/[ascend]/trunk/base/generic/solver/slv_common.h
ViewVC logotype

Contents of /trunk/base/generic/solver/slv_common.h

Parent Directory Parent Directory | Revision Log Revision Log


Revision 592 - (show annotations) (download) (as text)
Fri May 12 09:50:57 2006 UTC (14 years, 8 months ago) by johnpye
File MIME type: text/x-chdr
File size: 55354 byte(s)
Working on adding some more export symbols, for purpose of getting Jerry's test suite to work with SCons build.
1 /* ASCEND modelling environment
2 Copyright (C) 1990 Karl Michael Westerberg
3 Copyright (C) 1993 Joseph Zaher
4 Copyright (C) 1994 Joseph Zaher, Benjamin Andrew Allan
5 Copyright (C) 1996 Benjamin Andrew Allan
6 Copyright (C) 2005-2006 Carnegie Mellon University
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA.
22 *//**
23 @file
24 General C utility routines for slv/Slv class interfaces. Abstracted from
25 slvX.c January 1995. Based on the original slv.h by KW and JZ (01/94), by Ben Allan.
26
27 slv.h is the header for folks on the ASCEND end, and this is the one for
28 folks on the Slv math end.
29 Don't protoize this file for ASCEND types other than mtx, vec, and boolean
30 real64, and int32 or we'll have you shot. In particular, not var and rel.
31 People who aren't supposed to know about var and rel include this.
32
33 In particular, this header may be used without knowing about the ASCEND
34 compiler or any of its annoying insanities so long as you drag out
35 ascmalloc().
36 This does commit you to being able to stomach the mtx.h file, however,
37 even if you choose to ignore the contents of mtx.
38 Several functions, notably the print suite for rel/var names,
39 assume you are linking against something that does know about
40 ASCEND instances unless the SLV_INSTANCES flag is set to FALSE.
41
42 The parameters and status struct definitions have been moved here,
43 being of general interest.
44
45 SLV common utilities & structures for ASCEND solvers.
46 This includes the following:
47 - parameters struct definitions & manipulation routines
48 - status struct definitions & retrieval routines
49 - vector operations
50 - solver print routines
51 - lnkmap support functions
52
53 Requires:
54 #include <stdio.h>
55 #include <utilities/ascConfig.h>
56 #include <solver/slv_types.h>
57 #include <solver/rel.h>
58 #include <solver/logrel.h>
59 #include <solver/mtx.h>
60 #include <general/list.h>
61
62 Details on solver parameter definition:
63
64 When used together the parameter-related structures, functions, and
65 macros allow us to define all of a solver's parameters in one file
66 and notify the interface of these parameters upon startup (dynamic
67 interface construction). The parameters can be defined in any order.
68 The only bookkeeping needed is associated with the macros. You must
69 have an array of void pointers large enough for all of the macros
70 you define and you must give each of the macros you define a unique
71 element of this array. Here is an example using a real parameter
72 and a character parameter. (The int and bool are similar to the real).
73
74 @code
75
76 (* these 4 macros can be defined anywhere more or less so long as it
77 is before the calls to slv_define_parm. *)
78 #define REAL_PTR (sys->parm_array[0])
79 #define REAL ((*(real64 *)REAL_PTR))
80 #define CHAR_PTR (sys->parm_array[1])
81 #define CHAR ((*(char **)CHAR_PTR))
82
83 #define PA_SIZE 2
84 struct example {
85 struct slv_parameters_t p;
86 void *parm_array[PA_SIZE];
87 struct slv_parameter padata[PA_SIZE];
88 } e;
89 ...
90 e.p.parms = padata;
91 e.p.dynamic_parms = 0;
92
93 static char *character_names[] = {
94 "name_one","name_two"
95 }
96 (* fill padata with appropriate info *)
97 slv_define_parm(&(e.p), real_parm,
98 "r_parm","real parameter" ,
99 "this is an example of a real parameter" ,
100 U_p_real(val,25),U_p_real(lo,0),U_p_real(hi,100),1);
101 (* now assign the element of e.parm_array from somewhere in padata *)
102 SLV_RPARM_MACRO(REAL_PTR,parameters);
103
104 (* fill padata with appropriate info *)
105 slv_define_parm(&(e.p), char_parm,
106 "c_parm", "character parameter",
107 "this is an example of a character parameter",
108 U_p_string(val,character_names[0]),
109 U_p_strings(lo,character_names),
110 U_p_int(hi,sizeof(character_names)/sizeof(char *)),1);
111 (* now assign the element of e.parm_array that matches. *)
112 SLV_CPARM_MACRO(CHAR_PTR,parameters);
113
114 Resetting the value of a parameter can be done directly
115 except for string parameters which should be set with, for example,
116 slv_set_char_parameter(CHAR_PTR,newvalue);
117 or outside a solver where there is no sys->parm_array:
118
119 slv_set_char_parameter(&(p.parms[i].info.c.value),argv[j]);
120
121 @endcode
122 */
123
124 #ifndef ASC_SLV_COMMON_H
125 #define ASC_SLV_COMMON_H
126
127 #include <utilities/ascConfig.h>
128
129 #undef SLV_INSTANCES
130 #define SLV_INSTANCES TRUE
131 /**< SLV_INSTANCES should only be FALSE in a libasc.a free environment */
132
133 /*
134 * -------------------------------------------------------
135 Common data structures for Westerberg derived solvers
136 * -------------------------------------------------------
137 */
138
139 /** Solver output file informationn. */
140 struct slv_output_data {
141 FILE *more_important; /**< More significant output to this file stream. NULL ==> no output. */
142 FILE *less_important; /**< Less significant output to this file stream. NULL ==> no output. */
143 };
144
145 /**
146 Solver tolerance data structure.
147 @todo KHACK THIS SHOULD BE REMOVED - solver/slv_common:slv_tolerance_data.
148 */
149 struct slv_tolerance_data {
150 real64 drop; /**< Matrix entry drop tolerance during factorization */
151 real64 pivot; /**< Detect pivot too small, of those available. */
152 real64 singular; /**< Detect matrix numerically singular. */
153 real64 feasible; /**< Detect equality relations satisfied. */
154 real64 rootfind; /**< Detect single equality relation satisfied. */
155 real64 stationary; /**< Detect lagrange stationary. */
156 real64 termination; /**< Detect progress diminished. */
157 };
158
159 /** Solver sub-parameter data structure. */
160 struct slv_sub_parameters {
161 /* arrays of parametric data */
162 int32 *iap; /**< Array of parametric int32 data. */
163 real64 *rap; /**< Array of parametric real64 data. */
164 char* *cap; /**< Array of parametric char* data. */
165 void* *vap; /**< Array of parametric void* data. */
166 /* symbolic parameter names */
167 char* *ianames; /**< Array of symbolic names for iap parameters. */
168 char* *ranames; /**< Array of symbolic names for rap parameters. */
169 char* *canames; /**< Array of symbolic names for cap parameters. */
170 char* *vanames; /**< Array of symbolic names for vap parameters. */
171 /* longer explanations of the parameter data */
172 char* *iaexpln; /**< Array of longer descriptions of iap parameters. */
173 char* *raexpln; /**< Array of longer descriptions of rap parameters. */
174 char* *caexpln; /**< Array of longer descriptions of cap parameters. */
175 char* *vaexpln; /**< Array of longer descriptions of vap parameters. */
176 /* lengths of arrays above */
177 int32 ilen; /**< Length of iap, ianames, and iaexpln arrays. */
178 int32 rlen; /**< Length of rap, ranames, and raexpln arrays. */
179 int32 clen; /**< Length of cap, canames, and caexpln arrays. */
180 int32 vlen; /**< Length of vap, vanames, and vaexpln arrays. */
181 };
182
183 /**
184 Data structure for solver statistics.
185 This is to collect data for the comparison of algorithms. All solvers
186 should have at least one of these, though the interface will check for
187 NULL before reading the data. The interpretation of these data is
188 somewhat up to the coder.
