Parent Directory
|
Revision Log
Removing debug output, adding self_test to iapws95.
1 | /* |
2 | * Relation utility functions for Ascend |
3 | * Version: $Revision: 1.44 $ |
4 | * Version control file: $RCSfile: relation_util.c,v $ |
5 | * Date last modified: $Date: 1998/04/23 23:51:09 $ |
6 | * Last modified by: $Author: ballan $ |
7 | * Part of Ascend |
8 | * |
9 | * This file is part of the Ascend Interpreter. |
10 | * |
11 | * Copyright (C) 1990 Thomas Guthrie Epperly, Karl Michael Westerberg |
12 | * Copyright (C) 1993 Joseph James Zaher |
13 | * Copyright (C) 1993, 1994 Benjamin Andrew Allan, Joseph James Zaher |
14 | * Copyright (C) 1997 Carnegie Mellon University |
15 | * |
16 | * The Ascend Interpreter is free software; you can redistribute |
17 | * it and/or modify it under the terms of the GNU General Public License as |
18 | * published by the Free Software Foundation; either version 2 of the |
19 | * License, or (at your option) any later version. |
20 | * |
21 | * ASCEND is distributed in hope that it will be |
22 | * useful, but WITHOUT ANY WARRANTY; without even the implied warranty of |
23 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
24 | * General Public License for more details. |
25 | * |
26 | * You should have received a copy of the GNU General Public License |
27 | * along with the program; if not, write to the Free Software Foundation, |
28 | * Inc., 675 Mass Ave, Cambridge, MA 02139 USA. Check the file named |
29 | * COPYING. |
30 | * |
31 | * This module defines the dimensionality checking and some other |
32 | * relation auxillaries for Ascend. |
33 | * |
34 | */ |
35 | #include <math.h> |
36 | #include <errno.h> |
37 | #include <stdarg.h> |
38 | #include "utilities/ascConfig.h" |
39 | #include "utilities/ascMalloc.h" |
40 | #include "utilities/ascPanic.h" |
41 | #include "general/list.h" |
42 | #include "general/dstring.h" |
43 | #include "compiler/compiler.h" |
44 | #include "compiler/symtab.h" |
45 | #include "compiler/functype.h" |
46 | #include "compiler/safe.h" |
47 | #include "compiler/fractions.h" |
48 | #include "compiler/dimen.h" |
49 | #include "compiler/types.h" |
50 | #include "compiler/vlist.h" |
51 | #include "compiler/dimen_io.h" |
52 | #include "compiler/instance_enum.h" |
53 | #include "compiler/bintoken.h" |
54 | #include "compiler/find.h" |
55 | #include "compiler/atomvalue.h" |
56 | #include "compiler/instance_name.h" |
57 | #include "compiler/relation_type.h" |
58 | #include "compiler/relation.h" |
59 | #include "compiler/relation_util.h" |
60 | #include "compiler/instance_io.h" |
61 | #include "compiler/instquery.h" |
62 | #include "compiler/visitinst.h" |
63 | #include "compiler/mathinst.h" |
64 | #include "compiler/extfunc.h" |
65 | #include "compiler/rootfind.h" |
66 | #include "compiler/func.h" |
67 | |
68 | |
69 | int g_check_dimensions_noisy = 1; |
70 | #define GCDN g_check_dimensions_noisy |
71 | |
72 | #define START 10000 /* largest power of 10 held by a short */ |
73 | static struct fraction real_to_frac(double real) |
74 | { |
75 | short num, den; |
76 | for( den=START; den>1 && fabs(real)*den>SHRT_MAX; den /= 10 ) ; |
77 | num = (short)(fabs(real)*den + 0.5); |
78 | if( real < 0.0 ) num = -num; |
79 | return( CreateFraction(num,den) ); |
80 | } |
81 | #undef START |
82 | |
83 | |
84 | /* Create a static buffer to use for temporary memory storage */ |
85 | |
86 | char *tmpalloc(int nbytes) |
87 | /** |
88 | *** Temporarily allocates a given number of bytes. The memory need |
89 | *** not be freed, but the next call to this function will reuse the |
90 | *** previous allocation. Memory returned will NOT be zeroed. |
91 | *** Calling with nbytes==0 will free any memory allocated. |
92 | **/ |
93 | { |
94 | static char *ptr = NULL; |
95 | static int cap = 0; |
96 | |
97 | if( nbytes > 0 ) { |
98 | if( nbytes > cap ) { |
99 | if( ptr ) ascfree(ptr); |
100 | ptr = (char *)ascmalloc(nbytes); |
101 | cap = nbytes; |
102 | } |
103 | } |
104 | else { |
105 | if( ptr ) ascfree(ptr); |
106 | ptr = NULL; |
107 | cap = 0; |
108 | } |
109 | return ptr; |
110 | } |
111 | |
112 | |
113 | |
114 | /* it is questionable whether this should be unified with the |
115 | ArgsForToken function in relation.c */ |
116 | int ArgsForRealToken(enum Expr_enum type) |
117 | { |
118 | switch(type) { |
119 | case e_zero: |
120 | case e_int: |
121 | case e_real: |
122 | case e_var: |
123 | return(0); |
124 | |
125 | case e_func: |
126 | case e_uminus: |
127 | return(1); |
128 | |
129 | case e_plus: |
130 | case e_minus: |
131 | case e_times: |
132 | case e_divide: |
133 | case e_power: |
134 | case e_ipower: |
135 | return(2); |
136 | |
137 | default: |
138 | FPRINTF(ASCERR,"ArgsForRealToken: Unknown relation term type.\n"); |
139 | return(0); |
140 | } |
141 | } |
142 | |
143 | struct dimnode { |
144 | dim_type d; |
145 | enum Expr_enum type; |
146 | short int_const; |
147 | double real_const; |
148 | struct fraction power; |
149 | }; |
150 | |
151 | static int IsZero(struct dimnode *node) |
152 | { |
153 | if( node->type==e_zero || (node->type==e_real && node->real_const==0.0) ) |
154 | return TRUE; |
155 | return FALSE; |
156 | } |
157 | |
158 | /* what this does needs to be documented here */ |
159 | static void apply_term_dimensions(struct relation *rel, |
160 | struct relation_term *rt, |
161 | struct dimnode *first, |
162 | struct dimnode *second, |
163 | int *con, |
164 | int *wild) |
165 | { |
166 | enum Expr_enum type; |
167 | |
168 | switch(type=RelationTermType(rt)) { |
169 | case e_zero: |
170 | CopyDimensions(WildDimension(),&(first->d)); |
171 | first->real_const = 0.0; |
172 | first->type = type; |
173 | break; |
174 | |
175 | case e_int: |
176 | CopyDimensions(Dimensionless(),&(first->d)); |
177 | first->int_const = (short)TermInteger(rt); |
178 | first->type = type; |
179 | break; |
180 | |
181 | case e_real: |
182 | CopyDimensions(TermDimensions(rt),&(first->d)); |
183 | first->real_const = TermReal(rt); |
184 | first->type = type; |
185 | break; |
186 | |
187 | case e_var: { |
188 | struct Instance *var = RelationVariable(rel,TermVarNumber(rt)); |
189 | CopyDimensions(RealAtomDims(var),&(first->d)); |
190 | first->type = type; |
191 | break; |
192 | } |
193 | case e_func: { |
194 | enum Func_enum id = FuncId(TermFunc(rt)); |
195 | switch( id ) { |
196 | case F_ABS: |
197 | case F_HOLD: |
198 | /* no checking or scaling */ |
199 | break; |
200 | |
201 | case F_SQR: |
202 | /* no checking, just simple scaling */ |
203 | first->d = ScaleDimensions(&(first->d),CreateFraction(2,1)); |
204 | break; |
205 | |
206 | case F_CUBE: |
207 | /* no checking, just simple scaling */ |
208 | first->d = ScaleDimensions(&(first->d),CreateFraction(3,1)); |
209 | break; |
210 | |
211 | case F_SQRT: |
212 | /* no checking, just simple scaling */ |
213 | first->d = ScaleDimensions(&(first->d),CreateFraction(1,2)); |
214 | break; |
215 | |
216 | case F_CBRT: |
217 | /* no checking, just simple scaling */ |
218 | first->d = ScaleDimensions(&(first->d),CreateFraction(1,3)); |
219 | break; |
220 | |
221 | case F_EXP: |
222 | case F_LN: |
223 | case F_LNM: |
224 | case F_LOG10: |
225 | #ifdef HAVE_ERF |
226 | case F_ERF: |
227 | #endif /* HAVE_ERF */ |
228 | case F_SINH: |
229 | case F_COSH: |
230 | case F_TANH: |
231 | case F_ARCSINH: |
232 | case F_ARCCOSH: |
233 | case F_ARCTANH: |
234 | /** |
235 | *** first must now be dimensionless. It will |
236 | *** end up dimensionless as well. |
237 | **/ |
238 | if( IsWild(&(first->d)) && !IsZero(first) ) { |
239 | if( !*wild ) *wild = TRUE; |
240 | if (GCDN) { |
241 | FPRINTF(ASCERR,"ERROR: Relation has wild dimensions\n"); |
242 | FPRINTF(ASCERR," in function %s.\n", |
243 | FuncName(TermFunc(rt))); |
244 | } |
245 | } else if( !IsWild(&(first->d)) && |
246 | CmpDimen(&(first->d),Dimensionless()) ) { |
247 | if( *con ) *con = FALSE; |
248 | if (GCDN) { |
249 | FPRINTF(ASCERR,"ERROR: Function %s called with\n", |
250 | FuncName(TermFunc(rt))); |
251 | FPRINTF(ASCERR," dimensions "); |
252 | WriteDimensions(ASCERR,&(first->d)); |
253 | FPRINTF(ASCERR,".\n"); |
254 | } |
255 | } |
256 | CopyDimensions(Dimensionless(),&(first->d)); |
257 | break; |
258 | |
259 | case F_SIN: |
260 | case F_COS: |
261 | case F_TAN: { |
262 | /** |
263 | *** first must now be of dimension D_PLANE_ANGLE. |
264 | *** It will then be made dimensionless. |
265 | **/ |
266 | if( IsWild(&(first->d)) && !IsZero(first) ) { |
267 | if( !*wild ) *wild = TRUE; |
268 | if (GCDN) { |
269 | FPRINTF(ASCERR,"ERROR: Relation has wild dimensions\n"); |
270 | FPRINTF(ASCERR," in function %s.\n", |
271 | FuncName(TermFunc(rt)) ); |
272 | } |
273 | } else { |
274 | if( !IsWild(&(first->d)) && |
275 | CmpDimen(&(first->d),TrigDimension()) ) { |
276 | if( *con ) *con = FALSE; |
277 | if (GCDN) { |
278 | FPRINTF(ASCERR,"ERROR: Function %s called with\n", |
279 | FuncName(TermFunc(rt))); |
280 | FPRINTF(ASCERR," dimensions "); |
281 | WriteDimensions(ASCERR,&(first->d)); |
282 | FPRINTF(ASCERR,".\n"); |
283 | } |
284 | } |
285 | } |
286 | CopyDimensions(Dimensionless(),&(first->d)); |
287 | break; |
288 | } |
289 | |
290 | case F_ARCSIN: |
291 | case F_ARCCOS: |
292 | case F_ARCTAN: |
293 | /** |
294 | *** first must now be dimensionless. It will |
295 | *** end up with dimension D_PLANE_ANGLE |
296 | **/ |
297 | if( IsWild(&(first->d)) && !IsZero(first) ) { |
298 | if( !*wild ) *wild = TRUE; |
299 | if (GCDN) { |
300 | FPRINTF(ASCERR,"ERROR: Relation has wild dimensions\n"); |
301 | FPRINTF(ASCERR," in function %s.\n", |
302 | FuncName(TermFunc(rt))); |
303 | } |
304 | } else if( !IsWild(&(first->d)) && |
305 | CmpDimen(&(first->d),Dimensionless()) ) { |
306 | if( *con ) *con = FALSE; |
307 | if (GCDN) { |
308 | FPRINTF(ASCERR,"ERROR: Function %s called with\n", |
309 | FuncName(TermFunc(rt))); |
310 | FPRINTF(ASCERR," dimensions "); |
311 | WriteDimensions(ASCERR,&(first->d)); |
312 | FPRINTF(ASCERR,".\n"); |
313 | } |
314 | } |
315 | CopyDimensions(TrigDimension(),&(first->d)); |
316 | break; |
317 | } |
318 | first->type = type; |
319 | break; |
320 | } |
321 | |
322 | case e_uminus: |
323 | first->type = type; |
324 | break; |
325 | |
326 | case e_times: |
327 | first->d = AddDimensions(&(first->d),&(second->d)); |
328 | first->type = type; |
329 | break; |
330 | |
331 | case e_divide: |
332 | first->d = SubDimensions(&(first->d),&(second->d)); |
333 | first->type = type; |
334 | break; |
335 | |
336 | case e_power: /* fix me and add ipower */ |
337 | if( IsWild(&(second->d)) && !IsZero(second) ) { |
338 | if( !*wild ) *wild = TRUE; |
339 | if (GCDN) { |
340 | FPRINTF(ASCERR,"ERROR: Relation has wild dimensions\n"); |
341 | FPRINTF(ASCERR," in exponent.\n"); |
342 | } |
343 | } else if( !IsWild(&(second->d)) && |
344 | CmpDimen(&(second->d),Dimensionless()) ) { |
345 | if( *con ) *con = FALSE; |
346 | if (GCDN) { |
347 | FPRINTF(ASCERR,"ERROR: Exponent has dimensions "); |
348 | WriteDimensions(ASCERR,&(second->d)); |
349 | FPRINTF(ASCERR,".\n"); |
350 | } |
351 | } |
352 | CopyDimensions(Dimensionless(),&(second->d)); |
353 | switch( second->type ) { |
354 | case e_int: |
355 | if( !IsWild(&(first->d)) && |
356 | CmpDimen(&(first->d),Dimensionless()) ) { |
357 | struct fraction power; |
358 | power = CreateFraction(second->int_const,1); |
359 | first->d = ScaleDimensions(&(first->d),power); |
360 | } |
361 | break; |
362 | |
363 | case e_real: |
364 | if( !IsWild(&(first->d)) && |
365 | CmpDimen(&(first->d),Dimensionless()) ) { |
366 | struct fraction power; |
367 | power = real_to_frac(second->real_const); |
368 | first->d = ScaleDimensions(&(first->d),power); |
369 | } |
370 | break; |
371 | |
372 | /* what about e_zero? */ |
373 | default: |
374 | if( IsWild(&(first->d)) && !IsZero(first) ) { |
375 | if( !*wild ) *wild = TRUE; |
376 | if (GCDN) { |
377 | FPRINTF(ASCERR,"ERROR: Relation has wild dimensions\n"); |
378 | FPRINTF(ASCERR," raised to a non-constant power.\n"); |
379 | } |
380 | } else if( !IsWild(&(first->d)) && |
381 | CmpDimen(&(first->d),Dimensionless()) ) { |
382 | if( *con ) *con = FALSE; |
383 | if (GCDN) { |
384 | FPRINTF(ASCERR,"ERROR: Dimensions "); |
385 | WriteDimensions(ASCERR,&(first->d)); |
386 | FPRINTF(ASCERR," are\n"); |
387 | FPRINTF(ASCERR," raised to a non-constant power.\n"); |
388 | } |
389 | } |
390 | CopyDimensions(Dimensionless(),&(first->d)); |
391 | break; |
392 | |
393 | } |
394 | first->type = type; |
395 | break; |
396 | |
397 | case e_plus: |
398 | case e_minus: |
399 | if( IsWild(&(first->d)) && IsZero(first) ) { |
400 | /* first wild zero */ |
401 | CopyDimensions(&(second->d),&(first->d)); |
402 | first->type = second->type; |
403 | if( second->type==e_int ) |
404 | first->int_const = second->int_const; |
405 | if( second->type==e_real ) |
406 | first->real_const = second->real_const; |
407 | } else if( IsWild(&(first->d)) && !IsZero(first) ) { |
408 | /* first wild non-zero */ |
409 | if( IsWild(&(second->d)) && !IsZero(second) ) { |
410 | /* second wild non-zero */ |
411 | if( !*wild ) *wild = TRUE; |
412 | if (GCDN) { |
413 | FPRINTF(ASCERR,"ERROR: %s has wild dimensions on\n", |
414 | type==e_plus ? "Addition":"Subtraction"); |
415 | FPRINTF(ASCERR," left and right hand sides.\n"); |
416 | } |
417 | first->type = type; |
418 | } else if( !IsWild(&(second->d)) ) { |
419 | /* second not wild */ |
420 | if( !*wild ) *wild = TRUE; |
421 | if (GCDN) { |
422 | FPRINTF(ASCERR,"ERROR: %s has wild dimensions on\n", |
423 | type==e_plus ? "Addition":"Subtraction"); |
424 | FPRINTF(ASCERR," left hand side.\n"); |
425 | } |
426 | CopyDimensions(&(second->d),&(first->d)); |
427 | first->type = type; |
428 | } |
429 | } else if( !IsWild(&(first->d)) ) { |
