/[ascend]/trunk/base/generic/solver/slv_common.h
ViewVC logotype

Contents of /trunk/base/generic/solver/slv_common.h

Parent Directory Parent Directory | Revision Log Revision Log


Revision 945 - (show annotations) (download) (as text)
Sat Nov 25 12:41:03 2006 UTC (14 years ago) by johnpye
File MIME type: text/x-chdr
File size: 58912 byte(s)
Fixed a bug in slv_param_char.
More work on IDA ongoing.
1 /* ASCEND modelling environment
2 Copyright (C) 1990 Karl Michael Westerberg
3 Copyright (C) 1993 Joseph Zaher
4 Copyright (C) 1994 Joseph Zaher, Benjamin Andrew Allan
5 Copyright (C) 1996 Benjamin Andrew Allan
6 Copyright (C) 2005-2006 Carnegie Mellon University
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA.
22 *//**
23 @file
24 SLV common utilities & structures for ASCEND solvers.
25
26 Routines in this header are applicable to both the system API (as accessed
27 from ASCEND compiler and GUI/CLI) as well as the solver backend (slv3.c,
28 and other solvers, etc)
29
30 This header therefore includes the following:
31 - parameters struct definitions & manipulation routines
32 - status struct definitions & retrieval routines
33 - vector operations
34 - solver print routines
35 - lnkmap support functions
36
37 @see slv_client.h for the routines that a concrete SLV solver will use to access the model.
38 @see slv_server.h for the routines that ASCEND uses to run and query the solver.
39
40 @NOTE
41 USAGE NOTES:
42 slv.h is the header for folks on the ASCEND end, and this is the one for
43 folks on the Slv math end.
44 Don't protoize this file for ASCEND types other than mtx, vec, and boolean
45 real64, and int32 or we'll have you shot. In particular, not var and rel.
46 People who aren't supposed to know about var and rel include this.
47
48 In particular, this header may be used without knowing about the ASCEND
49 compiler or any of its annoying insanities so long as you drag out
50 ascmalloc().
51 This does commit you to being able to stomach the mtx.h file, however,
52 even if you choose to ignore the contents of mtx.
53 Several functions, notably the print suite for rel/var names,
54 assume you are linking against something that does know about
55 ASCEND instances unless the SLV_INSTANCES flag is set to FALSE.
56
57 The parameters and status struct definitions have been moved here,
58 being of general interest.
59 @ENDNOTE
60
61 Requires:
62 #include <stdio.h>
63 #include <utilities/ascConfig.h>
64 #include <solver/slv_types.h>
65 #include <solver/rel.h>
66 #include <solver/logrel.h>
67 #include <solver/mtx.h>
68 #include <general/list.h>
69 */
70
71 /** @page solver-parameters Solver Parameters in ASCEND
72
73 @NOTE This stuff REALLY seems painful to use! Is there not a way that
74 we could make it a bit easier? @ENDNOTE
75
76 When used together the parameter-related structures, functions, and
77 macros allow us to define all of a solver's parameters in one file
78 and notify the interface of these parameters upon startup (dynamic
79 interface construction). The parameters can be defined in any order.
80 The only bookkeeping needed is associated with the macros. You must
81 have an array of void pointers large enough for all of the macros
82 you define and you must give each of the macros you define a unique
83 element of this array. Here is an example using a real parameter
84 and a character parameter. (The int and bool are similar to the real).
85
86 @code
87
88 (* these 4 macros can be defined anywhere more or less so long as it
89 is before the calls to slv_define_parm. *)
90 #define REAL_PTR (sys->parm_array[0])
91 #define REAL ((*(real64 *)REAL_PTR))
92 #define CHAR_PTR (sys->parm_array[1])
93 #define CHAR ((*(char **)CHAR_PTR))
94
95 #define PA_SIZE 2
96 struct example {
97 struct slv_parameters_t p;
98 void *parm_array[PA_SIZE];
99 struct slv_parameter padata[PA_SIZE];
100 } e;
101 ...
