Parent Directory
|
Revision Log
First tentative version in 'integration reporting': Values of observed variables from the simulation are added to an Observer table after simulation completes. This is not very efficiently coded at this stage but is a start. Also some minor changes to text and comments in some base/generic files.
1 | /* ASCEND modelling environment |
2 | Copyright (C) 1997, 2006 Carnegie Mellon University |
3 | Copyright (C) 1993, 1994 Joseph James Zaher, Benjamin Andrew Allan |
4 | Copyright (C) 1993 Joseph James Zaher |
5 | Copyright (C) 1990 Thomas Guthrie Epperly, Karl Michael Westerberg |
6 | |
7 | This program is free software; you can redistribute it and/or modify |
8 | it under the terms of the GNU General Public License as published by |
9 | the Free Software Foundation; either version 2, or (at your option) |
10 | any later version. |
11 | |
12 | This program is distributed in the hope that it will be useful, |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
15 | GNU General Public License for more details. |
16 | |
17 | You should have received a copy of the GNU General Public License |
18 | along with this program; if not, write to the Free Software |
19 | Foundation, Inc., 59 Temple Place - Suite 330, |
20 | Boston, MA 02111-1307, USA. |
21 | *//** |
22 | @file |
23 | Relation utility functions for Ascend |
24 | |
25 | This module defines the dimensionality checking and some other |
26 | relation auxillaries for Ascend. |
27 | *//* |
28 | Last in CVS: $Revision: 1.44 $ $Date: 1998/04/23 23:51:09 $ $Author: ballan $ |
29 | */ |
30 | |
31 | #include <math.h> |
32 | #include <errno.h> |
33 | #include <stdarg.h> |
34 | #include <utilities/ascConfig.h> |
35 | #include <utilities/ascMalloc.h> |
36 | #include <utilities/ascPanic.h> |
37 | #include <general/list.h> |
38 | #include <general/dstring.h> |
39 | #include "compiler.h" |
40 | #include "symtab.h" |
41 | #include "functype.h" |
42 | #include "safe.h" |
43 | #include "fractions.h" |
44 | #include "dimen.h" |
45 | #include "expr_types.h" |
46 | #include "vlist.h" |
47 | #include "dimen_io.h" |
48 | #include "instance_enum.h" |
49 | #include "bintoken.h" |
50 | #include "find.h" |
51 | #include "atomvalue.h" |
52 | #include "instance_name.h" |
53 | #include "relation_type.h" |
54 | #include "relation.h" |
55 | #include "relation_util.h" |
56 | #include "instance_io.h" |
57 | #include "instquery.h" |
58 | #include "visitinst.h" |
59 | #include "mathinst.h" |
60 | #include "extfunc.h" |
61 | #include "rootfind.h" |
62 | #include "func.h" |
63 | |
64 | #ifndef NDEBUG |
65 | #include "relation_io.h" |
66 | #endif |
67 | |
68 | /*------------------------------------------------------------------------------ |
69 | DATA TYPES AND GLOBAL VARS |
70 | */ |
71 | |
72 | int g_check_dimensions_noisy = 1; |
73 | #define GCDN g_check_dimensions_noisy |
74 | |
75 | /** global relation pointer to avoid passing a relation recursively */ |
76 | static struct relation *glob_rel; |
77 | |
78 | /** |
79 | The following global variables are used thoughout the |
80 | functions called by RelationFindroot. |
81 | |
82 | These should probably be located at the top of this |
83 | file alonge with glob_rel. [OK, let it be so then. -- JP] |
84 | */ |
85 | static unsigned long glob_varnum; |
86 | static int glob_done; |
87 | |
88 | /* some data structurs...*/ |
89 | |
90 | struct dimnode { |
91 | dim_type d; |
92 | enum Expr_enum type; |
93 | short int_const; |
94 | double real_const; |
95 | struct fraction power; |
96 | }; |
97 | |
98 | struct ds_soln_list { |
99 | int length,capacity; |
100 | double *soln; |
101 | }; |
102 | |
103 | /* |
104 | Define the following if you want ASCEND to panic when it hits a |
105 | relation error in this file. This will help with debugging (GDB). |
106 | |
107 | Comment it out for ERROR_REPORTER to be used instead. |
108 | */ |
109 | #define RELUTIL_CHECK_ABORT |
110 | |
111 | /*------------------------------------------------------------------------------ |
112 | forward declarations |
113 | */ |
114 | |
115 | static struct fraction real_to_frac(double real); |
116 | char *tmpalloc(int nbytes); |
117 | int ArgsForRealToken(enum Expr_enum type); |
118 | static int IsZero(struct dimnode *node); |
119 | |
120 | /* bunch of support functions for RelationFindRoots */ |
121 | static double RootFind(struct relation *rel, double *lower_bound, double *upper_bound, |
122 | double *nominal,double *tolerance,unsigned long varnum,int *status); |
123 | static int CalcResidGivenValue(int *mode, int *m, unsigned long *varnum,double *val, double *u, double *f, double *g); |
124 | int RelationInvertTokenTop(struct ds_soln_list *soln_list); |
125 | int RelationInvertToken(struct relation_term **term,struct ds_soln_list *soln_list,enum safe_err *not_safe); |
126 | static void SetUpInvertTokenTop(struct relation_term **invert_side,double *value); |
127 | static int SetUpInvertToken(struct relation_term *term,struct relation_term **invert_side,double *value); |
128 | static int SearchEval_Branch(struct relation_term *term); |
129 | static void InsertBranchResult(struct relation_term *term, double value); |
130 | static void remove_soln( struct ds_soln_list *sl, int ndx); |
131 | static void append_soln( struct ds_soln_list *sl, double soln); |
132 | static struct relation *RelationTmpTokenCopy(CONST struct relation *src); |
133 | static int RelationTmpCopySide(union RelationTermUnion *old,unsigned long len,union RelationTermUnion *arr); |
134 | static struct relation *RelationCreateTmp(unsigned long lhslen, unsigned long rhslen, enum Expr_enum relop); |
135 | |
136 | /* the following appear only to be used locally, so I've made them static -- JP */ |
137 | |
138 | static int RelationCalcDerivative(struct Instance *i, unsigned long index, double *grad); |
139 | /**< |
140 | * This calculates the derivative of the relation df/dx (f = lhs-rhs) |
141 | * where x is the INDEX-th entry in the relation's var list. |
142 | * The var list is a gl_list_t indexed from 1 to length. |
143 | * Non-zero return value implies a problem.<br><br> |
144 | * |
145 | * Notes: This function is a possible source of floating point |
146 | * exceptions and should not be used during compilation. |
147 | */ |
148 | |
149 | static enum safe_err |
150 | RelationCalcDerivativeSafe(struct Instance *i, unsigned long index, double *grad); |
151 | /**< |
152 | * Calculates the derivative safely. |
153 | * Non-zero return value implies a problem. |
154 | */ |
155 | |
156 | #ifndef NDEBUG |
157 | static int relutil_check_inst_and_res(struct Instance *i, double *res); |
158 | #endif |
159 | |
160 | #ifndef NDEBUG |
161 | # define CHECK_INST_RES(i,res,retval) if(!relutil_check_inst_and_res(i,res)){return retval;} |
162 | #else |
163 | # define CHECK_INST_RES(i,res,retval) ((void)0) |
164 | #endif |
165 | |
166 | /*------------------------------------------------------------------------------ |
167 | SOME STUFF TO DO WITH DIMENSIONS |
168 | */ |
169 | |
170 | /* |
171 | @TODO what this does needs to be documented here |
172 | */ |
173 | static void apply_term_dimensions(struct relation *rel, |
174 | struct relation_term *rt, |
175 | struct dimnode *first, |
176 | struct dimnode *second, |
177 | int *con, |
178 | int *wild |
179 | ){ |
180 | enum Expr_enum type; |
181 | |
182 | switch(type=RelationTermType(rt)) { |
183 | case e_zero: |
184 | CopyDimensions(WildDimension(),&(first->d)); |
185 | first->real_const = 0.0; |
186 | first->type = type; |
187 | break; |
188 | |
189 | case e_int: |
190 | CopyDimensions(Dimensionless(),&(first->d)); |
191 | first->int_const = (short)TermInteger(rt); |
192 | first->type = type; |
193 | break; |
194 | |
195 | case e_real: |
196 | CopyDimensions(TermDimensions(rt),&(first->d)); |
197 | first->real_const = TermReal(rt); |
198 | first->type = type; |
199 | break; |
200 | |
201 | case e_var: { |
202 | struct Instance *var = RelationVariable(rel,TermVarNumber(rt)); |
203 | CopyDimensions(RealAtomDims(var),&(first->d)); |
204 | first->type = type; |
205 | break; |
206 | } |
207 | case e_func: { |
208 | enum Func_enum id = FuncId(TermFunc(rt)); |
209 | switch( id ) { |
210 | case F_ABS: |
211 | case F_HOLD: |
212 | /* no checking or scaling */ |
213 | break; |
214 | |
215 | case F_SQR: |
216 | /* no checking, just simple scaling */ |
217 | first->d = ScaleDimensions(&(first->d),CreateFraction(2,1)); |
218 | break; |
219 | |
220 | case F_CUBE: |
221 | /* no checking, just simple scaling */ |
222 | first->d = ScaleDimensions(&(first->d),CreateFraction(3,1)); |
223 | break; |
224 | |
225 | case F_SQRT: |
226 | /* no checking, just simple scaling */ |
227 | first->d = ScaleDimensions(&(first->d),CreateFraction(1,2)); |
228 | break; |
229 | |
230 | case F_CBRT: |
231 | /* no checking, just simple scaling */ |
232 | first->d = ScaleDimensions(&(first->d),CreateFraction(1,3)); |
233 | break; |
234 | |
235 | case F_EXP: |
236 | case F_LN: |
237 | case F_LNM: |
238 | case F_LOG10: |
239 | #ifdef HAVE_ERF |
240 | case F_ERF: |
241 | #endif /* HAVE_ERF */ |
242 | case F_SINH: |
243 | case F_COSH: |
244 | case F_TANH: |
245 | case F_ARCSINH: |
246 | case F_ARCCOSH: |
247 | case F_ARCTANH: |
248 | /** |
249 | *** first must now be dimensionless. It will |
250 | *** end up dimensionless as well. |
251 | **/ |
252 | if( IsWild(&(first->d)) && !IsZero(first) ) { |
253 | if( !*wild ) *wild = TRUE; |
254 | if (GCDN) { |
255 | FPRINTF(ASCERR,"ERROR: Relation has wild dimensions\n"); |
256 | FPRINTF(ASCERR," in function %s.\n", |
257 | FuncName(TermFunc(rt))); |
258 | } |
259 | } else if( !IsWild(&(first->d)) && |
260 | CmpDimen(&(first->d),Dimensionless()) ) { |
261 | if( *con ) *con = FALSE; |
262 | if (GCDN) { |
263 | FPRINTF(ASCERR,"ERROR: Function %s called with\n", |
264 | FuncName(TermFunc(rt))); |
265 | FPRINTF(ASCERR," dimensions "); |
266 | WriteDimensions(ASCERR,&(first->d)); |
267 | FPRINTF(ASCERR,".\n"); |
268 | } |
269 | } |
270 | CopyDimensions(Dimensionless(),&(first->d)); |
271 | break; |
272 | |
273 | case F_SIN: |
274 | case F_COS: |
275 | case F_TAN: { |
276 | /** |
277 | *** first must now be of dimension D_PLANE_ANGLE. |
278 | *** It will then be made dimensionless. |
279 | **/ |
280 | if( IsWild(&(first->d)) && !IsZero(first) ) { |
281 | if( !*wild ) *wild = TRUE; |
282 | if (GCDN) { |
283 | FPRINTF(ASCERR,"ERROR: Relation has wild dimensions\n"); |
284 | FPRINTF(ASCERR," in function %s.\n", |
285 | FuncName(TermFunc(rt)) ); |
286 | } |
287 | }else{ |
288 | if( !IsWild(&(first->d)) && |
289 | CmpDimen(&(first->d),TrigDimension()) ) { |
290 | if( *con ) *con = FALSE; |
291 | if (GCDN) { |
292 | FPRINTF(ASCERR,"ERROR: Function %s called with\n", |
293 | FuncName(TermFunc(rt))); |
294 | FPRINTF(ASCERR," dimensions "); |
295 | WriteDimensions(ASCERR,&(first->d)); |
296 | FPRINTF(ASCERR,".\n"); |
297 | } |
298 | } |
299 | } |
300 | CopyDimensions(Dimensionless(),&(first->d)); |
301 | break; |
302 | } |
303 | |
304 | case F_ARCSIN: |
305 | case F_ARCCOS: |
306 | case F_ARCTAN: |
307 | /** |
308 | *** first must now be dimensionless. It will |
309 | *** end up with dimension D_PLANE_ANGLE |
310 | **/ |
311 | if( IsWild(&(first->d)) && !IsZero(first) ) { |
312 | if( !*wild ) *wild = TRUE; |
313 | if (GCDN) { |
314 | FPRINTF(ASCERR,"ERROR: Relation has wild dimensions\n"); |
315 | FPRINTF(ASCERR," in function %s.\n", |
316 | FuncName(TermFunc(rt))); |
317 | } |
318 | } else if( !IsWild(&(first->d)) && |
319 | CmpDimen(&(first->d),Dimensionless()) ) { |
320 | if( *con ) *con = FALSE; |
321 | if (GCDN) { |
322 | FPRINTF(ASCERR,"ERROR: Function %s called with\n", |
323 | FuncName(TermFunc(rt))); |
324 | FPRINTF(ASCERR," dimensions "); |
325 | WriteDimensions(ASCERR,&(first->d)); |
326 | FPRINTF(ASCERR,".\n"); |
327 | } |
328 | } |
329 | CopyDimensions(TrigDimension(),&(first->d)); |
330 | break; |
331 | } |
332 | first->type = type; |
333 | break; |
334 | } |
335 | |
336 | case e_uminus: |
337 | first->type = type; |
338 | break; |
339 | |
340 | case e_times: |
341 | first->d = AddDimensions(&(first->d),&(second->d)); |
342 | first->type = type; |
343 | break; |
344 | |
345 | case e_divide: |
346 | first->d = SubDimensions(&(first->d),&(second->d)); |
347 | first->type = type; |
348 | break; |
349 | |
350 | case e_power: /* fix me and add ipower */ |
351 | if( IsWild(&(second->d)) && !IsZero(second) ) { |
352 | if( !*wild ) *wild = TRUE; |
353 | if (GCDN) { |
354 | FPRINTF(ASCERR,"ERROR: Relation has wild dimensions\n"); |
355 | FPRINTF(ASCERR," in exponent.\n"); |
356 | } |
357 | } else if( !IsWild(&(second->d)) && |
358 | CmpDimen(&(second->d),Dimensionless()) ) { |
359 | if( *con ) *con = FALSE; |
360 | if (GCDN) { |
361 | FPRINTF(ASCERR,"ERROR: Exponent has dimensions "); |
362 | WriteDimensions(ASCERR,&(second->d)); |
363 | FPRINTF(ASCERR,".\n"); |
364 | } |
365 | } |
366 | CopyDimensions(Dimensionless(),&(second->d)); |
367 | switch( second->type ) { |
368 | case e_int: |
369 | if( !IsWild(&(first->d)) && |
370 | CmpDimen(&(first->d),Dimensionless()) ) { |
371 | struct fraction power; |
372 | power = CreateFraction(second->int_const,1); |
373 | first->d = ScaleDimensions(&(first->d),power); |
374 | } |
375 | break; |
376 | |
377 | case e_real: |
378 | if( !IsWild(&(first->d)) && |
379 | CmpDimen(&(first->d),Dimensionless()) ) { |
380 | struct fraction power; |
381 | power = real_to_frac(second->real_const); |
382 | first->d = ScaleDimensions(&(first->d),power); |
383 | } |
384 | break; |
385 | |
386 | /* what about e_zero? */ |
387 | default: |
388 | if( IsWild(&(first->d)) && !IsZero(first) ) { |
389 | if( !*wild ) *wild = TRUE; |
390 | if (GCDN) { |
391 | FPRINTF(ASCERR,"ERROR: Relation has wild dimensions\n"); |
392 | FPRINTF(ASCERR," raised to a non-constant power.\n"); |
393 | } |