430 | /* first not wild */ |
431 | if( IsWild(&(second->d)) && !IsZero(second) ) { |
432 | /* second wild non-zero */ |
433 | if( !*wild ) *wild = TRUE; |
434 | if (GCDN) { |
435 | FPRINTF(ASCERR,"ERROR: %s has wild dimensions on\n", |
436 | type==e_plus ? "Addition":"Subtraction"); |
437 | FPRINTF(ASCERR," right hand side.\n"); |
438 | } |
439 | first->type = type; |
440 | } else if ( !IsWild(&(second->d)) ) { |
441 | /* second not wild */ |
442 | if( CmpDimen(&(first->d),&(second->d)) ) { |
443 | if( *con ) *con = FALSE; |
444 | if (GCDN) { |
445 | FPRINTF(ASCERR,"ERROR: %s has dimensions ", |
446 | type==e_plus ? "Addition":"Subtraction"); |
447 | WriteDimensions(ASCERR,&(first->d)); |
448 | FPRINTF(ASCERR," on left\n"); |
449 | FPRINTF(ASCERR," and dimensions "); |
450 | WriteDimensions(ASCERR,&(second->d)); |
451 | FPRINTF(ASCERR," on right.\n"); |
452 | } |
453 | } |
454 | first->type = type; |
455 | } |
456 | } |
457 | break; |
458 | |
459 | default: |
460 | FPRINTF(ASCERR,"ERROR: Unknown relation term type.\n"); |
461 | if( *con ) *con = FALSE; |
462 | first->type = type; |
463 | break; |
464 | } |
465 | } |
466 | |
467 | int RelationCheckDimensions(struct relation *rel, dim_type *dimens) |
468 | { |
469 | struct dimnode *stack, *sp; |
470 | int consistent = TRUE; |
471 | int wild = FALSE; |
472 | unsigned long c, len; |
473 | |
474 | if ( !IsWild(RelationDim(rel)) ) { /* don't do this twice */ |
475 | CopyDimensions(RelationDim(rel),dimens); |
476 | return 2; |
477 | } |
478 | sp = stack = (struct dimnode *) |
479 | ascmalloc(RelationDepth(rel)*sizeof(struct dimnode)); |
480 | switch( RelationRelop(rel) ) { |
481 | case e_less: |
482 | case e_lesseq: |
483 | case e_greater: |
484 | case e_greatereq: |
485 | case e_equal: |
486 | case e_notequal: |
487 | /* Working on the left-hand-side */ |
488 | len = RelationLength(rel,TRUE); |
489 | for( c = 1; c <= len; c++ ) { |
490 | struct relation_term *rt; |
491 | rt = (struct relation_term *)RelationTerm(rel,c,TRUE); |
492 | sp += 1-ArgsForRealToken(RelationTermType(rt)); |
493 | apply_term_dimensions(rel,rt,sp-1,sp,&consistent,&wild); |
494 | } /* stack[0].d contains the dimensions of the lhs expression */ |
495 | |
496 | /* Now working on the right-hand_side */ |
497 | len = RelationLength(rel,FALSE); |
498 | for( c = 1; c <= len; c++ ) { |
499 | struct relation_term *rt; |
500 | rt = (struct relation_term *) RelationTerm(rel,c,FALSE); |
501 | sp += 1-ArgsForRealToken(RelationTermType(rt)); |
502 | apply_term_dimensions(rel,rt,sp-1,sp,&consistent,&wild); |
503 | } /* stack[1].d contains the dimensions of the rhs expression */ |
504 | |
505 | if( IsWild(&(stack[0].d)) || IsWild(&(stack[1].d)) ) { |
506 | if( IsWild(&(stack[0].d)) && !IsZero(&(stack[0])) ) { |
507 | if( !wild ) wild = TRUE; |
508 | if (GCDN) { |
509 | FPRINTF(ASCERR,"ERROR: Relation has wild dimensions\n"); |
510 | FPRINTF(ASCERR," on left hand side.\n"); |
511 | } |
512 | } |
513 | if( IsWild(&(stack[1].d)) && !IsZero(&(stack[1])) ) { |
514 | if( !wild ) wild = TRUE; |
515 | if (GCDN) { |
516 | FPRINTF(ASCERR,"ERROR: Relation has wild dimensions\n"); |
517 | FPRINTF(ASCERR," on right hand side.\n"); |
518 | } |
519 | } |
520 | } else { |
521 | if( CmpDimen(&(stack[0].d),&(stack[1].d)) ) { |
522 | if( consistent ) consistent = FALSE; |
523 | if (GCDN) { |
524 | FPRINTF(ASCERR,"ERROR: Relation has dimensions "); |
525 | WriteDimensions(ASCERR,&(stack[0].d)); |
526 | FPRINTF(ASCERR," on left\n"); |
527 | FPRINTF(ASCERR," and dimensions "); |
528 | WriteDimensions(ASCERR,&(stack[1].d)); |
529 | FPRINTF(ASCERR," on right.\n"); |
530 | } |
531 | } |
532 | } |
533 | break; |
534 | case e_maximize: |
535 | case e_minimize: |
536 | /* Working on the left-hand-side */ |
537 | len = RelationLength(rel,TRUE); |
538 | for( c = 1; c <= len; c++ ) { |
539 | struct relation_term *rt; |
540 | rt = (struct relation_term *) RelationTerm(rel,c,TRUE); |
541 | sp += 1-ArgsForRealToken(RelationTermType(rt)); |
542 | apply_term_dimensions(rel,rt,sp-1,sp,&consistent,&wild); |
543 | } /* stack[0].d contains the dimensions of the lhs expression */ |
544 | |
545 | if( IsWild(&(stack[0].d)) && !IsZero(&(stack[0])) ) { |
546 | if( !wild ) wild = TRUE; |
547 | if (GCDN) { |
548 | FPRINTF(ASCERR,"ERROR: Objective has wild dimensions.\n"); |
549 | } |
550 | } |
551 | break; |
552 | |
553 | default: |
554 | FPRINTF(ASCERR,"ERROR: Unknown relation type.\n"); |
555 | if( consistent ) consistent = FALSE; |
556 | break; |
557 | } |
558 | CopyDimensions(&(stack[0].d),dimens); |
559 | ascfree(stack); |
560 | return( consistent && !wild ); |
561 | } |
562 | |
563 | /*********************************************************************\ |
564 | calculation functions |
565 | \*********************************************************************/ |
566 | |
567 | /* global relation pointer to avoid passing a relation recursively */ |
568 | static struct relation *glob_rel; |
569 | |
570 | /* Note that ANY function calling RelationBranchEvaluator should set |
571 | glob_rel to point at the relation being evaluated. The calling |
572 | function should also set glob_rel = NULL when it is done. */ |
573 | |
574 | static double RelationBranchEvaluator(struct relation_term *term) |
575 | { |
576 | assert(term != NULL); |
577 | switch(RelationTermType(term)) { |
578 | case e_func: |
579 | return FuncEval(TermFunc(term), |
580 | RelationBranchEvaluator(TermFuncLeft(term)) ); |
581 | case e_var: |
582 | return TermVariable(glob_rel , term); |
583 | case e_int: |
584 | return (double)TermInteger(term); |
585 | case e_real: |
586 | return TermReal(term); |
587 | case e_zero: |
588 | return 0.0; |
589 | |
590 | case e_plus: |
591 | return (RelationBranchEvaluator(TermBinLeft(term)) + |
592 | RelationBranchEvaluator(TermBinRight(term))); |
593 | case e_minus: |
594 | return (RelationBranchEvaluator(TermBinLeft(term)) - |
595 | RelationBranchEvaluator(TermBinRight(term))); |
596 | case e_times: |
597 | return (RelationBranchEvaluator(TermBinLeft(term)) * |
598 | RelationBranchEvaluator(TermBinRight(term))); |
599 | case e_divide: |
600 | return (RelationBranchEvaluator(TermBinLeft(term)) / |
601 | RelationBranchEvaluator(TermBinRight(term))); |
602 | case e_power: |
603 | case e_ipower: |
604 | return pow( RelationBranchEvaluator(TermBinLeft(term)) , |
605 | RelationBranchEvaluator(TermBinRight(term)) ); |
606 | case e_uminus: |
607 | return - RelationBranchEvaluator(TermBinLeft(term)); |
608 | default: |
609 | FPRINTF(ASCERR, "error in RelationBranchEvaluator routine\n"); |
610 | FPRINTF(ASCERR, "relation term type not recognized\n"); |
611 | return 0.0; |
612 | } |
613 | } |
614 | |
615 | /* RelationEvaluatePostfixBranch |
616 | * This function is passed a relation pointer, r, a pointer, pos, to a |
617 | * position in the postfix version of the relation (0<=pos<length), and |
618 | * a flag, lhs, telling whether we are interested in the left(=1) or |
619 | * right(=0) side of the relation. This function will tranverse and |
620 | * evaluate the subtree rooted at pos and will return the value as a |
621 | * double. To do its evaluation, this function goes backwards through |
622 | * the postfix representation of relation and calls itself at each |
623 | * node--creating a stack of function calls. |
624 | * NOTE: This function changes the value of pos---to the position of |
625 | * the deepest leaf visited |
626 | */ |
627 | static double |
628 | RelationEvaluatePostfixBranch(CONST struct relation *r, |
629 | unsigned long *pos, |
630 | int lhs) |
631 | { |
632 | CONST struct relation_term *term; /* the current term */ |
633 | CONST struct Func *funcptr; /* a pointer to a function */ |
634 | double x, y; /* temporary values */ |
635 | |
636 | term = NewRelationTerm(r, *pos, lhs); |
637 | assert(term != NULL); |
638 | switch( RelationTermType(term) ) { |
639 | case e_zero: |
640 | case e_real: |
641 | return TermReal(term); |
642 | case e_int: |
643 | return TermInteger(term); |
644 | case e_var: |
645 | return TermVariable(r, term); |
646 | case e_plus: |
647 | (*pos)--; |
648 | y = RelationEvaluatePostfixBranch(r, pos, lhs); /* y==right-side of '+' */ |
649 | (*pos)--; |
650 | return RelationEvaluatePostfixBranch(r, pos, lhs) + y; |
651 | case e_minus: |
652 | (*pos)--; |
653 | y = RelationEvaluatePostfixBranch(r, pos, lhs); /* y==right-side of '-' */ |
654 | (*pos)--; |
655 | return RelationEvaluatePostfixBranch(r, pos, lhs) - y; |
656 | case e_times: |
657 | (*pos)--; |
658 | y = RelationEvaluatePostfixBranch(r, pos, lhs); /* y==right-side of '*' */ |
659 | (*pos)--; |
660 | return RelationEvaluatePostfixBranch(r, pos, lhs) * y; |
661 | case e_divide: |
662 | (*pos)--; |
663 | y = RelationEvaluatePostfixBranch(r, pos, lhs); /* y is the divisor */ |
664 | (*pos)--; |
665 | return RelationEvaluatePostfixBranch(r, pos, lhs) / y; |
666 | case e_power: |
667 | (*pos)--; |
668 | y = RelationEvaluatePostfixBranch(r, pos, lhs); /* y is the power */ |
669 | (*pos)--; |
670 | x = RelationEvaluatePostfixBranch(r, pos, lhs); /* x is the base */ |
671 | return pow(x, y); |
672 | case e_ipower: |
673 | (*pos)--; |
674 | y = RelationEvaluatePostfixBranch(r, pos, lhs); /* y is the power */ |
675 | (*pos)--; |
676 | x = RelationEvaluatePostfixBranch(r, pos, lhs); /* x is the base */ |
677 | return asc_ipow(x, (int)y); |
678 | case e_uminus: |
679 | (*pos)--; |
680 | return -1.0 * RelationEvaluatePostfixBranch(r, pos, lhs); |
681 | case e_func: |
682 | funcptr = TermFunc(term); |
683 | (*pos)--; |
684 | return FuncEval(funcptr, RelationEvaluatePostfixBranch(r, pos, lhs)); |
685 | default: |
686 | Asc_Panic(2, NULL, |
687 | "Don't know this type of relation type\n" |
688 | "in function RelationEvaluatePostfixBranch\n"); |
689 | exit(2);/* Needed to keep gcc from whining */ |
690 | break; |
691 | } |
692 | } |
693 | |
694 | static double |
695 | RelationEvaluatePostfixBranchSafe(CONST struct relation *r, |
696 | unsigned long *pos, |
697 | int lhs, |
698 | enum safe_err *serr) |
699 | { |
700 | CONST struct relation_term *term; /* the current term */ |
701 | double x, y; /* temporary values */ |
702 | |
703 | term = NewRelationTerm(r, *pos, lhs); |
704 | assert(term != NULL); |
705 | switch( RelationTermType(term) ) { |
706 | case e_zero: |
707 | case e_real: |
708 | return TermReal(term); |
709 | case e_int: |
710 | return TermInteger(term); |
711 | case e_var: |
712 | return TermVariable(r, term); |
713 | case e_plus: |
714 | (*pos)--; |
715 | /* y is right-hand-side of '+' */ |
716 | y = RelationEvaluatePostfixBranchSafe(r, pos, lhs, serr); |
717 | (*pos)--; |
718 | return |
719 | safe_add_D0(RelationEvaluatePostfixBranchSafe(r,pos,lhs,serr), y, serr); |
720 | case e_minus: |
721 | (*pos)--; |
722 | /* y is right-had-side of '-' */ |
723 | y = RelationEvaluatePostfixBranchSafe(r, pos, lhs, serr); |
724 | (*pos)--; |
725 | return |
726 | safe_sub_D0(RelationEvaluatePostfixBranchSafe(r,pos,lhs,serr), y, serr); |
727 | case e_times: |
728 | (*pos)--; |
729 | /* y is right-hand-side of '*' */ |
730 | y = RelationEvaluatePostfixBranchSafe(r, pos, lhs, serr); |
731 | (*pos)--; |
732 | return |
733 | safe_mul_D0(RelationEvaluatePostfixBranchSafe(r,pos,lhs,serr), y, serr); |
734 | case e_divide: |
735 | (*pos)--; |
736 | /* y is the divisor */ |
737 | y = RelationEvaluatePostfixBranchSafe(r, pos, lhs, serr); |
738 | (*pos)--; |
739 | return |
740 | safe_div_D0(RelationEvaluatePostfixBranchSafe(r,pos,lhs,serr), y, serr); |
741 | case e_power: |
742 | (*pos)--; |
743 | /* y is the power */ |
744 | y = RelationEvaluatePostfixBranchSafe(r, pos, lhs, serr); |
745 | (*pos)--; |
746 | /* x is the base */ |
747 | x = RelationEvaluatePostfixBranchSafe(r, pos, lhs, serr); |
748 | return safe_pow_D0(x, y, serr); |
749 | case e_ipower: |
750 | (*pos)--; |
751 | /* y is the power */ |
752 | y = RelationEvaluatePostfixBranchSafe(r, pos, lhs, serr); |
753 | (*pos)--; |
754 | /* x is the base */ |
755 | x = RelationEvaluatePostfixBranchSafe(r, pos, lhs, serr); |
756 | return safe_ipow_D0(x, (int)y, serr); |
757 | case e_uminus: |
758 | (*pos)--; |
759 | return -1.0 * RelationEvaluatePostfixBranchSafe(r, pos, lhs, serr); |
760 | case e_func: |
761 | (*pos)--; |
762 | return |
763 | FuncEvalSafe(TermFunc(term), |
764 | RelationEvaluatePostfixBranchSafe(r,pos,lhs,serr),serr); |
765 | default: |
766 | Asc_Panic(2, NULL, |
767 | "Don't know this type of relation type\n" |
768 | "in function RelationEvaluatePostfixBranchSafe\n"); |
769 | exit(2);/* Needed to keep gcc from whining */ |
770 | break; |
771 | } |
772 | } |
773 | |
774 | /* RelationEvaluateResidualPostfix |
775 | * Yet another function for calculating the residual of a relation. |
776 | * This function also uses the postfix version of the relations, but it |
777 | * manages a stack(array) of doubles and calculates the residual in this |
778 | * stack; therefore the function is not recursive. If the funtion |
779 | * cannot allocate memory for its stack, it returns 0.0, so there is |
780 | * currently no way of knowing if this function failed. |
781 | */ |
782 | static double |
783 | RelationEvaluateResidualPostfix(CONST struct relation *r) |
784 | { |
785 | unsigned long t; /* the current term in the relation r */ |
786 | int lhs; /* looking at left(=1) or right(=0) hand side */ |
787 | double *res_stack; /* the stack we use for evaluating the residual */ |
788 | long s = -1; /* the top position in the stacks */ |
789 | unsigned long length_lhs, length_rhs; |
790 | CONST struct relation_term *term; |
791 | CONST struct Func *funcptr; |
792 | |
793 | |
794 | length_lhs = RelationLength(r, 1); |