102 e.p.parms = padata;
103 e.p.dynamic_parms = 0;
104
105 static char *character_names[] = {
106 "name_one","name_two"
107 }
108 (* fill padata with appropriate info *)
109 slv_define_parm(&(e.p), real_parm,
110 "r_parm","real parameter" ,
111 "this is an example of a real parameter" ,
112 U_p_real(val,25),U_p_real(lo,0),U_p_real(hi,100),1);
113 (* now assign the element of e.parm_array from somewhere in padata *)
114 SLV_RPARM_MACRO(REAL_PTR,parameters);
115
116 (* fill padata with appropriate info *)
117 slv_define_parm(&(e.p), char_parm,
118 "c_parm", "character parameter",
119 "this is an example of a character parameter",
120 U_p_string(val,character_names[0]),
121 U_p_strings(lo,character_names),
122 U_p_int(hi,sizeof(character_names)/sizeof(char *)),1);
123 (* now assign the element of e.parm_array that matches. *)
124 SLV_CPARM_MACRO(CHAR_PTR,parameters);
125
126 Resetting the value of a parameter can be done directly
127 except for string parameters which should be set with, for example,
128 slv_set_char_parameter(CHAR_PTR,newvalue);
129 or outside a solver where there is no sys->parm_array:
130
131 slv_set_char_parameter(&(p.parms[i].info.c.value),argv[j]);
132
133 @endcode
134 *//*
135 Abstracted from
136 slvX.c January 1995. Based on the original slv.h by KW and JZ (01/94), by Ben Allan.
137 */
138
139 #ifndef ASC_SLV_COMMON_H
140 #define ASC_SLV_COMMON_H
141
142 #include <utilities/ascConfig.h>
143
144 #undef SLV_INSTANCES
145 #define SLV_INSTANCES TRUE
146 /**< SLV_INSTANCES should only be FALSE in a libasc.a free environment */
147
148 /*------------------------------------------------------------------------------
149 DATA STRUCTURES
150 */
151
152 /** Solver output file informationn. */
153 struct slv_output_data {
154 FILE *more_important; /**< More significant output to this file stream. NULL ==> no output. */
155 FILE *less_important; /**< Less significant output to this file stream. NULL ==> no output. */
156 };
157
158 /**
159 Solver tolerance data structure.
160 @todo KHACK THIS SHOULD BE REMOVED - solver/slv_common:slv_tolerance_data.
161 */
162 struct slv_tolerance_data {
163 real64 drop; /**< Matrix entry drop tolerance during factorization */
164 real64 pivot; /**< Detect pivot too small, of those available. */
165 real64 singular; /**< Detect matrix numerically singular. */
166 real64 feasible; /**< Detect equality relations satisfied. */
167 real64 rootfind; /**< Detect single equality relation satisfied. */
168 real64 stationary; /**< Detect lagrange stationary. */
169 real64 termination; /**< Detect progress diminished. */
170 };
171
172 /** Solver sub-parameter data structure. */
173 struct slv_sub_parameters {
174 /* arrays of parametric data */
175 int32 *iap; /**< Array of parametric int32 data. */
176 real64 *rap; /**< Array of parametric real64 data. */
177 char* *cap; /**< Array of parametric char* data. */
178 void* *vap; /**< Array of parametric void* data. */
179 /* symbolic parameter names */
180 char* *ianames; /**< Array of symbolic names for iap parameters. */
181 char* *ranames; /**< Array of symbolic names for rap parameters. */
182 char* *canames; /**< Array of symbolic names for cap parameters. */
183 char* *vanames; /**< Array of symbolic names for vap parameters. */
184 /* longer explanations of the parameter data */
185 char* *iaexpln; /**< Array of longer descriptions of iap parameters. */
186 char* *raexpln; /**< Array of longer descriptions of rap parameters. */
187 char* *caexpln; /**< Array of longer descriptions of cap parameters. */
188 char* *vaexpln; /**< Array of longer descriptions of vap parameters. */
189 /* lengths of arrays above */
190 int32 ilen; /**< Length of iap, ianames, and iaexpln arrays. */
191 int32 rlen; /**< Length of rap, ranames, and raexpln arrays. */
192 int32 clen; /**< Length of cap, canames, and caexpln arrays. */
193 int32 vlen; /**< Length of vap, vanames, and vaexpln arrays. */
194 };
195
196 /**
197 Data structure for solver statistics.
198 This is to collect data for the comparison of algorithms. All solvers
199 should have at least one of these, though the interface will check for
200 NULL before reading the data. The interpretation of these data is
201 somewhat up to the coder.