189 */
190 struct slv_block_cost {
191 int32 size, /**< How big is the block, in terms of variables? */
192 iterations, /**< How many iterations to convergence/divergence? */
193 funcs, /**< How many function evaluations were made? */
194 jacs, /**< How many jacobian evaluations were made? */
195 reorder_method; /**< Not documented. Up to individual solver? */
196 double time, /**< How much cpu total time elapsed while in the block? */
197 resid, /**< Not documented. The size of the residual? */
198 functime, /**< Time spent in function evaluations. */
199 jactime; /**< Time spent in jacobian evaluations, stuffing. */
200 };
201
202 /** Integer solver parameter substructure. */
203 struct slv_int_parameter {
204 int32 value; /**< Value. */
205 int32 low; /**< Lower bound. */
206 int32 high; /**< Upper bound. */
207 };
208
209 /** Boolean solver parameter substructure. */
210 struct slv_boolean_parameter {
211 int32 value; /**< Value. */
212 int32 low; /**< Lower bound. */
213 int32 high; /**< Upper bound. */
214 };
215
216 /** Real solver parameter substructure. */
217 struct slv_real_parameter {
218 double value; /**< Value. */
219 double low; /**< Lower bound. */
220 double high; /**< Upper bound. */
221 };
222
223 /** Char solver parameter substructure. */
224 struct slv_char_parameter {
225 char *value; /**< Selected value. */
226 char **argv; /**< Array of possible values */
227 int32 high; /**< Length of array of possible values. */
228 };
229
230 /** Basic solver parameter types. */
231 enum parm_type {
232 int_parm, /**< Integer type. */
233 bool_parm, /**< Boolean type. */
234 real_parm, /**< Real type. */
235 char_parm /**< Char type. */
236 };
237
238 /** Parameter arguments */
239 union parm_arg
240 {
241 char **argv; /**< Strings array argument. */
242 char *argc; /**< Char argument. */
243 int32 argi; /**< Integer argument. */
244 int32 argb; /**< Boolean argument. */
245 real64 argr; /**< Real argument. */
246 };
247
248 /** Solver parameter structure. */
249 struct slv_parameter {
250 enum parm_type type; /**< Parameter type. */
251 int32 number; /**< Index in array. */
252 int32 display; /**< Display page. */
253 char *name; /**< Scripting short name. */
254 char *interface_label; /**< User interface label. */
255 char *description; /**< Modest help string. */
256 union {
257 struct slv_int_parameter i; /**< Integer parameter. */
258 struct slv_boolean_parameter b; /**< Boolean parameter. */
259 struct slv_real_parameter r; /**< Real parameter. */
260 struct slv_char_parameter c; /**< Char parameter. */
261 } info; /**< Data. */
262 };
263
264 /*
265 * Macros for parm_arg unions.
266 * Sets appropriate member (parm_u) of the union to the
267 * value specified (val) and returns (parm_u).
268 * (parm_u) should be one of val, lo, or hi.
269 * These macros are used in calls to the
270 * slv_define_parm function defined below.
271 */
272
273 #define U_p_int(parm_u,val) ((((parm_u).argi = (val))), (parm_u))
274 /**<
275 Sets the argi of parm_arg parm_u to val and returns the parm_u.
276 This macro is used for setting integer parm_arg arguments in calls
277 to slv_define_parm(). parm_u should be one of { val, lo, hi },
278 which correspond to local parm_arg variables that should be used
279 in client functions calling slv_define_parm().
280 *
281 @param parm_u The parm_arg to modify, one of {val, lo, hi}.
282 @param val int, the new value for the parm_arg.
283 @return Returns parm_u.
284 */
285 #define U_p_bool(parm_u,val) ((((parm_u).argb = (val))), (parm_u))
286 /**<
287 Sets the argb of parm_arg parm_u to val and returns the parm_u.
288 This macro is used for setting boolean parm_arg arguments in calls
289 to slv_define_parm(). parm_u should be one of { val, lo, hi },
290 which correspond to local parm_arg variables that should be used
291 in client functions calling slv_define_parm().
292 *
293 @param parm_u The parm_arg to modify, one of {val, lo, hi}.
294 @param val boolean, the new value for the parm_arg.
295 @return Returns parm_u.
296 */
297 #define U_p_real(parm_u,val) ((((parm_u).argr = (val))), (parm_u))
298 /**<
299 Sets the argr of parm_arg parm_u to val and returns the parm_u.
300 This macro is used for setting real parm_arg arguments in calls
301 to slv_define_parm(). parm_u should be one of { val, lo, hi },
302 which correspond to local parm_arg variables that should be used
303 in client functions calling slv_define_parm().
304 *
305 @param parm_u The parm_arg to modify, one of {val, lo, hi}.
306 @param val double, the new value for the parm_arg.
307 @return Returns parm_u.
308 */
309 #define U_p_string(parm_u,val) ((((parm_u).argc = (val))), (parm_u))
310 /**<
311 Sets the argc of parm_arg parm_u to val and returns the parm_u.
312 This macro is used for setting string parm_arg arguments in calls
313 to slv_define_parm(). parm_u should be one of { val, lo, hi },
314 which correspond to local parm_arg variables that should be used
315 in client functions calling slv_define_parm().
316 *
317 @param parm_u The parm_arg to modify, one of {val, lo, hi}.
318 @param val char *, the new value for the parm_arg.
319 @return Returns parm_u.
320 For use in calls to slv_define_parm().
321 */
322 #define U_p_strings(parm_u,val) ((((parm_u).argv = (val))), (parm_u))
323 /**<
324 Sets the argv of parm_arg parm_u to val and returns the parm_u.
325 This macro is used for setting string array parm_arg arguments in
326 calls to slv_define_parm(). parm_u should be one of { val, lo, hi },
327 which correspond to local parm_arg variables that should be used
328 in client functions calling slv_define_parm().
329 *
330 @param parm_u The parm_arg to modify, one of {val, lo, hi}.
331 @param val char **, the new value for the parm_arg.
332 @return Returns parm_u.