394 | } else if( !IsWild(&(first->d)) && |
395 | CmpDimen(&(first->d),Dimensionless()) ) { |
396 | if( *con ) *con = FALSE; |
397 | if (GCDN) { |
398 | FPRINTF(ASCERR,"ERROR: Dimensions "); |
399 | WriteDimensions(ASCERR,&(first->d)); |
400 | FPRINTF(ASCERR," are\n"); |
401 | FPRINTF(ASCERR," raised to a non-constant power.\n"); |
402 | } |
403 | } |
404 | CopyDimensions(Dimensionless(),&(first->d)); |
405 | break; |
406 | |
407 | } |
408 | first->type = type; |
409 | break; |
410 | |
411 | case e_plus: |
412 | case e_minus: |
413 | if( IsWild(&(first->d)) && IsZero(first) ) { |
414 | /* first wild zero */ |
415 | CopyDimensions(&(second->d),&(first->d)); |
416 | first->type = second->type; |
417 | if( second->type==e_int ) |
418 | first->int_const = second->int_const; |
419 | if( second->type==e_real ) |
420 | first->real_const = second->real_const; |
421 | } else if( IsWild(&(first->d)) && !IsZero(first) ) { |
422 | /* first wild non-zero */ |
423 | if( IsWild(&(second->d)) && !IsZero(second) ) { |
424 | /* second wild non-zero */ |
425 | if( !*wild ) *wild = TRUE; |
426 | if (GCDN) { |
427 | FPRINTF(ASCERR,"ERROR: %s has wild dimensions on\n", |
428 | type==e_plus ? "Addition":"Subtraction"); |
429 | FPRINTF(ASCERR," left and right hand sides.\n"); |
430 | } |
431 | first->type = type; |
432 | } else if( !IsWild(&(second->d)) ) { |
433 | /* second not wild */ |
434 | if( !*wild ) *wild = TRUE; |
435 | if (GCDN) { |
436 | FPRINTF(ASCERR,"ERROR: %s has wild dimensions on\n", |
437 | type==e_plus ? "Addition":"Subtraction"); |
438 | FPRINTF(ASCERR," left hand side.\n"); |
439 | } |
440 | CopyDimensions(&(second->d),&(first->d)); |
441 | first->type = type; |
442 | } |
443 | } else if( !IsWild(&(first->d)) ) { |
444 | /* first not wild */ |
445 | if( IsWild(&(second->d)) && !IsZero(second) ) { |
446 | /* second wild non-zero */ |
447 | if( !*wild ) *wild = TRUE; |
448 | if (GCDN) { |
449 | FPRINTF(ASCERR,"ERROR: %s has wild dimensions on\n", |
450 | type==e_plus ? "Addition":"Subtraction"); |
451 | FPRINTF(ASCERR," right hand side.\n"); |
452 | } |
453 | first->type = type; |
454 | } else if ( !IsWild(&(second->d)) ) { |
455 | /* second not wild */ |
456 | if( CmpDimen(&(first->d),&(second->d)) ) { |
457 | if( *con ) *con = FALSE; |
458 | if (GCDN) { |
459 | FPRINTF(ASCERR,"ERROR: %s has dimensions ", |
460 | type==e_plus ? "Addition":"Subtraction"); |
461 | WriteDimensions(ASCERR,&(first->d)); |
462 | FPRINTF(ASCERR," on left\n"); |
463 | FPRINTF(ASCERR," and dimensions "); |
464 | WriteDimensions(ASCERR,&(second->d)); |
465 | FPRINTF(ASCERR," on right.\n"); |
466 | } |
467 | } |
468 | first->type = type; |
469 | } |
470 | } |
471 | break; |
472 | |
473 | default: |
474 | FPRINTF(ASCERR,"ERROR: Unknown relation term type.\n"); |
475 | if( *con ) *con = FALSE; |
476 | first->type = type; |
477 | break; |
478 | } |
479 | } |
480 | |
481 | /** |
482 | @TODO what this does needs to be documented here |
483 | */ |
484 | int RelationCheckDimensions(struct relation *rel, dim_type *dimens) |
485 | { |
486 | struct dimnode *stack, *sp; |
487 | int consistent = TRUE; |
488 | int wild = FALSE; |
489 | unsigned long c, len; |
490 | |
491 | if ( !IsWild(RelationDim(rel)) ) { /* don't do this twice */ |
492 | CopyDimensions(RelationDim(rel),dimens); |
493 | return 2; |
494 | } |
495 | sp = stack = ASC_NEW_ARRAY(struct dimnode,RelationDepth(rel)); |
496 | switch( RelationRelop(rel) ) { |
497 | case e_less: |
498 | case e_lesseq: |
499 | case e_greater: |
500 | case e_greatereq: |
501 | case e_equal: |
502 | case e_notequal: |
503 | /* Working on the left-hand-side */ |
504 | len = RelationLength(rel,TRUE); |
505 | for( c = 1; c <= len; c++ ) { |
506 | struct relation_term *rt; |
507 | rt = (struct relation_term *)RelationTerm(rel,c,TRUE); |
508 | sp += 1-ArgsForRealToken(RelationTermType(rt)); |
509 | apply_term_dimensions(rel,rt,sp-1,sp,&consistent,&wild); |
510 | } /* stack[0].d contains the dimensions of the lhs expression */ |
511 | |
512 | /* Now working on the right-hand_side */ |
513 | len = RelationLength(rel,FALSE); |
514 | for( c = 1; c <= len; c++ ) { |
515 | struct relation_term *rt; |
516 | rt = (struct relation_term *) RelationTerm(rel,c,FALSE); |
517 | sp += 1-ArgsForRealToken(RelationTermType(rt)); |
518 | apply_term_dimensions(rel,rt,sp-1,sp,&consistent,&wild); |
519 | } /* stack[1].d contains the dimensions of the rhs expression */ |
520 | |
521 | if( IsWild(&(stack[0].d)) || IsWild(&(stack[1].d)) ) { |
522 | if( IsWild(&(stack[0].d)) && !IsZero(&(stack[0])) ) { |
523 | if( !wild ) wild = TRUE; |
524 | if (GCDN) { |
525 | FPRINTF(ASCERR,"ERROR: Relation has wild dimensions\n"); |
526 | FPRINTF(ASCERR," on left hand side.\n"); |
527 | } |
528 | } |
529 | if( IsWild(&(stack[1].d)) && !IsZero(&(stack[1])) ) { |
530 | if( !wild ) wild = TRUE; |
531 | if (GCDN) { |
532 | FPRINTF(ASCERR,"ERROR: Relation has wild dimensions\n"); |
533 | FPRINTF(ASCERR," on right hand side.\n"); |
534 | } |
535 | } |
536 | }else{ |
537 | if( CmpDimen(&(stack[0].d),&(stack[1].d)) ) { |
538 | if( consistent ) consistent = FALSE; |
539 | if (GCDN) { |
540 | FPRINTF(ASCERR,"ERROR: Relation has dimensions "); |
541 | WriteDimensions(ASCERR,&(stack[0].d)); |
542 | FPRINTF(ASCERR," on left\n"); |
543 | FPRINTF(ASCERR," and dimensions "); |
544 | WriteDimensions(ASCERR,&(stack[1].d)); |
545 | FPRINTF(ASCERR," on right.\n"); |
546 | } |
547 | } |
548 | } |
549 | break; |
550 | case e_maximize: |
551 | case e_minimize: |
552 | /* Working on the left-hand-side */ |
553 | len = RelationLength(rel,TRUE); |
554 | for( c = 1; c <= len; c++ ) { |
555 | struct relation_term *rt; |
556 | rt = (struct relation_term *) RelationTerm(rel,c,TRUE); |
557 | sp += 1-ArgsForRealToken(RelationTermType(rt)); |
558 | apply_term_dimensions(rel,rt,sp-1,sp,&consistent,&wild); |
559 | } /* stack[0].d contains the dimensions of the lhs expression */ |
560 | |
561 | if( IsWild(&(stack[0].d)) && !IsZero(&(stack[0])) ) { |
562 | if( !wild ) wild = TRUE; |
563 | if (GCDN) { |
564 | FPRINTF(ASCERR,"ERROR: Objective has wild dimensions.\n"); |
565 | } |
566 | } |
567 | break; |
568 | |
569 | default: |
570 | FPRINTF(ASCERR,"ERROR: Unknown relation type.\n"); |
571 | if( consistent ) consistent = FALSE; |
572 | break; |
573 | } |
574 | CopyDimensions(&(stack[0].d),dimens); |
575 | ascfree(stack); |
576 | return( consistent && !wild ); |
577 | } |
578 | |
579 | /*------------------------------------------------------------------------------ |
580 | CALCULATION FUNCTIONS |
581 | */ |
582 | |
583 | /** @NOTE ANY function calling RelationBranchEvaluator should set |
584 | glob_rel to point at the relation being evaluated. The calling |
585 | function should also set glob_rel = NULL when it is done. |
586 | */ |
587 | static double RelationBranchEvaluator(struct relation_term *term) |
588 | { |
589 | assert(term != NULL); |
590 | switch(RelationTermType(term)) { |
591 | case e_func: |
592 | /* CONSOLE_DEBUG("Evaluating term using FuncEval..."); */ |
593 | return FuncEval(TermFunc(term), |
594 | RelationBranchEvaluator(TermFuncLeft(term)) ); |
595 | case e_var: |
596 | return TermVariable(glob_rel , term); |
597 | case e_int: |
598 | return (double)TermInteger(term); |
599 | case e_real: |
600 | return TermReal(term); |
601 | case e_zero: |
602 | return 0.0; |
603 | case e_diff: |
604 | return 0.0; |
605 | |
606 | case e_plus: |
607 | return (RelationBranchEvaluator(TermBinLeft(term)) + |
608 | RelationBranchEvaluator(TermBinRight(term))); |
609 | case e_minus: |
610 | return (RelationBranchEvaluator(TermBinLeft(term)) - |
611 | RelationBranchEvaluator(TermBinRight(term))); |
612 | case e_times: |
613 | return (RelationBranchEvaluator(TermBinLeft(term)) * |
614 | RelationBranchEvaluator(TermBinRight(term))); |
615 | case e_divide: |
616 | return (RelationBranchEvaluator(TermBinLeft(term)) / |
617 | RelationBranchEvaluator(TermBinRight(term))); |
618 | case e_power: |
619 | case e_ipower: |
620 | return pow( RelationBranchEvaluator(TermBinLeft(term)) , |
621 | RelationBranchEvaluator(TermBinRight(term)) ); |
622 | case e_uminus: |
623 | return - RelationBranchEvaluator(TermBinLeft(term)); |
624 | default: |
625 | FPRINTF(ASCERR, "error in RelationBranchEvaluator routine\n"); |
626 | FPRINTF(ASCERR, "relation term type not recognized\n"); |
627 | return 0.0; |
628 | } |
629 | } |
630 | |
631 | /** |
632 | This function is passed a relation pointer, r, a pointer, pos, to a |
633 | position in the postfix version of the relation (0<=pos<length), and |
634 | a flag, lhs, telling whether we are interested in the left(=1) or |
635 | right(=0) side of the relation. This function will tranverse and |
636 | evaluate the subtree rooted at pos and will return the value as a |
637 | double. To do its evaluation, this function goes backwards through |
638 | the postfix representation of relation and calls itself at each |
639 | node--creating a stack of function calls. |
640 | |
641 | @NOTE: This function changes the value of pos---to the position of |
642 | the deepest leaf visited |
643 | */ |
644 | static double |
645 | RelationEvaluatePostfixBranch(CONST struct relation *r, |
646 | unsigned long *pos, |
647 | int lhs) |
648 | { |
649 | CONST struct relation_term *term; /* the current term */ |
650 | CONST struct Func *funcptr; /* a pointer to a function */ |
651 | double x, y; /* temporary values */ |
652 | |
653 | term = NewRelationTerm(r, *pos, lhs); |
654 | assert(term != NULL); |
655 | switch( RelationTermType(term) ) { |
656 | case e_zero: |
657 | case e_real: |
658 | return TermReal(term); |
659 | case e_diff: |
660 | ERROR_REPORTER_HERE(ASC_PROG_WARNING,"Can't evaluate DIFF(...)"); |
661 | return 0; |
662 | case e_int: |
663 | return TermInteger(term); |
664 | case e_var: |
665 | return TermVariable(r, term); |
666 | case e_plus: |
667 | (*pos)--; |
668 | y = RelationEvaluatePostfixBranch(r, pos, lhs); /* y==right-side of '+' */ |
669 | (*pos)--; |
670 | return RelationEvaluatePostfixBranch(r, pos, lhs) + y; |
671 | case e_minus: |
672 | (*pos)--; |
673 | y = RelationEvaluatePostfixBranch(r, pos, lhs); /* y==right-side of '-' */ |
674 | (*pos)--; |
675 | return RelationEvaluatePostfixBranch(r, pos, lhs) - y; |
676 | case e_times: |
677 | (*pos)--; |
678 | y = RelationEvaluatePostfixBranch(r, pos, lhs); /* y==right-side of '*' */ |
679 | (*pos)--; |
680 | return RelationEvaluatePostfixBranch(r, pos, lhs) * y; |
681 | case e_divide: |
682 | (*pos)--; |
683 | y = RelationEvaluatePostfixBranch(r, pos, lhs); /* y is the divisor */ |
684 | (*pos)--; |
685 | return RelationEvaluatePostfixBranch(r, pos, lhs) / y; |
686 | case e_power: |
687 | (*pos)--; |
688 | y = RelationEvaluatePostfixBranch(r, pos, lhs); /* y is the power */ |
689 | (*pos)--; |
690 | x = RelationEvaluatePostfixBranch(r, pos, lhs); /* x is the base */ |
691 | return pow(x, y); |
692 | case e_ipower: |
693 | (*pos)--; |
694 | y = RelationEvaluatePostfixBranch(r, pos, lhs); /* y is the power */ |
695 | (*pos)--; |
696 | x = RelationEvaluatePostfixBranch(r, pos, lhs); /* x is the base */ |
697 | return asc_ipow(x, (int)y); |
698 | case e_uminus: |
699 | (*pos)--; |
700 | return -1.0 * RelationEvaluatePostfixBranch(r, pos, lhs); |
701 | case e_func: |
702 | funcptr = TermFunc(term); |
703 | (*pos)--; |
704 | return FuncEval(funcptr, RelationEvaluatePostfixBranch(r, pos, lhs)); |
705 | default: |
706 | Asc_Panic(2, NULL, |
707 | "Don't know this type of relation type\n" |
708 | "in function RelationEvaluatePostfixBranch\n"); |
709 | |
710 | break; |
711 | } |
712 | } |
713 | |
714 | #define RECURSE RelationEvaluatePostfixBranchSafe |
715 | static double |
716 | RelationEvaluatePostfixBranchSafe(CONST struct relation *r, |
717 | unsigned long *pos, |
718 | int lhs, |
719 | enum safe_err *serr |
720 | ){ |
721 | CONST struct relation_term *term; /* the current term */ |
722 | double x, y; /* temporary values */ |
723 | |
724 | term = NewRelationTerm(r, *pos, lhs); |
725 | assert(term != NULL); |
726 | switch( RelationTermType(term) ) { |
727 | case e_zero: |
728 | case e_real: |
729 | return TermReal(term); |
730 | case e_diff: |
731 | return 0; /* for the moment, all derivatives evaluate to zero */ |
732 | case e_int: |
733 | return TermInteger(term); |
734 | case e_var: |
735 | return TermVariable(r, term); |
736 | case e_plus: |
737 | (*pos)--; y = RECURSE(r, pos, lhs, serr); /* = RHS of '+' */ |
738 | (*pos)--; return safe_add_D0(RECURSE(r,pos,lhs,serr), y, serr); |
739 | case e_minus: |
740 | (*pos)--; y = RECURSE(r, pos, lhs, serr); /* = RHS of '-' */ |
741 | (*pos)--; return safe_sub_D0(RECURSE(r,pos,lhs,serr), y, serr); |
742 | case e_times: |
743 | (*pos)--; y = RECURSE(r, pos, lhs, serr); /* = RHS of '*' */ |
744 | (*pos)--; return safe_mul_D0(RECURSE(r,pos,lhs,serr), y, serr); |
745 | case e_divide: |
746 | (*pos)--; y = RECURSE(r, pos, lhs, serr); /* = the divisor (RHS of '/') */ |
747 | (*pos)--; return safe_div_D0(RECURSE(r,pos,lhs,serr), y, serr); |
748 | case e_power: |
749 | (*pos)--; y = RECURSE(r, pos, lhs, serr); /* = the power (RHS of '^') */ |
750 | (*pos)--; x = RECURSE(r, pos, lhs, serr); /* = the base */ |
751 | return safe_pow_D0(x, y, serr); |
752 | case e_ipower: |
753 | (*pos)--; y = RECURSE(r, pos, lhs, serr); /* y is the power (RHS of '^') */ |
754 | (*pos)--; x = RECURSE(r, pos, lhs, serr); /* x is the base */ |
755 | return safe_ipow_D0(x, (int)y, serr); |
756 | case e_uminus: |
757 | (*pos)--; return -1.0 * RECURSE(r, pos, lhs, serr); |
758 | case e_func: |
759 | (*pos)--; return FuncEvalSafe(TermFunc(term),RECURSE(r,pos,lhs,serr),serr); |
760 | default: |
761 | Asc_Panic(2, __FUNCTION__,"Unknown relation term type"); |
762 | } |
763 | } |
764 | #undef RECURSE |
765 | |
766 | /** |
767 | Yet another function for calculating the residual of a relation. |