795 | length_rhs = RelationLength(r, 0); |
796 | if( (length_lhs+length_rhs) == 0 ) return 0.0; |
797 | |
798 | /* create the stacks */ |
799 | res_stack = tmpalloc_array((1+MAX(length_lhs,length_rhs)),double); |
800 | if( res_stack == NULL ) return 0.0; |
801 | |
802 | lhs = 1; |
803 | t = 0; |
804 | while (1) { |
805 | if( lhs && (t >= length_lhs) ) { |
806 | /* finished processing left hand side, switch to right if it exists */ |
807 | if( length_rhs ) { |
808 | lhs = t = 0; |
809 | } |
810 | else { |
811 | /* do not need to check for s>=0, since we know that |
812 | * (length_lhs+length_rhs>0) and that (length_rhs==0), the |
813 | * length_lhs must be > 0, thus s>=0 |
814 | */ |
815 | return (res_stack[s]); |
816 | } |
817 | } |
818 | else if( (!lhs) && (t >= length_rhs) ) { |
819 | /* finished processing right hand side */ |
820 | if( length_lhs ) { |
821 | /* we know length_lhs and length_rhs are both > 0, since if |
822 | * length_rhs == 0, we would have exited above. |
823 | */ |
824 | return (res_stack[s-1] - res_stack[s]); |
825 | } |
826 | else { |
827 | /* do not need to check for s>=0, since we know that |
828 | * (length_lhs+length_rhs>0) and that (length_lhs==0), the |
829 | * length_rhs must be > 0, thus s>=0 |
830 | */ |
831 | return (-1.0 * res_stack[s]); |
832 | } |
833 | } |
834 | |
835 | term = NewRelationTerm(r, t++, lhs); |
836 | switch( RelationTermType(term) ) { |
837 | case e_zero: |
838 | s++; |
839 | res_stack[s] = 0.0; |
840 | break; |
841 | case e_real: |
842 | s++; |
843 | res_stack[s] = TermReal(term); |
844 | break; |
845 | case e_int: |
846 | s++; |
847 | res_stack[s] = TermInteger(term); |
848 | break; |
849 | case e_var: |
850 | s++; |
851 | res_stack[s] = TermVariable(r, term); |
852 | break; |
853 | case e_plus: |
854 | res_stack[s-1] += res_stack[s]; |
855 | s--; |
856 | break; |
857 | case e_minus: |
858 | res_stack[s-1] -= res_stack[s]; |
859 | s--; |
860 | break; |
861 | case e_times: |
862 | res_stack[s-1] *= res_stack[s]; |
863 | s--; |
864 | break; |
865 | case e_divide: |
866 | res_stack[s-1] /= res_stack[s]; |
867 | s--; |
868 | break; |
869 | case e_uminus: |
870 | res_stack[s] *= -1.0; |
871 | break; |
872 | case e_power: |
873 | case e_ipower: |
874 | res_stack[s-1] = pow(res_stack[s-1], res_stack[s]); |
875 | s--; |
876 | break; |
877 | case e_func: |
878 | funcptr = TermFunc(term); |
879 | res_stack[s] = FuncEval(funcptr, res_stack[s]); |
880 | break; |
881 | default: |
882 | Asc_Panic(2, NULL, |
883 | "Don't know this type of relation type\n" |
884 | "in function RelationEvaluateResidualPostfix\n"); |
885 | break; |
886 | } |
887 | } |
888 | } |
889 | |
890 | |
891 | /* RelationEvaluateResidualGradient |
892 | * This function evaluates the residual and the gradient for the relation |
893 | * r. The calling function must provide a pointer to a double for the |
894 | * residual and an array of doubles for the gradients. This function |
895 | * assumes r exists and that the pointers to the residual and gradients |
896 | * are not NULL. This function returns 0 is everythings goes o.k., and |
897 | * 1 otherwise (out of memory). The function computes the gradients by |
898 | * maintaining a n stacks, where n = (number-of-variables-in-r + 1) |
899 | * The +1 is for the residual. The stacks come from a single array which |
900 | * this function gets by calling tmpalloc_array. Two macros are defined |
901 | * to make referencing this array easier. |
902 | */ |
903 | static int |
904 | RelationEvaluateResidualGradient(CONST struct relation *r, |
905 | double *residual, |
906 | double *gradient) |
907 | { |
908 | unsigned long t; /* the current term in the relation r */ |
909 | unsigned long num_var; /* the number of variables in the relation r */ |
910 | unsigned long v; /* the index of the variable we are looking at */ |
911 | int lhs; /* looking at left(=1) or right(=0) hand side of r */ |
912 | double *stacks; /* the memory for the stacks */ |
913 | unsigned long stack_height; /* height of each stack */ |
914 | long s = -1; /* the top position in the stacks */ |
915 | double temp, temp2; /* temporary variables to speed gradient calculatns */ |
916 | unsigned long length_lhs, length_rhs; |
917 | CONST struct relation_term *term; |
918 | CONST struct Func *fxnptr; |
919 | |
920 | num_var = NumberVariables(r); |
921 | length_lhs = RelationLength(r, 1); |
922 | length_rhs = RelationLength(r, 0); |
923 | if( (length_lhs + length_rhs) == 0 ) { |
924 | for( v = 0; v < num_var; v++ ) gradient[v] = 0.0; |
925 | *residual = 0.0; |
926 | return 0; |
927 | } |
928 | else { |
929 | stack_height = 1 + MAX(length_lhs,length_rhs); |
930 | } |
931 | |
932 | /* create the stacks */ |
933 | stacks = tmpalloc_array(((num_var+1)*stack_height),double); |
934 | if( stacks == NULL ) return 1; |
935 | |
936 | #define res_stack(s) stacks[(s)] |
937 | #define grad_stack(v,s) stacks[((v)*stack_height)+(s)] |
938 | |
939 | lhs = 1; |
940 | t = 0; |
941 | while(1) { |
942 | if( lhs && (t >= length_lhs) ) { |
943 | /* need to switch to the right hand side--if it exists */ |
944 | if( length_rhs ) { |
945 | lhs = t = 0; |
946 | } |
947 | else { |
948 | /* Set the pointers we were passed to the tops of the stacks. |
949 | * We do not need to check for s>=0, since we know that |
950 | * (length_lhs+length_rhs>0) and that (length_rhs==0), the |
951 | * length_lhs must be > 0, thus s>=0 |
952 | */ |
953 | for( v = 1; v <= num_var; v++ ) gradient[v-1] = grad_stack(v,s); |
954 | *residual = res_stack(s); |
955 | return 0; |
956 | } |
957 | } |
958 | else if( (!lhs) && (t >= length_rhs) ) { |
959 | /* we have processed both sides, quit */ |
960 | if( length_lhs ) { |
961 | /* Set the pointers we were passed to lhs - rhs |
962 | * We know length_lhs and length_rhs are both > 0, since if |
963 | * length_rhs == 0, we would have exited above. |
964 | */ |
965 | for( v = 1; v <= num_var; v++ ) { |
966 | gradient[v-1] = grad_stack(v,s-1) - grad_stack(v,s); |
967 | } |
968 | *residual = res_stack(s-1) - res_stack(s); |
969 | return 0; |
970 | } |
971 | else { |
972 | /* Set the pointers we were passed to -1.0 * top of stacks. |
973 | * We do not need to check for s>=0, since we know that |
974 | * (length_lhs+length_rhs>0) and that (length_lhs==0), the |
975 | * length_rhs must be > 0, thus s>=0 |
976 | */ |
977 | for( v = 1; v <= num_var; v++ ) { |
978 | gradient[v-1] = -grad_stack(v,s); |
979 | } |
980 | *residual = -res_stack(s); |
981 | return 0; |
982 | } |
983 | } |
984 | |
985 | term = NewRelationTerm(r, t++, lhs); |
986 | switch( RelationTermType(term) ) { |
987 | case e_zero: |
988 | s++; |
989 | for( v = 1; v <= num_var; v++ ) grad_stack(v,s) = 0.0; |
990 | res_stack(s) = 0.0; |
991 | break; |
992 | case e_real: |
993 | s++; |
994 | for( v = 1; v <= num_var; v++ ) grad_stack(v,s) = 0.0; |
995 | res_stack(s) = TermReal(term); |
996 | break; |
997 | case e_int: |
998 | s++; |
999 | for( v = 1; v <= num_var; v++ ) grad_stack(v,s) = 0.0; |
1000 | res_stack(s) = TermInteger(term); |
1001 | break; |
1002 | case e_var: |
1003 | s++; |
1004 | for( v = 1; v <= num_var; v++ ) grad_stack(v,s) = 0.0; |
1005 | grad_stack(TermVarNumber(term),s) = 1.0; |
1006 | res_stack(s) = TermVariable(r, term); |
1007 | break; |
1008 | case e_plus: |
1009 | /* d(u+v) = du + dv */ |
1010 | for( v = 1; v <= num_var; v++ ) grad_stack(v,s-1) += grad_stack(v,s); |
1011 | res_stack(s-1) += res_stack(s); |
1012 | s--; |
1013 | break; |
1014 | case e_minus: |
1015 | /* d(u-v) = du - dv */ |
1016 | for( v = 1; v <= num_var; v++ ) grad_stack(v,s-1) -= grad_stack(v,s); |
1017 | res_stack(s-1) -= res_stack(s); |
1018 | s--; |
1019 | break; |
1020 | case e_times: |
1021 | /* d(u*v) = u*dv + v*du */ |
1022 | for( v = 1; v <= num_var; v++ ) { |
1023 | grad_stack(v,s-1) = ((res_stack(s-1) * grad_stack(v,s)) + |
1024 | (res_stack(s) * grad_stack(v,s-1))); |
1025 | } |
1026 | res_stack(s-1) *= res_stack(s); |
1027 | s--; |
1028 | break; |
1029 | case e_divide: |
1030 | /* d(u/v) = du/v - u*dv/(v^2) = (1/v) * [du - (u/v)*dv] */ |
1031 | res_stack(s) = 1.0 / res_stack(s); /* 1/v */ |
1032 | res_stack(s-1) *= res_stack(s); /* u/v */ |
1033 | for( v = 1; v <= num_var; v++ ) { |
1034 | grad_stack(v,s-1) = (res_stack(s) * |
1035 | (grad_stack(v,s-1) - |
1036 | (res_stack(s-1) * grad_stack(v,s)))); |
1037 | } |
1038 | s--; |
1039 | break; |
1040 | case e_uminus: |
1041 | for( v = 1; v <= num_var; v++ ) grad_stack(v,s) = -grad_stack(v,s); |
1042 | res_stack(s) = -res_stack(s); |
1043 | break; |
1044 | case e_power: |
1045 | /* d(u^v) = v * u^(v-1) * du + ln(u) * u^v * dv */ |
1046 | /* First compute: v*u^(v-1) */ |
1047 | temp = res_stack(s) * pow( res_stack(s-1), (res_stack(s) - 1.0) ); |
1048 | /* Now compute: ln(u) */ |
1049 | temp2 = FuncEval( LookupFuncById(F_LN), res_stack(s-1) ); |
1050 | /* Next compute: u^v */ |
1051 | res_stack(s-1) = pow(res_stack(s-1), res_stack(s)); |
1052 | /* Compute: [ln(u)] * [u^v] */ |
1053 | temp2 *= res_stack(s-1); |
1054 | /* Finally, compute: [v*u^(v-1)] * [du] + [ln(u)*u^v] * [dv] */ |
1055 | for( v = 1; v <= num_var; v++ ) { |
1056 | grad_stack(v,s-1) = ((temp * grad_stack(v,s-1)) + |
1057 | (temp2 * grad_stack(v,s))); |
1058 | } |
1059 | s--; |
1060 | break; |
1061 | case e_ipower: |
1062 | /* d(u^v) = v * u^(v-1) * du + ln(u) * u^v * dv */ |
1063 | /* First compute: v*u^(v-1) */ |
1064 | temp = asc_d1ipow( res_stack(s-1), ((int)res_stack(s)) ); |
1065 | /* Now compute: ln(u) */ |
1066 | temp2 = FuncEval( LookupFuncById(F_LN), res_stack(s-1) ); |
1067 | /* Next compute: u^v */ |
1068 | res_stack(s-1) = asc_ipow( res_stack(s-1), ((int)res_stack(s)) ); |
1069 | /* Compute: [ln(u)] * [u^v] */ |
1070 | temp2 *= res_stack(s-1); |
1071 | /* Finally, compute: [v*u^(v-1)] * [du] + [ln(u)*u^v] * [dv] */ |
1072 | for( v = 1; v <= num_var; v++ ) { |
1073 | grad_stack(v,s-1) = ((temp * grad_stack(v,s-1)) + |
1074 | (temp2 * grad_stack(v,s))); |
1075 | } |
1076 | s--; |
1077 | break; |
1078 | case e_func: |
1079 | /* |
1080 | funcptr = TermFunc(term); |
1081 | for (v = 0; v < num_var; v++) { |
1082 | grad_stack(v,s) = FuncDeriv(funcptr, grad_stack(v,s)); |
1083 | } |
1084 | res_stack(s) = FuncEval(funcptr, res_stack(s)); */ |
1085 | fxnptr = TermFunc(term); |
1086 | temp = FuncDeriv( fxnptr, res_stack(s) ); |
1087 | for( v = 1; v <= num_var; v++ ) grad_stack(v,s) *= temp; |
1088 | res_stack(s) = FuncEval( fxnptr, res_stack(s) ); |
1089 | break; |
1090 | default: |
1091 | Asc_Panic(2, NULL, |
1092 | "Don't know this type of relation type\n" |
1093 | "in function RelationEvaluateResidualGradient\n"); |
1094 | break; |
1095 | } |
1096 | } |
1097 | #undef grad_stack |
1098 | #undef res_stack |
1099 | } |
1100 | |
1101 | static int |
1102 | RelationEvaluateResidualGradientSafe(CONST struct relation *r, |
1103 | double *residual, |
1104 | double *gradient, |
1105 | enum safe_err *serr) |
1106 | { |
1107 | unsigned long t; /* the current term in the relation r */ |
1108 | unsigned long num_var; /* the number of variables in the relation r */ |
1109 | unsigned long v; /* the index of the variable we are looking at */ |
1110 | int lhs; /* looking at left(=1) or right(=0) hand side of r */ |
1111 | double *stacks; /* the memory for the stacks */ |
1112 | unsigned long stack_height; /* height of each stack */ |
1113 | long s = -1; /* the top position in the stacks */ |
1114 | double temp, temp2; /* temporary variables to speed gradient calculatns */ |
1115 | unsigned long length_lhs, length_rhs; |
1116 | CONST struct relation_term *term; |
1117 | CONST struct Func *fxnptr; |
1118 | |
1119 | num_var = NumberVariables(r); |
1120 | length_lhs = RelationLength(r, 1); |
1121 | length_rhs = RelationLength(r, 0); |
1122 | if( (length_lhs + length_rhs) == 0 ) { |
1123 | for( v = 0; v < num_var; v++ ) gradient[v] = 0.0; |
1124 | *residual = 0.0; |
1125 | return 0; |
1126 | } |
1127 | else { |
1128 | stack_height = 1 + MAX(length_lhs,length_rhs); |
1129 | } |
1130 | |
1131 | /* create the stacks */ |
1132 | stacks = tmpalloc_array(((num_var+1)*stack_height),double); |
1133 | if( stacks == NULL ) return 1; |
1134 | |
1135 | #define res_stack(s) stacks[(s)] |
1136 | #define grad_stack(v,s) stacks[((v)*stack_height)+(s)] |
1137 | |
1138 | lhs = 1; |
1139 | t = 0; |
1140 | while(1) { |
1141 | if( lhs && (t >= length_lhs) ) { |
1142 | /* need to switch to the right hand side--if it exists */ |
1143 | if( length_rhs ) { |
1144 | lhs = t = 0; |
1145 | } |
1146 | else { |
1147 | /* Set the pointers we were passed to the tops of the stacks. |
1148 | * We do not need to check for s>=0, since we know that |
1149 | * (length_lhs+length_rhs>0) and that (length_rhs==0), the |
1150 | * length_lhs must be > 0, thus s>=0 |
1151 | */ |
1152 | for( v = 1; v <= num_var; v++ ) gradient[v-1] = grad_stack(v,s); |
1153 | *residual = res_stack(s); |
1154 | return 0; |
1155 | } |
1156 | } |
1157 | else if( (!lhs) && (t >= length_rhs) ) { |
1158 | /* we have processed both sides, quit */ |
1159 | if( length_lhs ) { |
1160 | /* Set the pointers we were passed to lhs - rhs |
1161 | * We know length_lhs and length_rhs are both > 0, since if |
1162 | * length_rhs == 0, we would have exited above. |
1163 | */ |
1164 | for( v = 1; v <= num_var; v++ ) { |
1165 | gradient[v-1] = safe_sub_D0(grad_stack(v,s-1),grad_stack(v,s),serr); |
1166 | } |
1167 | *residual = safe_sub_D0(res_stack(s-1), res_stack(s), serr); |
1168 | return 0; |
1169 | } |
1170 | else { |
1171 | /* Set the pointers we were passed to -1.0 * top of stacks. |
1172 | * We do not need to check for s>=0, since we know that |
1173 | * (length_lhs+length_rhs>0) and that (length_lhs==0), the |