333 For use in calls to slv_define_parm().
334 */
335
336 #define SLV_IPARM_MACRO(NAME,slv_parms) \
337 if (make_macros == 1) { \
338 (NAME) = &((slv_parms)->parms[(slv_parms)->num_parms-1].info.i.value); \
339 }
340 /**<
341 Macro for defining macros of type integer (IPARM).
342 See SLV_CPARM_MACRO() for more information.
343 */
344 #define SLV_BPARM_MACRO(NAME,slv_parms) \
345 if (make_macros == 1) { \
346 (NAME) = &((slv_parms)->parms[(slv_parms)->num_parms-1].info.b.value); \
347 }
348 /**<
349 Macro for defining macros of type boolean (BPARM).
350 See SLV_CPARM_MACRO() for more information.
351 */
352 #define SLV_RPARM_MACRO(NAME,slv_parms) \
353 if (make_macros == 1) { \
354 (NAME) = &((slv_parms)->parms[(slv_parms)->num_parms-1].info.r.value); \
355 }
356 /**<
357 Macro for defining macros of type real (RPARM).
358 See SLV_CPARM_MACRO() for more information.
359 */
360 #define SLV_CPARM_MACRO(NAME,slv_parms) \
361 if (make_macros == 1) { \
362 (NAME) = &((slv_parms)->parms[(slv_parms)->num_parms-1].info.c.value); \
363 }
364 /**<
365 * Macro for defining macros of type character (CPARM).
366 * To use, provide a NAME for the macro (in caps by convention)
367 * and a slv_parameters_t pointer (slv_parm). The NAME should be
368 * defined as an element in an array of void pointers in the
369 * module in which the macro is to be used. This macro uses the
370 * current number of registered parameters to link the array of
371 * _VOID_ _POINTERS_ to the correct parameters. If you want to create
372 * a macro for a parameter, you should put the appropriate macro
373 * creating macro IMEDIATELY after the call to slv_define_parm
374 * for that parameter.<br><br>
375 * Local int make_macros; must be defined.
376 */
377
378 /**
379 Holds the array of parameters and keeps a count of how many it
380 contains. Also holds various other information which should be
381 turned into slv_parameters or moved elsewhere
382 <pre>
383 Every registered client should have a slv_parameters_t somewhere in it.
384
385 The following is a list of parameters (those parameters that can be
386 modified during solve without calling slv_presolve() are marked with
387 "$$$"). It should be noted that some solvers may not be conformable
388 to some of the parameters. Default values are subject to change via
389 experimentation.
390
391 output.more_important (default stdout): $$$
392 output.less_important (default NULL): $$$
393 All output from the solver is written to one of these two files
394 (except bug messages which are written to stderr). Common values
395 are NULL (==> no file) and stdout. The more important messages
396 go to output.more_important and less important messages go to
397 output.less_important. To shut the solver up, set both files to
398 NULL.
399
400 tolerance.drop (default 1e-16):
401 tolerance.pivot (default 0.1):
402 tolerance.singular (default 1e-12):
403 tolerance.feasible (default 1e-8):
404 tolerance.rootfind (default 1e-12):
405 tolerance.stationary (default 1e-8):
406 tolerance.termination (default 1e-12):
407 These define the criterion for selecting pivotable relations,
408 whether the equations are satisfied, if a local minimum has been
409 found, or if no further reduction in the augmented lagrange merit
410 phi can be achieved.
411 - During jacobian reduction, each equation pivot selected must be
412 at least a certain fraction given by TOLERANCE.PIVOT of the largest
413 available.
414 Also, the largest value in the row must exceed TOLERANCE.SINGULAR
415 in order to be considered independent.
416 - The absolute value of each unscaled equation residual is compared
417 with TOLERANCE.FEASIBLE in order to determine convergence of the
418 equality constraints during Newton iteration.
419 - The absolute value of each unscaled equation residual is compared
420 with TOLERANCE.ROOTFIND in order to determine convergence of the
421 constraint during rootfinding of single equations.
422 - Detection of a minimum requires the stationary condition of the
423 lagrange to be less than TOLERANCE.STATIONARY.
424 - If the directional derivative of phi along the negative gradient
425 direction using the suggested iteration step length falls below
426 TOLERANCE.TERMINATION, iteration is ceased.
427 - TOLERANCE.DROP is the smallest number magnitude to be allowed
428 in the Jacobian matrix during factorization. Default is optimistic.
429
430 time_limit (default 30.0): $$$
431 This defines the time limit expressed as cpu seconds per block.
432 If the solver requires more time than this in any given block,
433 then it will stop.
434
435 iteration_limit (default 100): $$$
436 This defines the maximum number of iterations attempted in a given
437 block. The solver will stop after this many iterations if it fails
438 to converge.
439
440 factor_option (default 0):
441 This sets the number of the linear factorization to suggest.
442 This does not map directly to linsol numbering of any sort.
443 The map is: 0 <==> RANKI, 1 <==> RANKI_JZ, 2+ <==> ?.
444 The solver is free to ignore this suggestion.
445 In fact, the specific solver is free to define the meaning of factor
446 option depending on what linear packages it can talk to.
447
448 partition (default TRUE):
449 Specifies whether or not the system will be partitioned into blocks
450 or not. If not, then the system will be considered as one large
451 block.
452
453 ignore_bounds (default FALSE):
454 Specifies whether or not bounds will be considered during solving.
455 WARNING: if this flag is set, there will be no guarantees that the
456 solution will lie in bounds. Suggested use might be to set this
457 flag to TRUE, solve, reset this flag to FALSE, and resolve.
458 More often than not, in fact, ignore bounds will lead to floating
459 point exceptions, halting the solution process.
460
461 rho (default 1.0):
462 Used as a scalar pre-multiplier of the penalty term quantified by one
463 half the two norm of the equality constraint residuals in an
464 augmented lagrange merit function.
465
466 sp.ia/ra/ca/vap (defaults NULL, READ ONLY):
467 Is a set of pointers to arrays (int/double/(char*)/void*).
468 The values of the pointers themselves should not be modified,
469 though the values pointed at may be modified. Note that this is
470 _direct_ modification and will take effect immediately, not on
471 the next call to slv_set_parameters. When the engine gets around
472 to looking at the values in these arrays is engine dependent.
473 NULL is the expected value for some or all of these array
474 pointers, depending on the engine. The sizes of these arrays are
475 specific to each solver's interface. As being of interest (at
476 compile time) to both the slvI.c file and the GUI/CLUI, the
477 sizes of the arrays to be pointed to are part of the slvI.h file.
478 The implementor of each slvI.c should take care to use as much of
479 the slv_parameters_t as possible before passing data through the
480 arrays provided in the sub_parameters. This will make for a
481 minimal amount of work when adding an engine to the GUI/CLUI.
482 To further aid reusability/sanity preservation, slvI.h should
483 be appended with proper defines for subscripting these arrays.
484
485 sp.i/r/c/vlen (defaults 0, READ ONLY)
486 lengths of the sub_parameter arrays.