768 | This function also uses the postfix version of the relations, but it |
769 | manages a stack(array) of doubles and calculates the residual in this |
770 | stack; therefore the function is not recursive. If the funtion |
771 | cannot allocate memory for its stack, it returns 0.0, so there is |
772 | currently no way of knowing if this function failed. |
773 | */ |
774 | static double |
775 | RelationEvaluateResidualPostfix(CONST struct relation *r) |
776 | { |
777 | unsigned long t; /* the current term in the relation r */ |
778 | int lhs; /* looking at left(=1) or right(=0) hand side */ |
779 | double *res_stack; /* the stack we use for evaluating the residual */ |
780 | long s = -1; /* the top position in the stacks */ |
781 | unsigned long length_lhs, length_rhs; |
782 | CONST struct relation_term *term; |
783 | CONST struct Func *funcptr; |
784 | |
785 | |
786 | length_lhs = RelationLength(r, 1); |
787 | length_rhs = RelationLength(r, 0); |
788 | if( (length_lhs+length_rhs) == 0 ) return 0.0; |
789 | |
790 | /* create the stacks */ |
791 | res_stack = tmpalloc_array((1+MAX(length_lhs,length_rhs)),double); |
792 | if( res_stack == NULL ) return 0.0; |
793 | |
794 | lhs = 1; |
795 | t = 0; |
796 | while (1) { |
797 | if( lhs && (t >= length_lhs) ) { |
798 | /* finished processing left hand side, switch to right if it exists */ |
799 | if( length_rhs ) { |
800 | lhs = t = 0; |
801 | } |
802 | else { |
803 | /* do not need to check for s>=0, since we know that |
804 | * (length_lhs+length_rhs>0) and that (length_rhs==0), the |
805 | * length_lhs must be > 0, thus s>=0 |
806 | */ |
807 | return (res_stack[s]); |
808 | } |
809 | } |
810 | else if( (!lhs) && (t >= length_rhs) ) { |
811 | /* finished processing right hand side */ |
812 | if( length_lhs ) { |
813 | /* we know length_lhs and length_rhs are both > 0, since if |
814 | * length_rhs == 0, we would have exited above. |
815 | */ |
816 | return (res_stack[s-1] - res_stack[s]); |
817 | } |
818 | else { |
819 | /* do not need to check for s>=0, since we know that |
820 | * (length_lhs+length_rhs>0) and that (length_lhs==0), the |
821 | * length_rhs must be > 0, thus s>=0 |
822 | */ |
823 | return (-1.0 * res_stack[s]); |
824 | } |
825 | } |
826 | |
827 | term = NewRelationTerm(r, t++, lhs); |
828 | switch( RelationTermType(term) ) { |
829 | case e_zero: |
830 | s++; res_stack[s] = 0.0; break; |
831 | case e_real: |
832 | s++; res_stack[s] = TermReal(term); break; |
833 | case e_int: |
834 | s++; res_stack[s] = TermInteger(term); break; |
835 | case e_var: |
836 | s++; res_stack[s] = TermVariable(r, term); break; |
837 | case e_plus: |
838 | res_stack[s-1] += res_stack[s]; s--; break; |
839 | case e_minus: |
840 | res_stack[s-1] -= res_stack[s]; s--; break; |
841 | case e_times: |
842 | res_stack[s-1] *= res_stack[s]; s--; break; |
843 | case e_divide: |
844 | res_stack[s-1] /= res_stack[s]; s--; break; |
845 | case e_uminus: |
846 | res_stack[s] *= -1.0; break; |
847 | case e_power: |
848 | case e_ipower: |
849 | res_stack[s-1] = pow(res_stack[s-1], res_stack[s]); s--; break; |
850 | case e_func: |
851 | funcptr = TermFunc(term); |
852 | res_stack[s] = FuncEval(funcptr, res_stack[s]); |
853 | break; |
854 | default: |
855 | Asc_Panic(2, __FUNCTION__,"Unknown relation term type"); |
856 | } |
857 | } |
858 | } |
859 | |
860 | /*------------------------------------------------------------------------------ |
861 | GRADIENT AND DERIVATIVE CALCULATIONS |
862 | */ |
863 | |
864 | /** |
865 | This function evaluates the residual and the gradient for the relation |
866 | r. The calling function must provide a pointer to a double for the |
867 | residual and an array of doubles for the gradients. This function |
868 | assumes r exists and that the pointers to the residual and gradients |
869 | are not NULL. This function returns 0 is everythings goes o.k., and |
870 | 1 otherwise (out of memory). The function computes the gradients by |
871 | maintaining a n stacks, where n = (number-of-variables-in-r + 1) |
872 | The +1 is for the residual. The stacks come from a single array which |
873 | this function gets by calling tmpalloc_array. Two macros are defined |
874 | to make referencing this array easier. |
875 | */ |
876 | static int |
877 | RelationEvaluateResidualGradient(CONST struct relation *r, |
878 | double *residual, |
879 | double *gradient) |
880 | { |
881 | unsigned long t; /* the current term in the relation r */ |
882 | unsigned long num_var; /* the number of variables in the relation r */ |
883 | unsigned long v; /* the index of the variable we are looking at */ |
884 | int lhs; /* looking at left(=1) or right(=0) hand side of r */ |
885 | double *stacks; /* the memory for the stacks */ |
886 | unsigned long stack_height; /* height of each stack */ |
887 | long s = -1; /* the top position in the stacks */ |
888 | double temp, temp2; /* temporary variables to speed gradient calculatns */ |
889 | unsigned long length_lhs, length_rhs; |
890 | CONST struct relation_term *term; |
891 | CONST struct Func *fxnptr; |
892 | |
893 | num_var = NumberVariables(r); |
894 | length_lhs = RelationLength(r, 1); |
895 | length_rhs = RelationLength(r, 0); |
896 | if( (length_lhs + length_rhs) == 0 ) { |
897 | for( v = 0; v < num_var; v++ ) gradient[v] = 0.0; |
898 | *residual = 0.0; |
899 | return 0; |
900 | } |
901 | else { |
902 | stack_height = 1 + MAX(length_lhs,length_rhs); |
903 | } |
904 | |
905 | /* create the stacks */ |
906 | stacks = tmpalloc_array(((num_var+1)*stack_height),double); |
907 | if( stacks == NULL ) return 1; |
908 | |
909 | #define res_stack(s) stacks[(s)] |
910 | #define grad_stack(v,s) stacks[((v)*stack_height)+(s)] |
911 | |
912 | lhs = 1; |
913 | t = 0; |
914 | while(1) { |
915 | if( lhs && (t >= length_lhs) ) { |
916 | /* need to switch to the right hand side--if it exists */ |
917 | if( length_rhs ) { |
918 | lhs = t = 0; |
919 | } |
920 | else { |
921 | /* Set the pointers we were passed to the tops of the stacks. |
922 | * We do not need to check for s>=0, since we know that |
923 | * (length_lhs+length_rhs>0) and that (length_rhs==0), the |
924 | * length_lhs must be > 0, thus s>=0 |
925 | */ |
926 | for( v = 1; v <= num_var; v++ ) gradient[v-1] = grad_stack(v,s); |
927 | *residual = res_stack(s); |
928 | return 0; |
929 | } |
930 | } |
931 | else if( (!lhs) && (t >= length_rhs) ) { |
932 | /* we have processed both sides, quit */ |
933 | if( length_lhs ) { |
934 | /* Set the pointers we were passed to lhs - rhs |
935 | * We know length_lhs and length_rhs are both > 0, since if |
936 | * length_rhs == 0, we would have exited above. |
937 | */ |
938 | for( v = 1; v <= num_var; v++ ) { |
939 | gradient[v-1] = grad_stack(v,s-1) - grad_stack(v,s); |
940 | } |
941 | *residual = res_stack(s-1) - res_stack(s); |
942 | return 0; |
943 | } |
944 | else { |
945 | /* Set the pointers we were passed to -1.0 * top of stacks. |
946 | * We do not need to check for s>=0, since we know that |
947 | * (length_lhs+length_rhs>0) and that (length_lhs==0), the |
948 | * length_rhs must be > 0, thus s>=0 |
949 | */ |
950 | for( v = 1; v <= num_var; v++ ) { |
951 | gradient[v-1] = -grad_stack(v,s); |
952 | } |
953 | *residual = -res_stack(s); |
954 | return 0; |
955 | } |
956 | } |
957 | |
958 | term = NewRelationTerm(r, t++, lhs); |
959 | switch( RelationTermType(term) ) { |
960 | case e_zero: |
961 | s++; |
962 | for( v = 1; v <= num_var; v++ ) grad_stack(v,s) = 0.0; |
963 | res_stack(s) = 0.0; |
964 | break; |
965 | case e_real: |
966 | s++; |
967 | for( v = 1; v <= num_var; v++ ) grad_stack(v,s) = 0.0; |
968 | res_stack(s) = TermReal(term); |
969 | break; |
970 | case e_int: |
971 | s++; |
972 | for( v = 1; v <= num_var; v++ ) grad_stack(v,s) = 0.0; |
973 | res_stack(s) = TermInteger(term); |
974 | break; |
975 | case e_var: |
976 | s++; |
977 | for( v = 1; v <= num_var; v++ ) grad_stack(v,s) = 0.0; |
978 | grad_stack(TermVarNumber(term),s) = 1.0; |
979 | res_stack(s) = TermVariable(r, term); |
980 | break; |
981 | case e_plus: |
982 | /* d(u+v) = du + dv */ |
983 | for( v = 1; v <= num_var; v++ ) grad_stack(v,s-1) += grad_stack(v,s); |
984 | res_stack(s-1) += res_stack(s); |
985 | s--; |
986 | break; |
987 | case e_minus: |
988 | /* d(u-v) = du - dv */ |
989 | for( v = 1; v <= num_var; v++ ) grad_stack(v,s-1) -= grad_stack(v,s); |
990 | res_stack(s-1) -= res_stack(s); |
991 | s--; |
992 | break; |
993 | case e_times: |
994 | /* d(u*v) = u*dv + v*du */ |
995 | for( v = 1; v <= num_var; v++ ) { |
996 | grad_stack(v,s-1) = ((res_stack(s-1) * grad_stack(v,s)) + |
997 | (res_stack(s) * grad_stack(v,s-1))); |
998 | } |
999 | res_stack(s-1) *= res_stack(s); |
1000 | s--; |
1001 | break; |
1002 | case e_divide: |
1003 | /* d(u/v) = du/v - u*dv/(v^2) = (1/v) * [du - (u/v)*dv] */ |
1004 | res_stack(s) = 1.0 / res_stack(s); /* 1/v */ |
1005 | res_stack(s-1) *= res_stack(s); /* u/v */ |
1006 | for( v = 1; v <= num_var; v++ ) { |
1007 | grad_stack(v,s-1) = (res_stack(s) * |
1008 | (grad_stack(v,s-1) - |
1009 | (res_stack(s-1) * grad_stack(v,s)))); |
1010 | } |
1011 | s--; |
1012 | break; |
1013 | case e_uminus: |
1014 | for( v = 1; v <= num_var; v++ ) grad_stack(v,s) = -grad_stack(v,s); |
1015 | res_stack(s) = -res_stack(s); |
1016 | break; |
1017 | case e_power: |
1018 | /* d(u^v) = v * u^(v-1) * du + ln(u) * u^v * dv */ |
1019 | /* First compute: v*u^(v-1) */ |
1020 | temp = res_stack(s) * pow( res_stack(s-1), (res_stack(s) - 1.0) ); |
1021 | /* Now compute: ln(u) */ |
1022 | temp2 = FuncEval( LookupFuncById(F_LN), res_stack(s-1) ); |
1023 | /* Next compute: u^v */ |
1024 | res_stack(s-1) = pow(res_stack(s-1), res_stack(s)); |
1025 | /* Compute: [ln(u)] * [u^v] */ |
1026 | temp2 *= res_stack(s-1); |
1027 | /* Finally, compute: [v*u^(v-1)] * [du] + [ln(u)*u^v] * [dv] */ |
1028 | for( v = 1; v <= num_var; v++ ) { |
1029 | grad_stack(v,s-1) = ((temp * grad_stack(v,s-1)) + |
1030 | (temp2 * grad_stack(v,s))); |
1031 | } |
1032 | s--; |
1033 | break; |
1034 | case e_ipower: |
1035 | /* d(u^v) = v * u^(v-1) * du + ln(u) * u^v * dv */ |
1036 | /* First compute: v*u^(v-1) */ |
1037 | temp = asc_d1ipow( res_stack(s-1), ((int)res_stack(s)) ); |
1038 | /* Now compute: ln(u) */ |
1039 | temp2 = FuncEval( LookupFuncById(F_LN), res_stack(s-1) ); |
1040 | /* Next compute: u^v */ |
1041 | res_stack(s-1) = asc_ipow( res_stack(s-1), ((int)res_stack(s)) ); |
1042 | /* Compute: [ln(u)] * [u^v] */ |
1043 | temp2 *= res_stack(s-1); |
1044 | /* Finally, compute: [v*u^(v-1)] * [du] + [ln(u)*u^v] * [dv] */ |
1045 | for( v = 1; v <= num_var; v++ ) { |
1046 | grad_stack(v,s-1) = ((temp * grad_stack(v,s-1)) + |
1047 | (temp2 * grad_stack(v,s))); |
1048 | } |
1049 | s--; |
1050 | break; |
1051 | case e_func: |
1052 | /* |
1053 | funcptr = TermFunc(term); |
1054 | for (v = 0; v < num_var; v++) { |
1055 | grad_stack(v,s) = FuncDeriv(funcptr, grad_stack(v,s)); |
1056 | } |
1057 | res_stack(s) = FuncEval(funcptr, res_stack(s)); */ |
1058 | fxnptr = TermFunc(term); |
1059 | temp = FuncDeriv( fxnptr, res_stack(s) ); |
1060 | for( v = 1; v <= num_var; v++ ) grad_stack(v,s) *= temp; |
1061 | res_stack(s) = FuncEval( fxnptr, res_stack(s) ); |
1062 | break; |
1063 | default: |
1064 | Asc_Panic(2, __FUNCTION__,"Unknown relation term type"); |
1065 | break; |
1066 | } |
1067 | } |
1068 | #undef grad_stack |
1069 | #undef res_stack |
1070 | } |
1071 | |
1072 | static int |
1073 | RelationEvaluateResidualGradientSafe(CONST struct relation *r, |
1074 | double *residual, |
1075 | double *gradient, |
1076 | enum safe_err *serr) |
1077 | { |
1078 | unsigned long t; /* the current term in the relation r */ |
1079 | unsigned long num_var; /* the number of variables in the relation r */ |
1080 | unsigned long v; /* the index of the variable we are looking at */ |
1081 | int lhs; /* looking at left(=1) or right(=0) hand side of r */ |
1082 | double *stacks; /* the memory for the stacks */ |
1083 | unsigned long stack_height; /* height of each stack */ |
1084 | long s = -1; /* the top position in the stacks */ |
1085 | double temp, temp2; /* temporary variables to speed gradient calculatns */ |
1086 | unsigned long length_lhs, length_rhs; |
1087 | CONST struct relation_term *term; |
1088 | CONST struct Func *fxnptr; |
1089 | |
1090 | num_var = NumberVariables(r); |
1091 | length_lhs = RelationLength(r, 1); |
1092 | length_rhs = RelationLength(r, 0); |
1093 | if( (length_lhs + length_rhs) == 0 ) { |
1094 | for( v = 0; v < num_var; v++ ) gradient[v] = 0.0; |
1095 | *residual = 0.0; |
1096 | return 0; |
1097 | } |
1098 | else { |
1099 | stack_height = 1 + MAX(length_lhs,length_rhs); |
1100 | } |
1101 | |
1102 | /* create the stacks */ |
1103 | stacks = tmpalloc_array(((num_var+1)*stack_height),double); |
1104 | if( stacks == NULL ) return 1; |
1105 | |
1106 | #define res_stack(s) stacks[(s)] |
1107 | #define grad_stack(v,s) stacks[((v)*stack_height)+(s)] |
1108 | |
1109 | lhs = 1; |
1110 | t = 0; |
1111 | while(1) { |
1112 | if( lhs && (t >= length_lhs) ) { |
1113 | /* need to switch to the right hand side--if it exists */ |
1114 | if( length_rhs ) { |
1115 | lhs = t = 0; |
1116 | } |
1117 | else { |
1118 | /* Set the pointers we were passed to the tops of the stacks. |
1119 | * We do not need to check for s>=0, since we know that |
1120 | * (length_lhs+length_rhs>0) and that (length_rhs==0), the |
1121 | * length_lhs must be > 0, thus s>=0 |
1122 | */ |
1123 | for( v = 1; v <= num_var; v++ ) gradient[v-1] = grad_stack(v,s); |
1124 | *residual = res_stack(s); |
1125 | return 0; |
1126 | } |
1127 | } |
1128 | else if( (!lhs) && (t >= length_rhs) ) { |
1129 | /* we have processed both sides, quit */ |
1130 | if( length_lhs ) { |
1131 | /* Set the pointers we were passed to lhs - rhs |
