1 |
/* ASCEND modelling environment |
2 |
Copyright (C) 2006 Carnegie Mellon University |
3 |
|
4 |
This program is free software; you can redistribute it and/or modify |
5 |
it under the terms of the GNU General Public License as published by |
6 |
the Free Software Foundation; either version 2, or (at your option) |
7 |
any later version. |
8 |
|
9 |
This program is distributed in the hope that it will be useful, |
10 |
but WITHOUT ANY WARRANTY; without even the implied warranty of |
11 |
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
12 |
GNU General Public License for more details. |
13 |
|
14 |
You should have received a copy of the GNU General Public License |
15 |
along with this program; if not, write to the Free Software |
16 |
Foundation, Inc., 59 Temple Place - Suite 330, |
17 |
Boston, MA 02111-1307, USA. |
18 |
*//** |
19 |
@file |
20 |
Access to the IDA integrator for ASCEND. IDA is a DAE solver that comes |
21 |
as part of the GPL-licensed SUNDIALS solver package from LLNL. |
22 |
@see http://www.llnl.gov/casc/sundials/ |
23 |
*//* |
24 |
by John Pye, May 2006 |
25 |
*/ |
26 |
|
27 |
/* |
28 |
Be careful with the following. This file requires both the 'ida.h' from |
29 |
SUNDIALS as well as the 'ida.h' from ASCEND. Make sure that we're getting |
30 |
both of these; if you get problems check your build tool for the paths being |
31 |
passed to the C preprocessor. |
32 |
*/ |
33 |
|
34 |
/* standard includes */ |
35 |
#include <signal.h> |
36 |
|
37 |
/* ASCEND includes */ |
38 |
#include "ida.h" |
39 |
#include <utilities/error.h> |
40 |
#include <utilities/ascConfig.h> |
41 |
#include <utilities/ascSignal.h> |
42 |
#include <compiler/instance_enum.h> |
43 |
#include "var.h" |
44 |
#include "rel.h" |
45 |
#include "discrete.h" |
46 |
#include "conditional.h" |
47 |
#include "logrel.h" |
48 |
#include "bnd.h" |
49 |
#include "linsol.h" |
50 |
#include "linsolqr.h" |
51 |
#include "slv_common.h" |
52 |
#include "slv_client.h" |
53 |
#include "relman.h" |
54 |
|
55 |
/* SUNDIALS includes */ |
56 |
#ifdef ASC_WITH_IDA |
57 |
# include <sundials/sundials_config.h> |
58 |
# include <ida/ida.h> |
59 |
# include <nvector/nvector_serial.h> |
60 |
# include <ida/ida_spgmr.h> |
61 |
# ifndef IDA_SUCCESS |
62 |
# error "Failed to include SUNDIALS IDA header file" |
63 |
# endif |
64 |
#endif |
65 |
|
66 |
/* |
67 |
for the benefit of build tools that didn't sniff the SUNDIALS version, we |
68 |
assume version 2.2.x (and thence possible errors). |
69 |
*/ |
70 |
#ifndef SUNDIALS_VERSION_MINOR |
71 |
# ifdef __GNUC__ |
72 |
# warning "GUESSING SUNDIALS VERSION 2.2" |
73 |
# endif |
74 |
# define SUNDIALS_VERSION_MINOR 2 |
75 |
#endif |
76 |
#ifndef SUNDIALS_VERSION_MAJOR |
77 |
# define SUNDIALS_VERSION_MAJOR 2 |
78 |
#endif |
79 |
|
80 |
/* check that we've got what we expect now */ |
81 |
#ifndef ASC_IDA_H |
82 |
# error "Failed to include ASCEND IDA header file" |
83 |
#endif |
84 |
|
85 |
/** |
86 |
Struct containing any stuff that IDA needs that doesn't fit into the |
87 |
common IntegratorSystem struct. |
88 |
*/ |
89 |
typedef struct{ |
90 |