487
488 sp.ia/ra/ca/vanames (defaults NULL, READONLY)
489 symbolic names for the corresponding entries in ia/ra/ca/vap.
490
491 sp.ia/ra/ca/vaexpln (defaults NULL, READONLY)
492 longer explanations for the corresponding entries in ia/ra/ca/vap.
493
494 whose (default 0=>slv0, READ ONLY)
495 This tells where a parameter set came from, since the default
496 action of slv_get_parameters is to return a copy of slv0's
497 parameters if the parameters asked for don't exist because
498 the solver in question wasn't built/linked.
499 </pre>
500 */
501 typedef struct slv_parameters_structure {
502 struct slv_output_data output; /**< File streams for solver output. */
503 struct slv_tolerance_data tolerance; /**< Defince various tolerances for the solver. */
504 struct slv_parameter *parms; /**< Holds the parameters defined for a solver. */
505 int32 num_parms; /**< The number of parameters in parms. */
506 int32 dynamic_parms; /**< Set to TRUE if parms is dynamically allocated. */
507
508 /* we wish the following were on the way out */
509 struct slv_sub_parameters sp; /**< Solver sub-parameters. */
510 int whose; /**< Code for where a parameter set came from. */
511 int32 ignore_bounds; /**< Set to TRUE to disregard boundary conditions. */
512 int32 partition; /**< Set to TRUE if system will be partitioned into blocks. */
513
514 /* the following are on the way out */
515 double time_limit; /**< Max cpu seconds per block. @todo kill */
516 double rho; /**< Scaler premultiplier of penalty term. @todo kill */
517 int32 iteration_limit; /**< Max number of iterations. @todo kill */
518 int32 factor_option; /**< Suggests a number for linear factorization. @todo kill */
519
520 } slv_parameters_t;
521
522
523 /* slv_destroy_parms() is defined in slv.c */
524 ASC_DLLSPEC(void ) slv_destroy_parms(slv_parameters_t *p);
525 /**<
526 Deallocates any allocated memory held by a parameter structure.
527 Only the held memory is freed, not p itself. Further, if
528 (p->dynamic_parms != 0), the strings in p->parms are freed
529 but not p->parms itself. Does nothing if p is NULL.
530
531 @param p The parameter structure to destroy.
532 */
533
534 /* slv_define_parm() is defined in slv.c */
535 extern int32 slv_define_parm(slv_parameters_t *p,
536 enum parm_type type,
537 char *interface_name,
538 char *interface_label,
539 char *description,
540 union parm_arg value,
541 union parm_arg lower_bound,
542 union parm_arg upper_bound,
543 int32 page);
544 /**<
545 Adds (defines) a new parameter in a parameter structure.
546 Use this function to add & define new parameters for a solver.
547
548 @param p Parameter structure to receive the new parameter.
549 @param type Parameter type: int_parm, bool_parm, real_parm, or char_parm.
550 @param interface_name A very short but descriptive name that the interface
551 can use to identify the parameter.
552 @param interface_label A short text string to be displayed on the interface.
553 @param description A slightly more detailed string to be displayed
554 upon request a la balloon help.
555 @param value The value for the parameter, set using one of
556 the U_p_int() style macros defined above.
557 @param lower_bound The lower bound for the parameter, set using one of
558 the U_p_int() style macros defined above.
559 @param upper_bound The upper bound for the parameter, set using one of
560 the U_p_int() style macros defined above.
561 @param page The page of the interface options dialog on which
562 to display this parameter. Ranges from 1..max_page_no.
563 Set to -1 if this parameter is not to be displayed in
564 the interface.
565 @return Returns -1 if p is NULL or called with unsupported type;
566 otherwise returns the number of registered parameters in p.
567 */
568
569 /* slv_set_char_parameter() is defined in slv.c */
570 ASC_DLLSPEC(void) slv_set_char_parameter(char **cptr, CONST char *newvalue);
571 /**<
572 Sets a char parameter value to a new string.
573 Resetting the value of a parameter can be done directly except
574 for string parameters which must be set with this function. The
575 string newvalue is not kept by the function.<br><br>
576
577 Example: slv_set_char_parameter(&(p.parms[i].info.c.value),argv[j]);
578
579 @param cptr Pointer to the char array to set.
580 @param newvalue New value for *cptr.
581 */
582
583 /** Solver block status record. */
584 struct slv__block_status_structure {
585 int32 number_of; /**< Number of blocks in system. */
586 int32 current_block; /**< Block number of the current block that the
587 solver is working on. It is assumed that all
588 previous blocks have already converged. */
589 int32 current_reordered_block; /**< Number of the block most recently reordered. */
590 int32 current_size; /**< Number of variables/relations in the current block. */
591 int32 previous_total_size; /**< Total size of previous blocks (= number of
592 variables/relations already converged). */
593 int32 previous_total_size_vars; /**< Not currently implemented. */
594 int32 iteration; /**< Number of iterations so far in the current block. */
595 int32 funcs; /**< Number of residuals calculated in the current block. */
596 int32 jacs; /**< Number of jacobians evaluated in the current block. */
597 double cpu_elapsed; /**< Number of cpu seconds elapsed in the current block. */
598 double functime; /**< Number of cpu seconds elapsed getting residuals. */
599 double jactime; /**< Number of cpu seconds elapsed getting jacobians. */
600 real64 residual; /**< Current residual (RMS value) for the current block. */
601 };
602
603 /**
604 * Solver status flags.
605 * <pre>
606 * The following is a list of statuses and their meanings. Statuses
607 * cannot be written to, and thus there is no notion of default value.
608 *
609 * ok:
610 * Specifies whether or not everything is "ok". It is a shorthand for
611 * testing all of the other flags.
612 *
613 * over_defined:
614 * under_defined:
615 * struct_singular:
616 * Specifies whether the system is over-defined, under-defined, or
617 * structurally singular. These fields are set by slv_presolve where
618 * the structural analysis is performed. It should be noted that
619 * over_defined and under_defined are mutually exclusive and both
620 * imply struct_singular, although a system can be structurally
621 * singular without being over-defined or under-defined.
622 *
623 * ready_to_solve:
624 * Specifies whether the system is ready to solve. In other words, is
625 * slv_iterate or slv_solve legal? This flag is FALSE before
626 * slv_presolve or after the system has converged or the solver has
627 * given up for whatever reason.
628 *
629 * converged:
630 * This flag is set whenever the entire system has converged. The
631 * convergence will be genuine (all relations satisfied within
632 * tolerance, all bounds satisfied, all calculations defined, etc.).
633 *
634 * diverged:
635 * This flag is set whenever the solver has truly given up (i.e. given
636 * up for any reason not covered below).
637 *
638 * inconsistent:
639 * The solver has concluded unambiguously (e.g. by symbolic
640 * manipulation) that the system is inconsistent.
641 *
642 * calc_ok:
643 * Specifies whether or not there were any calculation errors in
644 * computing the residuals at the current point.
645 *
646 * iteration_limit_exceeded:
647 * Specifies whether or not the iteration count was exceeded or not.