1132 | * We know length_lhs and length_rhs are both > 0, since if |
1133 | * length_rhs == 0, we would have exited above. |
1134 | */ |
1135 | for( v = 1; v <= num_var; v++ ) { |
1136 | gradient[v-1] = safe_sub_D0(grad_stack(v,s-1),grad_stack(v,s),serr); |
1137 | } |
1138 | *residual = safe_sub_D0(res_stack(s-1), res_stack(s), serr); |
1139 | return 0; |
1140 | } |
1141 | else { |
1142 | /* Set the pointers we were passed to -1.0 * top of stacks. |
1143 | * We do not need to check for s>=0, since we know that |
1144 | * (length_lhs+length_rhs>0) and that (length_lhs==0), the |
1145 | * length_rhs must be > 0, thus s>=0 |
1146 | */ |
1147 | for( v = 1; v <= num_var; v++ ) { |
1148 | gradient[v-1] = -grad_stack(v,s); |
1149 | } |
1150 | *residual = -res_stack(s); |
1151 | return 0; |
1152 | } |
1153 | } |
1154 | |
1155 | term = NewRelationTerm(r, t++, lhs); |
1156 | switch( RelationTermType(term) ) { |
1157 | case e_zero: |
1158 | s++; |
1159 | for( v = 1; v <= num_var; v++ ) grad_stack(v,s) = 0.0; |
1160 | res_stack(s) = 0.0; |
1161 | break; |
1162 | case e_real: |
1163 | s++; |
1164 | for( v = 1; v <= num_var; v++ ) grad_stack(v,s) = 0.0; |
1165 | res_stack(s) = TermReal(term); |
1166 | break; |
1167 | case e_int: |
1168 | s++; |
1169 | for( v = 1; v <= num_var; v++ ) grad_stack(v,s) = 0.0; |
1170 | res_stack(s) = TermInteger(term); |
1171 | break; |
1172 | case e_var: |
1173 | s++; |
1174 | for( v = 1; v <= num_var; v++ ) grad_stack(v,s) = 0.0; |
1175 | grad_stack(TermVarNumber(term),s) = 1.0; |
1176 | res_stack(s) = TermVariable(r, term); |
1177 | break; |
1178 | case e_plus: |
1179 | /* d(u+v) = du + dv */ |
1180 | for( v = 1; v <= num_var; v++ ) { |
1181 | grad_stack(v,s-1)=safe_add_D0(grad_stack(v,s-1),grad_stack(v,s),serr); |
1182 | } |
1183 | res_stack(s-1) = safe_add_D0(res_stack(s-1),res_stack(s),serr); |
1184 | s--; |
1185 | break; |
1186 | case e_minus: |
1187 | /* d(u-v) = du - dv */ |
1188 | for( v = 1; v <= num_var; v++ ) { |
1189 | grad_stack(v,s-1)=safe_sub_D0(grad_stack(v,s-1),grad_stack(v,s),serr); |
1190 | } |
1191 | res_stack(s-1) = safe_sub_D0(res_stack(s-1),res_stack(s),serr); |
1192 | s--; |
1193 | break; |
1194 | case e_times: |
1195 | /* d(u*v) = u*dv + v*du */ |
1196 | for( v = 1; v <= num_var; v++ ) { |
1197 | grad_stack(v,s-1) = |
1198 | safe_add_D0(safe_mul_D0(res_stack(s-1),grad_stack(v,s),serr), |
1199 | safe_mul_D0(res_stack(s),grad_stack(v,s-1),serr), |
1200 | serr); |
1201 | } |
1202 | res_stack(s-1) = safe_mul_D0(res_stack(s-1),res_stack(s),serr); |
1203 | s--; |
1204 | break; |
1205 | case e_divide: |
1206 | /* d(u/v) = du/v - u*dv/(v^2) = (1/v) * [du - (u/v)*dv] */ |
1207 | res_stack(s) = safe_rec(res_stack(s),serr); /* 1/v */ |
1208 | res_stack(s-1) = safe_mul_D0(res_stack(s-1),res_stack(s),serr); /* u/v */ |
1209 | for( v = 1; v <= num_var; v++ ) { |
1210 | grad_stack(v,s-1) = |
1211 | safe_mul_D0(res_stack(s), |
1212 | safe_sub_D0(grad_stack(v,s-1), |
1213 | safe_mul_D0(res_stack(s-1), |
1214 | grad_stack(v,s), |
1215 | serr),serr),serr); |
1216 | } |
1217 | s--; |
1218 | break; |
1219 | case e_uminus: |
1220 | for( v = 1; v <= num_var; v++ ) grad_stack(v,s) = -grad_stack(v,s); |
1221 | res_stack(s) = -res_stack(s); |
1222 | break; |
1223 | case e_power: |
1224 | /* d(u^v) = v * u^(v-1) * du + ln(u) * u^v * dv */ |
1225 | /* v*u^(v-1) */ |
1226 | temp = safe_pow_D1( res_stack(s-1), res_stack(s), 0, serr ); |
1227 | /* ln(u)*u^v */ |
1228 | temp2 = safe_pow_D1( res_stack(s-1), res_stack(s), 1, serr ); |
1229 | /* Compute: [v*u^(v-1)] * [du] + [ln(u)*u^v] * [dv] */ |
1230 | for( v = 1; v <= num_var; v++ ) { |
1231 | grad_stack(v,s-1) = |
1232 | safe_add_D0(safe_mul_D0(temp, grad_stack(v,s-1), serr), |
1233 | safe_mul_D0(temp2, grad_stack(v,s), serr), serr); |
1234 | } |
1235 | /* u^v */ |
1236 | res_stack(s-1) = safe_pow_D0( res_stack(s-1), res_stack(s), serr ); |
1237 | s--; |
1238 | break; |
1239 | case e_ipower: |
1240 | /* d(u^v) = v * u^(v-1) * du + ln(u) * u^v * dv */ |
1241 | /* v*u^(v-1) */ |
1242 | temp = safe_ipow_D1( res_stack(s-1), res_stack(s), 0, serr ); |
1243 | /* ln(u)*u^v */ |
1244 | temp2 = safe_ipow_D1( res_stack(s-1), res_stack(s), 1, serr ); |
1245 | /* Compute: [v*u^(v-1)] * [du] + [ln(u)*u^v] * [dv] */ |
1246 | for( v = 1; v <= num_var; v++ ) { |
1247 | grad_stack(v,s-1) = |
1248 | safe_add_D0(safe_mul_D0(temp, grad_stack(v,s-1), serr), |
1249 | safe_mul_D0(temp2, grad_stack(v,s), serr), serr); |
1250 | } |
1251 | /* Next compute: u^v */ |
1252 | res_stack(s-1) = safe_ipow_D0( res_stack(s-1), res_stack(s), serr ); |
1253 | s--; |
1254 | break; |
1255 | case e_func: |
1256 | fxnptr = TermFunc(term); |
1257 | temp = FuncDerivSafe( fxnptr, res_stack(s), serr); |
1258 | for( v = 1; v <= num_var; v++ ) { |
1259 | grad_stack(v,s) = safe_mul_D0( grad_stack(v,s), temp, serr ); |
1260 | } |
1261 | res_stack(s) = FuncEvalSafe( fxnptr, res_stack(s), serr); |
1262 | break; |
1263 | default: |
1264 | Asc_Panic(2, __FUNCTION__,"Unknown relation term type"); |
1265 | } |
1266 | } |
1267 | #undef grad_stack |
1268 | #undef res_stack |
1269 | } |
1270 | |
1271 | /** |
1272 | This function evaluates and returns the derivative of the |
1273 | relation r with respect to the variable whose index is pos. |
1274 | This function assumes r exists and that pos is within the proper range. |
1275 | The function computes the gradients by maintaining 2 stacks, one for |
1276 | the residual and one for the derivative. The stacks come from a |
1277 | single array which this gets by calling tmpalloc_array. Two macros |
1278 | are defined to make referencing this array easier. Of the malloc fails, |
1279 | this function returns 0.0, so there is currently no way to know if |
1280 | the function failed. |
1281 | */ |
1282 | static double |
1283 | RelationEvaluateDerivative(CONST struct relation *r, |
1284 | unsigned long pos) |
1285 | { |
1286 | unsigned long t; /* the current term in the relation r */ |
1287 | int lhs; /* looking at left(=1) or right(=0) hand side of r */ |
1288 | double *stacks; /* the memory for the stacks */ |
1289 | unsigned long stack_height; /* height of each stack */ |
1290 | long s = -1; /* the top position in the stacks */ |
1291 | unsigned long length_lhs, length_rhs; |
1292 | CONST struct relation_term *term; |
1293 | CONST struct Func *fxnptr; |
1294 | |
1295 | length_lhs = RelationLength(r, 1); |
1296 | length_rhs = RelationLength(r, 0); |
1297 | if( (length_lhs + length_rhs) == 0 ) { |
1298 | return 0.0; |
1299 | } |
1300 | else { |
1301 | stack_height = 1 + MAX(length_lhs,length_rhs); |
1302 | } |
1303 | |
1304 | /* create the stacks */ |
1305 | stacks = tmpalloc_array((2*stack_height),double); |
1306 | if( stacks == NULL ) return 0.0; |
1307 | |
1308 | #define res_stack(s) stacks[(s)] |
1309 | #define grad_stack(s) stacks[stack_height+(s)] |
1310 | |
1311 | lhs = 1; |
1312 | t = 0; |
1313 | while(1) { |
1314 | if( lhs && (t >= length_lhs) ) { |
1315 | /* need to switch to the right hand side--if it exists */ |
1316 | if( length_rhs ) { |
1317 | lhs = t = 0; |
1318 | } |
1319 | else { |
1320 | /* do not need to check for s>=0, since we know that |
1321 | * (length_lhs+length_rhs>0) and that (length_rhs==0), the |
1322 | * length_lhs must be > 0, thus s>=0 |
1323 | */ |
1324 | return grad_stack(s); |
1325 | } |
1326 | } |
1327 | else if( (!lhs) && (t >= length_rhs) ) { |
1328 | /* we have processed both sides, quit */ |
1329 | if( length_lhs ) { |
1330 | /* we know length_lhs and length_rhs are both > 0, since if |
1331 | * length_rhs == 0, we would have exited above. |
1332 | */ |
1333 | return (grad_stack(s-1) - grad_stack(s)); |
1334 | } |
1335 | else { |
1336 | /* do not need to check for s>=0, since we know that |
1337 | * (length_lhs+length_rhs>0) and that (length_lhs==0), the |
1338 | * length_rhs must be > 0, thus s>=0 |
1339 | */ |
1340 | return (-1.0 * grad_stack(s)); |
1341 | } |
1342 | } |
1343 | |
1344 | term = NewRelationTerm(r, t++, lhs); |
1345 | switch( RelationTermType(term) ) { |
1346 | case e_zero: |
1347 | s++; |
1348 | grad_stack(s) = res_stack(s) = 0.0; |
1349 | break; |
1350 | case e_real: |
1351 | s++; |
1352 | grad_stack(s) = 0.0; |
1353 | res_stack(s) = TermReal(term); |
1354 | break; |
1355 | case e_int: |
1356 | s++; |
1357 | grad_stack(s) = 0.0; |
1358 | res_stack(s) = TermInteger(term); |
1359 | break; |
1360 | case e_var: |
1361 | s++; |
1362 | grad_stack(s) = ( (pos == TermVarNumber(term)) ? 1.0 : 0.0 ); |
1363 | res_stack(s) = TermVariable(r, term); |
1364 | break; |
1365 | case e_plus: |
1366 | /* d(u+v) = du + dv */ |
1367 | grad_stack(s-1) += grad_stack(s); |
1368 | res_stack(s-1) += res_stack(s); |
1369 | s--; |
1370 | break; |
1371 | case e_minus: |
1372 | /* d(u-v) = du - dv */ |
1373 | grad_stack(s-1) -= grad_stack(s); |
1374 | res_stack(s-1) -= res_stack(s); |
1375 | s--; |
1376 | break; |
1377 | case e_times: |
1378 | /* d(u*v) = u*dv + v*du */ |
1379 | grad_stack(s-1) = ((res_stack(s-1) * grad_stack(s)) + |
1380 | (res_stack(s) * grad_stack(s-1))); |
1381 | res_stack(s-1) *= res_stack(s); |
1382 | s--; |
1383 | break; |
1384 | case e_divide: |
1385 | /* d(u/v) = du/v - u*dv/(v^2) = [du - (u/v)*dv]/v */ |
1386 | res_stack(s-1) = res_stack(s-1) / res_stack(s); |
1387 | grad_stack(s-1) = ((grad_stack(s-1) - (res_stack(s-1) * grad_stack(s))) / |
1388 | res_stack(s)); |
1389 | s--; |
1390 | break; |
1391 | case e_uminus: |
1392 | grad_stack(s) = -grad_stack(s); |
1393 | res_stack(s) = -res_stack(s); |
1394 | break; |
1395 | case e_power: |
1396 | /* d(u^v) = v * u^(v-1) * du + ln(u) * u^v * dv */ |
1397 | /* First we compute: v*u^(v-1)*du */ |
1398 | grad_stack(s-1) *= (pow(res_stack(s-1), (res_stack(s) - 1.0)) * |
1399 | res_stack(s)); |
1400 | /* Now compute: ln(u)*dv */ |
1401 | grad_stack(s) *= FuncEval( LookupFuncById(F_LN), res_stack(s-1) ); |
1402 | /* Next compute: u^v */ |
1403 | res_stack(s-1) = pow( res_stack(s-1), res_stack(s) ); |
1404 | /* Finally, compute: [v*u^(v-1)*du] + [u^v] * [ln(u)*dv] */ |
1405 | grad_stack(s-1) += (res_stack(s-1) * grad_stack(s)); |
1406 | s--; |
1407 | break; |
1408 | case e_ipower: |
1409 | /* d(x^y) = y * dx * x^(y-1) + ln(x) * dy * x^y */ |
1410 | /* First we compute: v*u^(v-1)*du */ |
1411 | grad_stack(s-1) *= asc_d1ipow( res_stack(s-1), ((int)res_stack(s)) ); |
1412 | /* Now compute: ln(u)*dv */ |
1413 | grad_stack(s) *= FuncEval( LookupFuncById(F_LN), res_stack(s-1) ); |
1414 | /* Next compute: u^v */ |
1415 | res_stack(s-1) = asc_ipow( res_stack(s-1), ((int)res_stack(s)) ); |
1416 | /* Finally, compute: [v*u^(v-1)*du] + [u^v] * [ln(u)*dv] */ |
1417 | grad_stack(s-1) += (res_stack(s-1) * grad_stack(s)); |
1418 | s--; |
1419 | break; |
1420 | case e_func: |
1421 | fxnptr = TermFunc(term); |
1422 | grad_stack(s) *= FuncDeriv( fxnptr, res_stack(s) ); |
1423 | res_stack(s) = FuncEval( fxnptr, res_stack(s) ); |
1424 | break; |
1425 | default: |
1426 | Asc_Panic(2, __FUNCTION__,"Unknown relation term type"); |
1427 | break; |
1428 | } |
1429 | } |
1430 | #undef grad_stack |
1431 | #undef res_stack |
1432 | } |
1433 | |
1434 | static double |
1435 | RelationEvaluateDerivativeSafe(CONST struct relation *r, |
1436 | unsigned long pos, |
1437 | enum safe_err *serr) |
1438 | { |
1439 | unsigned long t; /* the current term in the relation r */ |
1440 | int lhs; /* looking at left(=1) or right(=0) hand side of r */ |
1441 | double *stacks; /* the memory for the stacks */ |
1442 | unsigned long stack_height; /* height of each stack */ |
1443 | long s = -1; /* the top position in the stacks */ |
1444 | unsigned long length_lhs, length_rhs; |
1445 | CONST struct relation_term *term; |
1446 | CONST struct Func *fxnptr; |
1447 | |
1448 | length_lhs = RelationLength(r, 1); |
1449 | length_rhs = RelationLength(r, 0); |
1450 | if( (length_lhs + length_rhs) == 0 ) { |
1451 | return 0.0; |
1452 | } |
1453 | else { |
1454 | stack_height = 1 + MAX(length_lhs,length_rhs); |
1455 | } |
1456 | |
1457 | /* create the stacks */ |
1458 | stacks = tmpalloc_array((2*stack_height),double); |
1459 | if( stacks == NULL ) return 0.0; |
1460 | |
1461 | #define res_stack(s) stacks[(s)] |
1462 | #define grad_stack(s) stacks[stack_height+(s)] |
1463 | |
1464 | lhs = 1; |
1465 | t = 0; |
1466 | while(1) { |
1467 | if( lhs && (t >= length_lhs) ) { |
1468 | /* need to switch to the right hand side--if it exists */ |
1469 | if( length_rhs ) { |
1470 | lhs = t = 0; |
1471 | } |
1472 | else { |
1473 | /* do not need to check for s>=0, since we know that |
1474 | * (length_lhs+length_rhs>0) and that (length_rhs==0), the |
1475 | * length_lhs must be > 0, thus s>=0 |
1476 | */ |
1477 | return grad_stack(s); |
1478 | } |
1479 | } |
1480 | else if( (!lhs) && (t >= length_rhs) ) { |
1481 | /* we have processed both sides, quit */ |
1482 | if( length_lhs ) { |
1483 | /* we know length_lhs and length_rhs are both > 0, since if |
1484 | * length_rhs == 0, we would have exited above. |
1485 | */ |
1486 | return safe_sub_D0(grad_stack(s-1), grad_stack(s), serr); |
1487 | } |
1488 | else { |
1489 | /* do not need to check for s>=0, since we know that |
1490 | * (length_lhs+length_rhs>0) and that (length_lhs==0), the |
1491 | * length_rhs must be > 0, thus s>=0 |
1492 | */ |
1493 | return (-grad_stack(s)); |
1494 | } |
1495 | } |
1496 | |
1497 | term = NewRelationTerm(r, t++, lhs); |
1498 | switch( RelationTermType(term) ) { |
1499 | case e_zero: |
1500 | s++; |
1501 | grad_stack(s) = res_stack(s) = 0.0; |
1502 | break; |
1503 | case e_real: |
1504 | s++; |
1505 | grad_stack(s) = 0.0; |
1506 | res_stack(s) = TermReal(term); |
1507 | break; |
1508 | case e_int: |
1509 | s++; |
1510 | grad_stack(s) = 0.0; |
1511 | res_stack(s) = TermInteger(term); |
1512 | break; |
1513 | case e_var: |
1514 | s++; |
1515 | grad_stack(s) = ( (pos == TermVarNumber(term)) ? 1.0 : 0.0 ); |