202 */
203 struct slv_block_cost {
204 int32 size, /**< How big is the block, in terms of variables? */
205 iterations, /**< How many iterations to convergence/divergence? */
206 funcs, /**< How many function evaluations were made? */
207 jacs, /**< How many jacobian evaluations were made? */
208 reorder_method; /**< Not documented. Up to individual solver? */
209 double time, /**< How much cpu total time elapsed while in the block? */
210 resid, /**< Not documented. The size of the residual? */
211 functime, /**< Time spent in function evaluations. */
212 jactime; /**< Time spent in jacobian evaluations, stuffing. */
213 };
214
215 /** Integer solver parameter substructure. */
216 struct slv_int_parameter {
217 int32 value; /**< Value. */
218 int32 low; /**< Lower bound. */
219 int32 high; /**< Upper bound. */
220 };
221
222 /** Boolean solver parameter substructure. */
223 struct slv_boolean_parameter {
224 int32 value; /**< Value. */
225 int32 low; /**< Lower bound. */
226 int32 high; /**< Upper bound. */
227 };
228
229 /** Real solver parameter substructure. */
230 struct slv_real_parameter {
231 double value; /**< Value. */
232 double low; /**< Lower bound. */
233 double high; /**< Upper bound. */
234 };
235
236 /** Char solver parameter substructure. */
237 struct slv_char_parameter {
238 char *value; /**< Selected value. */
239 char **argv; /**< Array of possible values */
240 int32 high; /**< Length of array of possible values. */
241 };
242
243 /** Basic solver parameter types. */
244 enum parm_type {
245 int_parm, /**< Integer type. */
246 bool_parm, /**< Boolean type. */
247 real_parm, /**< Real type. */
248 char_parm /**< Char type. */
249 };
250
251 /** Parameter arguments */
252 union parm_arg
253 {
254 char **argv; /**< Strings array argument. */
255 char *argc; /**< Char argument. */
256 int32 argi; /**< Integer argument. */
257 int32 argb; /**< Boolean argument. */
258 real64 argr; /**< Real argument. */
259 };
260
261 /** Solver parameter structure. */
262 struct slv_parameter {
263 enum parm_type type; /**< Parameter type. */
264 int32 number; /**< Index in array. */
265 int32 display; /**< Display page. */
266 char *name; /**< Scripting short name. */
267 char *interface_label; /**< User interface label. */
268 char *description; /**< Modest help string. */
269 union {
270 struct slv_int_parameter i; /**< Integer parameter. */
271 struct slv_boolean_parameter b; /**< Boolean parameter. */
272 struct slv_real_parameter r; /**< Real parameter. */
273 struct slv_char_parameter c; /**< Char parameter. */
274 } info; /**< Data. */
275 };
276
277 /*------------------------------------------------------------------------------
278 SOME STRUCTURES FOR SANER INITIALISATION OF PARAMETERS (says I -- JP)
279 */
280
281 typedef struct{
282 const char *codename;
283 const char *guiname;
284 const int guipagenum;
285 const char *description;
286 } SlvParameterInitMeta;
287
288 typedef struct{
289 const SlvParameterInitMeta meta;
290 const int val;
291 const int low;
292 const int high;
293 } SlvParameterInitInt;
294
295 typedef struct{
296 const SlvParameterInitMeta meta;
297 const int val;
298 } SlvParameterInitBool;
299
300 typedef struct{
301 const SlvParameterInitMeta meta;
302 const double val;
303 const double low;
304 const double high;
305 } SlvParameterInitReal;
306
307 typedef struct{
308 const SlvParameterInitMeta meta;
309 const char *val;
310 /* list of options will be passed in separately; seems not possible to have static array here */
311 } SlvParameterInitChar;
312
313 struct slv_parameters_structure;
314
315 int slv_param_int (struct slv_parameters_structure *p, const int index, const SlvParameterInitInt);
316 int slv_param_bool(struct slv_parameters_structure *p, const int index, const SlvParameterInitBool);
317 int slv_param_real(struct slv_parameters_structure *p, const int index, const SlvParameterInitReal);
318 int slv_param_char(struct slv_parameters_structure *p, const int index, const SlvParameterInitChar, const char **options);
319
320 /* macros to access values from your solver code
321
322 Usage example:
323 if(SLV_PARAM_BOOL(p,IDA_PARAM_AUTODIFF)){
324 // do something
325 }
326 SLV_PARAM_BOOL(p,IDA_PARAM_AUTODIFF) = FALSE;
327 */
328
329 /* the first three are read/write */
330 #define SLV_PARAM_INT(PARAMS,INDEX) (PARAMS)->parms[INDEX].info.i.value
331 #define SLV_PARAM_BOOL(PARAMS,INDEX) (PARAMS)->parms[INDEX].info.b.value
332 #define SLV_PARAM_REAL(PARAMS,INDEX) (PARAMS)->parms[INDEX].info.r.value
333
334 #define SLV_PARAM_CHAR(PARAMS,INDEX) (PARAMS)->parms[INDEX].info.c.value
335 /**<
336 @NOTE, don't use this macro to set the value of your string, as it will
337 result in memory leaks
338 */
339
340 /*------------------------------------------------------------------------------
341 ACCESSOR MACROS for parm_arg unions
342
343 * Macros for parm_arg unions.
