata; |
1395 |
blsys = (IntegratorSystem *)p_data; |
1396 |
data = blsys->enginedata; |
1397 |
precdata = (IntegratorIdaPrecDataJacobi *)(data->precdata); |
1398 |
|
1399 |
CONSOLE_DEBUG("Solving Jacobi preconditioner (c_j = %f)",c_j); |
1400 |
N_VProd(precdata->PIii, rvec, zvec); |
1401 |
return 0; |
1402 |
}; |
1403 |
|
1404 |
/*---------------------------------------------- |
1405 |
STATS |
1406 |
*/ |
1407 |
|
1408 |
/** |
1409 |
A simple wrapper to the IDAGetIntegratorStats function. Returns all the |
1410 |
status in a struct instead of separately. |
1411 |
|
1412 |
@return IDA_SUCCESS on sucess. |
1413 |
*/ |
1414 |
int integrator_ida_stats(void *ida_mem, IntegratorIdaStats *s){ |
1415 |
return IDAGetIntegratorStats(ida_mem, &s->nsteps, &s->nrevals, &s->nlinsetups |
1416 |
,&s->netfails, &s->qlast, &s->qcur, &s->hinused |
1417 |
,&s->hlast, &s->hcur, &s->tcur |
1418 |
); |
1419 |
} |
1420 |
|
1421 |
/** |
1422 |
This routine just outputs the stats to the CONSOLE_DEBUG routine. |
1423 |
|
1424 |
@TODO provide a GUI way of stats reporting from IDA. |
1425 |
*/ |
1426 |
void integrator_ida_write_stats(IntegratorIdaStats *stats){ |
1427 |
# define SL(N) CONSOLE_DEBUG("%s = %ld",#N,stats->N) |
1428 |
# define SI(N) CONSOLE_DEBUG("%s = %d",#N,stats->N) |
1429 |
# define SR(N) CONSOLE_DEBUG("%s = %f",#N,stats->N) |
1430 |
SL(nsteps); SL(nrevals); SL(nlinsetups); SL(netfails); |
1431 |
SI(qlast); SI(qcur); |
1432 |
SR(hinused); SR(hlast); SR(hcur); SR(tcur); |
1433 |
# undef SL |
1434 |
# undef SI |
1435 |
# undef SR |
1436 |
} |
1437 |
|
1438 |
/*------------------------------------------------------------------------------ |
1439 |
JACOBIAN / INCIDENCE MATRIX OUTPUT |
1440 |
*/ |
1441 |
|
1442 |
enum integrator_ida_write_jac_enum{ |
1443 |
II_WRITE_Y |
1444 |
, II_WRITE_YDOT |
1445 |
}; |
1446 |
|
1447 |
/** |
1448 |
@TODO COMPLETE THIS... |
1449 |
*/ |
1450 |
void integrator_ida_write_jacobian(IntegratorSystem *blsys, realtype c_j, FILE *f, enum integrator_ida_write_jac_enum type){ |
1451 |
IntegratorIdaData *enginedata; |
1452 |
MM_typecode matcode; |
1453 |
int nnz, rhomax; |
1454 |
double *derivatives; |
1455 |
int *variables; |
1456 |
struct rel_relation **relptr; |
1457 |
int i, j, status, count, var_yindex; |
1458 |
char *relname; |
1459 |
|
1460 |
var_filter_t vfiltery = { |
1461 |
VAR_SVAR | VAR_FIXED | VAR_DERIV |
1462 |
, VAR_SVAR |
1463 |
}; |
1464 |
var_filter_t vfilteryd = { |
1465 |
VAR_SVAR | VAR_FIXED | VAR_DERIV |
1466 |
, VAR_SVAR | VAR_DERIV |
1467 |
}; |
1468 |
|
1469 |
enginedata = (IntegratorIdaData *)blsys->enginedata; |
1470 |
|
1471 |
/* number of non-zeros for all the non-FIXED solver_vars, |
1472 |
in all the active included equality relations. |
1473 |
*/ |
1474 |
nnz = relman_jacobian_count(enginedata->rellist, enginedata->nrels |
1475 |
, &enginedata->vfilter, &enginedata->rfilter |
1476 |
, &rhomax |
1477 |
); |
1478 |
|
1479 |
/* we must have found the same number of relations */ |
1480 |
asc_assert(rhomax == enginedata->nrels); |
1481 |
|
1482 |
/* output the mmio file header, now that we know our size*/ |
1483 |
/* note that we are asserting that our problem is square */ |
1484 |
mm_initialize_typecode(&matcode); |
1485 |
mm_set_matrix(&matcode); |
1486 |
mm_set_coordinate(&matcode); |
1487 |
mm_set_real(&matcode); |
1488 |
mm_write_banner(f, matcode); |
1489 |
mm_write_mtx_crd_size(f, enginedata->nrels, enginedata->nrels, nnz); |
1490 |
|
1491 |
variables = ASC_NEW_ARRAY(int, blsys->n_y * 2); |
1492 |
derivatives = ASC_NEW_ARRAY(double, blsys->n_y * 2); |
1493 |
|
1494 |
CONSOLE_DEBUG("Writing sparse Jacobian to file..."); |
1495 |
|
1496 |
for(i=0, relptr = enginedata->rellist; |
1497 |
i< enginedata->nrels && relptr != NULL; |
1498 |
++i, ++relptr |
1499 |
){ |
1500 |
relname = rel_make_name(blsys->system, *relptr); |
1501 |
|
1502 |
/* get derivatives of y */ |
1503 |
status = relman_diff2(*relptr, &vfiltery, derivatives, variables, &count, enginedata->safeeval); |