1174 | * length_rhs must be > 0, thus s>=0 |
1175 | */ |
1176 | for( v = 1; v <= num_var; v++ ) { |
1177 | gradient[v-1] = -grad_stack(v,s); |
1178 | } |
1179 | *residual = -res_stack(s); |
1180 | return 0; |
1181 | } |
1182 | } |
1183 | |
1184 | term = NewRelationTerm(r, t++, lhs); |
1185 | switch( RelationTermType(term) ) { |
1186 | case e_zero: |
1187 | s++; |
1188 | for( v = 1; v <= num_var; v++ ) grad_stack(v,s) = 0.0; |
1189 | res_stack(s) = 0.0; |
1190 | break; |
1191 | case e_real: |
1192 | s++; |
1193 | for( v = 1; v <= num_var; v++ ) grad_stack(v,s) = 0.0; |
1194 | res_stack(s) = TermReal(term); |
1195 | break; |
1196 | case e_int: |
1197 | s++; |
1198 | for( v = 1; v <= num_var; v++ ) grad_stack(v,s) = 0.0; |
1199 | res_stack(s) = TermInteger(term); |
1200 | break; |
1201 | case e_var: |
1202 | s++; |
1203 | for( v = 1; v <= num_var; v++ ) grad_stack(v,s) = 0.0; |
1204 | grad_stack(TermVarNumber(term),s) = 1.0; |
1205 | res_stack(s) = TermVariable(r, term); |
1206 | break; |
1207 | case e_plus: |
1208 | /* d(u+v) = du + dv */ |
1209 | for( v = 1; v <= num_var; v++ ) { |
1210 | grad_stack(v,s-1)=safe_add_D0(grad_stack(v,s-1),grad_stack(v,s),serr); |
1211 | } |
1212 | res_stack(s-1) = safe_add_D0(res_stack(s-1),res_stack(s),serr); |
1213 | s--; |
1214 | break; |
1215 | case e_minus: |
1216 | /* d(u-v) = du - dv */ |
1217 | for( v = 1; v <= num_var; v++ ) { |
1218 | grad_stack(v,s-1)=safe_sub_D0(grad_stack(v,s-1),grad_stack(v,s),serr); |
1219 | } |
1220 | res_stack(s-1) = safe_sub_D0(res_stack(s-1),res_stack(s),serr); |
1221 | s--; |
1222 | break; |
1223 | case e_times: |
1224 | /* d(u*v) = u*dv + v*du */ |
1225 | for( v = 1; v <= num_var; v++ ) { |
1226 | grad_stack(v,s-1) = |
1227 | safe_add_D0(safe_mul_D0(res_stack(s-1),grad_stack(v,s),serr), |
1228 | safe_mul_D0(res_stack(s),grad_stack(v,s-1),serr), |
1229 | serr); |
1230 | } |
1231 | res_stack(s-1) = safe_mul_D0(res_stack(s-1),res_stack(s),serr); |
1232 | s--; |
1233 | break; |
1234 | case e_divide: |
1235 | /* d(u/v) = du/v - u*dv/(v^2) = (1/v) * [du - (u/v)*dv] */ |
1236 | res_stack(s) = safe_rec(res_stack(s),serr); /* 1/v */ |
1237 | res_stack(s-1) = safe_mul_D0(res_stack(s-1),res_stack(s),serr); /* u/v */ |
1238 | for( v = 1; v <= num_var; v++ ) { |
1239 | grad_stack(v,s-1) = |
1240 | safe_mul_D0(res_stack(s), |
1241 | safe_sub_D0(grad_stack(v,s-1), |
1242 | safe_mul_D0(res_stack(s-1), |
1243 | grad_stack(v,s), |
1244 | serr),serr),serr); |
1245 | } |
1246 | s--; |
1247 | break; |
1248 | case e_uminus: |
1249 | for( v = 1; v <= num_var; v++ ) grad_stack(v,s) = -grad_stack(v,s); |
1250 | res_stack(s) = -res_stack(s); |
1251 | break; |
1252 | case e_power: |
1253 | /* d(u^v) = v * u^(v-1) * du + ln(u) * u^v * dv */ |
1254 | /* v*u^(v-1) */ |
1255 | temp = safe_pow_D1( res_stack(s-1), res_stack(s), 0, serr ); |
1256 | /* ln(u)*u^v */ |
1257 | temp2 = safe_pow_D1( res_stack(s-1), res_stack(s), 1, serr ); |
1258 | /* Compute: [v*u^(v-1)] * [du] + [ln(u)*u^v] * [dv] */ |
1259 | for( v = 1; v <= num_var; v++ ) { |
1260 | grad_stack(v,s-1) = |
1261 | safe_add_D0(safe_mul_D0(temp, grad_stack(v,s-1), serr), |
1262 | safe_mul_D0(temp2, grad_stack(v,s), serr), serr); |
1263 | } |
1264 | /* u^v */ |
1265 | res_stack(s-1) = safe_pow_D0( res_stack(s-1), res_stack(s), serr ); |
1266 | s--; |
1267 | break; |
1268 | case e_ipower: |
1269 | /* d(u^v) = v * u^(v-1) * du + ln(u) * u^v * dv */ |
1270 | /* v*u^(v-1) */ |
1271 | temp = safe_ipow_D1( res_stack(s-1), res_stack(s), 0, serr ); |
1272 | /* ln(u)*u^v */ |
1273 | temp2 = safe_ipow_D1( res_stack(s-1), res_stack(s), 1, serr ); |
1274 | /* Compute: [v*u^(v-1)] * [du] + [ln(u)*u^v] * [dv] */ |
1275 | for( v = 1; v <= num_var; v++ ) { |
1276 | grad_stack(v,s-1) = |
1277 | safe_add_D0(safe_mul_D0(temp, grad_stack(v,s-1), serr), |
1278 | safe_mul_D0(temp2, grad_stack(v,s), serr), serr); |
1279 | } |
1280 | /* Next compute: u^v */ |
1281 | res_stack(s-1) = safe_ipow_D0( res_stack(s-1), res_stack(s), serr ); |
1282 | s--; |
1283 | break; |
1284 | case e_func: |
1285 | fxnptr = TermFunc(term); |
1286 | temp = FuncDerivSafe( fxnptr, res_stack(s), serr); |
1287 | for( v = 1; v <= num_var; v++ ) { |
1288 | grad_stack(v,s) = safe_mul_D0( grad_stack(v,s), temp, serr ); |
1289 | } |
1290 | res_stack(s) = FuncEvalSafe( fxnptr, res_stack(s), serr); |
1291 | break; |
1292 | default: |
1293 | Asc_Panic(2, NULL, |
1294 | "Don't know this type of relation type\n" |
1295 | "in function RelationEvaluateResidualGradientSafe\n"); |
1296 | break; |
1297 | } |
1298 | } |
1299 | #undef grad_stack |
1300 | #undef res_stack |
1301 | } |
1302 | |
1303 | /* RelationEvaluateDerivative |
1304 | * This function evaluates and returns the derivative of the |
1305 | * relation r with respect to the variable whose index is pos. |
1306 | * This function assumes r exists and that pos is within the proper range. |
1307 | * The function computes the gradients by maintaining 2 stacks, one for |
1308 | * the residual and one for the derivative. The stacks come from a |
1309 | * single array which this gets by calling tmpalloc_array. Two macros |
1310 | * are defined to make referencing this array easier. Of the malloc fails, |
1311 | * this function returns 0.0, so there is currently no way to know if |
1312 | * the function failed. |
1313 | */ |
1314 | static double |
1315 | RelationEvaluateDerivative(CONST struct relation *r, |
1316 | unsigned long pos) |
1317 | { |
1318 | unsigned long t; /* the current term in the relation r */ |
1319 | int lhs; /* looking at left(=1) or right(=0) hand side of r */ |
1320 | double *stacks; /* the memory for the stacks */ |
1321 | unsigned long stack_height; /* height of each stack */ |
1322 | long s = -1; /* the top position in the stacks */ |
1323 | unsigned long length_lhs, length_rhs; |
1324 | CONST struct relation_term *term; |
1325 | CONST struct Func *fxnptr; |
1326 | |
1327 | length_lhs = RelationLength(r, 1); |
1328 | length_rhs = RelationLength(r, 0); |
1329 | if( (length_lhs + length_rhs) == 0 ) { |
1330 | return 0.0; |
1331 | } |
1332 | else { |
1333 | stack_height = 1 + MAX(length_lhs,length_rhs); |
1334 | } |
1335 | |
1336 | /* create the stacks */ |
1337 | stacks = tmpalloc_array((2*stack_height),double); |
1338 | if( stacks == NULL ) return 0.0; |
1339 | |
1340 | #define res_stack(s) stacks[(s)] |
1341 | #define grad_stack(s) stacks[stack_height+(s)] |
1342 | |
1343 | lhs = 1; |
1344 | t = 0; |
1345 | while(1) { |
1346 | if( lhs && (t >= length_lhs) ) { |
1347 | /* need to switch to the right hand side--if it exists */ |
1348 | if( length_rhs ) { |
1349 | lhs = t = 0; |
1350 | } |
1351 | else { |
1352 | /* do not need to check for s>=0, since we know that |
1353 | * (length_lhs+length_rhs>0) and that (length_rhs==0), the |
1354 | * length_lhs must be > 0, thus s>=0 |
1355 | */ |
1356 | return grad_stack(s); |
1357 | } |
1358 | } |
1359 | else if( (!lhs) && (t >= length_rhs) ) { |
1360 | /* we have processed both sides, quit */ |
1361 | if( length_lhs ) { |
1362 | /* we know length_lhs and length_rhs are both > 0, since if |
1363 | * length_rhs == 0, we would have exited above. |
1364 | */ |
1365 | return (grad_stack(s-1) - grad_stack(s)); |
1366 | } |
1367 | else { |
1368 | /* do not need to check for s>=0, since we know that |
1369 | * (length_lhs+length_rhs>0) and that (length_lhs==0), the |
1370 | * length_rhs must be > 0, thus s>=0 |
1371 | */ |
1372 | return (-1.0 * grad_stack(s)); |
1373 | } |
1374 | } |
1375 | |
1376 | term = NewRelationTerm(r, t++, lhs); |
1377 | switch( RelationTermType(term) ) { |
1378 | case e_zero: |
1379 | s++; |
1380 | grad_stack(s) = res_stack(s) = 0.0; |
1381 | break; |
1382 | case e_real: |
1383 | s++; |
1384 | grad_stack(s) = 0.0; |
1385 | res_stack(s) = TermReal(term); |
1386 | break; |
1387 | case e_int: |
1388 | s++; |
1389 | grad_stack(s) = 0.0; |
1390 | res_stack(s) = TermInteger(term); |
1391 | break; |
1392 | case e_var: |
1393 | s++; |
1394 | grad_stack(s) = ( (pos == TermVarNumber(term)) ? 1.0 : 0.0 ); |
1395 | res_stack(s) = TermVariable(r, term); |
1396 | break; |
1397 | case e_plus: |
1398 | /* d(u+v) = du + dv */ |
1399 | grad_stack(s-1) += grad_stack(s); |
1400 | res_stack(s-1) += res_stack(s); |
1401 | s--; |
1402 | break; |
1403 | case e_minus: |
1404 | /* d(u-v) = du - dv */ |
1405 | grad_stack(s-1) -= grad_stack(s); |
1406 | res_stack(s-1) -= res_stack(s); |
1407 | s--; |
1408 | break; |
1409 | case e_times: |
1410 | /* d(u*v) = u*dv + v*du */ |
1411 | grad_stack(s-1) = ((res_stack(s-1) * grad_stack(s)) + |
1412 | (res_stack(s) * grad_stack(s-1))); |
1413 | res_stack(s-1) *= res_stack(s); |
1414 | s--; |
1415 | break; |
1416 | case e_divide: |
1417 | /* d(u/v) = du/v - u*dv/(v^2) = [du - (u/v)*dv]/v */ |
1418 | res_stack(s-1) = res_stack(s-1) / res_stack(s); |
1419 | grad_stack(s-1) = ((grad_stack(s-1) - (res_stack(s-1) * grad_stack(s))) / |
1420 | res_stack(s)); |
1421 | s--; |
1422 | break; |
1423 | case e_uminus: |
1424 | grad_stack(s) = -grad_stack(s); |
1425 | res_stack(s) = -res_stack(s); |
1426 | break; |
1427 | case e_power: |
1428 | /* d(u^v) = v * u^(v-1) * du + ln(u) * u^v * dv */ |
1429 | /* First we compute: v*u^(v-1)*du */ |
1430 | grad_stack(s-1) *= (pow(res_stack(s-1), (res_stack(s) - 1.0)) * |
1431 | res_stack(s)); |
1432 | /* Now compute: ln(u)*dv */ |
1433 | grad_stack(s) *= FuncEval( LookupFuncById(F_LN), res_stack(s-1) ); |
1434 | /* Next compute: u^v */ |
1435 | res_stack(s-1) = pow( res_stack(s-1), res_stack(s) ); |
1436 | /* Finally, compute: [v*u^(v-1)*du] + [u^v] * [ln(u)*dv] */ |
1437 | grad_stack(s-1) += (res_stack(s-1) * grad_stack(s)); |
1438 | s--; |
1439 | break; |
1440 | case e_ipower: |
1441 | /* d(x^y) = y * dx * x^(y-1) + ln(x) * dy * x^y */ |
1442 | /* First we compute: v*u^(v-1)*du */ |
1443 | grad_stack(s-1) *= asc_d1ipow( res_stack(s-1), ((int)res_stack(s)) ); |
1444 | /* Now compute: ln(u)*dv */ |
1445 | grad_stack(s) *= FuncEval( LookupFuncById(F_LN), res_stack(s-1) ); |
1446 | /* Next compute: u^v */ |
1447 | res_stack(s-1) = asc_ipow( res_stack(s-1), ((int)res_stack(s)) ); |
1448 | /* Finally, compute: [v*u^(v-1)*du] + [u^v] * [ln(u)*dv] */ |
1449 | grad_stack(s-1) += (res_stack(s-1) * grad_stack(s)); |
1450 | s--; |
1451 | break; |
1452 | case e_func: |
1453 | fxnptr = TermFunc(term); |
1454 | grad_stack(s) *= FuncDeriv( fxnptr, res_stack(s) ); |
1455 | res_stack(s) = FuncEval( fxnptr, res_stack(s) ); |
1456 | break; |
1457 | default: |
1458 | Asc_Panic(2, NULL, |
1459 | "Don't know this type of relation type\n" |
1460 | "in function RelationEvaluateDerivative\n"); |
1461 | break; |
1462 | } |
1463 | } |
1464 | #undef grad_stack |
1465 | #undef res_stack |
1466 | } |
1467 | |
1468 | static double |
1469 | RelationEvaluateDerivativeSafe(CONST struct relation *r, |
1470 | unsigned long pos, |
1471 | enum safe_err *serr) |
1472 | { |
1473 | unsigned long t; /* the current term in the relation r */ |
1474 | int lhs; /* looking at left(=1) or right(=0) hand side of r */ |
1475 | double *stacks; /* the memory for the stacks */ |
1476 | unsigned long stack_height; /* height of each stack */ |
1477 | long s = -1; /* the top position in the stacks */ |
1478 | unsigned long length_lhs, length_rhs; |
1479 | CONST struct relation_term *term; |
1480 | CONST struct Func *fxnptr; |
1481 | |
1482 | length_lhs = RelationLength(r, 1); |
1483 | length_rhs = RelationLength(r, 0); |
1484 | if( (length_lhs + length_rhs) == 0 ) { |
1485 | return 0.0; |
1486 | } |
1487 | else { |
1488 | stack_height = 1 + MAX(length_lhs,length_rhs); |
1489 | } |
1490 | |
1491 | /* create the stacks */ |
1492 | stacks = tmpalloc_array((2*stack_height),double); |
1493 | if( stacks == NULL ) return 0.0; |
1494 | |
1495 | #define res_stack(s) stacks[(s)] |
1496 | #define grad_stack(s) stacks[stack_height+(s)] |
1497 | |
1498 | lhs = 1; |
1499 | t = 0; |
1500 | while(1) { |
1501 | if( lhs && (t >= length_lhs) ) { |
1502 | /* need to switch to the right hand side--if it exists */ |
1503 | if( length_rhs ) { |
1504 | lhs = t = 0; |
1505 | } |
1506 | else { |
1507 | /* do not need to check for s>=0, since we know that |
1508 | * (length_lhs+length_rhs>0) and that (length_rhs==0), the |
1509 | * length_lhs must be > 0, thus s>=0 |
1510 | */ |
1511 | return grad_stack(s); |
1512 | } |
1513 | } |
1514 | else if( (!lhs) && (t >= length_rhs) ) { |
1515 | /* we have processed both sides, quit */ |
1516 | if( length_lhs ) { |
1517 | /* we know length_lhs and length_rhs are both > 0, since if |
1518 | * length_rhs == 0, we would have exited above. |
1519 | */ |
1520 | return safe_sub_D0(grad_stack(s-1), grad_stack(s), serr); |
1521 | } |
1522 | else { |
1523 | /* do not need to check for s>=0, since we know that |
1524 | * (length_lhs+length_rhs>0) and that (length_lhs==0), the |
1525 | * length_rhs must be > 0, thus s>=0 |
1526 | */ |
1527 | return (-grad_stack(s)); |
1528 | } |
1529 | } |
1530 | |
1531 | term = NewRelationTerm(r, t++, lhs); |
1532 | switch( RelationTermType(term) ) { |
1533 | case e_zero: |
1534 | s++; |
1535 | grad_stack(s) = res_stack(s) = 0.0; |
1536 | break; |
1537 | case e_real: |
1538 | s++; |
1539 | grad_stack(s) = 0.0; |
1540 | res_stack(s) = TermReal(term); |
1541 | break; |
1542 | case e_int: |
1543 | s++; |
1544 | grad_stack(s) = 0.0; |
1545 | res_stack(s) = TermInteger(term); |
1546 | break; |
1547 | case e_var: |
1548 | s++; |
1549 | grad_stack(s) = ( (pos == TermVarNumber(term)) ? 1.0 : 0.0 ); |
1550 | res_stack(s) = TermVariable(r, term); |
1551 | break; |
1552 | case e_plus: |
1553 | /* d(u+v) = du + dv */ |
1554 | grad_stack(s-1) = safe_add_D0( grad_stack(s-1), grad_stack(s), serr ); |
1555 | res_stack(s-1) = safe_add_D0( res_stack(s-1), res_stack(s), serr ); |