344 * Sets appropriate member (parm_u) of the union to the
345 * value specified (val) and returns (parm_u).
346 * (parm_u) should be one of val, lo, or hi.
347 * These macros are used in calls to the
348 * slv_define_parm function defined below.
349 */
350
351 #define U_p_int(parm_u,val) ((((parm_u).argi = (val))), (parm_u))
352 /**<
353 Sets the argi of parm_arg parm_u to val and returns the parm_u.
354 This macro is used for setting integer parm_arg arguments in calls
355 to slv_define_parm(). parm_u should be one of { val, lo, hi },
356 which correspond to local parm_arg variables that should be used
357 in client functions calling slv_define_parm().
358 *
359 @param parm_u The parm_arg to modify, one of {val, lo, hi}.
360 @param val int, the new value for the parm_arg.
361 @return Returns parm_u.
362 */
363 #define U_p_bool(parm_u,val) ((((parm_u).argb = (val))), (parm_u))
364 /**<
365 Sets the argb of parm_arg parm_u to val and returns the parm_u.
366 This macro is used for setting boolean parm_arg arguments in calls
367 to slv_define_parm(). parm_u should be one of { val, lo, hi },
368 which correspond to local parm_arg variables that should be used
369 in client functions calling slv_define_parm().
370 *
371 @param parm_u The parm_arg to modify, one of {val, lo, hi}.
372 @param val boolean, the new value for the parm_arg.
373 @return Returns parm_u.
374 */
375 #define U_p_real(parm_u,val) ((((parm_u).argr = (val))), (parm_u))
376 /**<
377 Sets the argr of parm_arg parm_u to val and returns the parm_u.
378 This macro is used for setting real parm_arg arguments in calls
379 to slv_define_parm(). parm_u should be one of { val, lo, hi },
380 which correspond to local parm_arg variables that should be used
381 in client functions calling slv_define_parm().
382 *
383 @param parm_u The parm_arg to modify, one of {val, lo, hi}.
384 @param val double, the new value for the parm_arg.
385 @return Returns parm_u.
386 */
387 #define U_p_string(parm_u,val) ((((parm_u).argc = (val))), (parm_u))
388 /**<
389 Sets the argc of parm_arg parm_u to val and returns the parm_u.
390 This macro is used for setting string parm_arg arguments in calls
391 to slv_define_parm(). parm_u should be one of { val, lo, hi },
392 which correspond to local parm_arg variables that should be used
393 in client functions calling slv_define_parm().
394 *
395 @param parm_u The parm_arg to modify, one of {val, lo, hi}.
396 @param val char *, the new value for the parm_arg.
397 @return Returns parm_u.
398 For use in calls to slv_define_parm().
399 */
400 #define U_p_strings(parm_u,val) ((((parm_u).argv = (val))), (parm_u))
401 /**<
402 Sets the argv of parm_arg parm_u to val and returns the parm_u.
403 This macro is used for setting string array parm_arg arguments in
404 calls to slv_define_parm(). parm_u should be one of { val, lo, hi },
405 which correspond to local parm_arg variables that should be used
406 in client functions calling slv_define_parm().
407 *
408 @param parm_u The parm_arg to modify, one of {val, lo, hi}.
409 @param val char **, the new value for the parm_arg.
410 @return Returns parm_u.