648 *
649 * time_limit_exceeded:
650 * Specifies whether or not the cpu time limit was exceeded.
651 *
652 * panic:
653 * Specifies whether or not the user called a halt interactively;
654 *
655 * iteration:
656 * Total number of iterations so far. Total iteration count is reset to
657 * zero whenever slv_presolve or slv_resolve is called.
658 *
659 * cpu_elapsed:
660 * Total number of cpu seconds elapsed. Total cpu time elapsed is reset
661 * to zero whenever slv_presolve or slv_resolve is called.
662 *
663 * block.number_of:
664 * Number of blocks in system.
665 *
666 * block.current_block:
667 * Block number of the current block that the solver is working on.
668 * It is assumed that all previous blocks have already converged.
669 *
670 * block.current_size:
671 * Number of variables/relations in the current block.
672 *
673 * block.previous_total_size:
674 * Total size of previous blocks (= number of variables/relations
675 * already converged).
676 *
677 * block.iteration:
678 * Number of iterations so far in the current block.
679 *
680 * block.functime:
681 * Number of cpu seconds elapsed getting residuals from whereever.
682 *
683 * block.jactime:
684 * Number of cpu seconds elapsed getting jacobians from whereever.
685 *
686 * block.cpu_elapsed:
687 * Number of cpu seconds elapsed so far in the current block.
688 *
689 * block.residual:
690 * Current residual (RMS value) for the current block.
691 *
692 * cost (READ ONLY)
693 * This is a pointer to first of an array which is costsize long of
694 * slv_block_cost structures. This is to collect data for the
695 * comparison of algorithms. All solvers should have at least
696 * one of these, though the interface will check for null before
697 * reading the data. The block_cost structure contains:
698 * size (how big is the block, in terms of variables)
699 * iterations (how many iterations to convergence/divergence)
700 * funcs (how many function evaluations were made?)
701 * jacs (how many jacobian evaluations were made?)
702 * time (how much cpu total time elapsed while in the block?)
703 * functime (time spent in function evaluations)
704 * jactime (time spent in jacobian evaluations, stuffing)
705 * (for those codes where a function evaluation is
706 * a byproduct of gradient evaluation, the func cost
707 * will be billed here.)
708 * The interpretation of these data is somewhat up to the coder.
709 *
710 * costsize
711 * This is how big the cost array is. It should in general be the
712 * number of blocks in the system plus 1 so that all the unincluded
713 * relations can be billed to the blocks+1th cost if they are
714 * evaluated.
715 * </pre>
716 */
717 typedef struct slv_status_structure {
718 uint32 ok : 1; /**< If TRUE, everything is ok. */
719 uint32 over_defined : 1; /**< Is system over-defined? */
720 uint32 under_defined : 1; /**< Is system under-defined? */
721 uint32 struct_singular : 1; /**< Is system structurally singular? */
722 uint32 ready_to_solve : 1; /**< Is system ready to solve? */
723 uint32 converged : 1; /**< Has system fully convergeded? */
724 uint32 diverged : 1; /**< Has system diverged? */
725 uint32 inconsistent : 1; /**< Was system was found to be inconsistent? */
726 uint32 calc_ok : 1; /**< Were any errors encounted calculating residuals? */
727 uint32 iteration_limit_exceeded : 1; /**< Was the iteraction limit exceeded? */
728 uint32 time_limit_exceeded : 1; /**< Was the time limit exceeded? */
729 uint32 panic :1; /**< Did the user stop the solver interactively? */
730 int32 iteration; /**< Total number of iterations so far. */
731 int32 costsize; /**< Number of elements in the cost array. */
732 double cpu_elapsed; /**< Total elapsed cpu seconds. */
733 struct slv_block_cost *cost; /**< Array of slv_block_cost records. */
734 struct slv__block_status_structure block; /**< Block status information. */
735 } slv_status_t;
736
737 /*
738 * --------------------------------
739 * vector_data class & operations
740 * --------------------------------
741 *
742 * If we get brave, we will consider replacing the cores of these
743 * routines with blas calls. We aren't overeager to go mixed
744 * language call nuts just yet, however.
745 */
746
747 /**
748 * A dense vector class of some utility and the functions for it.
749 * The vector consists of an array of real64 (vec) and a mtx_range_t
750 * (rng) which refers to subsets of the range of indexes of vec.
751 * When calling the various vector functions, the range indexes in
752 * rng are used to calculate offsets in the vec array. Therefore,
753 * it is important that your rng->(low,high) refer to valid indexes
754 * of vec[]. In particular
755 * - neither rng->low nor rng->high may be negative
756 * - low <= high
757 * - high < length of vec
758 * This means that whatever your maximum high is, you should allocate
759 * (high+1) values in vec.
760 * @todo solver/slv_common:vector_data & operations should be
761 * moved to a module in general or utilities.
762 */
763 struct vector_data {
764 real64 norm2; /**< 2-norm of vector squared. */
765 mtx_range_t *rng; /**< Pointer to range of vector (low..high). */
766 real64 *vec; /**< Data array (NULL => uninitialized). */
767 boolean accurate; /**< Is vector currently accurate? User-manipulated. */
768 };
769
770 ASC_DLLSPEC(struct vector_data *) slv_create_vector(int32 low, int32 high);
771 /**<
772 * Returns a new vector_data initialized to the specified range.
773 * This function creates, initializes, and returns a new vector_data
774 * structure. The vector is initialized using init_vector() and
775 * a pointer to the new struct is returned. If the specified range
776 * is improper (see slv_init_vector()) then a valid vector cannot be
777 * created and NULL is returned.<br><br>
778 *
779 * Destruction of the returned vector_data is the responsibility of
780 * the caller. slv_destroy_vector() may be used for this purpose.
781 *
782 * @param low The lower bound of the vector's range.
783 * @param high The upper bound of the vector's range.
784 * @return A new initialized vector_data, or NULL if one could
785 * not be created.
786 */
787
788 ASC_DLLSPEC(int) slv_init_vector(struct vector_data *vec, int32 low, int32 high);
789 /**<
790 * Initializes a vector_data structure.
791 * The new range (low..high) is considered proper if both low and
792 * high are zero or positive, and (low <= high). If the new range is
793 * not proper (or if vec itself is NULL), then no modifications are
794 * made to vec.<br><br>
795 *
796 * If the range is proper then vec->rng is allocated if NULL and then
797 * set using low and high. Then vec->vec is allocated (if NULL) or
798 * reallocated to size (high+1). The data in vec->vec is not
799 * initialized or changed. The member vec->accurate is set to FALSE.
800 *
801 * @param vec Pointer to the vector_data to initialize.
802 * @param low The lower bound of the vector's range.
803 * @param high The upper bound of the vector's range.
804 * @return Returns 0 if the vector is initialized successfully,
805 * 1 if an improper range was specified, 2 if vec is NULL,
806 * and 3 if memory cannot be allocated.