struct rel_relation **rellist; /**< NULL terminated list of rels */ |
91 |
struct var_variable **varlist; /**< NULL terminated list of vars. ONLY USED FOR DEBUGGING -- get rid of it! */ |
92 |
int nrels; |
93 |
int safeeval; /**< whether to pass the 'safe' flag to relman_eval */ |
94 |
} IntegratorIdaData; |
95 |
|
96 |
/*------------------------------------------------------------- |
97 |
FORWARD DECLS |
98 |
*/ |
99 |
/* residual function forward declaration */ |
100 |
int integrator_ida_fex(realtype tt, N_Vector yy, N_Vector yp, N_Vector rr, void *res_data); |
101 |
|
102 |
int integrator_ida_jvex(realtype tt, N_Vector yy, N_Vector yp, N_Vector rr |
103 |
, N_Vector v, N_Vector Jv, realtype c_j |
104 |
, void *jac_data, N_Vector tmp1, N_Vector tmp2 |
105 |
); |
106 |
|
107 |
/* error handler forward declaration */ |
108 |
void integrator_ida_error(int error_code |
109 |
, const char *module, const char *function |
110 |
, char *msg, void *eh_data |
111 |
); |
112 |
|
113 |
/*------------------------------------------------------------- |
114 |
SETUP/TEARDOWN ROUTINES |
115 |
*/ |
116 |
void integrator_ida_create(IntegratorSystem *blsys){ |
117 |
CONSOLE_DEBUG("ALLOCATING IDA ENGINE DATA"); |
118 |
IntegratorIdaData *enginedata; |
119 |
enginedata = ASC_NEW(IntegratorIdaData); |
120 |
enginedata->rellist = NULL; |
121 |
enginedata->varlist = NULL; |
122 |
enginedata->safeeval = 1; |
123 |
blsys->enginedata = (void *)enginedata; |
124 |
} |
125 |
|
126 |
void integrator_ida_free(void *enginedata){ |
127 |
CONSOLE_DEBUG("DELETING IDA ENGINE DATA"); |
128 |
IntegratorIdaData *d = (IntegratorIdaData *)enginedata; |
129 |
/* note, we don't own the rellist, so don't need to free it */ |
130 |
ASC_FREE(d); |
131 |
} |
132 |
|
133 |
IntegratorIdaData *integrator_ida_enginedata(IntegratorSystem *blsys){ |
134 |
IntegratorIdaData *d; |
135 |
assert(blsys!=NULL); |
136 |
assert(blsys->enginedata!=NULL); |
137 |
assert(blsys->engine==INTEG_IDA); |
138 |
d = ((IntegratorIdaData *)(blsys->enginedata)); |
139 |
assert(d->safeeval = 1); |
140 |
return d; |
141 |
} |
142 |
|
143 |
/*------------------------------------------------------------- |
144 |
MAIN IDA SOLVER ROUTINE, see IDA manual, sec 5.4, p. 27 ff. |
145 |
*/ |
146 |
|
147 |
/* return 1 on success */ |
148 |
int integrator_ida_solve( |
149 |
IntegratorSystem *blsys |
150 |
, unsigned long start_index |
151 |
, unsigned long finish_index |
152 |
){ |
153 |
void *ida_mem; |
154 |
int size, flag, t_index; |
155 |
realtype t0, reltol, t, tret, tout1; |
156 |
N_Vector y0, yp0, abstol, ypret, yret; |
157 |
IntegratorIdaData *enginedata; |
158 |
|
159 |
CONSOLE_DEBUG("STARTING IDA..."); |
160 |
|
161 |
enginedata = integrator_ida_enginedata(blsys); |
162 |
CONSOLE_DEBUG("safeeval = %d",enginedata->safeeval); |
163 |
|
164 |
/* store reference to list of relations (in enginedata) */ |
165 |
enginedata->nrels = slv_get_num_solvers_rels(blsys->system); |
166 |
enginedata->rellist = slv_get_solvers_rel_list(blsys->system); |
167 |
enginedata->varlist = slv_get_solvers_var_list(blsys->system); |
168 |