1556 | s--; |
1557 | break; |
1558 | case e_minus: |
1559 | /* d(u-v) = du - dv */ |
1560 | grad_stack(s-1) = safe_sub_D0( grad_stack(s-1), grad_stack(s), serr ); |
1561 | res_stack(s-1) = safe_sub_D0( res_stack(s-1), res_stack(s), serr ); |
1562 | s--; |
1563 | break; |
1564 | case e_times: |
1565 | /* d(u*v) = u*dv + v*du */ |
1566 | grad_stack(s-1) = |
1567 | safe_add_D0(safe_mul_D0( res_stack(s-1), grad_stack(s), serr), |
1568 | safe_mul_D0( res_stack(s), grad_stack(s-1), serr), serr); |
1569 | res_stack(s-1) = safe_mul_D0( res_stack(s-1), res_stack(s), serr ); |
1570 | s--; |
1571 | break; |
1572 | case e_divide: |
1573 | /* d(u/v) = du/v - u*dv/(v^2) = [du - (u/v)*dv]/v */ |
1574 | res_stack(s-1) = safe_div_D0( res_stack(s-1), res_stack(s), serr); |
1575 | grad_stack(s-1) = |
1576 | safe_div_D0(safe_sub_D0(grad_stack(s-1), |
1577 | safe_mul_D0(res_stack(s-1),grad_stack(s),serr), |
1578 | serr), |
1579 | res_stack(s),serr); |
1580 | s--; |
1581 | break; |
1582 | case e_uminus: |
1583 | grad_stack(s) = -grad_stack(s); |
1584 | res_stack(s) = -res_stack(s); |
1585 | break; |
1586 | case e_power: |
1587 | /* d(u^v) = v * u^(v-1) * du + ln(u) * u^v * dv */ |
1588 | grad_stack(s-1) = |
1589 | safe_add_D0(safe_mul_D0(safe_pow_D1(res_stack(s-1), |
1590 | res_stack(s),0,serr), |
1591 | grad_stack(s-1), serr), |
1592 | safe_mul_D0(safe_pow_D1(res_stack(s-1), |
1593 | res_stack(s),1,serr), |
1594 | grad_stack(s),serr), serr); |
1595 | /* u^v */ |
1596 | res_stack(s-1) = safe_pow_D0( res_stack(s-1), res_stack(s), serr); |
1597 | s--; |
1598 | break; |
1599 | case e_ipower: |
1600 | /* d(x^y) = y * dx * x^(y-1) + ln(x) * dy * x^y */ |
1601 | grad_stack(s-1) = |
1602 | safe_add_D0(safe_mul_D0(safe_ipow_D1(res_stack(s-1), |
1603 | res_stack(s),0,serr), |
1604 | grad_stack(s-1), serr), |
1605 | safe_mul_D0(safe_ipow_D1(res_stack(s-1), |
1606 | res_stack(s),1,serr), |
1607 | grad_stack(s),serr), serr); |
1608 | /* u^v */ |
1609 | res_stack(s-1) = safe_ipow_D0( res_stack(s-1), res_stack(s), serr); |
1610 | s--; |
1611 | break; |
1612 | case e_func: |
1613 | fxnptr = TermFunc(term); |
1614 | grad_stack(s) = safe_mul_D0(FuncDerivSafe( fxnptr, res_stack(s), serr ), |
1615 | grad_stack(s), serr); |
1616 | res_stack(s) = FuncEvalSafe( fxnptr, res_stack(s), serr); |
1617 | break; |
1618 | default: |
1619 | Asc_Panic(2, NULL, |
1620 | "Don't know this type of relation type\n" |
1621 | "in function RelationEvaluateDerivativeSafe\n"); |
1622 | break; |
1623 | } |
1624 | } |
1625 | #undef grad_stack |
1626 | #undef res_stack |
1627 | } |
1628 | |
1629 | |
1630 | /*********************************************************************\ |
1631 | external relation/relation term queries section. |
1632 | \*********************************************************************/ |
1633 | |
1634 | /* return =, <, >, etc, etc. not e_token, e_glassbox, etc */ |
1635 | enum Expr_enum RelationRelop(CONST struct relation *rel) |
1636 | { |
1637 | AssertAllocatedMemory(rel,sizeof(struct relation)); |
1638 | return rel->share->s.relop; |
1639 | } |
1640 | |
1641 | /* |
1642 | * This query only applies to TokenRelations and OpcodeRelations. |
1643 | */ |
1644 | unsigned long RelationLength(CONST struct relation *rel, int lhs) |
1645 | { |
1646 | assert(rel!=NULL); |
1647 | AssertAllocatedMemory(rel,sizeof(struct relation)); |
1648 | if (lhs){ |
1649 | if (RTOKEN(rel).lhs) return (RTOKEN(rel).lhs_len); |
1650 | else return 0; |
1651 | } |
1652 | if (RTOKEN(rel).rhs) return (RTOKEN(rel).rhs_len); |
1653 | else return 0; |
1654 | } |
1655 | |
1656 | /* |
1657 | * This query only applies to TokenRelations. It assumes the |
1658 | * user still thinks tokens number from [1..len]. |
1659 | */ |
1660 | CONST struct relation_term *RelationTerm(CONST struct relation *rel, |
1661 | unsigned long int pos, int lhs) |
1662 | { |
1663 | assert(rel!=NULL); |
1664 | AssertAllocatedMemory(rel,sizeof(struct relation)); |
1665 | if (lhs){ |
1666 | if (RTOKEN(rel).lhs) |
1667 | return A_TERM(&(RTOKEN(rel).lhs[pos-1])); |
1668 | else return NULL; |
1669 | } |
1670 | else{ |
1671 | if (RTOKEN(rel).rhs) |
1672 | return A_TERM(&(RTOKEN(rel).rhs[pos-1])); |
1673 | else return NULL; |
1674 | } |
1675 | } |
1676 | |
1677 | /* |
1678 | * This query only applies to TokenRelations. It assumes the |
1679 | * clued user thinks tokens number from [0..len-1], which they do. |
1680 | */ |
1681 | CONST struct relation_term |
1682 | *NewRelationTermF(CONST struct relation *rel, unsigned long pos, int lhs) |
1683 | { |
1684 | assert(rel!=NULL); |
1685 | AssertAllocatedMemory(rel,sizeof(struct relation)); |
1686 | if (lhs){ |
1687 | if (RTOKEN(rel).lhs != NULL) |
1688 | return A_TERM(&(RTOKEN(rel).lhs[pos])); |
1689 | else return NULL; |
1690 | } else { |
1691 | if (RTOKEN(rel).rhs != NULL) |
1692 | return A_TERM(&(RTOKEN(rel).rhs[pos])); |
1693 | else return NULL; |
1694 | } |
1695 | } |
1696 | |
1697 | /* |
1698 | * This query only applies to sides from TokenRelations. It assumes the |
1699 | * clued user thinks tokens number from [0..len-1], which they do, |
1700 | * and that the side came from a token relation instance. |
1701 | */ |
1702 | CONST struct relation_term |
1703 | *RelationSideTermF(CONST union RelationTermUnion *side, unsigned long pos) |
1704 | { |
1705 | assert(side!=NULL); |
1706 | return A_TERM(&(side[pos])); |
1707 | } |
1708 | |
1709 | /* |
1710 | * This query only applies to TokenRelations. It assumes the |
1711 | * clued user thinks tokens number from [0..len-1], which they do. |
1712 | */ |
1713 | enum Expr_enum RelationTermTypeF(CONST struct relation_term *term) |
1714 | { |
1715 | AssertMemory(term); |
1716 | return term->t; |
1717 | } |
1718 | |
1719 | unsigned long TermVarNumber(CONST struct relation_term *term) |
1720 | { |
1721 | assert(term&&term->t == e_var); |
1722 | AssertMemory(term); |
1723 | return V_TERM(term)->varnum; |
1724 | } |
1725 | |
1726 | long TermInteger(CONST struct relation_term *term) |
1727 | { |
1728 | assert(term&&(term->t==e_int)); |
1729 | AssertMemory(term); |
1730 | return I_TERM(term)->ivalue; |
1731 | } |
1732 | |
1733 | double TermReal(CONST struct relation_term *term) |
1734 | { |
1735 | assert(term&&( term->t==e_real || term->t==e_zero)); |
1736 | AssertMemory(term); |
1737 | return R_TERM(term)->value; |
1738 | } |
1739 | |
1740 | double |
1741 | TermVariable(CONST struct relation *rel, CONST struct relation_term *term) |
1742 | { |
1743 | return |
1744 | RealAtomValue((struct Instance*)RelationVariable(rel,TermVarNumber(term))); |
1745 | } |
1746 | |
1747 | CONST dim_type *TermDimensions(CONST struct relation_term *term) |
1748 | { |
1749 | assert( term && (term->t==e_real || term->t == e_int || term->t == e_zero) ); |
1750 | AssertMemory(term); |
1751 | if (term->t==e_real) return R_TERM(term)->dimensions; |
1752 | if (term->t==e_int) return Dimensionless(); |
1753 | if (term->t==e_zero) return WildDimension(); |
1754 | return NULL; |
1755 | } |
1756 | |
1757 | CONST struct Func *TermFunc(CONST struct relation_term *term) |
1758 | { |
1759 | assert(term&&(term->t == e_func)); |
1760 | AssertMemory(term); |
1761 | return F_TERM(term)->fptr; |
1762 | } |
1763 | |
1764 | struct relation_term *RelationINF_Lhs(CONST struct relation *rel) |
1765 | { |
1766 | return RTOKEN(rel).lhs_term; |
1767 | } |
1768 | |
1769 | struct relation_term *RelationINF_Rhs(CONST struct relation *rel) |
1770 | { |
1771 | return RTOKEN(rel).rhs_term; |
1772 | } |
1773 | |
1774 | |
1775 | /* |
1776 | * For picking apart a BlackBox relation and its |
1777 | * ExternalCall node. |
1778 | */ |
1779 | |
1780 | struct ExtCallNode *BlackBoxExtCall(CONST struct relation *rel) |
1781 | { |
1782 | assert(rel!=NULL); |
1783 | return RBBOX(rel).ext; |
1784 | } |
1785 | |
1786 | int *BlackBoxArgs(CONST struct relation *rel) |
1787 | { |
1788 | assert(rel!=NULL); |
1789 | return RBBOX(rel).args; |
1790 | } |
1791 | |
1792 | /* |
1793 | * For picking apart a GlassBox relation. |
1794 | */ |
1795 | struct ExternalFunc *GlassBoxExtFunc(CONST struct relation *rel) |
1796 | { |
1797 | assert(rel!=NULL); |
1798 | return RGBOX(rel).efunc; |
1799 | } |
1800 | |
1801 | int GlassBoxRelIndex(CONST struct relation *rel) |
1802 | { |
1803 | assert(rel!=NULL); |
1804 | return RGBOX(rel).index; |
1805 | } |
1806 | |
1807 | int *GlassBoxArgs(CONST struct relation *rel) |
1808 | { |
1809 | assert(rel!=NULL); |
1810 | return RGBOX(rel).args; |
1811 | } |
1812 | |
1813 | |
1814 | /* |
1815 | * For picking apart a relation. Not all of these queries may be |
1816 | * applied to all relation types. Those that cannot be are so |
1817 | * marked. |
1818 | */ |
1819 | |
1820 | CONST struct gl_list_t *RelationVarList(CONST struct relation *rel) |
1821 | { |
1822 | return (CONST struct gl_list_t *)rel->vars; |
1823 | } |
1824 | |
1825 | dim_type *RelationDim(CONST struct relation *rel) |
1826 | { |
1827 | assert(rel!=NULL); |
1828 | return rel->d; |
1829 | } |
1830 | |
1831 | int SetRelationDim(struct relation *rel, dim_type *d) |
1832 | { |
1833 | if (!rel) return 1; |
1834 | rel->d = d; |
1835 | return 0; |
1836 | } |
1837 | |
1838 | double RelationResidual(CONST struct relation *rel) |
1839 | { |
1840 | assert(rel!=NULL); |
1841 | return rel->residual; |
1842 | } |
1843 | |
1844 | void SetRelationResidual(struct relation *rel, double value) |
1845 | { |
1846 | assert(rel!=NULL); |
1847 | rel->residual = value; |
1848 | } |
1849 | |
1850 | double RelationMultiplier(CONST struct relation *rel) |
1851 | { |
1852 | assert(rel!=NULL); |
1853 | return rel->multiplier; |
1854 | } |
1855 | |
1856 | void SetRelationMultiplier(struct relation *rel, double value) |
1857 | { |
1858 | assert(rel!=NULL); |
1859 | rel->multiplier = value; |
1860 | } |
1861 | |
1862 | double RelationNominal(CONST struct relation *rel) |
1863 | { |
1864 | assert(rel!=NULL); |
1865 | return rel->nominal; |
1866 | } |
1867 | |
1868 | void SetRelationNominal(struct relation *rel, double value) |
1869 | { |
1870 | assert(rel!=NULL); |
1871 | rel->nominal = (fabs(value) > 0.0) ? fabs(value) : rel->nominal; |
1872 | } |
1873 | |
1874 | |
1875 | int RelationIsCond(CONST struct relation *rel) |
1876 | { |
1877 | if ( rel != NULL) { |
1878 | return rel->iscond; |
1879 | } |
1880 | return 0; |
1881 | } |
1882 | |
1883 | void SetRelationIsCond(struct relation *rel) |
1884 | { |
1885 | if ( rel != NULL) { |
1886 | rel->iscond = 1; |
1887 | } else { |
1888 | FPRINTF(ASCERR,"ERROR: SetRelationIsCond called with NULL relation\n"); |
1889 | } |
1890 | } |
1891 | |
1892 | unsigned long NumberVariables(CONST struct relation *rel) |
1893 | { |
1894 | unsigned long n; |
1895 | assert(rel!=NULL); |
1896 | n = (rel->vars!=NULL) ? gl_length(rel->vars) : 0; |
1897 | return n; |
1898 | } |
1899 | |
1900 | struct Instance *RelationVariable(CONST struct relation *rel, |
1901 | unsigned long int varnum) |
1902 | { |
1903 | assert(rel!=NULL); |
1904 | return (struct Instance *)gl_fetch(rel->vars,varnum); |
1905 | } |
1906 | |
1907 | static void CalcDepth(CONST struct relation *rel, |
1908 | int lhs, |
1909 | unsigned long int *depth, |
1910 | unsigned long int *maxdepth) |
1911 | { |
1912 | unsigned long c,length; |
1913 | CONST struct relation_term *term; |
1914 | length = RelationLength(rel,lhs); |
1915 | for(c=0;c<length;c++){ |
1916 | term = NewRelationTerm(rel,c,lhs); |
1917 | switch(RelationTermType(term)){ |
1918 | case e_zero: |
1919 | case e_int: |
1920 | case e_real: |
1921 | case e_var: |
1922 | if (++(*depth) > *maxdepth) *maxdepth = *depth; |
1923 | break; |
1924 | case e_func: |
1925 | case e_uminus: |
1926 | break; |
1927 | case e_plus: |
1928 | case e_minus: |
1929 | case e_times: |
1930 | case e_divide: |
1931 | case e_power: |
1932 | case e_ipower: |
1933 | (*depth)--; |
1934 | break; |
1935 | default: |
1936 | Asc_Panic(2, NULL, |
1937 | "Don't know this type of relation type.\n" |
1938 | "in function CalcDepth\n"); |
1939 | break; |
1940 | } |
1941 | } |
1942 | } |
1943 | |
1944 | unsigned long RelationDepth(CONST struct relation *rel) |
1945 | { |
1946 | unsigned long depth=0,maxdepth=0; |
1947 | switch(RelationRelop(rel)){ |
1948 | case e_equal: |
1949 | case e_notequal: |
1950 | case e_less: |
1951 | case e_greater: |
1952 | case e_lesseq: |
1953 | case e_greatereq: |
1954 | CalcDepth(rel,1,&depth,&maxdepth); |
1955 | CalcDepth(rel,0,&depth,&maxdepth); |
1956 | assert(depth == 2); |
1957 | break; |
1958 | case e_maximize: |
1959 | case e_minimize: |
1960 | CalcDepth(rel,1,&depth,&maxdepth); |
1961 | assert(depth == 1); |
1962 | break; |
1963 | default: |
1964 | Asc_Panic(2, NULL, "Unknown relation type.\n"); |
1965 | break; |
1966 | } |
1967 | return maxdepth; |
1968 | } |
1969 | |
1970 | /*************************************************** |
1971 | The following routines are used for equation scaling. |
1972 | Documentation will be added at a later date. |
1973 | ****************************************************/ |
1974 | |
1975 | static double FindMaxAdditiveTerm(struct relation_term *s) |
1976 | { |
1977 | enum safe_err serr; |
1978 | double lhs, rhs; |
1979 | |
1980 | switch (RelationTermType(s)) { |
1981 | case e_plus: |
1982 | case e_minus: |
1983 | /** note these used to be inlined with max, but a bug in gcc323 caused it to be split out. */ |
1984 | lhs = FindMaxAdditiveTerm(TermBinLeft(s)); |
1985 | rhs = FindMaxAdditiveTerm(TermBinRight(s)); |
1986 | return MAX(fabs(lhs), fabs(rhs)); |
1987 | case e_uminus: |
1988 | return (FindMaxAdditiveTerm(TermUniLeft(s))); |
1989 | case e_times: |
1990 | return (FindMaxAdditiveTerm(TermBinLeft(s))* |
1991 | FindMaxAdditiveTerm(TermBinRight(s))); |