1504 |
if(status){ |
1505 |
CONSOLE_DEBUG("ERROR calculating derivatives for relation '%s'",relname); |
1506 |
ASC_FREE(relname); |
1507 |
break; |
1508 |
} |
1509 |
|
1510 |
/* get derivatives of y */ |
1511 |
status = relman_diff2(*relptr, &vfilteryd, derivatives, variables, &count, enginedata->safeeval); |
1512 |
if(status){ |
1513 |
CONSOLE_DEBUG("ERROR calculating derivatives for relation '%s'",relname); |
1514 |
ASC_FREE(relname); |
1515 |
break; |
1516 |
} |
1517 |
|
1518 |
for(j=0; j<count; ++j){ |
1519 |
var_yindex = blsys->y_id[variables[j]]; |
1520 |
if(var_yindex >= 0 && type == II_WRITE_Y){ |
1521 |
fprintf(f, "%d %d %10.3g\n", i, var_yindex, derivatives[j]); |
1522 |
}else if(var_yindex < 0 && type == II_WRITE_YDOT){ |
1523 |
fprintf(f, "%d %d %10.3g\n", i, -var_yindex-1, derivatives[j]); |
1524 |
} |
1525 |
} |
1526 |
} |
1527 |
ASC_FREE(variables); |
1528 |
ASC_FREE(derivatives); |
1529 |
} |
1530 |
|
1531 |
/** |
1532 |
This routine outputs matrix structure in a crude text format, for the sake |
1533 |
of debugging. |
1534 |
*/ |
1535 |
void integrator_ida_write_incidence(IntegratorSystem *blsys){ |
1536 |
int i, j; |
1537 |
struct rel_relation **relptr; |
1538 |
IntegratorIdaData *enginedata = blsys->enginedata; |
1539 |
double *derivatives; |
1540 |
int *variables; |
1541 |
int count, status; |
1542 |
char *relname; |
1543 |
int var_yindex; |
1544 |
|
1545 |
if(enginedata->nrels > 100){ |
1546 |
CONSOLE_DEBUG("Ignoring call (matrix size too big = %d)",enginedata->nrels); |
1547 |
return; |
1548 |
} |
1549 |
|
1550 |
variables = ASC_NEW_ARRAY(int, blsys->n_y * 2); |
1551 |
derivatives = ASC_NEW_ARRAY(double, blsys->n_y * 2); |
1552 |
|
1553 |
CONSOLE_DEBUG("Outputting incidence information to console..."); |
1554 |
|
1555 |
for(i=0, relptr = enginedata->rellist; |
1556 |
i< enginedata->nrels && relptr != NULL; |
1557 |
++i, ++relptr |
1558 |
){ |
1559 |
relname = rel_make_name(blsys->system, *relptr); |
1560 |
|
1561 |
/* get derivatives for this particular relation */ |
1562 |
status = relman_diff2(*relptr, &enginedata->vfilter, derivatives, variables, &count, enginedata->safeeval); |
1563 |
if(status){ |
1564 |
CONSOLE_DEBUG("ERROR calculating derivatives for relation '%s'",relname); |
1565 |
ASC_FREE(relname); |
1566 |
break; |
1567 |
} |
1568 |
|
1569 |
fprintf(stderr,"%3d:%-15s:",i,relname); |
1570 |
ASC_FREE(relname); |
1571 |
|
1572 |
for(j=0; j<count; ++j){ |
1573 |
var_yindex = blsys->y_id[variables[j]]; |
1574 |
if(var_yindex >= 0){ |
1575 |
fprintf(stderr," %d:y[%d]",variables[j],var_yindex); |
1576 |
}else{ |
1577 |
fprintf(stderr," %d:ydot[%d]",variables[j],-var_yindex-1); |
1578 |
} |
1579 |
} |
1580 |
fprintf(stderr,"\n"); |
1581 |
} |
1582 |
ASC_FREE(variables); |
1583 |
ASC_FREE(derivatives); |
1584 |
} |
1585 |
|
1586 |
/*---------------------------------------------- |
1587 |
ERROR REPORTING |
1588 |
*/ |
1589 |
/** |
1590 |
Error message reporter function to be passed to IDA. All error messages |
1591 |
will trigger a call to this function, so we should find everything |
1592 |
appearing on the console (in the case of Tcl/Tk) or in the errors/warnings |
1593 |
panel (in the case of PyGTK). |
1594 |
*/ |
1595 |
void integrator_ida_error(int error_code |
1596 |
, const char *module, const char *function |
1597 |
, char *msg, void *eh_data |
1598 |
){ |
1599 |
IntegratorSystem *blsys; |
1600 |
error_severity_t sev; |
1601 |
|
1602 |
/* cast back the IntegratorSystem, just in case we need it */ |
1603 |
blsys = (IntegratorSystem *)eh_data; |
1604 |
|
1605 |
/* severity depends on the sign of the error_code value */ |
1606 |
if(error_code <= 0){ |
1607 |
sev = ASC_PROG_ERR; |
1608 |
}else{ |
1609 |
sev = ASC_PROG_WARNING; |
1610 |
} |
1611 |
|
1612 |
/* use our all-purpose error reporting to get stuff back to the GUI */ |
1613 |
error_reporter(sev,module,0,function,"%s (error %d)",msg,error_code); |
1614 |
} |