CONSOLE_DEBUG("Number of relations: %d",enginedata->nrels); |
169 |
CONSOLE_DEBUG("Number of dependent vars: %ld",blsys->n_y); |
170 |
size = blsys->n_y; |
171 |
|
172 |
if(enginedata->nrels!=size){ |
173 |
ERROR_REPORTER_HERE(ASC_USER_ERROR,"Integration problem is not square (%d rels, %d vars)", enginedata->nrels, size); |
174 |
return 0; /* failure */ |
175 |
} |
176 |
|
177 |
CONSOLE_DEBUG("RETRIEVING t0"); |
178 |
|
179 |
/* retrieve initial values from the system */ |
180 |
t0 = samplelist_get(blsys->samples,start_index); |
181 |
|
182 |
CONSOLE_DEBUG("RETRIEVING y0"); |
183 |
|
184 |
y0 = N_VNew_Serial(size); |
185 |
integrator_get_y(blsys,NV_DATA_S(y0)); |
186 |
|
187 |
CONSOLE_DEBUG("RETRIEVING yp0"); |
188 |
|
189 |
yp0 = N_VNew_Serial(size); |
190 |
integrator_get_ydot(blsys,NV_DATA_S(yp0)); |
191 |
|
192 |
N_VPrint_Serial(yp0); |
193 |
CONSOLE_DEBUG("yp0 is at %p",&yp0); |
194 |
|
195 |
/* create IDA object */ |
196 |
ida_mem = IDACreate(); |
197 |
|
198 |
/* retrieve the absolute tolerance values for each variable */ |
199 |
abstol = N_VNew_Serial(size); |
200 |
N_VConst(0.1,abstol); /** @TODO fill in the abstol values from the model */ |
201 |
reltol = 0.001; |
202 |
|
203 |
/* allocate internal memory */ |
204 |
flag = IDAMalloc(ida_mem, &integrator_ida_fex, t0, y0, yp0, IDA_SV, reltol, abstol); |
205 |
if(flag==IDA_MEM_NULL){ |
206 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"ida_mem is NULL"); |
207 |
return 0; |
208 |
}else if(flag==IDA_MEM_FAIL){ |
209 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"Unable to allocate memory (IDAMalloc)"); |
210 |
return 0; |
211 |
}else if(flag==IDA_ILL_INPUT){ |
212 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"Invalid input to IDAMalloc"); |
213 |
return 0; |
214 |
}/* else success */ |
215 |
|
216 |
/* set optional inputs... */ |
217 |
IDASetErrHandlerFn(ida_mem, &integrator_ida_error, (void *)blsys); |
218 |
IDASetRdata(ida_mem, (void *)blsys); |
219 |
IDASetMaxStep(ida_mem, integrator_get_maxstep(blsys)); |
220 |
IDASetInitStep(ida_mem, integrator_get_stepzero(blsys)); |
221 |
IDASetMaxNumSteps(ida_mem, integrator_get_maxsubsteps(blsys)); |
222 |
/* there's no capability for setting *minimum* step size in IDA */ |
223 |
|
224 |
CONSOLE_DEBUG("ASSIGNING LINEAR SOLVER"); |
225 |
|
226 |
/* attach linear solver module, using the default value of maxl */ |
227 |
flag = IDASpgmr(ida_mem, 0); |
228 |
if(flag==IDASPILS_MEM_NULL){ |
229 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"ida_mem is NULL"); |
230 |
return 0; |
231 |
}else if(flag==IDASPILS_MEM_FAIL){ |
232 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"Unable to allocate memory (IDASpgmr)"); |
233 |
return 0; |
234 |
}/* else success */ |
235 |
|
236 |
/* assign the J*v function */ |
237 |
#if 0 |
238 |
flag = IDASpilsSetJacTimesVecFn(ida_mem, &integrator_ida_jvex, (void *)blsys); |
239 |
if(flag==IDASPILS_MEM_NULL){ |
240 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"ida_mem is NULL"); |
241 |
return 0; |
242 |
}else if(flag==IDASPILS_LMEM_NULL){ |
243 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"IDASPILS linear solver has not been initialized"); |