1992 | case e_divide: |
1993 | /* bug patch / 0 */ |
1994 | return safe_div_D0(FindMaxAdditiveTerm(TermBinLeft(s)) , |
1995 | RelationBranchEvaluator(TermBinRight(s)),&serr); |
1996 | default: |
1997 | return RelationBranchEvaluator(s); |
1998 | } |
1999 | } |
2000 | |
2001 | static double FindMaxFromTop(struct relation *s) |
2002 | { |
2003 | double lhs; |
2004 | double rhs; |
2005 | if (s == NULL) { |
2006 | return 0; |
2007 | } |
2008 | /** note these used to be inlined with max, but a bug in gcc323 caused it to be split out. */ |
2009 | lhs = FindMaxAdditiveTerm(Infix_LhsSide(s)); |
2010 | rhs = FindMaxAdditiveTerm(Infix_RhsSide(s)); |
2011 | return MAX(fabs(lhs), fabs(rhs)); |
2012 | } |
2013 | |
2014 | double CalcRelationNominal(struct Instance *i) /* send in relation */ |
2015 | { |
2016 | enum Expr_enum reltype; |
2017 | |
2018 | char *iname; |
2019 | iname = WriteInstanceNameString(i,NULL); |
2020 | ascfree(iname); |
2021 | |
2022 | glob_rel = NULL; |
2023 | if (i == NULL){ |
2024 | FPRINTF(ASCERR, "error in CalcRelationNominal routine\n"); |
2025 | return (double)0; |
2026 | } |
2027 | if (InstanceKind(i) != REL_INST) { |
2028 | FPRINTF(ASCERR, "error in CalcRelationNominal routine\n"); |
2029 | return (double)0; |
2030 | } |
2031 | glob_rel = (struct relation *)GetInstanceRelation(i,&reltype); |
2032 | if (glob_rel == NULL) { |
2033 | FPRINTF(ASCERR, "error in CalcRelationNominal routine\n"); |
2034 | return (double)0; |
2035 | } |
2036 | |
2037 | if (reltype == e_token) { |
2038 | double temp; |
2039 | temp = FindMaxFromTop(glob_rel); |
2040 | if (isnan(temp) || !finite(temp)) { |
2041 | glob_rel = NULL; |
2042 | return (double)1; |
2043 | } |
2044 | if ( temp > 0) { /* this could return some really small numbers */ |
2045 | glob_rel = NULL; |
2046 | return temp; |
2047 | } |
2048 | } |
2049 | glob_rel = NULL; |
2050 | return (double)1; |
2051 | } |
2052 | |
2053 | void PrintScale(struct Instance *i) |
2054 | { |
2055 | if (InstanceKind(i) == REL_INST) { |
2056 | double j; |
2057 | j = CalcRelationNominal(i); |
2058 | PRINTF(" scale constant = %g\n", j); |
2059 | } |
2060 | } |
2061 | |
2062 | void PrintRelationNominals(struct Instance *i) |
2063 | { |
2064 | VisitInstanceTree(i,PrintScale, 0, 0); |
2065 | } |
2066 | |
2067 | /** |
2068 | *** CALCULATION ROUTINES |
2069 | */ |
2070 | |
2071 | /* |
2072 | * Load ATOM values into an array of doubles. |
2073 | * The array of doubles is indexed from 0 while the |
2074 | * var list is indexed from 1. The ultimate client of |
2075 | * the array calling this function thinks vars index from 0. |
2076 | */ |
2077 | static |
2078 | void RelationLoadDoubles(struct gl_list_t *varlist, double *vars) |
2079 | { |
2080 | unsigned long c; |
2081 | vars--; /* back up the pointer so indexing from 1 puts data right */ |
2082 | for (c= gl_length(varlist); c > 0; c--) { |
2083 | vars[c] = RealAtomValue((struct Instance *)gl_fetch(varlist,c)); |
2084 | } |
2085 | } |
2086 | |
2087 | int RelationCalcResidualBinary(CONST struct relation *r, double *res) |
2088 | { |
2089 | double *vars; |
2090 | double tres; |
2091 | int old_errno; |
2092 | |
2093 | if (r == NULL || res == NULL) { |
2094 | return 1; |
2095 | } |
2096 | vars = tmpalloc_array(gl_length(r->vars),double); |
2097 | if (vars == NULL) { |
2098 | return 1; |
2099 | } |
2100 | RelationLoadDoubles(r->vars,vars); |
2101 | old_errno = errno; /* push C global errno */ |
2102 | errno = 0; |
2103 | if (BinTokenCalcResidual(RTOKEN(r).btable,RTOKEN(r).bindex,vars,&tres)) { |
2104 | if (errno == 0) { /* pop if unchanged */ |
2105 | errno = old_errno; |
2106 | } |
2107 | return 1; |
2108 | } |
2109 | if (!finite(tres) || errno == EDOM || errno == ERANGE ) { |
2110 | if (errno == 0) { /* pop if unchanged */ |
2111 | errno = old_errno; |
2112 | } |
2113 | return 1; |
2114 | } |
2115 | if (errno == 0) { /* pop if unchanged */ |
2116 | errno = old_errno; |
2117 | } |
2118 | *res = tres; |
2119 | return 0; |
2120 | } |
2121 | |
2122 | enum safe_err |
2123 | RelationCalcResidualPostfixSafe(struct Instance *i, double *res) |
2124 | { |
2125 | struct relation *r; |
2126 | enum Expr_enum reltype; |
2127 | enum safe_err not_safe = safe_ok; |
2128 | |
2129 | #ifndef NDEBUG |
2130 | if( i == NULL ) { |
2131 | FPRINTF(ASCERR, |
2132 | "error in RelationCalcResidualPostfixSafe: null instance\n"); |
2133 | not_safe = safe_problem; |
2134 | return not_safe; |
2135 | } |
2136 | if (res == NULL){ |
2137 | FPRINTF(ASCERR, |
2138 | "error in RelationCalcResidualPostfixSafe: null relationptr\n"); |
2139 | not_safe = safe_problem; |
2140 | return not_safe; |
2141 | } |
2142 | if( InstanceKind(i) != REL_INST ) { |
2143 | FPRINTF(ASCERR, |
2144 | "error in RelationCalcResidualPostfixSafe: not relation\n"); |
2145 | not_safe = safe_problem; |
2146 | return not_safe; |
2147 | } |
2148 | #endif |
2149 | r = (struct relation *)GetInstanceRelation(i, &reltype); |
2150 | if( r == NULL ) { |
2151 | FPRINTF(ASCERR, |
2152 | "error in RelationCalcResidualPostfixSafe: null relation\n"); |
2153 | not_safe = safe_problem; |
2154 | return not_safe; |
2155 | } |
2156 | if( reltype == e_token ) { |
2157 | unsigned long length_lhs, length_rhs; |
2158 | |
2159 | length_lhs = RelationLength(r, 1); |
2160 | length_rhs = RelationLength(r, 0); |
2161 | if( length_lhs > 0 ) { |
2162 | length_lhs--; |
2163 | *res = RelationEvaluatePostfixBranchSafe(r, &length_lhs, 1,¬_safe); |
2164 | } |
2165 | else { |
2166 | *res = 0.0; |
2167 | } |
2168 | if( length_rhs > 0 ) { |
2169 | length_rhs--; |
2170 | *res -= RelationEvaluatePostfixBranchSafe(r, &length_rhs, 0,¬_safe); |
2171 | } |
2172 | safe_error_to_stderr(¬_safe); |
2173 | return not_safe; |
2174 | } else if (reltype >= TOK_REL_TYPE_LOW && reltype <= TOK_REL_TYPE_HIGH) { |
2175 | FPRINTF(ASCERR, "error in RelationCalcResidualPostfix:\n"); |
2176 | FPRINTF(ASCERR, "reltype not implemented yet\n"); |
2177 | not_safe = safe_problem; |
2178 | return not_safe; |
2179 | } else { |
2180 | Asc_Panic(2, NULL, "error in RelationCalcResidualPostfix:\n" |
2181 | "reached end of routine\n"); |
2182 | exit(2);/* Needed to keep gcc from whining */ |
2183 | } |
2184 | } |
2185 | |
2186 | |
2187 | int |
2188 | RelationCalcResidualPostfix(struct Instance *i, double *res) |
2189 | { |
2190 | struct relation *r; |
2191 | enum Expr_enum reltype; |
2192 | |
2193 | #ifndef NDEBUG |
2194 | if( i == NULL ) { |
2195 | FPRINTF(ASCERR, "error in RelationCalcResidualPostfix: null instance\n"); |
2196 | return 1; |
2197 | } |
2198 | if (res == NULL){ |
2199 | FPRINTF(ASCERR,"error in RelationCalcResidualPostfix: null relationptr\n"); |
2200 | return 1; |
2201 | } |
2202 | if( InstanceKind(i) != REL_INST ) { |
2203 | FPRINTF(ASCERR, "error in RelationCalcResidualPostfix: not relation\n"); |
2204 | return 1; |
2205 | } |
2206 | #endif |
2207 | r = (struct relation *)GetInstanceRelation(i, &reltype); |
2208 | if( r == NULL ) { |
2209 | FPRINTF(ASCERR, "error in RelationCalcResidualPostfix: null relation\n"); |
2210 | return 1; |
2211 | } |
2212 | if( reltype == e_token ) { |
2213 | unsigned long length_lhs, length_rhs; |
2214 | |
2215 | length_lhs = RelationLength(r, 1); |
2216 | length_rhs = RelationLength(r, 0); |
2217 | if( length_lhs > 0 ) { |
2218 | length_lhs--; |
2219 | *res = RelationEvaluatePostfixBranch(r, &length_lhs, 1); |
2220 | } |
2221 | else { |
2222 | *res = 0.0; |
2223 | } |
2224 | if( length_rhs > 0 ) { |
2225 | length_rhs--; |
2226 | *res -= RelationEvaluatePostfixBranch(r, &length_rhs, 0); |
2227 | } |
2228 | return 0; |
2229 | } else if (reltype >= TOK_REL_TYPE_LOW && reltype <= TOK_REL_TYPE_HIGH) { |
2230 | FPRINTF(ASCERR, "error in RelationCalcResidualPostfix:\n"); |
2231 | FPRINTF(ASCERR, "reltype not implemented yet\n"); |
2232 | return 1; |
2233 | } else { |
2234 | Asc_Panic(2, NULL, |
2235 | "error in RelationCalcResidualPostfix:\n" |
2236 | "reached end of routine\n"); |
2237 | exit(2);/* Needed to keep gcc from whining */ |
2238 | } |
2239 | } |
2240 | |
2241 | int RelationCalcExceptionsInfix(struct Instance *i) |
2242 | { |
2243 | enum Expr_enum reltype; |
2244 | double res; |
2245 | int result = 0; |
2246 | int old_errno; |
2247 | |
2248 | glob_rel = NULL; |
2249 | #ifndef NDEBUG |
2250 | if( i == NULL ) { |
2251 | FPRINTF(ASCERR, "error in RelationCalcExceptionsInfix: NULL instance\n"); |
2252 | return -1; |
2253 | } |
2254 | if( InstanceKind(i) != REL_INST ) { |
2255 | FPRINTF(ASCERR, "error in RelationCalcExceptionsInfix: not relation\n"); |
2256 | return -1; |
2257 | } |
2258 | #endif |
2259 | glob_rel = (struct relation *)GetInstanceRelation(i, &reltype); |
2260 | if( glob_rel == NULL ) { |
2261 | FPRINTF(ASCERR, "error in RelationCalcExceptionsInfix: NULL relation\n"); |
2262 | return -1; |
2263 | } |
2264 | if( reltype == e_token ) { |
2265 | if (Infix_LhsSide(glob_rel) != NULL) { |
2266 | old_errno = errno; |
2267 | errno = 0; /* save the last errno, because we don't know why */ |
2268 | res = RelationBranchEvaluator(Infix_LhsSide(glob_rel)); |
2269 | if (!finite(res) || errno == EDOM || errno == ERANGE) { |
2270 | result |= RCE_ERR_LHS; |
2271 | if (isnan(res)) { |
2272 | result |= RCE_ERR_LHSNAN; |
2273 | } else { |
2274 | if (!finite(res)) { |
2275 | result |= RCE_ERR_LHSINF; |
2276 | } |
2277 | } |
2278 | } |
2279 | if (errno == 0) { |
2280 | errno = old_errno; |
2281 | } /* else something odd happened in evaluation */ |
2282 | } |
2283 | if(Infix_RhsSide(glob_rel) != NULL) { |
2284 | res = RelationBranchEvaluator(Infix_RhsSide(glob_rel)); |
2285 | if (!finite(res)) { |
2286 | result |= RCE_ERR_RHS; |
2287 | if (isnan(res)) { |
2288 | result |= RCE_ERR_RHSNAN; |
2289 | } else { |
2290 | if (!finite(res)) { |
2291 | result |= RCE_ERR_LHSINF; |
2292 | } |
2293 | } |
2294 | } |
2295 | } |
2296 | glob_rel = NULL; |
2297 | return result; |
2298 | } else if (reltype >= TOK_REL_TYPE_LOW && reltype <= TOK_REL_TYPE_HIGH) { |
2299 | FPRINTF(ASCERR, "error in RelationCalcExceptionsInfix:\n"); |
2300 | FPRINTF(ASCERR, "reltype not implemented yet\n"); |
2301 | glob_rel = NULL; |
2302 | return -1; |
2303 | } else { |
2304 | Asc_Panic(2, NULL, |
2305 | "error in RelationCalcExceptionsInfix:\n" |
2306 | "reached end of routine\n"); |
2307 | exit(2);/* Needed to keep gcc from whining */ |
2308 | } |
2309 | } |
2310 | |
2311 | int RelationCalcResidualInfix(struct Instance *i, double *res) |
2312 | { |
2313 | enum Expr_enum reltype; |
2314 | glob_rel = NULL; |
2315 | |
2316 | #ifndef NDEBUG |
2317 | if( i == NULL ) { |
2318 | FPRINTF(ASCERR, "error in RelationCalcResidualInfix: NULL instance\n"); |
2319 | return 1; |
2320 | } |
2321 | if (res == NULL){ |
2322 | FPRINTF(ASCERR,"error in RelationCalcResidualInfix: NULL residual ptr\n"); |
2323 | return 1; |
2324 | } |
2325 | if( InstanceKind(i) != REL_INST ) { |
2326 | FPRINTF(ASCERR, "error in RelationCalcResidualInfix: not relation\n"); |
2327 | return 1; |
2328 | } |
2329 | #endif |
2330 | glob_rel = (struct relation *)GetInstanceRelation(i, &reltype); |
2331 | if( glob_rel == NULL ) { |
2332 | FPRINTF(ASCERR, "error in RelationCalcResidualInfix: NULL relation\n"); |
2333 | return 1; |
2334 | } |
2335 | if( reltype == e_token ) { |
2336 | if(Infix_LhsSide(glob_rel) != NULL) { |
2337 | *res = RelationBranchEvaluator(Infix_LhsSide(glob_rel)); |
2338 | } else { |
2339 | *res = 0.0; |
2340 | } |
2341 | if(Infix_RhsSide(glob_rel) != NULL) { |
2342 | *res -= RelationBranchEvaluator(Infix_RhsSide(glob_rel)); |
2343 | } |
2344 | glob_rel = NULL; |
2345 | return 0; |
2346 | } else if (reltype >= TOK_REL_TYPE_LOW && reltype <= TOK_REL_TYPE_HIGH) { |
2347 | FPRINTF(ASCERR, "error in RelationCalcResidualInfix:\n"); |
2348 | FPRINTF(ASCERR, "reltype not implemented yet\n"); |
2349 | glob_rel = NULL; |
2350 | return 1; |
2351 | } else { |
2352 | Asc_Panic(2, NULL, |
2353 | "error in RelationCalcResidualInfix:\n" |
2354 | "reached end of routine\n"); |
2355 | exit(2);/* Needed to keep gcc from whining */ |
2356 | } |
2357 | } |
2358 | |
2359 | |
2360 | /* RelationCalcResidualPostfix2 |
2361 | * Yes, yet another function to calculate the residual |
2362 | */ |
2363 | int |
2364 | RelationCalcResidualPostfix2(struct Instance *i, |
2365 | double *res) |
2366 | { |
2367 | struct relation *r; |
2368 | enum Expr_enum reltype; |
2369 | |
2370 | #ifndef NDEBUG |
2371 | if( i == NULL ) { |
2372 | FPRINTF(ASCERR, "error in RelationCalcResidualPostfix2: null instance\n"); |
2373 | return 1; |
2374 | } |
2375 | if( res == NULL ) { |
2376 | FPRINTF(ASCERR, "error in RelationCalcResidualPostfix2: %s\n", |
2377 | "null relation ptr"); |
2378 | return 1; |
2379 | } |
2380 | if( InstanceKind(i) != REL_INST ) { |
2381 | FPRINTF(ASCERR, "error in RelationCalcResidualPostfix2: not relation\n"); |
2382 | return 1; |
2383 | } |
2384 | #endif |
2385 | r = (struct relation *)GetInstanceRelation(i, &reltype); |
2386 | if( r == NULL ) { |
2387 | FPRINTF(ASCERR, "error in RelationCalcResidualPostfix2: null relation\n"); |
2388 | return 1; |
2389 | } |
2390 | |
2391 | if( reltype == e_token ) { |
2392 | *res = RelationEvaluateResidualPostfix(r); |
2393 | return 0; |
2394 | } else if (reltype >= TOK_REL_TYPE_LOW && reltype <= TOK_REL_TYPE_HIGH) { |
2395 | FPRINTF(ASCERR, "error in RelationCalcResidualPostfix2:\n"); |
2396 | FPRINTF(ASCERR, "reltype not implemented yet\n"); |
2397 | return 1; |
2398 | } else { |
2399 | Asc_Panic(2, NULL, |
2400 | "error in RelationCalcResidualPostfix2:\n" |
2401 | "reached end of routine\n"); |
2402 | exit(2);/* Needed to keep gcc from whining */ |
2403 | } |
2404 | } |
2405 | |
2406 | |
2407 | /* RelationCalcGradient |
2408 | * simply call the version that calculates the gradient and the residual, |