411 For use in calls to slv_define_parm().
412 */
413
414 #define SLV_IPARM_MACRO(NAME,slv_parms) \
415 if (make_macros == 1) { \
416 (NAME) = &((slv_parms)->parms[(slv_parms)->num_parms-1].info.i.value); \
417 }
418 /**<
419 Macro for defining macros of type integer (IPARM).
420 See SLV_CPARM_MACRO() for more information.
421 */
422 #define SLV_BPARM_MACRO(NAME,slv_parms) \
423 if (make_macros == 1) { \
424 (NAME) = &((slv_parms)->parms[(slv_parms)->num_parms-1].info.b.value); \
425 }
426 /**<
427 Macro for defining macros of type boolean (BPARM).
428 See SLV_CPARM_MACRO() for more information.
429 */
430 #define SLV_RPARM_MACRO(NAME,slv_parms) \
431 if (make_macros == 1) { \
432 (NAME) = &((slv_parms)->parms[(slv_parms)->num_parms-1].info.r.value); \
433 }
434 /**<
435 Macro for defining macros of type real (RPARM).
436 See SLV_CPARM_MACRO() for more information.
437 */
438 #define SLV_CPARM_MACRO(NAME,slv_parms) \
439 if (make_macros == 1) { \
440 (NAME) = &((slv_parms)->parms[(slv_parms)->num_parms-1].info.c.value); \
441 }
442 /**<
443 * Macro for defining macros of type character (CPARM).
444 * To use, provide a NAME for the macro (in caps by convention)
445 * and a slv_parameters_t pointer (slv_parm). The NAME should be
446 * defined as an element in an array of void pointers in the
447 * module in which the macro is to be used. This macro uses the
448 * current number of registered parameters to link the array of
449 * _VOID_ _POINTERS_ to the correct parameters. If you want to create
450 * a macro for a parameter, you should put the appropriate macro
451 * creating macro IMEDIATELY after the call to slv_define_parm
452 * for that parameter.<br><br>
453 * Local int make_macros; must be defined.
454 */
455
456 /*------------------------------------------------------------------------------
457 SOLVER PARAMETERS STRUCT & METHODS
458 */
459 /**
460 Holds the array of parameters and keeps a count of how many it
461 contains. Also holds various other information which should be
462 turned into slv_parameters or moved elsewhere
463 <pre>
464 Every registered client should have a slv_parameters_t somewhere in it.
465
466 The following is a list of parameters (those parameters that can be
467 modified during solve without calling slv_presolve() are marked with
468 "$$$"). It should be noted that some solvers may not be conformable
469 to some of the parameters. Default values are subject to change via
470 experimentation.
471
472 output.more_important (default stdout): $$$
473 output.less_important (default NULL): $$$
474 All output from the solver is written to one of these two files
475 (except bug messages which are written to stderr). Common values
476 are NULL (==> no file) and stdout. The more important messages
477 go to output.more_important and less important messages go to
478 output.less_important. To shut the solver up, set both files to
479 NULL.
480
481 tolerance.drop (default 1e-16):
482 tolerance.pivot (default 0.1):
483 tolerance.singular (default 1e-12):
484 tolerance.feasible (default 1e-8):
485 tolerance.rootfind (default 1e-12):
486 tolerance.stationary (default 1e-8):
487 tolerance.termination (default 1e-12):
488 These define the criterion for selecting pivotable relations,
489 whether the equations are satisfied, if a local minimum has been
490 found, or if no further reduction in the augmented lagrange merit
491 phi can be achieved.
492 - During jacobian reduction, each equation pivot selected must be
493 at least a certain fraction given by TOLERANCE.PIVOT of the largest
494 available.
495 Also, the largest value in the row must exceed TOLERANCE.SINGULAR
496 in order to be considered independent.
497 - The absolute value of each unscaled equation residual is compared
498 with TOLERANCE.FEASIBLE in order to determine convergence of the
499 equality constraints during Newton iteration.
500 - The absolute value of each unscaled equation residual is compared
501 with TOLERANCE.ROOTFIND in order to determine convergence of the
502 constraint during rootfinding of single equations.
503 - Detection of a minimum requires the stationary condition of the
504 lagrange to be less than TOLERANCE.STATIONARY.
505 - If the directional derivative of phi along the negative gradient
506 direction using the suggested iteration step length falls below
507 TOLERANCE.TERMINATION, iteration is ceased.
508 - TOLERANCE.DROP is the smallest number magnitude to be allowed
509 in the Jacobian matrix during factorization. Default is optimistic.