244 |
return 0; |
245 |
}/* else success */ |
246 |
#endif |
247 |
|
248 |
/* set linear solver optional inputs... |
249 |
|
250 |
...nothing here at the moment... |
251 |
|
252 |
*/ |
253 |
|
254 |
/* correct initial values, given derivatives */ |
255 |
blsys->currentstep=0; |
256 |
t_index=start_index+1; |
257 |
tout1 = samplelist_get(blsys->samples, t_index); |
258 |
|
259 |
#if SUNDIALS_VERSION_MAJOR==2 && SUNDIALS_VERSION_MINOR==3 |
260 |
flag = IDACalcIC(ida_mem, IDA_Y_INIT, tout1); |
261 |
#else |
262 |
flag = IDACalcIC(ida_mem, t0, y0, yp0, IDA_Y_INIT, tout1); |
263 |
#endif |
264 |
|
265 |
if(flag!=IDA_SUCCESS){ |
266 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"Unable to solve initial values (IDACalcIC)"); |
267 |
return 0; |
268 |
}/* else success */ |
269 |
|
270 |
CONSOLE_DEBUG("INITIAL CONDITIONS SOLVED :-)"); |
271 |
|
272 |
/* optionally, specify ROO-FINDING PROBLEM */ |
273 |
|
274 |
/* -- set up the IntegratorReporter */ |
275 |
integrator_output_init(blsys); |
276 |
|
277 |
/* -- store the initial values of all the stuff */ |
278 |
integrator_output_write(blsys); |
279 |
integrator_output_write_obs(blsys); |
280 |
|
281 |
/* specify where the returned values should be stored */ |
282 |
yret = y0; |
283 |
ypret = yp0; |
284 |
|
285 |
/* advance solution in time, return values as yret and derivatives as ypret */ |
286 |
blsys->currentstep=1; |
287 |
for(t_index=start_index+1;t_index <= finish_index;++t_index, ++blsys->currentstep){ |
288 |
t = samplelist_get(blsys->samples, t_index); |
289 |
|
290 |
CONSOLE_DEBUG("SOLVING UP TO t = %f", t); |
291 |
|
292 |
flag = IDASolve(ida_mem, t, &tret, yret, ypret, IDA_NORMAL); |
293 |
|
294 |
/* pass the values of everything back to the compiler */ |
295 |
integrator_set_t(blsys, (double)tret); |
296 |
integrator_set_y(blsys, NV_DATA_S(yret)); |
297 |
integrator_set_ydot(blsys, NV_DATA_S(ypret)); |
298 |
|
299 |
if(flag<0){ |
300 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"Failed to solve t = %f (IDASolve), error %d", t, flag); |
301 |
break; |
302 |
} |
303 |
|
304 |
/* -- do something so that blsys knows the values of tret, yret and ypret */ |
305 |
|
306 |
/* -- store the current values of all the stuff */ |
307 |
integrator_output_write(blsys); |
308 |
integrator_output_write_obs(blsys); |
309 |
} |
310 |
|
311 |
/* -- close the IntegratorReporter */ |
312 |
integrator_output_close(blsys); |
313 |
|
314 |
if(flag < 0){ |
315 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"Solving aborted while attempting t = %f", t); |
316 |
return 0; |
317 |
} |
318 |
|
319 |
/* get optional outputs */ |
320 |
|
321 |
/* free solution memory */ |
322 |
N_VDestroy_Serial(yret); |
323 |
N_VDestroy_Serial(ypret); |
324 |
|
325 |
/* free solver memory */ |
326 |
IDAFree(ida_mem); |
327 |
|
328 |
/* all done */ |
329 |
return 1; |
330 |
} |
331 |
|
332 |
/*-------------------------------------------------- |
333 |
RESIDUALS AND JACOBIAN |
334 |
*/ |
335 |
/** |
336 |
Function to evaluate system residuals, in the form required for IDA. |
337 |
|
338 |