1516 | res_stack(s) = TermVariable(r, term); |
1517 | break; |
1518 | case e_plus: |
1519 | /* d(u+v) = du + dv */ |
1520 | grad_stack(s-1) = safe_add_D0( grad_stack(s-1), grad_stack(s), serr ); |
1521 | res_stack(s-1) = safe_add_D0( res_stack(s-1), res_stack(s), serr ); |
1522 | s--; |
1523 | break; |
1524 | case e_minus: |
1525 | /* d(u-v) = du - dv */ |
1526 | grad_stack(s-1) = safe_sub_D0( grad_stack(s-1), grad_stack(s), serr ); |
1527 | res_stack(s-1) = safe_sub_D0( res_stack(s-1), res_stack(s), serr ); |
1528 | s--; |
1529 | break; |
1530 | case e_times: |
1531 | /* d(u*v) = u*dv + v*du */ |
1532 | grad_stack(s-1) = |
1533 | safe_add_D0(safe_mul_D0( res_stack(s-1), grad_stack(s), serr), |
1534 | safe_mul_D0( res_stack(s), grad_stack(s-1), serr), serr); |
1535 | res_stack(s-1) = safe_mul_D0( res_stack(s-1), res_stack(s), serr ); |
1536 | s--; |
1537 | break; |
1538 | case e_divide: |
1539 | /* d(u/v) = du/v - u*dv/(v^2) = [du - (u/v)*dv]/v */ |
1540 | res_stack(s-1) = safe_div_D0( res_stack(s-1), res_stack(s), serr); |
1541 | grad_stack(s-1) = |
1542 | safe_div_D0(safe_sub_D0(grad_stack(s-1), |
1543 | safe_mul_D0(res_stack(s-1),grad_stack(s),serr), |
1544 | serr), |
1545 | res_stack(s),serr); |
1546 | s--; |
1547 | break; |
1548 | case e_uminus: |
1549 | grad_stack(s) = -grad_stack(s); |
1550 | res_stack(s) = -res_stack(s); |
1551 | break; |
1552 | case e_power: |
1553 | /* d(u^v) = v * u^(v-1) * du + ln(u) * u^v * dv */ |
1554 | grad_stack(s-1) = |
1555 | safe_add_D0(safe_mul_D0(safe_pow_D1(res_stack(s-1), |
1556 | res_stack(s),0,serr), |
1557 | grad_stack(s-1), serr), |
1558 | safe_mul_D0(safe_pow_D1(res_stack(s-1), |
1559 | res_stack(s),1,serr), |
1560 | grad_stack(s),serr), serr); |
1561 | /* u^v */ |
1562 | res_stack(s-1) = safe_pow_D0( res_stack(s-1), res_stack(s), serr); |
1563 | s--; |
1564 | break; |
1565 | case e_ipower: |
1566 | /* d(x^y) = y * dx * x^(y-1) + ln(x) * dy * x^y */ |
1567 | grad_stack(s-1) = |
1568 | safe_add_D0(safe_mul_D0(safe_ipow_D1(res_stack(s-1), |
1569 | res_stack(s),0,serr), |
1570 | grad_stack(s-1), serr), |
1571 | safe_mul_D0(safe_ipow_D1(res_stack(s-1), |
1572 | res_stack(s),1,serr), |
1573 | grad_stack(s),serr), serr); |
1574 | /* u^v */ |
1575 | res_stack(s-1) = safe_ipow_D0( res_stack(s-1), res_stack(s), serr); |
1576 | s--; |
1577 | break; |
1578 | case e_func: |
1579 | fxnptr = TermFunc(term); |
1580 | grad_stack(s) = safe_mul_D0(FuncDerivSafe( fxnptr, res_stack(s), serr ), |
1581 | grad_stack(s), serr); |
1582 | res_stack(s) = FuncEvalSafe( fxnptr, res_stack(s), serr); |
1583 | break; |
1584 | default: |
1585 | Asc_Panic(2, __FUNCTION__,"Unknown relation term type"); |
1586 | } |
1587 | } |
1588 | #undef grad_stack |
1589 | #undef res_stack |
1590 | } |
1591 | |
1592 | /*------------------------------------------------------------------------------ |
1593 | RELATION & RELATION TERM QUERIES FUNCTIONS (FOR USE BY EXTERNAL CODE) |
1594 | */ |
1595 | |
1596 | /** |
1597 | @return =, <, >, etc, etc. not e_token, e_glassbox, etc |
1598 | */ |
1599 | enum Expr_enum RelationRelop(CONST struct relation *rel) |
1600 | { |
1601 | AssertAllocatedMemory(rel,sizeof(struct relation)); |
1602 | return rel->share->s.relop; |
1603 | } |
1604 | |
1605 | /** |
1606 | This query only applies to TokenRelations and OpcodeRelations. |
1607 | */ |
1608 | unsigned long RelationLength(CONST struct relation *rel, int lhs) |
1609 | { |
1610 | assert(rel!=NULL); |
1611 | AssertAllocatedMemory(rel,sizeof(struct relation)); |
1612 | if (lhs){ |
1613 | if (RTOKEN(rel).lhs) return (RTOKEN(rel).lhs_len); |
1614 | else return 0; |
1615 | } |
1616 | if (RTOKEN(rel).rhs) return (RTOKEN(rel).rhs_len); |
1617 | else return 0; |
1618 | } |
1619 | |
1620 | /* |
1621 | This query only applies to TokenRelations. It assumes the |
1622 | user still thinks tokens number from [1..len]. |
1623 | */ |
1624 | CONST struct relation_term *RelationTerm(CONST struct relation *rel, |
1625 | unsigned long int pos, int lhs) |
1626 | { |
1627 | assert(rel!=NULL); |
1628 | AssertAllocatedMemory(rel,sizeof(struct relation)); |
1629 | if (lhs){ |
1630 | if (RTOKEN(rel).lhs) |
1631 | return A_TERM(&(RTOKEN(rel).lhs[pos-1])); |
1632 | else return NULL; |
1633 | } |
1634 | else{ |
1635 | if (RTOKEN(rel).rhs) |
1636 | return A_TERM(&(RTOKEN(rel).rhs[pos-1])); |
1637 | else return NULL; |
1638 | } |
1639 | } |
1640 | |
1641 | /** |
1642 | This query only applies to TokenRelations. It assumes the |
1643 | clued user thinks tokens number from [0..len-1], which they do. |
1644 | */ |
1645 | CONST struct relation_term |
1646 | *NewRelationTermF(CONST struct relation *rel, unsigned long pos, int lhs) |
1647 | { |
1648 | assert(rel!=NULL); |
1649 | AssertAllocatedMemory(rel,sizeof(struct relation)); |
1650 | if (lhs){ |
1651 | if (RTOKEN(rel).lhs != NULL) |
1652 | return A_TERM(&(RTOKEN(rel).lhs[pos])); |
1653 | else return NULL; |
1654 | }else{ |
1655 | if (RTOKEN(rel).rhs != NULL) |
1656 | return A_TERM(&(RTOKEN(rel).rhs[pos])); |
1657 | else return NULL; |
1658 | } |
1659 | } |
1660 | |
1661 | /** |
1662 | This query only applies to sides from TokenRelations. It assumes the |
1663 | clued user thinks tokens number from [0..len-1], which they do, |
1664 | and that the side came from a token relation instance. |
1665 | */ |
1666 | CONST struct relation_term |
1667 | *RelationSideTermF(CONST union RelationTermUnion *side, unsigned long pos) |
1668 | { |
1669 | assert(side!=NULL); |
1670 | return A_TERM(&(side[pos])); |
1671 | } |
1672 | |
1673 | /** |
1674 | This query only applies to TokenRelations. It assumes the |
1675 | clued user thinks tokens number from [0..len-1], which they do. |
1676 | */ |
1677 | enum Expr_enum RelationTermTypeF(CONST struct relation_term *term) |
1678 | { |
1679 | AssertMemory(term); |
1680 | return term->t; |
1681 | } |
1682 | |
1683 | unsigned long TermVarNumber(CONST struct relation_term *term) |
1684 | { |
1685 | assert(term&&term->t == e_var); |
1686 | AssertMemory(term); |
1687 | return V_TERM(term)->varnum; |
1688 | } |
1689 | |
1690 | long TermInteger(CONST struct relation_term *term){ |
1691 | assert(term&&(term->t==e_int)); |
1692 | AssertMemory(term); |
1693 | return I_TERM(term)->ivalue; |
1694 | } |
1695 | |
1696 | double TermReal(CONST struct relation_term *term){ |
1697 | assert(term&&( term->t==e_real || term->t==e_zero)); |
1698 | AssertMemory(term); |
1699 | return R_TERM(term)->value; |
1700 | } |
1701 | |
1702 | double |
1703 | TermVariable(CONST struct relation *rel, CONST struct relation_term *term){ |
1704 | return |
1705 | RealAtomValue((struct Instance*)RelationVariable(rel,TermVarNumber(term))); |
1706 | } |
1707 | |
1708 | CONST dim_type *TermDimensions(CONST struct relation_term *term){ |
1709 | assert( term && (term->t==e_real || term->t == e_int || term->t == e_zero) ); |
1710 | AssertMemory(term); |
1711 | if (term->t==e_real) return R_TERM(term)->dimensions; |
1712 | if (term->t==e_int) return Dimensionless(); |
1713 | if (term->t==e_zero) return WildDimension(); |
1714 | return NULL; |
1715 | } |
1716 | |
1717 | CONST struct Func *TermFunc(CONST struct relation_term *term){ |
1718 | assert(term&&(term->t == e_func)); |
1719 | AssertMemory(term); |
1720 | return F_TERM(term)->fptr; |
1721 | } |
1722 | |
1723 | struct relation_term *RelationINF_Lhs(CONST struct relation *rel){ |
1724 | return RTOKEN(rel).lhs_term; |
1725 | } |
1726 | |
1727 | struct relation_term *RelationINF_Rhs(CONST struct relation *rel){ |
1728 | return RTOKEN(rel).rhs_term; |
1729 | } |
1730 | |
1731 | |
1732 | /*------------------------------------------------------------------------------ |
1733 | BLACKBOX RELATION QUERIES |
1734 | |
1735 | For picking apart a BlackBox relation and its ExternalCall node. |
1736 | */ |
1737 | |
1738 | struct ExtCallNode *BlackBoxExtCall(CONST struct relation *rel){ |
1739 | assert(rel!=NULL); |
1740 | return RBBOX(rel).ext; |
1741 | } |
1742 | |
1743 | int *BlackBoxArgs(CONST struct relation *rel){ |
1744 | assert(rel!=NULL); |
1745 | return RBBOX(rel).args; |
1746 | } |
1747 | |
1748 | /*------------------------------------------------------------------------------ |
1749 | GLASSBOX RELATION QUERIES |
1750 | |
1751 | For picking apart a GlassBox relation. |
1752 | */ |
1753 | |
1754 | struct ExternalFunc *GlassBoxExtFunc(CONST struct relation *rel){ |
1755 | assert(rel!=NULL); |
1756 | return RGBOX(rel).efunc; |
1757 | } |
1758 | |
1759 | int GlassBoxRelIndex(CONST struct relation *rel){ |
1760 | assert(rel!=NULL); |
1761 | return RGBOX(rel).index; |
1762 | } |
1763 | |
1764 | int *GlassBoxArgs(CONST struct relation *rel){ |
1765 | assert(rel!=NULL); |
1766 | return RGBOX(rel).args; |
1767 | } |
1768 | |
1769 | |
1770 | /*------------------------------------------------------------------------------ |
1771 | GENERAL RELATION QUERIES |
1772 | |
1773 | Not all of these queries may be applied to all relation types. |
1774 | Those that cannot be are so marked. |
1775 | */ |
1776 | |
1777 | CONST struct gl_list_t *RelationVarList(CONST struct relation *rel){ |
1778 | return (CONST struct gl_list_t *)rel->vars; |
1779 | } |
1780 | |
1781 | dim_type *RelationDim(CONST struct relation *rel){ |
1782 | assert(rel!=NULL); |
1783 | return rel->d; |
1784 | } |
1785 | |
1786 | int SetRelationDim(struct relation *rel, dim_type *d){ |
1787 | if (!rel) return 1; |
1788 | rel->d = d; |
1789 | return 0; |
1790 | } |
1791 | |
1792 | double RelationResidual(CONST struct relation *rel){ |
1793 | assert(rel!=NULL); |
1794 | return rel->residual; |
1795 | } |
1796 | |
1797 | void SetRelationResidual(struct relation *rel, double value){ |
1798 | assert(rel!=NULL); |
1799 | rel->residual = value; |
1800 | } |
1801 | |
1802 | double RelationMultiplier(CONST struct relation *rel){ |
1803 | assert(rel!=NULL); |
1804 | return rel->multiplier; |
1805 | } |
1806 | |
1807 | void SetRelationMultiplier(struct relation *rel, double value){ |
1808 | assert(rel!=NULL); |
1809 | rel->multiplier = value; |
1810 | } |
1811 | |
1812 | double RelationNominal(CONST struct relation *rel){ |
1813 | assert(rel!=NULL); |
1814 | return rel->nominal; |
1815 | } |
1816 | |
1817 | void SetRelationNominal(struct relation *rel, double value){ |
1818 | assert(rel!=NULL); |
1819 | rel->nominal = (fabs(value) > 0.0) ? fabs(value) : rel->nominal; |
1820 | } |
1821 | |
1822 | |
1823 | int RelationIsCond(CONST struct relation *rel){ |
1824 | if ( rel != NULL) { |
1825 | return rel->iscond; |
1826 | } |
1827 | return 0; |
1828 | } |
1829 | |
1830 | void SetRelationIsCond(struct relation *rel){ |
1831 | if ( rel != NULL) { |
1832 | rel->iscond = 1; |
1833 | }else{ |
1834 | ERROR_REPORTER_HERE(ASC_PROG_ERR,"NULL relation"); |
1835 | } |
1836 | } |
1837 | |
1838 | unsigned long NumberVariables(CONST struct relation *rel) |
1839 | { |
1840 | unsigned long n; |
1841 | assert(rel!=NULL); |
1842 | n = (rel->vars!=NULL) ? gl_length(rel->vars) : 0; |
1843 | return n; |
1844 | } |
1845 | |
1846 | struct Instance *RelationVariable(CONST struct relation *rel, |
1847 | unsigned long int varnum |
1848 | ){ |
1849 | assert(rel!=NULL); |
1850 | return (struct Instance *)gl_fetch(rel->vars,varnum); |
1851 | } |
1852 | |
1853 | static void CalcDepth(CONST struct relation *rel, |
1854 | int lhs, |
1855 | unsigned long int *depth, |
1856 | unsigned long int *maxdepth |
1857 | ){ |
1858 | unsigned long c,length; |
1859 | CONST struct relation_term *term; |
1860 | length = RelationLength(rel,lhs); |
1861 | for(c=0;c<length;c++){ |
1862 | term = NewRelationTerm(rel,c,lhs); |
1863 | switch(RelationTermType(term)){ |
1864 | case e_zero: |
1865 | case e_int: |
1866 | case e_real: |
1867 | case e_var: |
1868 | if (++(*depth) > *maxdepth) *maxdepth = *depth; |
1869 | break; |
1870 | case e_func: |
1871 | case e_uminus: |
1872 | break; |
1873 | case e_plus: |
1874 | case e_minus: |
1875 | case e_times: |
1876 | case e_divide: |
1877 | case e_power: |
1878 | case e_ipower: |
1879 | (*depth)--; |
1880 | break; |
1881 | default: |
1882 | Asc_Panic(2, __FUNCTION__,"Unknown relation term type"); |
1883 | } |
1884 | } |
1885 | } |
1886 | |
1887 | unsigned long RelationDepth(CONST struct relation *rel){ |
1888 | unsigned long depth=0,maxdepth=0; |
1889 | switch(RelationRelop(rel)){ |
1890 | case e_equal: |
1891 | case e_notequal: |
1892 | case e_less: |
1893 | case e_greater: |
1894 | case e_lesseq: |
1895 | case e_greatereq: |
1896 | CalcDepth(rel,1,&depth,&maxdepth); |
1897 | CalcDepth(rel,0,&depth,&maxdepth); |
1898 | assert(depth == 2); |
1899 | break; |
1900 | case e_maximize: |
1901 | case e_minimize: |
1902 | CalcDepth(rel,1,&depth,&maxdepth); |
1903 | assert(depth == 1); |
1904 | break; |
1905 | default: |
1906 | Asc_Panic(2, __FUNCTION__,"Unknown relation term type"); |
1907 | } |
1908 | return maxdepth; |
1909 | } |
1910 | |
1911 | /*------------------------------------------------------------------------------ |
1912 | EQUATION SCALING |
1913 | |
1914 | "Documentation will be added at a later date" -- someone last century |
1915 | */ |
1916 | |
1917 | static double FindMaxAdditiveTerm(struct relation_term *s){ |
1918 | enum safe_err serr; |
1919 | double lhs, rhs; |
1920 | |
1921 | switch (RelationTermType(s)) { |
1922 | case e_plus: |
1923 | case e_minus: |
1924 | /** note these used to be inlined with max, but a bug in gcc323 caused it to be split out. */ |
1925 | lhs = FindMaxAdditiveTerm(TermBinLeft(s)); |
1926 | rhs = FindMaxAdditiveTerm(TermBinRight(s)); |
1927 | return MAX(fabs(lhs), fabs(rhs)); |
1928 | case e_uminus: |
1929 | return (FindMaxAdditiveTerm(TermUniLeft(s))); |
1930 | case e_times: |
1931 | return (FindMaxAdditiveTerm(TermBinLeft(s))* |
1932 | FindMaxAdditiveTerm(TermBinRight(s))); |
1933 | case e_divide: |
1934 | /* bug patch / 0 */ |
1935 | return safe_div_D0(FindMaxAdditiveTerm(TermBinLeft(s)) , |