807 */
808
809 ASC_DLLSPEC(void) slv_destroy_vector(struct vector_data *vec);
810 /**<
811 * Destroys a vector and its assocated data.
812 * Deallocates any memory held in vec->rng and vec->vec,
813 * and then deallocates the vector itself. NULL is tolerated
814 * for vec, vec->rng, or vec->vec.
815 *
816 * @param vec Pointer to the vector_data to destroy.
817 */
818
819 ASC_DLLSPEC(void) slv_zero_vector(struct vector_data *vec);
820 /**<
821 * Zeroes a vector.
822 * The vector entries between vec->rng.low and vec->rng.high will
823 * be set to 0.0.
824 * The following are not allowed and are checked by assertion:
825 * - NULL vec
826 * - NULL vec->rng
827 * - NULL vec->vec
828 * - vec->rng->low < 0
829 * - vec->rng->low > vec->rng->high
830 *
831 * @param vec The vector to zero.
832 */
833
834 ASC_DLLSPEC(void) slv_copy_vector(struct vector_data *srcvec,
835 struct vector_data *destvec);
836 /**<
837 * Copies the data from srcvec to destvec.
838 * The data in the range [srcvec->rng.low .. srcvec->rng.high]
839 * is copied to destvec starting at position destvec->rng.low.
840 * destvec must have at least as many elements in vec as srcvec.
841 * The following are not allowed and are checked by assertion:
842 * - NULL srcvec
843 * - NULL srcvec->rng
844 * - NULL srcvec->vec
845 * - srcvec->rng->low < 0
846 * - srcvec->rng->low > srcvec->rng->high
847 * - NULL destvec
848 * - NULL destvec->rng
849 * - NULL destvec->vec
850 * - destvec->rng->low < 0
851 *
852 * @param srcvec The vector to copy.
853 * @param destvec The vector to receive the copied data.
854 */
855
856 ASC_DLLSPEC(real64) slv_inner_product(struct vector_data *vec1,
857 struct vector_data *vec2);
858 /**<
859 * Calculates the dot product of 2 vectors.
860 * Dot [vec1->rng.low .. vec1->rng.high] with vec2 starting at
861 * position vec2->rng.low.
862 * The following are not allowed and are checked by assertion:
863 * - NULL vec1
864 * - NULL vec1->rng
865 * - NULL vec1->vec
866 * - vec1->rng->low < 0
867 * - vec1->rng->low > vec1->rng->high
868 * - NULL vec2
869 * - NULL vec2->rng
870 * - NULL vec2->vec
871 * - vec2->rng->low < 0
872 *
873 * @param vec1 The 1st vector for the dot product.
874 * @param vec2 The 2nd vector for the dot product.
875 * @todo solver/slv_common:slv_inner_product() could stand to be optimized.
876 */
877
878 ASC_DLLSPEC(real64) slv_square_norm(struct vector_data *vec);
879 /**<
880 * Calculates the dot product of a vector with itself.
881 * Dot [vec->rng.low .. vec->rng.high] with itself and store the
882 * result in vec->norm2.
883 * The following are not allowed and are checked by assertion:
884 * - NULL vec
885 * - NULL vec->rng
886 * - NULL vec->vec
887 * - vec->rng->low < 0
888 * - vec->rng->low > vec->rng->high
889 *
890 * @param vec The vector for the dot product.
891 * @todo solver/slv_common:slv_square_norm() could stand to be optimized.
892 */
893
894 ASC_DLLSPEC(void) slv_matrix_product(mtx_matrix_t mtx,
895 struct vector_data *vec,
896 struct vector_data *prod,
897 real64 scale,
898 boolean transpose);
899 /**<
900 * Calculates the product of a vector, matrix, and scale factor.
901 * Stores prod := (scale)*(mtx)*(vec) if transpose = FALSE,
902 * or prod := (scale)*(mtx-transpose)(vec) if transpose = TRUE.
903 * vec and prod must be completely different.
904 * If (!transpose) vec->vec is assumed indexed by current col and
905 * prod->vec is indexed by current row of mtx.
906 * If (transpose) vec->vec is assumed indexed by current row and
907 * prod->vec is indexed by current col of mtx.
908 * The following are not allowed and are checked by assertion:
909 * - NULL mtx
910 * - NULL vec
911 * - NULL vec->rng
912 * - NULL vec->vec
913 * - vec->rng->low < 0
914 * - vec->rng->low > vec->rng->high
915 * - NULL prod
916 * - NULL prod->rng
917 * - NULL prod->vec
918 * - prod->rng->low < 0
919 * - prod->rng->low > prod->rng->high
920 *
921 * @param mtx The matrix for the product.
922 * @param vec The vector for the product.
923 * @param prod The vector to receive the matrix product.
924 * @param scale The scale factor by which to multiply the matrix product.
925 * @param transpose Flag for whether to use mtx or its transpose.
926 *
927 * @todo solver/slv_common:slv_mtx_product needs attention -
928 * does it go into mtx?
929 */
930
931 extern void slv_write_vector(FILE *fp, struct vector_data *vec);
932 /**<
933 * Write vector information to a file stream.
934 * Prints general information about the vector followed by the
935 * values in the range of the vector to file fp.
936 *
937 * @param fp The file stream to receive the report.
938 * @param vec The vector on which to report.
939 */
940
941 /*
942 * ----------------------------
943 * Misc. BLAS-like functions
944 * ----------------------------
945 */
946
947 ASC_DLLSPEC(real64) slv_dot(int32 len, const real64 *a1, const real64 *a2);
948 /**<
949 * Calculates the dot product of 2 arrays of real64.
950 * This is an optimized routine (loop unrolled). It takes
951 * advantage of identical vectors. The 2 arrays must have
952 * at least len elements.
953 * The following are not allowed and are checked by assertion:
954 * - NULL a1
955 * - NULL a2
956 * - len < 0
957 *
958 * The same algorithm is used inside slv_inner_product(), so there
959 * is no need to use this function directly if you are using the
960 * vector_data type.
961 *
962 * @param len The length of the 2 arrays.
963 * @param a1 The 1st array for the dot product.
964 * @param a2 The 2nd array for the dot product.
965 */
966
967 /*
968 * --------------------------------
969 * General input/output routines
970 * --------------------------------
971 */
972
973 ASC_DLLSPEC(FILE *)slv_get_output_file(FILE *fp);
974 /**<
975 * Checks a file pointer, and if NULL returns a pointer to the nul device.
976 * If you are in environment that doesn't have something like
977 * /dev/null (nul on Windows), you'd better be damn sure your
978 * sys->p.output.*_important are not NULL.
979 *
980 * @param fp The file stream to check.
981 * @return fp if it is not NULL, a pointer to the nul device otherwise.
982 */
983
984 /*
985 * FILE pointer macros.
986 * fp = MIF(sys)
987 * fp = LIF(sys)
988 * fp = PMIF(sys)
989 * fp = PLIF(sys)
990 * or fprintf(MIF(sys),"stuff",data...);
991 * Use of these is requested on grounds of readability but not required.