Given tt, yy and yp, we need to evaluate and return rr. |
339 |
|
340 |
@param tt current value of indep variable (time) |
341 |
@param yy current values of dependent variable vector |
342 |
@param yp current values of derivatives of dependent variables |
343 |
@param rr the output residual vector (is we're returning data to) |
344 |
@param res_data pointer to our stuff (blsys in this case). |
345 |
|
346 |
@return 0 on success, positive on recoverable error, and |
347 |
negative on unrecoverable error. |
348 |
*/ |
349 |
int integrator_ida_fex(realtype tt, N_Vector yy, N_Vector yp, N_Vector rr, void *res_data){ |
350 |
IntegratorSystem *blsys; |
351 |
IntegratorIdaData *enginedata; |
352 |
int i, calc_ok, is_error; |
353 |
struct rel_relation** relptr; |
354 |
double resid; |
355 |
char *relname; |
356 |
|
357 |
blsys = (IntegratorSystem *)res_data; |
358 |
enginedata = integrator_ida_enginedata(blsys); |
359 |
|
360 |
/* fprintf(stderr,"\n\n"); */ |
361 |
/* CONSOLE_DEBUG("ABOUT TO EVALUTE RESIDUALS..."); */ |
362 |
|
363 |
/* pass the values of everything back to the compiler */ |
364 |
integrator_set_t(blsys, (double)tt); |
365 |
integrator_set_y(blsys, NV_DATA_S(yy)); |
366 |
integrator_set_ydot(blsys, NV_DATA_S(yp)); |
367 |
|
368 |
/* revaluate the system residuals using the new data */ |
369 |
is_error = 0; |
370 |
relptr = enginedata->rellist; |
371 |
|
372 |
/* CONSOLE_DEBUG("IDA requests residuals of length %lu",NV_LENGTH_S(rr)); */ |
373 |
if(NV_LENGTH_S(rr)!=enginedata->nrels){ |
374 |
ERROR_REPORTER_HERE(ASC_PROG_ERR,"Invalid residuals nrels!=length(rr)"); |
375 |
return -1; /* unrecoverable */ |
376 |
} |
377 |
|
378 |
Asc_SignalHandlerPush(SIGFPE,SIG_IGN); |
379 |
if (setjmp(g_fpe_env)==0) { |
380 |
for(i=0, relptr = enginedata->rellist; |
381 |
i< enginedata->nrels && relptr != NULL; |
382 |
++i, ++relptr |
383 |
){ |
384 |
resid = relman_eval(*relptr, &calc_ok, enginedata->safeeval); |
385 |
|
386 |
relname = rel_make_name(blsys->system, *relptr); |
387 |
/* if(calc_ok){ |
388 |
CONSOLE_DEBUG("residual[%d:\"%s\"] = %f",i,relname,resid); |
389 |
}else{ |
390 |
CONSOLE_DEBUG("residual[%d:\"%s\"] = %f (ERROR)",i,relname,resid); |
391 |
}*/ |
392 |
ASC_FREE(relname); |
393 |
|
394 |
NV_Ith_S(rr,i) = resid; |
395 |
if(!calc_ok){ |
396 |
/* presumable some output already made? */ |
397 |
is_error = 1; |
398 |
} |
399 |
} |
400 |
}else{ |
401 |
CONSOLE_DEBUG("FLOATING POINT ERROR WITH i=%d",i); |
402 |
} |
403 |
Asc_SignalHandlerPop(SIGFPE,SIG_IGN); |
404 |
|
405 |
if(is_error)CONSOLE_DEBUG("SOME ERRORS FOUND IN EVALUATION"); |
406 |
return is_error; |
407 |
} |
408 |
|
409 |
/** |
410 |
Function to evaluate the product J*v, in the form required for IDA (see IDASpilsSetJacTimesVecFn) |
411 |
|
412 |
Given tt, yy, yp, rr and v, we need to evaluate and return Jv. |
413 |
|
414 |
@param tt current value of the independent variable (time, t) |
415 |
@param yy current value of the dependent variable vector, y(t). |
416 |
@param yp current value of y'(t). |
417 |
@param rr current value of the residual vector F(t, y, y'). |
418 |
@param v the vector by which the Jacobian must be multiplied to the right. |