1936 | RelationBranchEvaluator(TermBinRight(s)),&serr); |
1937 | default: |
1938 | return RelationBranchEvaluator(s); |
1939 | } |
1940 | } |
1941 | |
1942 | static double FindMaxFromTop(struct relation *s){ |
1943 | double lhs; |
1944 | double rhs; |
1945 | if (s == NULL) { |
1946 | return 0; |
1947 | } |
1948 | /** note these used to be inlined with max, but a bug in gcc323 caused it to be split out. */ |
1949 | lhs = FindMaxAdditiveTerm(Infix_LhsSide(s)); |
1950 | rhs = FindMaxAdditiveTerm(Infix_RhsSide(s)); |
1951 | return MAX(fabs(lhs), fabs(rhs)); |
1952 | } |
1953 | |
1954 | /* send in relation */ |
1955 | double CalcRelationNominal(struct Instance *i){ |
1956 | enum Expr_enum reltype; |
1957 | static int msg=0; |
1958 | |
1959 | char *iname; |
1960 | iname = WriteInstanceNameString(i,NULL); |
1961 | ascfree(iname); |
1962 | |
1963 | glob_rel = NULL; |
1964 | if (i == NULL){ |
1965 | FPRINTF(ASCERR, "error in CalcRelationNominal routine\n"); |
1966 | return (double)0; |
1967 | } |
1968 | if (InstanceKind(i) != REL_INST) { |
1969 | FPRINTF(ASCERR, "error in CalcRelationNominal routine\n"); |
1970 | return (double)0; |
1971 | } |
1972 | glob_rel = (struct relation *)GetInstanceRelation(i,&reltype); |
1973 | if (glob_rel == NULL) { |
1974 | FPRINTF(ASCERR, "error in CalcRelationNominal routine\n"); |
1975 | return (double)0; |
1976 | } |
1977 | |
1978 | if (reltype == e_token) { |
1979 | double temp; |
1980 | temp = FindMaxFromTop(glob_rel); |
1981 | if (isnan(temp) || !finite(temp)) { |
1982 | glob_rel = NULL; |
1983 | return (double)1; |
1984 | } |
1985 | if ( temp > 0) { /* this could return some really small numbers */ |
1986 | glob_rel = NULL; |
1987 | return temp; |
1988 | } |
1989 | } |
1990 | if (reltype == e_blackbox){ |
1991 | if(!msg){ |
1992 | ERROR_REPORTER_HERE(ASC_PROG_WARNING,"assuming 1.0 for blackbox (%s)",__FUNCTION__); |
1993 | msg=1; |
1994 | } |
1995 | }else if (reltype == e_glassbox){ |
1996 | if(!msg){ |
1997 | ERROR_REPORTER_HERE(ASC_PROG_WARNING,"glassbox not implemented yet (assuming 1.0) (%s)",__FUNCTION__); |
1998 | msg=2; |
1999 | } |
2000 | }else if (reltype == e_opcode){ |
2001 | ERROR_REPORTER_HERE(ASC_PROG_ERR,"opcode not supported (%s)",__FUNCTION__); |
2002 | } |
2003 | glob_rel = NULL; |
2004 | return (double)1; |
2005 | } |
2006 | |
2007 | void PrintScale(struct Instance *i){ |
2008 | if (InstanceKind(i) == REL_INST) { |
2009 | double j; |
2010 | j = CalcRelationNominal(i); |
2011 | PRINTF(" scale constant = %g\n", j); |
2012 | } |
2013 | } |
2014 | |
2015 | void PrintRelationNominals(struct Instance *i){ |
2016 | VisitInstanceTree(i,PrintScale, 0, 0); |
2017 | } |
2018 | |
2019 | /*------------------------------------------------------------------------------ |
2020 | CALCULATION ROUTINES |
2021 | */ |
2022 | |
2023 | /** |
2024 | * Load ATOM values into an array of doubles. |
2025 | * The array of doubles is indexed from 0 while the |
2026 | * var list is indexed from 1. The ultimate client of |
2027 | * the array calling this function thinks vars index from 0. |
2028 | */ |
2029 | static |
2030 | void RelationLoadDoubles(struct gl_list_t *varlist, double *vars){ |
2031 | unsigned long c; |
2032 | vars--; /* back up the pointer so indexing from 1 puts data right */ |
2033 | for (c= gl_length(varlist); c > 0; c--) { |
2034 | vars[c] = RealAtomValue((struct Instance *)gl_fetch(varlist,c)); |
2035 | } |
2036 | } |
2037 | |
2038 | /** |
2039 | only called on token relations. |
2040 | */ |
2041 | int RelationCalcResidualBinary(CONST struct relation *r, double *res){ |
2042 | double *vars; |
2043 | double tres; |
2044 | int old_errno; |
2045 | |
2046 | if (r == NULL || res == NULL) { |
2047 | return 1; |
2048 | } |
2049 | vars = tmpalloc_array(gl_length(r->vars),double); |
2050 | if (vars == NULL) { |
2051 | return 1; |
2052 | } |
2053 | RelationLoadDoubles(r->vars,vars); |
2054 | old_errno = errno; /* push C global errno */ |
2055 | errno = 0; |
2056 | if (BinTokenCalcResidual(RTOKEN(r).btable,RTOKEN(r).bindex,vars,&tres)) { |
2057 | if (errno == 0) { /* pop if unchanged */ |
2058 | errno = old_errno; |
2059 | } |
2060 | return 1; |
2061 | } |
2062 | if (!finite(tres) || errno == EDOM || errno == ERANGE ) { |
2063 | if (errno == 0) { /* pop if unchanged */ |
2064 | errno = old_errno; |
2065 | } |
2066 | return 1; |
2067 | } |
2068 | if (errno == 0) { /* pop if unchanged */ |
2069 | errno = old_errno; |
2070 | } |
2071 | *res = tres; |
2072 | return 0; |
2073 | } |
2074 | |
2075 | enum safe_err |
2076 | RelationCalcResidualPostfixSafe(struct Instance *i, double *res){ |
2077 | struct relation *r; |
2078 | enum Expr_enum reltype; |
2079 | enum safe_err status = safe_ok; |
2080 | unsigned long length_lhs, length_rhs; |
2081 | |
2082 | /* CONSOLE_DEBUG("..."); */ |
2083 | |
2084 | CHECK_INST_RES(i,res,1); |
2085 | |
2086 | r = (struct relation *)GetInstanceRelation(i, &reltype); |
2087 | |
2088 | /* CONSOLE_DEBUG("..."); */ |
2089 | |
2090 | if( r == NULL ) { |
2091 | ERROR_REPORTER_HERE(ASC_PROG_ERR,"null relation"); |
2092 | return safe_problem; |
2093 | } |
2094 | |
2095 | /* CONSOLE_DEBUG("..."); */ |
2096 | |
2097 | switch(reltype){ |
2098 | case e_token: |
2099 | length_lhs = RelationLength(r, 1); |
2100 | length_rhs = RelationLength(r, 0); |
2101 | |
2102 | if(length_lhs > 0){ |
2103 | length_lhs--; |
2104 | *res = RelationEvaluatePostfixBranchSafe(r, &length_lhs, 1,&status); |
2105 | /* CONSOLE_DEBUG("res = %g",res); */ |
2106 | }else{ |
2107 | *res = 0.0; |
2108 | } |
2109 | |
2110 | if(length_rhs > 0){ |
2111 | length_rhs--; |
2112 | *res -= RelationEvaluatePostfixBranchSafe(r, &length_rhs, 0,&status); |
2113 | /* CONSOLE_DEBUG("res = %g",res); */ |
2114 | } |
2115 | |
2116 | safe_error_to_stderr(&status); |
2117 | break; |
2118 | case e_blackbox: |
2119 | ERROR_REPORTER_HERE(ASC_PROG_WARNING,"Attempting to evaluate blackbox..."); |
2120 | if ( RelationCalcResidualPostfix(i,res) != 0) { |
2121 | status = safe_problem; |
2122 | safe_error_to_stderr(&status); |
2123 | } |
2124 | break; |
2125 | case e_glassbox: |
2126 | ERROR_REPORTER_HERE(ASC_PROG_ERR,"'e_glassbox' relation not supported"); |
2127 | status = safe_problem; |
2128 | break; |
2129 | case e_opcode: |
2130 | ERROR_REPORTER_HERE(ASC_PROG_ERR,"'e_opcode' relation not supported"); |
2131 | status = safe_problem; |
2132 | break; |
2133 | default: |
2134 | if(reltype >= TOK_REL_TYPE_LOW && reltype <= TOK_REL_TYPE_HIGH){ |
2135 | status = safe_problem; |
2136 | }else{ |
2137 | Asc_Panic(2, __FUNCTION__, "reached end of routine!"); |
2138 | } |
2139 | } |
2140 | return status; |
2141 | } |
2142 | |
2143 | |
2144 | int |
2145 | RelationCalcResidualPostfix(struct Instance *i, double *res){ |
2146 | struct relation *r; |
2147 | enum Expr_enum reltype; |
2148 | unsigned long length_lhs, length_rhs; |
2149 | |
2150 | CHECK_INST_RES(i,res,1); |
2151 | |
2152 | r = (struct relation *)GetInstanceRelation(i, &reltype); |
2153 | if(r == NULL){ |
2154 | ERROR_REPORTER_HERE(ASC_PROG_ERR,"null relation\n"); |
2155 | return 1; |
2156 | } |
2157 | |
2158 | /* |
2159 | struct Instance *p; |
2160 | p = InstanceParent(i,1); |
2161 | char *tmp; |
2162 | tmp = WriteRelationString(i,p,NULL,NULL,relio_ascend,NULL); |
2163 | CONSOLE_DEBUG("Evaluating residual for '%s'",tmp); |
2164 | ASC_FREE(tmp); |
2165 | */ |
2166 | |
2167 | if( reltype == e_token ) { |
2168 | length_lhs = RelationLength(r, 1); |
2169 | length_rhs = RelationLength(r, 0); |
2170 | if( length_lhs > 0 ) { |
2171 | length_lhs--; |
2172 | *res = RelationEvaluatePostfixBranch(r, &length_lhs, 1); |
2173 | } |
2174 | else { |
2175 | *res = 0.0; |
2176 | } |
2177 | if( length_rhs > 0 ) { |
2178 | length_rhs--; |
2179 | *res -= RelationEvaluatePostfixBranch(r, &length_rhs, 0); |
2180 | } |
2181 | return 0; |
2182 | }else if (reltype >= TOK_REL_TYPE_LOW && reltype <= TOK_REL_TYPE_HIGH){ |
2183 | |
2184 | if (reltype == e_blackbox){ |
2185 | CONSOLE_DEBUG("REL = %p",r); |
2186 | *res = ExtRel_Evaluate_Residual(r); |
2187 | }else if (reltype == e_glassbox){ |
2188 | ERROR_REPORTER_HERE(ASC_PROG_ERR,"glassbox not implemented yet (%s)",__FUNCTION__); |
2189 | }else if (reltype == e_opcode) { |
2190 | ERROR_REPORTER_HERE(ASC_PROG_ERR,"opcode not supported (%s)",__FUNCTION__); |
2191 | } |
2192 | |
2193 | return 1; |
2194 | }else{ |
2195 | Asc_Panic(2, __FUNCTION__,"reached end of routine"); |
2196 | } |
2197 | } |
2198 | |
2199 | int RelationCalcExceptionsInfix(struct Instance *i){ |
2200 | enum Expr_enum reltype; |
2201 | double res; |
2202 | int result = 0; |
2203 | int old_errno; |
2204 | |
2205 | glob_rel = NULL; |
2206 | |
2207 | CHECK_INST_RES(i,&res,-1); |
2208 | |
2209 | glob_rel = (struct relation *)GetInstanceRelation(i, &reltype); |
2210 | if( glob_rel == NULL ) { |
2211 | ERROR_REPORTER_HERE(ASC_PROG_ERR,"NULL relation"); |
2212 | return -1; |
2213 | } |
2214 | if( reltype == e_token ) { |
2215 | if (Infix_LhsSide(glob_rel) != NULL) { |
2216 | old_errno = errno; |
2217 | errno = 0; /* save the last errno, because we don't know why */ |
2218 | res = RelationBranchEvaluator(Infix_LhsSide(glob_rel)); |
2219 | if (!finite(res) || errno == EDOM || errno == ERANGE) { |
2220 | result |= RCE_ERR_LHS; |
2221 | if (isnan(res)) { |
2222 | result |= RCE_ERR_LHSNAN; |
2223 | }else{ |
2224 | if (!finite(res)) { |
2225 | result |= RCE_ERR_LHSINF; |
2226 | } |
2227 | } |
2228 | } |
2229 | if (errno == 0) { |
2230 | errno = old_errno; |
2231 | } /* else something odd happened in evaluation */ |
2232 | } |
2233 | if(Infix_RhsSide(glob_rel) != NULL) { |
2234 | res = RelationBranchEvaluator(Infix_RhsSide(glob_rel)); |
2235 | if (!finite(res)) { |
2236 | result |= RCE_ERR_RHS; |
2237 | if (isnan(res)) { |
2238 | result |= RCE_ERR_RHSNAN; |
2239 | }else{ |
2240 | if (!finite(res)) { |
2241 | result |= RCE_ERR_LHSINF; |
2242 | } |
2243 | } |
2244 | } |
2245 | } |
2246 | glob_rel = NULL; |
2247 | return result; |
2248 | }else if (reltype >= TOK_REL_TYPE_LOW && reltype <= TOK_REL_TYPE_HIGH) { |
2249 | ERROR_REPORTER_HERE(ASC_PROG_ERR,"relation type not implemented (%s)",__FUNCTION__); |
2250 | glob_rel = NULL; |
2251 | return -1; |
2252 | }else{ |
2253 | Asc_Panic(2, __FUNCTION__,"reached end of routine"); |
2254 | } |
2255 | } |
2256 | |
2257 | |
2258 | int RelationCalcResidualInfix(struct Instance *i, double *res){ |
2259 | enum Expr_enum reltype; |
2260 | glob_rel = NULL; |
2261 | |
2262 | CHECK_INST_RES(i,res,1); |
2263 | |
2264 | glob_rel = (struct relation *)GetInstanceRelation(i, &reltype); |
2265 | if( glob_rel == NULL ) { |
2266 | ERROR_REPORTER_HERE(ASC_PROG_ERR,"NULL relation\n"); |
2267 | return 1; |
2268 | } |
2269 | if( reltype == e_token ) { |
2270 | if(Infix_LhsSide(glob_rel) != NULL) { |
2271 | *res = RelationBranchEvaluator(Infix_LhsSide(glob_rel)); |
2272 | }else{ |
2273 | *res = 0.0; |
2274 | } |
2275 | if(Infix_RhsSide(glob_rel) != NULL) { |
2276 | *res -= RelationBranchEvaluator(Infix_RhsSide(glob_rel)); |
2277 | } |
2278 | glob_rel = NULL; |
2279 | return 0; |
2280 | }else if (reltype >= TOK_REL_TYPE_LOW && reltype <= TOK_REL_TYPE_HIGH) { |
2281 | ERROR_REPORTER_HERE(ASC_PROG_ERR,"reltype not implemented (%s)",__FUNCTION__); |
2282 | glob_rel = NULL; |
2283 | return 1; |
2284 | }else{ |
2285 | Asc_Panic(2, __FUNCTION__,"reached end of routine"); |
2286 | } |
2287 | } |
2288 | |
2289 | |
2290 | /* |
2291 | There used to be a stoopid comment here so I removed it. |
2292 | */ |
2293 | int |
2294 | RelationCalcResidualPostfix2(struct Instance *i, double *res){ |
2295 | struct relation *r; |
2296 | enum Expr_enum reltype; |
2297 | |
2298 | CHECK_INST_RES(i,res,1); |
2299 | |
2300 | r = (struct relation *)GetInstanceRelation(i, &reltype); |
2301 | if( r == NULL ) { |
2302 | ERROR_REPORTER_HERE(ASC_PROG_ERR,"null relation\n"); |
2303 | return 1; |
2304 | } |
2305 | |
2306 | if( reltype == e_token ){ |
2307 | *res = RelationEvaluateResidualPostfix(r); |
2308 | return 0; |
2309 | }else if (reltype >= TOK_REL_TYPE_LOW && reltype <= TOK_REL_TYPE_HIGH){ |
2310 | ERROR_REPORTER_HERE(ASC_PROG_ERR,"reltype not implemented (%s)",__FUNCTION__); |
2311 | return 1; |
2312 | }else{ |
2313 | Asc_Panic(2, __FUNCTION__,"reached end of routine"); |
2314 | } |
2315 | } |
2316 | |
2317 | |
2318 | /* |
2319 | simply call the version that calculates the gradient and the residual, |
2320 | then ignore the residual |
2321 | */ |
2322 | int |
2323 | RelationCalcGradient(struct Instance *r, double *grad){ |
2324 | double residual; |
2325 | return RelationCalcResidGrad(r, &residual, grad); |
2326 | } |
2327 | |
2328 | /* |
2329 | simply call the version that calculates the gradient and the residual, |
2330 | then ignore the residual |
2331 | */ |
2332 | enum safe_err |
2333 | RelationCalcGradientSafe(struct Instance *r, double *grad){ |
2334 | double residual; |
2335 | |
2336 | return RelationCalcResidGradSafe(r, &residual, grad); |
2337 | } |
2338 | |
2339 | |
2340 | int |
2341 | RelationCalcResidGrad(struct Instance *i, double *residual, double *gradient){ |
2342 | struct relation *r; |
2343 | enum Expr_enum reltype; |
2344 | |
2345 | CHECK_INST_RES(i,residual,1); |
2346 | CHECK_INST_RES(i,residual,1); |
2347 | |
2348 | r = (struct relation *)GetInstanceRelation(i, &reltype); |
2349 | if( r == NULL ) { |
2350 | ERROR_REPORTER_HERE(ASC_PROG_ERR,"null relation\n"); |
2351 | return 1; |
2352 | } |
2353 | |
2354 | if(reltype == e_token ){ |
2355 | return RelationEvaluateResidualGradient(r, residual, gradient); |
2356 | |
2357 | }else if(reltype >= TOK_REL_TYPE_LOW && reltype <= TOK_REL_TYPE_HIGH){ |
2358 | ERROR_REPORTER_HERE(ASC_PROG_ERR,"reltype not implemented (%s)",__FUNCTION__); |
2359 | return 1; |
2360 | |
2361 | }else{ |
2362 | Asc_Panic(2, __FUNCTION__, "reached end of routine"); |
2363 | } |