992 * All of these are macros, which means any specific solver interface
993 * to ASCEND can use them, since all interfaces are supposed to
994 * support a parameters structure p somewhere in a larger system
995 * structure (sys) they keep privately.
996 * Use the PMIF or PLIF flavors if the parameters sys->p is a pointer
997 * rather than a in-struct member.
998 */
999 #define MIF(sys) slv_get_output_file( (sys)->p.output.more_important )
1000 /**<
1001 * Retrieve the "more important" output file for a system.
1002 * sys must exist and contain an element p of type slv_parameters_t.
1003 *
1004 * @param sys The slv_system_t to query.
1005 * @return A FILE * to the "more important" output file for sys.
1006 */
1007 #define LIF(sys) slv_get_output_file( (sys)->p.output.less_important )
1008 /**<
1009 * Retrieve the "less important" output file for a system.
1010 * sys must exist and contain an element p of type slv_parameters_t.
1011 *
1012 * @param sys The slv_system_t to query.
1013 * @return A FILE * to the "less important" output file for sys.
1014 */
1015 #define PMIF(sys) slv_get_output_file( (sys)->p->output.more_important )
1016 /**<
1017 * Retrieve the "more important" output file for a system.
1018 * sys must exist and contain an element p of type slv_parameters_t*.
1019 *
1020 * @param sys The slv_system_t to query.
1021 * @return A FILE * to the "more important" output file for sys.
1022 */
1023 #define PLIF(sys) slv_get_output_file( (sys)->p->output.less_important )
1024 /**<
1025 * Retrieve the "less important" output file for a system.
1026 * sys must exist and contain an element p of type slv_parameters_t*.
1027 *
1028 * @param sys The slv_system_t to query.
1029 * @return A FILE * to the "less important" output file for sys.
1030 */
1031
1032 /*------------------- begin compiler dependent functions -------------------*/
1033 #if SLV_INSTANCES
1034
1035 #ifdef NEWSTUFF
1036 extern void slv_print_obj_name(FILE *outfile, obj_objective_t obj);
1037 /**<
1038 * Not implemented.
1039 * Prints the name of obj to outfile. If obj_make_name() can't
1040 * generate a name, the global index is printed instead.
1041 * @todo Implement solver/slv_common:slv_print_obj_name() or remove prototype.
1042 */
1043 #endif
1044 extern void slv_print_rel_name(FILE *outfile,
1045 slv_system_t sys,
1046 struct rel_relation *rel);
1047 /**<
1048 * Prints the name of rel to outfile. If rel_make_name() can't
1049 * generate a name, the global index is printed instead.
1050 *
1051 * @param outfile The stream to receive the output.
1052 * @param sys The solver system.
1053 * @param rel The relation whose name should be printed.
1054 * @todo Move solver/slv_common:slv_print_rel_name() to solver/rel.
1055 */
1056
1057 extern void slv_print_var_name(FILE *outfile,
1058 slv_system_t sys,
1059 struct var_variable *var);
1060 /**<
1061 * Prints the name of var to outfile. If var_make_name() can't
1062 * generate a name, the global index is printed instead.
1063 *
1064 * @param outfile The stream to receive the output.
1065 * @param sys The solver system.
1066 * @param var The variable whose name should be printed.
1067 * @todo Move solver/slv_common:slv_print_var_name() to solver/var.
1068 */
1069
1070 extern void slv_print_logrel_name(FILE *outfile,
1071 slv_system_t sys,
1072 struct logrel_relation *lrel);
1073 /**<
1074 * Prints the name of lrel to outfile. If logrel_make_name() can't
1075 * generate a name, the global index is printed instead.
1076 *
1077 * @param outfile The stream to receive the output.
1078 * @param sys The solver system.
1079 * @param lrel The logical relation whose name should be printed.
1080 * @todo Move solver/slv_common:slv_print_logrel_name() to solver/logrel.
1081 */
1082
1083 extern void slv_print_dis_name(FILE *outfile,
1084 slv_system_t sys,
1085 struct dis_discrete *dvar);
1086 /**<
1087 * Prints the name of dvar to outfile. If dis_make_name() can't
1088 * generate a name, the global index is printed instead.
1089 *
1090 * @param outfile The stream to receive the output.
1091 * @param sys The solver system.
1092 * @param dvar The discrete variable whose name should be printed.
1093 * @todo Move solver/slv_common:slv_print_dis_name() to solver/discrete.
1094 */
1095
1096 #ifdef NEWSTUFF
1097 extern void slv_print_obj_index(FILE *outfile, obj_objective_t obj);
1098 /**<
1099 * Not implemented.
1100 * Prints the index of obj to outfile.
1101 * @todo Implement solver/slv_common:slv_print_obj_index() or remove prototype.
1102 */
1103 #endif
1104 extern void slv_print_rel_sindex(FILE *outfile, struct rel_relation *rel);
1105 /**<
1106 * Prints the index of rel to outfile.
1107 *
1108 * @param outfile The stream to receive the output.
1109 * @param rel The relation whose index should be printed.
1110 * @todo Move solver/slv_common:slv_print_rel_name() to solver/rel.
1111 */
1112
1113 extern void slv_print_var_sindex(FILE *outfile, struct var_variable *var);
1114 /**<
1115 * Prints the index of var to outfile.
1116 *
1117 * @param outfile The stream to receive the output.
1118 * @param var The variable whose index should be printed.
1119 * @todo Move solver/slv_common:slv_print_var_name() to solver/var.
1120 */
1121
1122 extern void slv_print_logrel_sindex(FILE *outfile, struct logrel_relation *lrel);
1123 /**<
1124 * Prints the index of lrel to outfile.
1125 *
1126 * @param outfile The stream to receive the output.
1127 * @param lrel The logical relation whose index should be printed.
1128 * @todo Move solver/slv_common:slv_print_logrel_name() to solver/logrel.
1129 */
1130
1131 extern void slv_print_dis_sindex(FILE *outfile, struct dis_discrete *dvar);
1132 /**<
1133 * Prints the index of dvar to outfile.
1134 *
1135 * @param outfile The stream to receive the output.
1136 * @param dvar The discrete variable whose index should be printed.
1137 * @todo Move solver/slv_common:slv_print_dis_name() to solver/discrete.
1138 */
1139
1140 extern int slv_direct_solve(slv_system_t server,
1141 struct rel_relation *rel,
1142 struct var_variable *var,
1143 FILE *file,
1144 real64 epsilon,
1145 int ignore_bounds,
1146 int scaled);
1147 /**<
1148 * Attempts to directly solve the given relation (equality constraint) for
1149 * the given variable, leaving the others fixed. Returns an integer
1150 * signifying the status as one of the following three:
1151 * <pre>
1152 * 0 ==> Unable to determine anything.
1153 * Not symbolically invertible.
1154 * 1 ==> Solution(s) found.
1155 * Variable value set to first found if more than one.
1156 * -1 ==> No solution found.
1157 * Function invertible, but no solution exists satisfying
1158 * var bounds (if active) and the epsilon given.