419 |
@param Jv the output vector computed |
420 |
@param c_j the scalar in the system Jacobian, proportional to the inverse of the step size ($ \alpha$ in Eq. (3.5) ). |
421 |
@param jac_data pointer to our stuff (blsys in this case, passed into IDA via IDASp*SetJacTimesVecFn.) |
422 |
@param tmp1 @see tmp2 |
423 |
@param tmp2 (as well as tmp1) pointers to memory allocated for variables of type N_Vector for use here as temporary storage or work space. |
424 |
@return 0 on success |
425 |
*/ |
426 |
int integrator_ida_jvex(realtype tt, N_Vector yy, N_Vector yp, N_Vector rr |
427 |
, N_Vector v, N_Vector Jv, realtype c_j |
428 |
, void *jac_data, N_Vector tmp1, N_Vector tmp2 |
429 |
){ |
430 |
IntegratorSystem *blsys; |
431 |
IntegratorIdaData *enginedata; |
432 |
int i, j, is_error=0; |
433 |
struct rel_relation** relptr; |
434 |
char *relname, *varname; |
435 |
int status; |
436 |
double Jv_i; |
437 |
int var_yindex; |
438 |
|
439 |
int *variables; |
440 |
double *derivatives; |
441 |
var_filter_t filter; |
442 |
int count; |
443 |
|
444 |
fprintf(stderr,"\n--------------\n"); |
445 |
CONSOLE_DEBUG("EVALUTING JACOBIAN..."); |
446 |
|
447 |
blsys = (IntegratorSystem *)jac_data; |
448 |
enginedata = integrator_ida_enginedata(blsys); |
449 |
|
450 |
/* pass the values of everything back to the compiler */ |
451 |
integrator_set_t(blsys, (double)tt); |
452 |
integrator_set_y(blsys, NV_DATA_S(yy)); |
453 |
integrator_set_ydot(blsys, NV_DATA_S(yp)); |
454 |
/* no real use for residuals (rr) here, I don't think? */ |
455 |
|
456 |
/* allocate space for returns from relman_diff2: we *should* be able to use 'tmp1' and 'tmp2' here... */ |
457 |
variables = ASC_NEW_ARRAY(int, NV_LENGTH_S(yy) * 2); |
458 |
derivatives = ASC_NEW_ARRAY(double, NV_LENGTH_S(yy) * 2); |
459 |
|
460 |
/* evaluate the derivatives... */ |
461 |
/* J = dG_dy = dF_dy + alpha * dF_dyp */ |
462 |
|
463 |
filter.matchbits = VAR_SVAR; |
464 |
filter.matchvalue = VAR_SVAR; |
465 |
|
466 |
CONSOLE_DEBUG("PRINTING VALUES OF 'v' VECTOR (length %ld)",NV_LENGTH_S(v)); |
467 |
for(i=0; i<NV_LENGTH_S(v); ++i){ |
468 |
CONSOLE_DEBUG("v[%d] = %f",i,NV_Ith_S(v,i)); |
469 |
} |
470 |
|
471 |
Asc_SignalHandlerPush(SIGFPE,SIG_IGN); |
472 |
if (setjmp(g_fpe_env)==0) { |
473 |
for(i=0, relptr = enginedata->rellist; |
474 |
i< enginedata->nrels && relptr != NULL; |
475 |
++i, ++relptr |
476 |
){ |
477 |
fprintf(stderr,"\n"); |
478 |
relname = rel_make_name(blsys->system, *relptr); |
479 |
CONSOLE_DEBUG("RELATION %d '%s'",i,relname); |
480 |
ASC_FREE(relname); |
481 |
|
482 |
/* get derivatives for this particular relation */ |
483 |
status = relman_diff2(*relptr, &filter, derivatives, variables, &count, enginedata->safeeval); |
484 |
CONSOLE_DEBUG("Got derivatives against %d matching variables", count); |
485 |
|
486 |
for(j=0;j<count;++j){ |
487 |
varname = var_make_name(blsys->system, enginedata->varlist[variables[j]]); |
488 |
CONSOLE_DEBUG("derivatives[%d] = %f (variable %d, '%s')",j,derivatives[j],variables[j],varname); |
489 |
ASC_FREE(varname); |
490 |
} |
491 |
|
492 |
if(!status){ |
493 |