2364 | } |
2365 | |
2366 | enum safe_err |
2367 | RelationCalcResidGradSafe(struct Instance *i |
2368 | , double *residual, double *gradient |
2369 | ){ |
2370 | struct relation *r; |
2371 | enum Expr_enum reltype; |
2372 | enum safe_err not_safe = safe_ok; |
2373 | int dummy_int; |
2374 | |
2375 | #ifndef NDEBUG |
2376 | if( i == NULL ) { |
2377 | ERROR_REPORTER_HERE(ASC_PROG_ERR,"null instance\n"); |
2378 | not_safe = safe_problem; |
2379 | return not_safe; |
2380 | } |
2381 | if( residual == NULL || gradient == NULL ) { |
2382 | ERROR_REPORTER_HERE(ASC_PROG_ERR,"null pointer\n"); |
2383 | not_safe = safe_problem; |
2384 | return not_safe; |
2385 | } |
2386 | if( InstanceKind(i) != REL_INST ) { |
2387 | ERROR_REPORTER_HERE(ASC_PROG_ERR,"not relation\n"); |
2388 | not_safe = safe_problem; |
2389 | return not_safe; |
2390 | } |
2391 | #endif |
2392 | r = (struct relation *)GetInstanceRelation(i, &reltype); |
2393 | if( r == NULL ) { |
2394 | ERROR_REPORTER_HERE(ASC_PROG_ERR,"null relation\n"); |
2395 | not_safe = safe_problem; |
2396 | return not_safe; |
2397 | } |
2398 | |
2399 | if( reltype == e_token ) { |
2400 | dummy_int = |
2401 | RelationEvaluateResidualGradientSafe(r, residual, gradient, ¬_safe); |
2402 | return not_safe; |
2403 | } |
2404 | else if (reltype >= TOK_REL_TYPE_LOW && reltype <= TOK_REL_TYPE_HIGH) { |
2405 | if (reltype == e_blackbox){ |
2406 | ERROR_REPORTER_HERE(ASC_PROG_ERR,"blackbox not implemented yet (%s)",__FUNCTION__); |
2407 | }else if (reltype == e_glassbox){ |
2408 | ERROR_REPORTER_HERE(ASC_PROG_ERR,"glassbox not implemented yet (%s)",__FUNCTION__); |
2409 | }else if (reltype == e_opcode){ |
2410 | ERROR_REPORTER_HERE(ASC_PROG_ERR,"opcode not supported (%s)",__FUNCTION__); |
2411 | } |
2412 | not_safe = safe_problem; |
2413 | return not_safe; |
2414 | } |
2415 | else { |
2416 | Asc_Panic(2, __FUNCTION__, "reached end of routine"); |
2417 | } |
2418 | } |
2419 | |
2420 | |
2421 | /* |
2422 | calculate the derivative with respect to a single variable |
2423 | whose index is index, where 1<=index<=NumberVariables(r) |
2424 | |
2425 | @TODO this appears only to be used in PrintGradients |
2426 | */ |
2427 | int |
2428 | RelationCalcDerivative(struct Instance *i, |
2429 | unsigned long index, double *gradient |
2430 | ){ |
2431 | struct relation *r; |
2432 | enum Expr_enum reltype; |
2433 | |
2434 | CHECK_INST_RES(i,gradient,1); |
2435 | |
2436 | r = (struct relation *)GetInstanceRelation(i, &reltype); |
2437 | if( r == NULL ) { |
2438 | ERROR_REPORTER_HERE(ASC_PROG_ERR,"null relation\n"); |
2439 | return 1; |
2440 | } |
2441 | if( (index < 1) || (index > NumberVariables(r)) ) { |
2442 | ERROR_REPORTER_HERE(ASC_PROG_ERR,"index out of bounds\n"); |
2443 | return 1; |
2444 | } |
2445 | |
2446 | if( reltype == e_token ) { |
2447 | *gradient = RelationEvaluateDerivative(r, index); |
2448 | return 0; |
2449 | } |
2450 | else if (reltype >= TOK_REL_TYPE_LOW && reltype <= TOK_REL_TYPE_HIGH) { |
2451 | ERROR_REPORTER_HERE(ASC_PROG_ERR,"reltype not supported (%s)",__FUNCTION__); |
2452 | return 1; |
2453 | } |
2454 | else { |
2455 | Asc_Panic(2, __FUNCTION__, "reached end of routine"); |
2456 | } |
2457 | } |
2458 | |
2459 | enum safe_err |
2460 | RelationCalcDerivativeSafe(struct Instance *i, |
2461 | unsigned long index,double *gradient |
2462 | ){ |
2463 | struct relation *r; |
2464 | enum Expr_enum reltype; |
2465 | enum safe_err not_safe = safe_ok; |
2466 | |
2467 | #ifndef NDEBUG |
2468 | if(!relutil_check_inst_and_res(i,gradient)){ |
2469 | not_safe = safe_problem; |
2470 | return not_safe; |
2471 | } |
2472 | #endif |
2473 | r = (struct relation *)GetInstanceRelation(i, &reltype); |
2474 | if( r == NULL ) { |
2475 | ERROR_REPORTER_HERE(ASC_PROG_ERR,"null relation\n"); |
2476 | not_safe = safe_problem; |
2477 | return not_safe; |
2478 | } |
2479 | if( (index < 1) || (index > NumberVariables(r)) ) { |
2480 | ERROR_REPORTER_HERE(ASC_PROG_ERR,"index out of bounds\n"); |
2481 | not_safe = safe_problem; |
2482 | return not_safe; |
2483 | } |
2484 | |
2485 | if( reltype == e_token ) { |
2486 | *gradient = RelationEvaluateDerivativeSafe(r, index, ¬_safe); |
2487 | return not_safe; |
2488 | } |
2489 | else if (reltype >= TOK_REL_TYPE_LOW && reltype <= TOK_REL_TYPE_HIGH) { |
2490 | ERROR_REPORTER_HERE(ASC_PROG_ERR,"reltype not supported (%s)",__FUNCTION__); |
2491 | not_safe = safe_problem; |
2492 | return not_safe; |
2493 | } |
2494 | else { |
2495 | Asc_Panic(2, __FUNCTION__, "reached end of routine"); |
2496 | |
2497 | } |
2498 | } |
2499 | |
2500 | /** |
2501 | Function for testing residual and gradient calulations |
2502 | */ |
2503 | void PrintGradients(struct Instance *i){ |
2504 | if (InstanceKind(i) == REL_INST) { |
2505 | double res, grads[1000]; |
2506 | unsigned long vars, v; |
2507 | enum Expr_enum type; |
2508 | enum safe_err safe; |
2509 | |
2510 | vars = NumberVariables((struct relation *)GetInstanceRelation(i,&type)); |
2511 | |
2512 | /***** use the non safe versions *****/ |
2513 | for( v = 0; v < vars; v++ ) { |
2514 | if( ! RelationCalcDerivative(i, v+1, &res) ) { |
2515 | PRINTF("derivative in%5ld =\t%g\n", v+1, res); |
2516 | } |
2517 | else { |
2518 | PRINTF("**** RelationCalcDerivative returned nonzero status\n"); |
2519 | } |
2520 | } |
2521 | |
2522 | if( ! RelationCalcResidGrad(i,&res,grads) ) { |
2523 | for (v = 0; v < vars; v++) { |
2524 | PRINTF("gradient in %6ld =\t%g\n", v+1, grads[v]); |
2525 | } |
2526 | PRINTF("residual from grad =\t%g\n", res); |
2527 | } |
2528 | else { |
2529 | PRINTF("**** RelationCalcResidGrad returned nonzero status\n"); |
2530 | } |
2531 | |
2532 | if( !RelationCalcResidualInfix(i,&res) ) { |
2533 | PRINTF(" infix residual =\t%g\n", res); |
2534 | } |
2535 | else { |
2536 | PRINTF("**** RelationCalcResidualInfix returned nonzero status\n"); |
2537 | } |
2538 | |
2539 | if( !RelationCalcResidualPostfix(i,&res) ) { |
2540 | PRINTF(" postfix residual =\t%g\n", res); |
2541 | } |
2542 | else { |
2543 | PRINTF("**** RelationCalcResidualPostfix returned nonzero status\n"); |
2544 | } |
2545 | |
2546 | if( !RelationCalcResidualPostfix2(i,&res) ) { |
2547 | PRINTF(" postfix2 residual =\t%g\n", res); |
2548 | } |
2549 | else { |
2550 | PRINTF("**** RelationCalcResidualPostfix2 returned nonzero status\n"); |
2551 | } |
2552 | |
2553 | /***** use the safe versions *****/ |
2554 | for( v = 0; v < vars; v++ ) { |
2555 | if(safe_ok == (safe = RelationCalcDerivativeSafe(i, v+1, &res)) ) { |
2556 | PRINTF("safe deriv in%5ld =\t%g\n", v+1, res); |
2557 | } |
2558 | else { |
2559 | PRINTF("**** RelationCalcDerivativeSafe returned nonzero: %d\n", safe); |
2560 | } |
2561 | } |
2562 | |
2563 | if(safe_ok == (safe = RelationCalcResidGradSafe(i,&res,grads)) ) { |
2564 | for (v = 0; v < vars; v++) { |
2565 | PRINTF("safe grad in%6ld =\t%g\n", v+1, grads[v]); |
2566 | } |
2567 | PRINTF("safe resid ala grad=\t%g\n", res); |
2568 | } |
2569 | else { |
2570 | PRINTF("**** RelationCalcResidGradSafe returned nonzero: %d\n", safe); |
2571 | } |
2572 | |
2573 | /***** not implemented |
2574 | if( ! (safe = RelationCalcResidualInfixSafe(i,&res)) ) { |
2575 | PRINTF("safe infix residual=\t%g\n", res); |
2576 | } |
2577 | else { |
2578 | PRINTF("**** RelationCalcResidualInfixSafe returned nonzero: %d\n", |
2579 | safe); |
2580 | } |
2581 | *****/ |
2582 | |
2583 | if(safe_ok == (safe = RelationCalcResidualPostfixSafe(i,&res)) ) { |
2584 | PRINTF("safe postfix resid =\t%g\n", res); |
2585 | } |
2586 | else { |
2587 | PRINTF("**** RelationCalcResidualPostfixSafe returned nonzero: %d\n", |
2588 | safe); |
2589 | } |
2590 | |
2591 | /***** not implemented |
2592 | if( ! (safe = RelationCalcResidualPostfix2Safe(i,&res)) ) { |
2593 | PRINTF("safe postfix2 resd =\t%g\n", res); |
2594 | } |
2595 | else { |
2596 | PRINTF("**** RelationCalcResidualPostfix2Safe returned nonzero: %d\n", |
2597 | safe); |
2598 | } |
2599 | *****/ |
2600 | |
2601 | PRINTF("\n"); |
2602 | } |
2603 | } |
2604 | void PrintRelationGradients(struct Instance *i) |
2605 | { |
2606 | VisitInstanceTree(i,PrintGradients, 0, 0); |
2607 | } |
2608 | |
2609 | /* this function may make an fpe for method 2 or 3. |
2610 | * list must be of nonnull struct relation * for |
2611 | * meth = m_BIN and struct Instance * for 1-3. |
2612 | */ |
2613 | #define m_BIN 0 |
2614 | #define m_PFS 1 |
2615 | #define m_PF 2 |
2616 | #define m_IF 3 |
2617 | void TimeCalcResidual(struct gl_list_t *rlist,int method){ |
2618 | unsigned long c,len; |
2619 | double res; |
2620 | |
2621 | if (rlist==NULL) return; |
2622 | switch (method) { |
2623 | case m_BIN: |
2624 | for (c=1,len=gl_length(rlist); c <= len; c++) { |
2625 | RelationCalcResidualBinary(gl_fetch(rlist,c),&res); |
2626 | } |
2627 | break; |
2628 | case m_PFS: |
2629 | for (c=1,len=gl_length(rlist); c <= len; c++) { |
2630 | RelationCalcResidualPostfixSafe(gl_fetch(rlist,c),&res); |
2631 | } |
2632 | break; |
2633 | case m_PF: |
2634 | for (c=1,len=gl_length(rlist); c <= len; c++) { |
2635 | RelationCalcResidualPostfix(gl_fetch(rlist,c),&res); |
2636 | } |
2637 | break; |
2638 | case m_IF: |
2639 | for (c=1,len=gl_length(rlist); c <= len; c++) { |
2640 | RelationCalcResidualInfix(gl_fetch(rlist,c),&res); |
2641 | } |
2642 | break; |
2643 | default: |
2644 | break; |
2645 | } |
2646 | return; |
2647 | } |
2648 | |
2649 | void PrintResidual(struct Instance *i){ |
2650 | enum safe_err se; |
2651 | struct relation *rel; |
2652 | enum Expr_enum reltype; |
2653 | int errb; |
2654 | #ifndef M_PI |
2655 | #define M_PIE 3.141590271828 |
2656 | #else |
2657 | #define M_PIE M_PI |
2658 | #endif |
2659 | double post=M_PIE,in=M_PIE,postsafe=M_PIE,binary=M_PIE; |
2660 | |
2661 | if (InstanceKind(i) == REL_INST) { |
2662 | rel = (struct relation *)GetInstanceRelation(i,&reltype); |
2663 | if (reltype == e_token) { |
2664 | errb = RelationCalcResidualBinary(rel,&(binary)); |
2665 | }else{ |
2666 | errb = 1; |
2667 | } |
2668 | se = RelationCalcResidualPostfixSafe(i,&(postsafe)); |
2669 | if (errb || se != safe_ok) { |
2670 | FPRINTF(ASCERR,"Skipping Postfix,Infix\n"); |
2671 | }else{ |
2672 | RelationCalcResidualPostfix(i,&(post)); |
2673 | RelationCalcResidualInfix(i,&(in)); |
2674 | } |
2675 | PRINTF("binary residual = %.18g\n",binary); |
2676 | PRINTF("postfix safe res = %.18g\n",postsafe); |
2677 | if (errb||se!= safe_ok) { |
2678 | PRINTF("postfix residual = %.18g\n",post); |
2679 | PRINTF(" infix residual = %.18g\n",in); |
2680 | } |
2681 | if(binary != postsafe) { |
2682 | PRINTF("!!!!!!!ERROR!!!!!!! %g \n", binary-post); |
2683 | } |
2684 | PRINTF("(Unchanged residuals = %.18g\n\n",M_PIE); |
2685 | } |
2686 | } |
2687 | |
2688 | void PrintRelationResiduals(struct Instance *i){ |
2689 | VisitInstanceTree(i,PrintResidual, 0, 0); |
2690 | } |
2691 | |
2692 | /*============================================================================== |
2693 | 'RELATIONFINDROOTS' AND SUPPORT FUNCTIONS |
2694 | |
2695 | The following functions support RelationFindRoots which |
2696 | is the compiler implementation of our old DirectSolve |
2697 | function. |
2698 | |
2699 | I suspect that a lot of this stuff is deprecated -- JP |
2700 | */ |
2701 | |
2702 | double *RelationFindRoots(struct Instance *i, |
2703 | double lower_bound, double upper_bound, |
2704 | double nominal, |
2705 | double tolerance, |
2706 | unsigned long *varnum, |
2707 | int *able, |
2708 | int *nsolns |
2709 | ){ |
2710 | struct relation *rel; |
2711 | double sideval; |
2712 | enum Expr_enum reltype; |
2713 | static struct ds_soln_list soln_list = {0,0,NULL}; |
2714 | CONST struct gl_list_t *list; |
2715 | |
2716 | /* check for recycle shutdown */ |
2717 | if (i==NULL && varnum == NULL && able == NULL && nsolns == NULL) { |
2718 | if (soln_list.soln != NULL) { |
2719 | ascfree(soln_list.soln); |
2720 | soln_list.soln = NULL; |
2721 | soln_list.length = soln_list.capacity = 0; |
2722 | } |
2723 | RootFind(NULL,NULL,NULL,NULL,NULL,0L,NULL); /*clear brent recycle */ |
2724 | RelationCreateTmp(0,0,e_nop); /* clear tmprelation recycle */ |
2725 | return NULL; |
2726 | } |
2727 | /* check assertions */ |
2728 | #ifndef NDEBUG |
2729 | if( i == NULL ) { |
2730 | FPRINTF(ASCERR, "error in RelationFindRoot: NULL instance\n"); |
2731 | glob_rel = NULL; |
2732 | return NULL; |
2733 | } |
2734 | if (able == NULL){ |
2735 | FPRINTF(ASCERR,"error in RelationFindRoot: NULL able ptr\n"); |
2736 | glob_rel = NULL; |
2737 | return NULL; |
2738 | } |
2739 | if (varnum == NULL){ |
2740 | FPRINTF(ASCERR,"error in RelationFindRoot: NULL varnum\n"); |
2741 | glob_rel = NULL; |
2742 | return NULL; |
2743 | } |
2744 | if( InstanceKind(i) != REL_INST ) { |
2745 | FPRINTF(ASCERR, "error in RelationFindRoot: not relation\n"); |
2746 | glob_rel = NULL; |
2747 | return NULL; |
2748 | } |
2749 | #endif |
2750 | |
2751 | *able = FALSE; |
2752 | *nsolns = -1; /* nsolns will be -1 for a very unhappy root-finder */ |
2753 | glob_rel = NULL; |
2754 | glob_done = 0; |
2755 | soln_list.length = 0; /* reset len to 0. if NULL to start, append mallocs */ |
2756 | append_soln(&soln_list,0.0); |
2757 | rel = (struct relation *)GetInstanceRelation(i, &reltype); |
2758 | if( rel == NULL ) { |
2759 | FPRINTF(ASCERR, "error in RelationFindRoot: NULL relation\n"); |
2760 | glob_rel = NULL; return NULL; |
2761 | } |
2762 | /* here we should switch and handle all types. at present we don't |
2763 | * handle anything except e_token |
2764 | */ |
2765 | if( reltype != e_token ) { |
2766 | FPRINTF(ASCERR, "error in RelationFindRoot: non-token relation\n"); |
2767 | glob_rel = NULL; |
2768 | return NULL; |
2769 | } |
2770 | |
2771 | if (RelationRelop(rel) == e_equal){ |
2772 | glob_rel = RelationTmpTokenCopy(rel); |
2773 | assert(glob_rel!=NULL); |
2774 | glob_done = 0; |
2775 | list = RelationVarList(glob_rel); |