1159 * </pre>
1160 * The variable bounds will be upheld, unless ignore_bounds=FALSE.
1161 * Residual testing will be against epsilon and either scaled or
1162 * unscaled residual according to scaled (no scale -> 0).
1163 * If file != NULL and there are leftover possible solutions, we
1164 * will write about them to file.
1165 *
1166 * @param server The slv_system_t (mostly ignored).
1167 * @param rel The relation to attempt to solve.
1168 * @param var The variable for which to solve.
1169 * @param file File stream to receive other possible solutions.
1170 * @param epsilon Tolerance for testing convergence.
1171 * @param ignore_bounds If TRUE, ignore bounds on variable.
1172 * @param scaled If TRUE, test scaled residuals against epsilon.
1173 * @todo solver/slv_common:slv_direct_solve() should be in solver/relman
1174 * or solver/slv3.
1175 */
1176
1177 extern int slv_direct_log_solve(slv_system_t sys,
1178 struct logrel_relation *lrel,
1179 struct dis_discrete *dvar,
1180 FILE *file,
1181 int perturb,
1182 struct gl_list_t *instances);
1183 /**<
1184 * Attempt to directly solve the given logrelation for the given
1185 * discrete variable, leaving the others fixed. Returns an integer
1186 * signifying the status as one of the following three:
1187 * <pre>
1188 * 0 ==> Unable to determine anything. Bad logrelation or dvar
1189 * 1 ==> Solution found.
1190 * 2 ==> More than one solution found. It does not modify the value
1191 * of dvar. Conflicting.
1192 * -1 ==> No solution found. Inconsistency
1193 * </pre>
1194 * If file != NULL and there are leftover possible solutions, we
1195 * will write about them to file.
1196 * The flag perturb and the gl_list are used to change the truth
1197 * value of some boundaries. This is sometimes useful in
1198 * conditional modeling.
1199 *
1200 * @param sys The slv_system_t (mostly ignored).
1201 * @param lrel The logical relation to attempt to solve.
1202 * @param dvar The discrete variable for which to solve.
1203 * @param file File stream to receive other possible solutions.
1204 * @param perturb If TRUE, perturbs the truth values if necessary to find the solution.
1205 * @param instances List of instances.
1206 * @todo solver/slv_common:slv_direct_log_solve() should be in solver/logrel
1207 * or solver/slv9.
1208 */
1209
1210 #endif
1211 /*-------------------- END compiler dependent functions --------------------*/
1212
1213 /*
1214 * --------------------
1215 * lnkmap functions
1216 * --------------------
1217 */
1218
1219 ASC_DLLSPEC(int32 **) slv_create_lnkmap(int32 m, int32 n, int32 hl, int32 *hi, int32 *hj);
1220 /**<
1221 * Builds a row-biased mapping array from the hi,hj lists given.
1222 * The map returned has the following format:
1223 * - map[i] is a vector describing the incidence in row i of the matrix.
1224 * - Let vars=map[i], where vars is int32 *.
1225 * - vars[0]=number of incidences in the relation.
1226 * - For all 0<=k<vars[0]
1227 * - vars[2*k+1] = original column index of some var in the eqn.
1228 * - vars[2*k+2] = the lnk list index of element(i,vars[2*k+1])
1229 *
1230 * The ordering of column data (i.e. vars[2*k+1]) is implementation-defined
1231 * and should not be counted on. Similarly, the lnk list index (i.e.
1232 * vars[2*k+2]) will be a unique number in the range (0..hl-1), but the
1233 * exact ordering is implementation-defined. The map should only be
1234 * deallocated by destroy_lnkmap(). The memory allocation for a lnkmap
1235 * is done efficiently.<br><br>
1236 *
1237 * These create an odd compressed row mapping, given the hi and hj
1238 * subscript vectors. The primary utility of the lnkmap is that
1239 * it can be traversed rapidly when one wants to conditionally map a row of
1240 * a Harwell style (arbitrarily ordered) link representation
1241 * back into another representation where adding elements to a row
1242 * is easily done.<br><br>
1243 *
1244 * hi and hj should specify a unique incidence pattern. That is, duplicate
1245 * (hi, hj) coordinates are not allowed and only 1 of the occurrences will
1246 * end up in the map. hi should contain row indexes all less than m.
1247 * hj should contain column indexes all less than n. If an invalid row/col
1248 * index is encountered, NULL is returned.
1249 *
1250 * @param m The number of rows expected (> highest index in hi).
1251 * The map returned will be this long.
1252 * @param n The number of columns expected (> highest index in hj).
1253 * @param hl The length of hi and hj.
1254 * @param hi The eqn indices of a C numbered sparse matrix list.
1255 * @param hj The var indices of a C numbered sparse matrix list.
1256 * @return Pointer to the new lnkmap array, or NULL if an error occurred.
1257 */
1258
1259 ASC_DLLSPEC(int32 **) slv_lnkmap_from_mtx(mtx_matrix_t mtx, mtx_region_t *region);
1260 /**<
1261 * Generates a lnkmap from a region of a matrix.
1262 * The length of the map returned will be the order of mtx. Empty rows
1263 * and columns are allowed in the matrix. Map entries for rows outside
1264 * the specified region will be 0 even if the row contains non-zero
1265 * elements. If mtx is NULL, or if the region is invalid for mtx, then
1266 * NULL is returned.<br><br>
1267 *
1268 * The map returned has the following format:
1269 * - map[i] is a vector describing the incidence in row i of the matrix.
1270 * - Let vars=map[i], where vars is int32 *.
1271 * - vars[0]=number of non-zeros in the row.
1272 * - For all 0<=k<vars[0]
1273 * - vars[2*k+1] = original column index of some a non-zero element in the row.
1274 * - vars[2*k+2] = the value of the element (i,vars[2*k+1]), cast to int32.
1275 *
1276 * @param mtx The matrix to map (non-NULL).
1277 * @param region The region of the matrix to map (non-NULL).
1278 * @return Pointer to the new lnkmap array, or NULL if an error occurred.
1279 * @see slv_create_lnkmap() for a more details about lnkmaps.
1280 */
1281
1282 ASC_DLLSPEC(void) slv_destroy_lnkmap(int32 **map);
1283 /**<
1284 * Deallocate a map created by slv_create_lnkmap() or slv_destroy_lnkmap().
1285 * destroy_lnkmap() will tolerate a NULL map as input.
1286 *
1287 * @param map The lnkmap to destroy.
1288 */
1289
1290 ASC_DLLSPEC(void) slv_write_lnkmap(FILE *fp, int m, int32 **map);
1291 /**<
1292 * Prints a link map to a file.
1293 * write_lnkmap() will tolerate a NULL map as input.
1294 *
1295 * @param fp The file stream to receive the report.
1296 * @param m The number of rows in map to print.
1297 * @param map The lnkmap to print.
1298 */
1299
1300 #endif /* ASC_SLV_COMMON_H */
1301

john.pye@anu.edu.au
ViewVC Help
Powered by ViewVC 1.1.22