2409 | * then ignore the residual |
2410 | */ |
2411 | int |
2412 | RelationCalcGradient(struct Instance *r, |
2413 | double *grad) |
2414 | { |
2415 | double residual; |
2416 | return RelationCalcResidGrad(r, &residual, grad); |
2417 | } |
2418 | |
2419 | /* RelationCalcGradientSafe |
2420 | * simply call the version that calculates the gradient and the residual, |
2421 | * then ignore the residual |
2422 | */ |
2423 | enum safe_err |
2424 | RelationCalcGradientSafe(struct Instance *r, |
2425 | double *grad) |
2426 | { |
2427 | double residual; |
2428 | |
2429 | return RelationCalcResidGradSafe(r, &residual, grad); |
2430 | } |
2431 | |
2432 | |
2433 | int |
2434 | RelationCalcResidGrad(struct Instance *i, |
2435 | double *residual, |
2436 | double *gradient) |
2437 | { |
2438 | struct relation *r; |
2439 | enum Expr_enum reltype; |
2440 | |
2441 | #ifndef NDEBUG |
2442 | if( i == NULL ) { |
2443 | FPRINTF(ASCERR, "error in RelationCalcResidGrad: null instance\n"); |
2444 | return 1; |
2445 | } |
2446 | if( residual == NULL || gradient == NULL ) { |
2447 | FPRINTF(ASCERR, "error in RelationCalcResidGrad: passed a null pointer\n"); |
2448 | return 1; |
2449 | } |
2450 | if( InstanceKind(i) != REL_INST ) { |
2451 | FPRINTF(ASCERR, "error in RelationCalcResidGrad: not relation\n"); |
2452 | return 1; |
2453 | } |
2454 | #endif |
2455 | r = (struct relation *)GetInstanceRelation(i, &reltype); |
2456 | if( r == NULL ) { |
2457 | FPRINTF(ASCERR, "error in RelationCalcResidGrad: null relation\n"); |
2458 | return 1; |
2459 | } |
2460 | |
2461 | if( reltype == e_token ) { |
2462 | return RelationEvaluateResidualGradient(r, residual, gradient); |
2463 | } |
2464 | else if (reltype >= TOK_REL_TYPE_LOW && reltype <= TOK_REL_TYPE_HIGH) { |
2465 | FPRINTF(ASCERR, "error in RelationCalcResidGrad %s\n", |
2466 | "reltype not implemented"); |
2467 | return 1; |
2468 | } |
2469 | else { |
2470 | Asc_Panic(2, NULL, |
2471 | "error in RelationCalcResidGrad:\n" |
2472 | "reached end of routine"); |
2473 | exit(2);/* Needed to keep gcc from whining */ |
2474 | } |
2475 | } |
2476 | |
2477 | enum safe_err |
2478 | RelationCalcResidGradSafe(struct Instance *i, |
2479 | double *residual, |
2480 | double *gradient) |
2481 | { |
2482 | struct relation *r; |
2483 | enum Expr_enum reltype; |
2484 | enum safe_err not_safe = safe_ok; |
2485 | int dummy_int; |
2486 | |
2487 | #ifndef NDEBUG |
2488 | if( i == NULL ) { |
2489 | FPRINTF(ASCERR, "error in RelationCalcResidGradSafe: null instance\n"); |
2490 | not_safe = safe_problem; |
2491 | return not_safe; |
2492 | } |
2493 | if( residual == NULL || gradient == NULL ) { |
2494 | FPRINTF(ASCERR, |
2495 | "error in RelationCalcResidGradSafe: passed a null pointer\n"); |
2496 | not_safe = safe_problem; |
2497 | return not_safe; |
2498 | } |
2499 | if( InstanceKind(i) != REL_INST ) { |
2500 | FPRINTF(ASCERR, "error in RelationCalcResidGradSafe: not relation\n"); |
2501 | not_safe = safe_problem; |
2502 | return not_safe; |
2503 | } |
2504 | #endif |
2505 | r = (struct relation *)GetInstanceRelation(i, &reltype); |
2506 | if( r == NULL ) { |
2507 | FPRINTF(ASCERR, "error in RelationCalcResidGradSafe: null relation\n"); |
2508 | not_safe = safe_problem; |
2509 | return not_safe; |
2510 | } |
2511 | |
2512 | if( reltype == e_token ) { |
2513 | dummy_int = |
2514 | RelationEvaluateResidualGradientSafe(r, residual, gradient, ¬_safe); |
2515 | return not_safe; |
2516 | } |
2517 | else if (reltype >= TOK_REL_TYPE_LOW && reltype <= TOK_REL_TYPE_HIGH) { |
2518 | FPRINTF(ASCERR, "error in RelationCalcResidGradSafe %s\n", |
2519 | "reltype not implemented"); |
2520 | not_safe = safe_problem; |
2521 | return not_safe; |
2522 | } |
2523 | else { |
2524 | Asc_Panic(2, NULL, |
2525 | "error in RelationCalcResidGradSafe:\n", |
2526 | "reached end of routine"); |
2527 | exit(2);/* Needed to keep gcc from whining */ |
2528 | } |
2529 | } |
2530 | |
2531 | |
2532 | /* RelationCalcDerivative |
2533 | * calculate the derivative with respect to a single variable |
2534 | * whose index is index, where 1<=index<=NumberVariables(r) |
2535 | */ |
2536 | int |
2537 | RelationCalcDerivative(struct Instance *i, |
2538 | unsigned long index, |
2539 | double *gradient) |
2540 | { |
2541 | struct relation *r; |
2542 | enum Expr_enum reltype; |
2543 | |
2544 | #ifndef NDEBUG |
2545 | if( i == NULL ) { |
2546 | FPRINTF(ASCERR, "error in RelationCalcDerivative: null instance\n"); |
2547 | return 1; |
2548 | } |
2549 | if( gradient == NULL ) { |
2550 | FPRINTF(ASCERR, "error in RelationCalcDerivative: passed null pointer\n"); |
2551 | return 1; |
2552 | } |
2553 | if( InstanceKind(i) != REL_INST ) { |
2554 | FPRINTF(ASCERR, "error in RelationCalcDerivative: not relation\n"); |
2555 | return 1; |
2556 | } |
2557 | #endif |
2558 | r = (struct relation *)GetInstanceRelation(i, &reltype); |
2559 | if( r == NULL ) { |
2560 | FPRINTF(ASCERR, "error in RelationCalcDerivative: null relation\n"); |
2561 | return 1; |
2562 | } |
2563 | if( (index < 1) || (index > NumberVariables(r)) ) { |
2564 | FPRINTF(ASCERR, "error in RelationCalcDerivative: index out of bounds\n"); |
2565 | return 1; |
2566 | } |
2567 | |
2568 | if( reltype == e_token ) { |
2569 | *gradient = RelationEvaluateDerivative(r, index); |
2570 | return 0; |
2571 | } |
2572 | else if (reltype >= TOK_REL_TYPE_LOW && reltype <= TOK_REL_TYPE_HIGH) { |
2573 | FPRINTF(ASCERR, "error in RelationCalcDerivative %s\n", |
2574 | "reltype not implemented"); |
2575 | return 1; |
2576 | } |
2577 | else { |
2578 | Asc_Panic(2, NULL, |
2579 | "error in RelationCalcDerivative: \n" |
2580 | "reached end of routine"); |
2581 | exit(2);/* Needed to keep gcc from whining */ |
2582 | } |
2583 | } |
2584 | |
2585 | enum safe_err |
2586 | RelationCalcDerivativeSafe(struct Instance *i, |
2587 | unsigned long index, |
2588 | double *gradient) |
2589 | { |
2590 | struct relation *r; |
2591 | enum Expr_enum reltype; |
2592 | enum safe_err not_safe = safe_ok; |
2593 | |
2594 | #ifndef NDEBUG |
2595 | if( i == NULL ) { |
2596 | FPRINTF(ASCERR, "error in RelationCalcDerivativeSafe: null instance\n"); |
2597 | not_safe = safe_problem; |
2598 | return not_safe; |
2599 | } |
2600 | if( gradient == NULL ) { |
2601 | FPRINTF(ASCERR, |
2602 | "error in RelationCalcDerivativeSafe: passed null pointer\n"); |
2603 | not_safe = safe_problem; |
2604 | return not_safe; |
2605 | } |
2606 | if( InstanceKind(i) != REL_INST ) { |
2607 | FPRINTF(ASCERR, "error in RelationCalcDerivativeSafe: not relation\n"); |
2608 | not_safe = safe_problem; |
2609 | return not_safe; |
2610 | } |
2611 | #endif |
2612 | r = (struct relation *)GetInstanceRelation(i, &reltype); |
2613 | if( r == NULL ) { |
2614 | FPRINTF(ASCERR, "error in RelationCalcDerivativeSafe: null relation\n"); |
2615 | not_safe = safe_problem; |
2616 | return not_safe; |
2617 | } |
2618 | if( (index < 1) || (index > NumberVariables(r)) ) { |
2619 | FPRINTF(ASCERR, |
2620 | "error in RelationCalcDerivativeSafe: index out of bounds\n"); |
2621 | not_safe = safe_problem; |
2622 | return not_safe; |
2623 | } |
2624 | |
2625 | if( reltype == e_token ) { |
2626 | *gradient = RelationEvaluateDerivativeSafe(r, index, ¬_safe); |
2627 | return not_safe; |
2628 | } |
2629 | else if (reltype >= TOK_REL_TYPE_LOW && reltype <= TOK_REL_TYPE_HIGH) { |
2630 | FPRINTF(ASCERR, "error in RelationCalcDerivativeSafe %s\n", |
2631 | "reltype not implemented"); |
2632 | not_safe = safe_problem; |
2633 | return not_safe; |
2634 | } |
2635 | else { |
2636 | Asc_Panic(2, NULL, |
2637 | "error in RelationCalcDerivativeSafe:\n" |
2638 | "reached end of routine"); |
2639 | exit(2);/* Needed to keep gcc from whining */ |
2640 | } |
2641 | } |
2642 | |
2643 | /** |
2644 | *** Function for testing residual and gradient calulations |
2645 | **/ |
2646 | |
2647 | void PrintGradients(struct Instance *i) |
2648 | { |
2649 | if (InstanceKind(i) == REL_INST) { |
2650 | double res, grads[1000]; |
2651 | unsigned long vars, v; |
2652 | enum Expr_enum type; |
2653 | enum safe_err safe; |
2654 | |
2655 | vars = NumberVariables((struct relation *)GetInstanceRelation(i,&type)); |
2656 | |
2657 | /***** use the non safe versions *****/ |
2658 | for( v = 0; v < vars; v++ ) { |
2659 | if( ! RelationCalcDerivative(i, v+1, &res) ) { |
2660 | PRINTF("derivative in%5ld =\t%g\n", v+1, res); |
2661 | } |
2662 | else { |
2663 | PRINTF("**** RelationCalcDerivative returned nonzero status\n"); |
2664 | } |
2665 | } |
2666 | |
2667 | if( ! RelationCalcResidGrad(i,&res,grads) ) { |
2668 | for (v = 0; v < vars; v++) { |
2669 | PRINTF("gradient in %6ld =\t%g\n", v+1, grads[v]); |
2670 | } |
2671 | PRINTF("residual from grad =\t%g\n", res); |
2672 | } |
2673 | else { |
2674 | PRINTF("**** RelationCalcResidGrad returned nonzero status\n"); |
2675 | } |
2676 | |
2677 | if( !RelationCalcResidualInfix(i,&res) ) { |
2678 | PRINTF(" infix residual =\t%g\n", res); |
2679 | } |
2680 | else { |
2681 | PRINTF("**** RelationCalcResidualInfix returned nonzero status\n"); |
2682 | } |
2683 | |
2684 | if( !RelationCalcResidualPostfix(i,&res) ) { |
2685 | PRINTF(" postfix residual =\t%g\n", res); |
2686 | } |
2687 | else { |
2688 | PRINTF("**** RelationCalcResidualPostfix returned nonzero status\n"); |
2689 | } |
2690 | |
2691 | if( !RelationCalcResidualPostfix2(i,&res) ) { |
2692 | PRINTF(" postfix2 residual =\t%g\n", res); |
2693 | } |
2694 | else { |
2695 | PRINTF("**** RelationCalcResidualPostfix2 returned nonzero status\n"); |
2696 | } |
2697 | |
2698 | /***** use the safe versions *****/ |
2699 | for( v = 0; v < vars; v++ ) { |
2700 | if(safe_ok == (safe = RelationCalcDerivativeSafe(i, v+1, &res)) ) { |
2701 | PRINTF("safe deriv in%5ld =\t%g\n", v+1, res); |
2702 | } |
2703 | else { |
2704 | PRINTF("**** RelationCalcDerivativeSafe returned nonzero: %d\n", safe); |
2705 | } |
2706 | } |
2707 | |
2708 | if(safe_ok == (safe = RelationCalcResidGradSafe(i,&res,grads)) ) { |
2709 | for (v = 0; v < vars; v++) { |
2710 | PRINTF("safe grad in%6ld =\t%g\n", v+1, grads[v]); |
2711 | } |
2712 | PRINTF("safe resid ala grad=\t%g\n", res); |
2713 | } |
2714 | else { |
2715 | PRINTF("**** RelationCalcResidGradSafe returned nonzero: %d\n", safe); |
2716 | } |
2717 | |
2718 | /***** not implemented |
2719 | if( ! (safe = RelationCalcResidualInfixSafe(i,&res)) ) { |
2720 | PRINTF("safe infix residual=\t%g\n", res); |
2721 | } |
2722 | else { |
2723 | PRINTF("**** RelationCalcResidualInfixSafe returned nonzero: %d\n", |
2724 | safe); |
2725 | } |
2726 | *****/ |
2727 | |
2728 | if(safe_ok == (safe = RelationCalcResidualPostfixSafe(i,&res)) ) { |
2729 | PRINTF("safe postfix resid =\t%g\n", res); |
2730 | } |
2731 | else { |
2732 | PRINTF("**** RelationCalcResidualPostfixSafe returned nonzero: %d\n", |
2733 | safe); |
2734 | } |
2735 | |
2736 | /***** not implemented |
2737 | if( ! (safe = RelationCalcResidualPostfix2Safe(i,&res)) ) { |
2738 | PRINTF("safe postfix2 resd =\t%g\n", res); |
2739 | } |
2740 | else { |
2741 | PRINTF("**** RelationCalcResidualPostfix2Safe returned nonzero: %d\n", |
2742 | safe); |
2743 | } |
2744 | *****/ |
2745 | |
2746 | PRINTF("\n"); |
2747 | } |
2748 | } |
2749 | void PrintRelationGradients(struct Instance *i) |
2750 | { |
2751 | VisitInstanceTree(i,PrintGradients, 0, 0); |
2752 | } |
2753 | |
2754 | /* this function may make an fpe for method 2 or 3. |
2755 | * list must be of nonnull struct relation * for |
2756 | * meth = m_BIN and struct Instance * for 1-3. |
2757 | */ |
2758 | #define m_BIN 0 |
2759 | #define m_PFS 1 |
2760 | #define m_PF 2 |
2761 | #define m_IF 3 |
2762 | void TimeCalcResidual(struct gl_list_t *rlist,int method) |
2763 | { |
2764 | unsigned long c,len; |
2765 | double res; |
2766 | |
2767 | if (rlist==NULL) return; |
2768 | switch (method) { |
2769 | case m_BIN: |
2770 | for (c=1,len=gl_length(rlist); c <= len; c++) { |
2771 | RelationCalcResidualBinary(gl_fetch(rlist,c),&res); |
2772 | } |
2773 | break; |
2774 | case m_PFS: |
2775 | for (c=1,len=gl_length(rlist); c <= len; c++) { |
2776 | RelationCalcResidualPostfixSafe(gl_fetch(rlist,c),&res); |
2777 | } |
2778 | break; |
2779 | case m_PF: |
2780 | for (c=1,len=gl_length(rlist); c <= len; c++) { |
2781 | RelationCalcResidualPostfix(gl_fetch(rlist,c),&res); |
2782 | } |
2783 | break; |
2784 | case m_IF: |
2785 | for (c=1,len=gl_length(rlist); c <= len; c++) { |
2786 | RelationCalcResidualInfix(gl_fetch(rlist,c),&res); |
2787 | } |
2788 | break; |
2789 | default: |
2790 | break; |
2791 | } |
2792 | return; |
2793 | } |
2794 | |
2795 | void PrintResidual(struct Instance *i) |
2796 | { |
2797 | enum safe_err se; |
2798 | struct relation *rel; |
2799 | enum Expr_enum reltype; |
2800 | int errb; |
2801 | #ifndef M_PI |
2802 | #define M_PIE 3.141590271828 |
2803 | #else |
2804 | #define M_PIE M_PI |
2805 | #endif |
2806 | double post=M_PIE,in=M_PIE,postsafe=M_PIE,binary=M_PIE; |
2807 | |
2808 | if (InstanceKind(i) == REL_INST) { |
2809 | rel = (struct relation *)GetInstanceRelation(i,&reltype); |
2810 | if (reltype == e_token) { |
2811 | errb = RelationCalcResidualBinary(rel,&(binary)); |
2812 | } else { |
2813 | errb = 1; |
2814 | } |
2815 | se = RelationCalcResidualPostfixSafe(i,&(postsafe)); |
2816 | if (errb || se != safe_ok) { |
2817 | FPRINTF(ASCERR,"Skipping Postfix,Infix\n"); |
2818 | } else { |
2819 | RelationCalcResidualPostfix(i,&(post)); |
2820 | RelationCalcResidualInfix(i,&(in)); |
2821 | } |
2822 | PRINTF("binary residual = %.18g\n",binary); |
2823 | PRINTF("postfix safe res = %.18g\n",postsafe); |
2824 | if (errb||se!= safe_ok) { |
2825 | PRINTF("postfix residual = %.18g\n",post); |
2826 | PRINTF(" infix residual = %.18g\n",in); |