2776 | if( *varnum >= 1 && *varnum <= gl_length(list)){ |
2777 | glob_done = 1; |
2778 | } |
2779 | if (!glob_done) { |
2780 | FPRINTF(ASCERR, "error in FindRoot: var not found\n"); |
2781 | glob_rel = NULL; |
2782 | return NULL; |
2783 | } |
2784 | |
2785 | glob_varnum = *varnum; |
2786 | glob_done = 0; |
2787 | assert(Infix_LhsSide(glob_rel) != NULL); |
2788 | /* In the following if statements we look for the target variable |
2789 | * to the left and right, evaluating all branches without the |
2790 | * target. |
2791 | */ |
2792 | if (SearchEval_Branch(Infix_LhsSide(glob_rel)) < 1) { |
2793 | /* CONSOLE_DEBUG("SearchEval_Branch(Infix_LhsSide(glob_rel)) gave < 1..."); */ |
2794 | sideval = RelationBranchEvaluator(Infix_LhsSide(glob_rel)); |
2795 | if (finite(sideval)) { |
2796 | /* CONSOLE_DEBUG("LHS is finite"); */ |
2797 | InsertBranchResult(Infix_LhsSide(glob_rel),sideval); |
2798 | }else{ |
2799 | /* CONSOLE_DEBUG("LHS is INFINITE"); */ |
2800 | FPRINTF(ASCERR,"Inequality in RelationFindRoots. Infinite RHS.\n"); |
2801 | glob_rel = NULL; |
2802 | return NULL; |
2803 | } |
2804 | } |
2805 | assert(Infix_RhsSide(glob_rel) != NULL); |
2806 | if (SearchEval_Branch(Infix_RhsSide(glob_rel)) < 1) { |
2807 | /* CONSOLE_DEBUG("SearchEval_Branch(Infix_RhsSide(glob_rel)) gave < 1..."); */ |
2808 | sideval = RelationBranchEvaluator(Infix_RhsSide(glob_rel)); |
2809 | if (finite(sideval)) { |
2810 | /* CONSOLE_DEBUG("RHS is finite"); */ |
2811 | InsertBranchResult(Infix_RhsSide(glob_rel),sideval); |
2812 | }else{ |
2813 | /* CONSOLE_DEBUG("RHS is INFINITE"); */ |
2814 | FPRINTF(ASCERR,"Inequality in RelationFindRoots. Infinite LHS.\n"); |
2815 | glob_rel = NULL; |
2816 | return NULL; |
2817 | } |
2818 | } |
2819 | if (glob_done < 1) { |
2820 | /* CONSOLE_DEBUG("RelationInvertToken never found variable"); */ |
2821 | /* RelationInvertToken never found variable */ |
2822 | glob_done = 0; |
2823 | *able = FALSE; |
2824 | return soln_list.soln; |
2825 | } |
2826 | if (glob_done == 1) { |
2827 | /* set to 0 so while loop in RelationInvertToken will work */ |
2828 | glob_done = 0; |
2829 | /* CONSOLE_DEBUG("Calling 'RelationInvertToken'..."); */ |
2830 | glob_done = RelationInvertTokenTop(&(soln_list)); |
2831 | } |
2832 | if (glob_done == 1) { /* if still one, token inversions successful */ |
2833 | /* CONSOLE_DEBUG("INVERSION was successful"); */ |
2834 | glob_done = 0; |
2835 | *nsolns= soln_list.length; |
2836 | *able = TRUE; |
2837 | return soln_list.soln; |
2838 | } |
2839 | /* CALL ITERATIVE SOLVER */ |
2840 | *soln_list.soln = RootFind(glob_rel,&(lower_bound), |
2841 | &(upper_bound),&(nominal), |
2842 | &(tolerance), |
2843 | glob_varnum,able); |
2844 | |
2845 | glob_done = 0; |
2846 | if(*able == 0) { /* Root-Find returns 0 for success*/ |
2847 | *nsolns = 1; |
2848 | *able = TRUE; |
2849 | }else{ |
2850 | CONSOLE_DEBUG("Single-equation iterative solver was unable to find a solution."); |
2851 | *able = FALSE; |
2852 | } |
2853 | return soln_list.soln; |
2854 | |
2855 | } |
2856 | ERROR_REPORTER_HERE(ASC_PROG_ERR,"Inequality: can't find roots."); |
2857 | *able = FALSE; |
2858 | return soln_list.soln; |
2859 | } |
2860 | |
2861 | /*------------------------------------------------------------------------------ |
2862 | MEMORY MANAGEMENT AND COPYING FUNCTIONS |
2863 | to support the RelationFindRoots function. |
2864 | */ |
2865 | |
2866 | /** |
2867 | @see RelationFindRoots |
2868 | |
2869 | Create a struct relation of type e_token |
2870 | and passes back a pointer to the relation. |
2871 | |
2872 | The lengths of |
2873 | the right and left sides (lhslen and rhslen) of the relation |
2874 | are supplied by the calling function. |
2875 | |
2876 | User is responsible for setting RTOKEN(return).*_len. |
2877 | |
2878 | Basically, all this does is manage memory nicely. |
2879 | |
2880 | IF called with all 0/NULL, frees internal recycles. |
2881 | */ |
2882 | static struct relation *RelationCreateTmp( |
2883 | unsigned long lhslen, unsigned long rhslen, |
2884 | enum Expr_enum relop |
2885 | ){ |
2886 | static struct relation *rel=NULL; |
2887 | static unsigned long lhscap=0, rhscap=0; |
2888 | |
2889 | /* check for recycle clear and free things if needed. */ |
2890 | if (lhslen==0 && rhslen == 0 && relop == e_nop) { |
2891 | if (rel != NULL) { |
2892 | if (rel->share != NULL) { |
2893 | if (RTOKEN(rel).lhs!=NULL) { |
2894 | ascfree(RTOKEN(rel).lhs); |
2895 | } |
2896 | if (RTOKEN(rel).rhs!=NULL) { |
2897 | ascfree(RTOKEN(rel).rhs); |
2898 | } |
2899 | ascfree(rel->share); |
2900 | } |
2901 | ascfree(rel); |
2902 | rel = NULL; |
2903 | } |
2904 | lhscap = rhscap = 0; |
2905 | return NULL; |
2906 | } |
2907 | if (rel == NULL) { |
2908 | rel = CreateRelationStructure(relop,crs_NEWUNION); |
2909 | } |
2910 | if (lhscap < lhslen) { |
2911 | lhscap = lhslen; |
2912 | if ( RTOKEN(rel).lhs != NULL) { |
2913 | ascfree(RTOKEN(rel).lhs); |
2914 | } |
2915 | RTOKEN(rel).lhs = ASC_NEW_ARRAY(union RelationTermUnion,lhscap); |
2916 | } |
2917 | if (rhscap < rhslen) { |
2918 | rhscap = rhslen; |
2919 | if ( RTOKEN(rel).rhs != NULL) { |
2920 | ascfree(RTOKEN(rel).rhs); |
2921 | } |
2922 | RTOKEN(rel).rhs = ASC_NEW_ARRAY(union RelationTermUnion,rhscap); |
2923 | } |
2924 | return rel; |
2925 | } |
2926 | |
2927 | /** |
2928 | @see RelationFindRoots |
2929 | |
2930 | Full-blown relation copy (not copy by reference) |
2931 | |
2932 | We can now just do a memcopy and the infix pointers |
2933 | all adjust by the difference between the token |
2934 | arrays that the gl_lists are hiding. Cool, eh? |
2935 | |
2936 | @NOTE if any turkey ever tries to delete an individual |
2937 | token from these gl_lists AND deallocate it, |
2938 | they will get a severe headache. Ooo scary. |
2939 | |
2940 | This is a full blown copy and not copy by reference. |
2941 | You do not need to remake the infix pointers after |
2942 | calling this function. return 0 if ok, 1 if error. |
2943 | |
2944 | @NOTE RelationTmpCopySide and RelationTmpCopyToken are reimplimentations |
2945 | of functions from the v. old 'exprman' file. |
2946 | */ |
2947 | static int RelationTmpCopySide(union RelationTermUnion *old, |
2948 | unsigned long len, |
2949 | union RelationTermUnion *arr |
2950 | ){ |
2951 | struct relation_term *term; |
2952 | unsigned long c; |
2953 | long int delta; |
2954 | |
2955 | if (old==NULL || !len) return 1; |
2956 | if (arr==NULL) { |
2957 | FPRINTF(ASCERR,"RelationTmpCopySide: null RelationTermUnion :-(.\n"); |
2958 | return 1; |
2959 | } |
2960 | memcpy( (VOIDPTR)arr, (VOIDPTR)old, len*sizeof(union RelationTermUnion)); |
2961 | /* |
2962 | * Difference in chars between old and arr ptrs. It should me a multiple |
2963 | * of sizeof(double) but may not be a multiple of sizeof(union RTU). |
2964 | * Delta may easily be negative. |
2965 | * Normally, though arr > old. |
2966 | */ |
2967 | delta = (char *)arr - (char *)old; |
2968 | #ifdef ADJPTR |
2969 | #undef ADJPTR |
2970 | #endif |
2971 | #define ADJPTR(p) ( (p) = A_TERM((char *)(p)+delta) ) |
2972 | for (c=0;c<len;c++) { |
2973 | term = A_TERM(&(arr[c])); |
2974 | switch (term->t) { |
2975 | /* unary terms */ |
2976 | case e_uminus: |
2977 | ADJPTR(U_TERM(term)->left); |
2978 | break; |
2979 | /* binary terms */ |
2980 | case e_plus: |
2981 | case e_minus: case e_times: |
2982 | case e_divide: case e_power: case e_ipower: |
2983 | ADJPTR(B_TERM(term)->left); |
2984 | ADJPTR(B_TERM(term)->right); |
2985 | break; |
2986 | case e_zero: |
2987 | case e_var: /* the var number will be correct */ |
2988 | case e_diff: |
2989 | case e_int: |
2990 | case e_real: |
2991 | break; |
2992 | case e_func: |
2993 | ADJPTR(F_TERM(term)->left); |
2994 | break; |
2995 | /* don't know how to deal with the following relation operators. |
2996 | they may be binary or unary, but InfixArr_MakeSide never set them. */ |
2997 | case e_maximize: case e_minimize: |
2998 | case e_equal: case e_notequal: case e_less: |
2999 | case e_greater: case e_lesseq: case e_greatereq: |
3000 | default: |
3001 | Asc_Panic(2, NULL, "Unknown term type in RelationSide\n"); |
3002 | break; |
3003 | } |
3004 | } |
3005 | #undef ADJPTR |
3006 | |
3007 | return 0; |
3008 | } |
3009 | |
3010 | /** |
3011 | @see RelationFindRoots |
3012 | |
3013 | Copy tmp token for a relation (guess -- JP) |
3014 | |
3015 | The relation returned by this function should have |
3016 | NO persistent pointers made to it, as it is still |
3017 | our property. The vars in the relation do not |
3018 | know about these references to them, as this is |
3019 | a tmp rel. |
3020 | |
3021 | @NOTE RelationTmpCopySide and RelationTmpCopyToken are reimplimentations |
3022 | of functions from the v. old 'exprman' file. |
3023 | */ |
3024 | static struct relation *RelationTmpTokenCopy(CONST struct relation *src){ |
3025 | struct relation *result; |
3026 | long int delta; |
3027 | assert(src!=NULL); |
3028 | |
3029 | result = RelationCreateTmp(RTOKEN(src).lhs_len,RTOKEN(src).rhs_len, |
3030 | RelationRelop(src)); |
3031 | |
3032 | if(RelationTmpCopySide(RTOKEN(src).lhs,RTOKEN(src).lhs_len, |
3033 | RTOKEN(result).lhs) == 0) { |
3034 | delta = UNION_TERM(RTOKEN(src).lhs_term) - RTOKEN(src).lhs; |
3035 | RTOKEN(result).lhs_term = A_TERM(RTOKEN(result).lhs+delta); |
3036 | RTOKEN(result).lhs_len = RTOKEN(src).lhs_len; |
3037 | }else{ |
3038 | RTOKEN(result).lhs_term = NULL; |
3039 | RTOKEN(result).lhs_len = 0; |
3040 | } |
3041 | |
3042 | if( RelationTmpCopySide(RTOKEN(src).rhs,RTOKEN(src).rhs_len, |
3043 | RTOKEN(result).rhs) == 0) { |
3044 | delta = UNION_TERM(RTOKEN(src).rhs_term) - RTOKEN(src).rhs; |
3045 | RTOKEN(result).rhs_term = A_TERM(RTOKEN(result).rhs+delta); |
3046 | RTOKEN(result).rhs_len = RTOKEN(src).rhs_len; |
3047 | }else{ |
3048 | RTOKEN(result).rhs_term = NULL; |
3049 | RTOKEN(result).rhs_len = 0; |
3050 | } |
3051 | result->vars = src->vars; |
3052 | result->d = src->d; |
3053 | result->residual = src->residual; |
3054 | result->multiplier = src->multiplier; |
3055 | result->nominal = src->nominal; |
3056 | result->iscond = src->iscond; |
3057 | return result; |
3058 | } |
3059 | |
3060 | #define alloc_array(nelts,type) ((nelts) > 0 ? ASC_NEW_ARRAY(type,nelts) : NULL) |
3061 | #define copy_nums(from,too,nnums) \ |
3062 | asc_memcpy((from),(too),(nnums)*sizeof(double)) |
3063 | |
3064 | /** |
3065 | @see RelationFindRoots |
3066 | |
3067 | Appends the solution onto the solution list |
3068 | */ |
3069 | static void append_soln( struct ds_soln_list *sl, double soln){ |
3070 | if( sl->length == sl->capacity ) { |
3071 | int newcap; |
3072 | double *newlist; |
3073 | |
3074 | newcap = sl->capacity + 10; |
3075 | newlist = alloc_array(newcap,double); |
3076 | copy_nums((char *)sl->soln,(char *)newlist,sl->length); |
3077 | if( sl->soln != NULL ) { |
3078 | ascfree(sl->soln); |
3079 | } |
3080 | sl->soln = newlist; |
3081 | sl->capacity = newcap; |
3082 | } |
3083 | |
3084 | sl->soln[sl->length++] = soln; |
3085 | } |
3086 | |
3087 | /** |
3088 | @see RelationFindRoots |
3089 | |
3090 | Removes solution at given index from solution list. |
3091 | */ |
3092 | static void remove_soln( struct ds_soln_list *sl, int ndx){ |
3093 | copy_nums((char *)(sl->soln+ndx+1), |
3094 | (char *)(sl->soln+ndx), --(sl->length) - ndx); |
3095 | } |
3096 | |
3097 | /*------------------------------------------------------------------------------ |
3098 | DIRECT SOLVE FUNCTIONS |
3099 | to support the RelationFindRoots function. |
3100 | */ |
3101 | |
3102 | /** |
3103 | @see RelationFindRoots |
3104 | |
3105 | Change a relation term type to e_real and fill the value field of this term. |
3106 | |
3107 | In subsequent passes of the RelationBranchEvaluator the term will be |
3108 | considered to be a leaf. |
3109 | */ |
3110 | static void InsertBranchResult(struct relation_term *term, double value){ |
3111 | assert(term!=NULL); |
3112 | term->t = e_real; |
3113 | R_TERM(term)->value = value; |
3114 | } |
3115 | |
3116 | /** |
3117 | @see RelationFindRoots |
3118 | |
3119 | Simplify branches of a relation (the relation pointed to by glob_rel). |
3120 | |
3121 | Only terms of type e_real, e_int, e_zero, and e_var are left |
3122 | hanging off the operators on the path to the |
3123 | variable (with varnum = glob_varnum) being direct |
3124 | solved for. |
3125 | |
3126 | @TODO This may need to be changed to only leave e_reals |
3127 | so that the inversion routine can make faster decisions??? |
3128 | Probably not. |
3129 | |
3130 | @return >= 1 if glob_varnum spotted, else 0 (or at least <1). |
3131 | */ |
3132 | static int SearchEval_Branch(struct relation_term *term){ |
3133 | int result = 0; |
3134 | assert(term != NULL); |
3135 | switch(RelationTermType(term)) { |
3136 | case e_var: |
3137 | if(TermVarNumber(term) == glob_varnum) { |
3138 | ++glob_done; |
3139 | return 1; |
3140 | }else{ |
3141 | return 0; |
3142 | } |
3143 | case e_func: |
3144 | /* if the hold function is accepted, this and the next if |
3145 | * should be combined with the fhold condition checked |
3146 | * first. |
3147 | */ |
3148 | if (FuncId(TermFunc(term))==F_HOLD) { |
3149 | /* The quantity inside a hold is considered a |
3150 | * constant, however complicated it may be. |
3151 | * We need to call the appropriate evaluator here |
3152 | * and return the value. We don't care if we see |
3153 | * glob_varnum inside the hold func. |
3154 | */ |
3155 | InsertBranchResult(term,RelationBranchEvaluator(term)); |
3156 | return 0; |
3157 | } |
3158 | if(SearchEval_Branch(TermFuncLeft(term)) < 1) { |
3159 | InsertBranchResult(term,RelationBranchEvaluator(term)); |
3160 | return 0; |
3161 | } |
3162 | return 1; |
3163 | /* |
3164 | Note that this algorithm could use some work. Here we go back up the |
3165 | tree only to call relationbranchevaluator |