CONSOLE_DEBUG("Derivatives for relation %d OK",i); |
494 |
}else{ |
495 |
CONSOLE_DEBUG("ERROR calculating derivatives for relation %d",i); |
496 |
break; |
497 |
} |
498 |
|
499 |
/* |
500 |
Now we have the derivatives wrt each alg/diff variable in the |
501 |
present equation. variables[] points into the varlist. need |
502 |
a mapping from the varlist to the y and ydot lists. |
503 |
*/ |
504 |
|
505 |
Jv_i = 0; |
506 |
for(j=0; j < count; ++j){ |
507 |
/* CONSOLE_DEBUG("j = %d, variables[j] = %d, n_y = %ld", j, variables[j], blsys->n_y); */ |
508 |
varname = var_make_name(blsys->system, enginedata->varlist[variables[j]]); |
509 |
if(varname){ |
510 |
CONSOLE_DEBUG("Variable %d '%s' derivative = %f", variables[j],varname,derivatives[j]); |
511 |
ASC_FREE(varname); |
512 |
}else{ |
513 |
CONSOLE_DEBUG("Variable %d (UNKNOWN!): derivative = %f",variables[j],derivatives[j]); |
514 |
} |
515 |
|
516 |
var_yindex = blsys->y_id[variables[j]]; |
517 |
CONSOLE_DEBUG("j = %d: variables[j] = %d, y_id = %d",j,variables[j],var_yindex); |
518 |
|
519 |
if(var_yindex >= 0){ |
520 |
CONSOLE_DEBUG("j = %d: algebraic, deriv[j] = %f, v[%d] = %f",j,derivatives[j], var_yindex, NV_Ith_S(v,var_yindex)); |
521 |
Jv_i += derivatives[j] * NV_Ith_S(v,var_yindex); |
522 |
}else{ |
523 |
var_yindex = -var_yindex-1; |
524 |
CONSOLE_DEBUG("j = %d: differential, deriv[j] = %f, v[%d] = %f",j,derivatives[j], var_yindex, NV_Ith_S(v,var_yindex)); |
525 |
Jv_i += derivatives[j] * NV_Ith_S(v,var_yindex) / c_j; |
526 |
} |
527 |
} |
528 |
|
529 |
NV_Ith_S(Jv,i) = Jv_i; |
530 |
CONSOLE_DEBUG("(J*v)[%d] = %f", i, Jv_i); |
531 |
|
532 |
if(status){ |
533 |
/* presumably some error_reporter will already have been made*/ |
534 |
is_error = 1; |
535 |
} |
536 |
} |
537 |
}else{ |
538 |
CONSOLE_DEBUG("FLOATING POINT ERROR WITH i=%d",i); |
539 |
} |
540 |
Asc_SignalHandlerPop(SIGFPE,SIG_IGN); |
541 |
|
542 |
if(is_error)CONSOLE_DEBUG("SOME ERRORS FOUND IN EVALUATION"); |
543 |
|
544 |
|
545 |
|
546 |
return is_error; |
547 |
} |
548 |
|
549 |
/*---------------------------------------------- |
550 |
ERROR REPORTING |
551 |
*/ |
552 |
/** |
553 |
Error message reporter function to be passed to IDA. All error messages |
554 |
will trigger a call to this function, so we should find everything |
555 |
appearing on the console (in the case of Tcl/Tk) or in the errors/warnings |
556 |
panel (in the case of PyGTK). |
557 |
*/ |
558 |
void integrator_ida_error(int error_code |
559 |
, const char *module, const char *function |
560 |
, char *msg, void *eh_data |
561 |
){ |
562 |
IntegratorSystem *blsys; |
563 |
error_severity_t sev; |
564 |
|
565 |
/* cast back the IntegratorSystem, just in case we need it */ |
566 |
blsys = (IntegratorSystem *)eh_data; |
567 |
|
568 |
/* severity depends on the sign of the error_code value */ |
569 |
if(error_code <= 0){ |
570 |
sev = ASC_PROG_ERR; |
571 |
}else{ |
572 |
sev = ASC_PROG_WARNING; |
573 |
} |
574 |
|
575 |
/* use our all-purpose error reporting to get stuff back to the GUI */ |
576 |
error_reporter(sev,module,0,function,"%s (error %d)",msg,error_code); |
577 |
} |