2827 | } |
2828 | if(binary != postsafe) { |
2829 | PRINTF("!!!!!!!ERROR!!!!!!! %g \n", binary-post); |
2830 | } |
2831 | PRINTF("(Unchanged residuals = %.18g\n\n",M_PIE); |
2832 | } |
2833 | } |
2834 | |
2835 | void PrintRelationResiduals(struct Instance *i) |
2836 | { |
2837 | VisitInstanceTree(i,PrintResidual, 0, 0); |
2838 | } |
2839 | |
2840 | |
2841 | /** |
2842 | *** The following functions support RelationFindRoots which |
2843 | *** is the compiler implementation of our old DirectSolve |
2844 | *** function. These functions can be catagorized as follows: |
2845 | *** Memory Management and Copying functions: |
2846 | *** RelationCreateTmp, RelationTmpCopySide, |
2847 | *** RelationTmpTokenCopy, append_soln, remove_soln |
2848 | *** Direct Solve Functions: |
2849 | *** InsertBranchResult, SearchEval_Branch, SetUpInvertToken, |
2850 | *** SetUpInvertTokenTop, RelationInvertToken, RelationInvertTokenTop |
2851 | *** Rootfinding Functions: |
2852 | *** CalcResidGivenValue, RootFind |
2853 | *** Eternal Function: |
2854 | *** RelationFindRoots |
2855 | **/ |
2856 | |
2857 | /*************************************************************************/ |
2858 | /****************Memory Management and Copying Functions******************/ |
2859 | /*************************************************************************/ |
2860 | |
2861 | /* |
2862 | * RelationCreateTmp creates a struct relation of type e_token |
2863 | * and passes back a pointer to the relation. The lengths of |
2864 | * the right and left sides (lhslen and rhslen) of the relation |
2865 | * are supplied by the calling function. |
2866 | * User is responsible for setting RTOKEN(return).*_len. |
2867 | * Basically, all this does is manage memory nicely. |
2868 | * |
2869 | * IF called with all 0/NULL, frees internal recycles. |
2870 | */ |
2871 | static |
2872 | struct relation *RelationCreateTmp(unsigned long lhslen, unsigned long rhslen, |
2873 | enum Expr_enum relop) |
2874 | { |
2875 | static struct relation *rel=NULL; |
2876 | static unsigned long lhscap=0, rhscap=0; |
2877 | |
2878 | /* check for recycle clear and free things if needed. */ |
2879 | if (lhslen==0 && rhslen == 0 && relop == e_nop) { |
2880 | if (rel != NULL) { |
2881 | if (rel->share != NULL) { |
2882 | if (RTOKEN(rel).lhs!=NULL) { |
2883 | ascfree(RTOKEN(rel).lhs); |
2884 | } |
2885 | if (RTOKEN(rel).rhs!=NULL) { |
2886 | ascfree(RTOKEN(rel).rhs); |
2887 | } |
2888 | ascfree(rel->share); |
2889 | } |
2890 | ascfree(rel); |
2891 | rel = NULL; |
2892 | } |
2893 | lhscap = rhscap = 0; |
2894 | return NULL; |
2895 | } |
2896 | if (rel == NULL) { |
2897 | rel = CreateRelationStructure(relop,crs_NEWUNION); |
2898 | } |
2899 | if (lhscap < lhslen) { |
2900 | lhscap = lhslen; |
2901 | if ( RTOKEN(rel).lhs != NULL) { |
2902 | ascfree(RTOKEN(rel).lhs); |
2903 | } |
2904 | RTOKEN(rel).lhs = (union RelationTermUnion *) |
2905 | ascmalloc(lhscap*sizeof(union RelationTermUnion)); |
2906 | } |
2907 | if (rhscap < rhslen) { |
2908 | rhscap = rhslen; |
2909 | if ( RTOKEN(rel).rhs != NULL) { |
2910 | ascfree(RTOKEN(rel).rhs); |
2911 | } |
2912 | RTOKEN(rel).rhs = (union RelationTermUnion *) |
2913 | ascmalloc(rhscap*sizeof(union RelationTermUnion)); |
2914 | } |
2915 | return rel; |
2916 | } |
2917 | |
2918 | /** |
2919 | *** The following global variables are used thoughout the |
2920 | *** functions called by RelationFindroot. |
2921 | *** These should probably be located at the top of this |
2922 | *** file alonge with glob_rel. |
2923 | **/ |
2924 | static unsigned long glob_varnum; |
2925 | static int glob_done; |
2926 | |
2927 | /** |
2928 | *** The following is documentation from the old exprman |
2929 | *** file. RelationTmpCopySide and RelationTmpCopyToken |
2930 | *** are reimplimentations of exprman functions. |
2931 | **/ |
2932 | /* |
2933 | * We can now just do a memcopy and the infix pointers |
2934 | * all adjust by the difference between the token |
2935 | * arrays that the gl_lists are hiding. Cool, eh? |
2936 | * Note, if any turkey ever tries to delete an individual |
2937 | * token from these gl_lists AND deallocate it, |
2938 | * they will get a severe headache. |
2939 | * |
2940 | * This is a full blown copy and not copy by reference. |
2941 | * You do not need to remake the infix pointers after |
2942 | * calling this function. return 0 if ok, 1 if error. |
2943 | */ |
2944 | static int RelationTmpCopySide(union RelationTermUnion *old, |
2945 | unsigned long len, |
2946 | union RelationTermUnion *arr) |
2947 | { |
2948 | struct relation_term *term; |
2949 | unsigned long c; |
2950 | long int delta; |
2951 | |
2952 | if (old==NULL || !len) return 1; |
2953 | if (arr==NULL) { |
2954 | FPRINTF(ASCERR,"RelationTmpCopySide: null RelationTermUnion :-(.\n"); |
2955 | return 1; |
2956 | } |
2957 | memcpy( (VOIDPTR)arr, (VOIDPTR)old, len*sizeof(union RelationTermUnion)); |
2958 | /* |
2959 | * Difference in chars between old and arr ptrs. It should me a multiple |
2960 | * of sizeof(double) but may not be a multiple of sizeof(union RTU). |
2961 | * Delta may easily be negative. |
2962 | * Normally, though arr > old. |
2963 | */ |
2964 | delta = (char *)arr - (char *)old; |
2965 | #ifdef ADJPTR |
2966 | #undef ADJPTR |
2967 | #endif |
2968 | #define ADJPTR(p) ( (p) = A_TERM((char *)(p)+delta) ) |
2969 | for (c=0;c<len;c++) { |
2970 | term = A_TERM(&(arr[c])); |
2971 | switch (term->t) { |
2972 | /* unary terms */ |
2973 | case e_uminus: |
2974 | ADJPTR(U_TERM(term)->left); |
2975 | break; |
2976 | /* binary terms */ |
2977 | case e_plus: |
2978 | case e_minus: case e_times: |
2979 | case e_divide: case e_power: case e_ipower: |
2980 | ADJPTR(B_TERM(term)->left); |
2981 | ADJPTR(B_TERM(term)->right); |
2982 | break; |
2983 | case e_zero: |
2984 | case e_var: /* the var number will be correct */ |
2985 | case e_int: |
2986 | case e_real: |
2987 | break; |
2988 | case e_func: |
2989 | ADJPTR(F_TERM(term)->left); |
2990 | break; |
2991 | /* don't know how to deal with the following relation operators. |
2992 | they may be binary or unary, but InfixArr_MakeSide never set them. */ |
2993 | case e_maximize: case e_minimize: |
2994 | case e_equal: case e_notequal: case e_less: |
2995 | case e_greater: case e_lesseq: case e_greatereq: |
2996 | default: |
2997 | Asc_Panic(2, NULL, "Unknown term type in RelationSide\n"); |
2998 | break; |
2999 | } |
3000 | } |
3001 | #undef ADJPTR |
3002 | |
3003 | return 0; |
3004 | } |
3005 | |
3006 | /* |
3007 | * The relation returned by this function should have |
3008 | * NO persistent pointers made to it, as it is still |
3009 | * our property. The vars in the relation do not |
3010 | * know about these references to them, as this is |
3011 | * a tmp rel. |
3012 | */ |
3013 | static |
3014 | struct relation *RelationTmpTokenCopy(CONST struct relation *src) |
3015 | { |
3016 | struct relation *result; |
3017 | long int delta; |
3018 | assert(src!=NULL); |
3019 | |
3020 | result = RelationCreateTmp(RTOKEN(src).lhs_len,RTOKEN(src).rhs_len, |
3021 | RelationRelop(src)); |
3022 | |
3023 | if(RelationTmpCopySide(RTOKEN(src).lhs,RTOKEN(src).lhs_len, |
3024 | RTOKEN(result).lhs) == 0) { |
3025 | delta = UNION_TERM(RTOKEN(src).lhs_term) - RTOKEN(src).lhs; |
3026 | RTOKEN(result).lhs_term = A_TERM(RTOKEN(result).lhs+delta); |
3027 | RTOKEN(result).lhs_len = RTOKEN(src).lhs_len; |
3028 | } else { |
3029 | RTOKEN(result).lhs_term = NULL; |
3030 | RTOKEN(result).lhs_len = 0; |
3031 | } |
3032 | |
3033 | if( RelationTmpCopySide(RTOKEN(src).rhs,RTOKEN(src).rhs_len, |
3034 | RTOKEN(result).rhs) == 0) { |
3035 | delta = UNION_TERM(RTOKEN(src).rhs_term) - RTOKEN(src).rhs; |
3036 | RTOKEN(result).rhs_term = A_TERM(RTOKEN(result).rhs+delta); |
3037 | RTOKEN(result).rhs_len = RTOKEN(src).rhs_len; |
3038 | } else { |
3039 | RTOKEN(result).rhs_term = NULL; |
3040 | RTOKEN(result).rhs_len = 0; |
3041 | } |
3042 | result->vars = src->vars; |
3043 | result->d = src->d; |
3044 | result->residual = src->residual; |
3045 | result->multiplier = src->multiplier; |
3046 | result->nominal = src->nominal; |
3047 | result->iscond = src->iscond; |
3048 | return result; |
3049 | } |
3050 | |
3051 | struct ds_soln_list { |
3052 | int length,capacity; |
3053 | double *soln; |
3054 | }; |
3055 | |
3056 | |
3057 | #define alloc_array(nelts,type) \ |
3058 | ((nelts) > 0 ? (type *)ascmalloc((nelts)*sizeof(type)) : NULL) |
3059 | #define copy_nums(from,too,nnums) \ |
3060 | asc_memcpy((from),(too),(nnums)*sizeof(double)) |
3061 | |
3062 | static |
3063 | void append_soln( struct ds_soln_list *sl, double soln) |
3064 | /** |
3065 | *** Appends the solution onto the solution list |
3066 | **/ |
3067 | { |
3068 | if( sl->length == sl->capacity ) { |
3069 | int newcap; |
3070 | double *newlist; |
3071 | |
3072 | newcap = sl->capacity + 10; |
3073 | newlist = alloc_array(newcap,double); |
3074 | copy_nums((char *)sl->soln,(char *)newlist,sl->length); |
3075 | if( sl->soln != NULL ) { |
3076 | ascfree(sl->soln); |
3077 | } |
3078 | sl->soln = newlist; |
3079 | sl->capacity = newcap; |
3080 | } |
3081 | |
3082 | sl->soln[sl->length++] = soln; |
3083 | } |
3084 | |
3085 | static |
3086 | void remove_soln( struct ds_soln_list *sl, int ndx) |
3087 | /* |
3088 | * Removes solution at given index from solution list. |
3089 | */ |
3090 | { |
3091 | copy_nums((char *)(sl->soln+ndx+1), |
3092 | (char *)(sl->soln+ndx), --(sl->length) - ndx); |
3093 | } |
3094 | |
3095 | /*************************************************************************/ |
3096 | /*************************Direct Solve Functions**************************/ |
3097 | /*************************************************************************/ |
3098 | |
3099 | /** |
3100 | *** InsertBranchResult changes a relation term type to e_real and |
3101 | *** fills the value field of this term. In subsequent passes of |
3102 | *** the RelationBranchEvaluator the term will be considered to |
3103 | *** be a leaf. |
3104 | */ |
3105 | static void InsertBranchResult(struct relation_term *term, double value) |
3106 | { |
3107 | assert(term!=NULL); |
3108 | term->t = e_real; |
3109 | R_TERM(term)->value = value; |
3110 | } |
3111 | |
3112 | /** |
3113 | *** SearchEval_Branch simplifies branches of a relation |
3114 | *** (the relation pointed to by glob_rel). Only terms |
3115 | *** of type e_real, e_int, e_zero, and e_var are left |
3116 | *** hanging off the operators on the path to the |
3117 | *** variable (with varnum = glob_varnum) being direct |
3118 | *** solved for. |
3119 | *** This may need to be changed to only leave e_reals |
3120 | *** so that the inversion routine can make faster decisions??? |
3121 | *** Probably not. |
3122 | *** |
3123 | *** Returns >= 1 if glob_varnum spotted, else 0 (or at least <1). |
3124 | **/ |
3125 | static int SearchEval_Branch(struct relation_term *term) |
3126 | { |
3127 | int result = 0; |
3128 | assert(term != NULL); |
3129 | switch(RelationTermType(term)) { |
3130 | case e_var: |
3131 | if(TermVarNumber(term) == glob_varnum) { |
3132 | ++glob_done; |
3133 | return 1; |
3134 | } else { |
3135 | return 0; |
3136 | } |
3137 | case e_func: |
3138 | /* if the hold function is accepted, this and the next if |
3139 | * should be combined with the fhold condition checked |
3140 | * first. |
3141 | */ |
3142 | if (FuncId(TermFunc(term))==F_HOLD) { |
3143 | /* The quantity inside a hold is considered a |
3144 | * constant, however complicated it may be. |
3145 | * We need to call the appropriate evaluator here |
3146 | * and return the value. We don't care if we see |
3147 | * glob_varnum inside the hold func. |
3148 | */ |
3149 | InsertBranchResult(term,RelationBranchEvaluator(term)); |
3150 | return 0; |
3151 | } |
3152 | if(SearchEval_Branch(TermFuncLeft(term)) < 1) { |
3153 | InsertBranchResult(term,RelationBranchEvaluator(term)); |
3154 | return 0; |
3155 | } |
3156 | return 1; |
3157 | /* Note that this algorithm could use some work. Here we go back up the |
3158 | * tree only to call relationbranchevaluator to turn these into reals. |
3159 | */ |
3160 | case e_int: |
3161 | case e_real: |
3162 | case e_zero: |
3163 | return 0; |
3164 | |
3165 | case e_plus: |
3166 | case e_minus: |
3167 | case e_times: |
3168 | case e_divide: |
3169 | case e_power: |
3170 | case e_ipower: |
3171 | if(SearchEval_Branch(TermBinLeft(term)) < 1) { |
3172 | InsertBranchResult(TermBinLeft(term), |
3173 | RelationBranchEvaluator(TermBinLeft(term))); |
3174 | } else { |
3175 | ++result; |
3176 | } |
3177 | if(SearchEval_Branch(TermBinRight(term)) < 1) { |
3178 | InsertBranchResult(TermBinRight(term), |
3179 | RelationBranchEvaluator(TermBinRight(term))); |
3180 | } else { |
3181 | ++result; |
3182 | } |
3183 | if(result == 0){ |
3184 | InsertBranchResult(term,RelationBranchEvaluator(term)); |
3185 | } |
3186 | return result; |
3187 | |
3188 | case e_uminus: |
3189 | if(SearchEval_Branch(TermBinLeft(term)) < 1) { |
3190 | InsertBranchResult(term,RelationBranchEvaluator(term)); |
3191 | return 0; |
3192 | } |
3193 | return 1; |
3194 | default: |
3195 | Asc_Panic(2, NULL, |
3196 | "error in SearchEval_Branch routine\n" |
3197 | "relation term type not recognized\n"); |
3198 | return 1; |
3199 | } |
3200 | } |
3201 | |
3202 | /** |
3203 | *** SetUpInvertToken selects the side of the relation which |
3204 | *** will be inverted next. It also fills the value which is |
3205 | *** currently being inverted on. |
3206 | *** This function assumes SearchEval_Branch has been called |
3207 | *** previously. |
3208 | **/ |
3209 | static int SetUpInvertToken(struct relation_term *term, |
3210 | struct relation_term **in |