510
511 time_limit (default 30.0): $$$
512 This defines the time limit expressed as cpu seconds per block.
513 If the solver requires more time than this in any given block,
514 then it will stop.
515
516 iteration_limit (default 100): $$$
517 This defines the maximum number of iterations attempted in a given
518 block. The solver will stop after this many iterations if it fails
519 to converge.
520
521 factor_option (default 0):
522 This sets the number of the linear factorization to suggest.
523 This does not map directly to linsol numbering of any sort.
524 The map is: 0 <==> RANKI, 1 <==> RANKI_JZ, 2+ <==> ?.
525 The solver is free to ignore this suggestion.
526 In fact, the specific solver is free to define the meaning of factor
527 option depending on what linear packages it can talk to.
528
529 partition (default TRUE):
530 Specifies whether or not the system will be partitioned into blocks
531 or not. If not, then the system will be considered as one large
532 block.
533
534 ignore_bounds (default FALSE):
535 Specifies whether or not bounds will be considered during solving.
536 WARNING: if this flag is set, there will be no guarantees that the
537 solution will lie in bounds. Suggested use might be to set this
538 flag to TRUE, solve, reset this flag to FALSE, and resolve.
539 More often than not, in fact, ignore bounds will lead to floating
540 point exceptions, halting the solution process.
541
542 rho (default 1.0):
543 Used as a scalar pre-multiplier of the penalty term quantified by one
544 half the two norm of the equality constraint residuals in an
545 augmented lagrange merit function.
546
547 sp.ia/ra/ca/vap (defaults NULL, READ ONLY):
548 Is a set of pointers to arrays (int/double/(char*)/void*).
549 The values of the pointers themselves should not be modified,
550 though the values pointed at may be modified. Note that this is
551 _direct_ modification and will take effect immediately, not on
552 the next call to slv_set_parameters. When the engine gets around
553 to looking at the values in these arrays is engine dependent.
554 NULL is the expected value for some or all of these array
555 pointers, depending on the engine. The sizes of these arrays are
556 specific to each solver's interface. As being of interest (at
557 compile time) to both the slvI.c file and the GUI/CLUI, the
558 sizes of the arrays to be pointed to are part of the slvI.h file.
559 The implementor of each slvI.c should take care to use as much of
560 the slv_parameters_t as possible before passing data through the
561 arrays provided in the sub_parameters. This will make for a
562 minimal amount of work when adding an engine to the GUI/CLUI.
563 To further aid reusability/sanity preservation, slvI.h should
564 be appended with proper defines for subscripting these arrays.
565
566 sp.i/r/c/vlen (defaults 0, READ ONLY)
567 lengths of the sub_parameter arrays.
568
569 sp.ia/ra/ca/vanames (defaults NULL, READONLY)
570 symbolic names for the corresponding entries in ia/ra/ca/vap.
571
572 sp.ia/ra/ca/vaexpln (defaults NULL, READONLY)
573 longer explanations for the corresponding entries in ia/ra/ca/vap.
574
575 whose (default 0=>slv0, READ ONLY)
576 This tells where a parameter set came from, since the default
577 action of slv_get_parameters is to return a copy of slv0's
578 parameters if the parameters asked for don't exist because
579 the solver in question wasn't built/linked.
580 </pre>
581 */
582 typedef struct slv_parameters_structure {
583 struct slv_output_data output; /**< File streams for solver output. */
584 struct slv_tolerance_data tolerance; /**< Defince various tolerances for the solver. */
585 struct slv_parameter *parms; /**< Holds the parameters defined for a solver. */
586 int32 num_parms; /**< The number of parameters in parms. */
587 int32 dynamic_parms; /**< Set to TRUE if parms is dynamically allocated. */
588
589 /* we wish the following were on the way out */
590 struct slv_sub_parameters sp; /**< Solver sub-parameters. */
591 int whose; /**< Code for where a parameter set came from. */
592 int32 ignore_bounds; /**< Set to TRUE to disregard boundary conditions. */
593 int32 partition; /**< Set to TRUE if system will be partitioned into blocks. */
594
595 /* the following are on the way out */
596 double time_limit; /**< Max cpu seconds per block. @todo kill */
597 double rho; /**< Scaler premultiplier of penalty term. @todo kill */
598 int32 iteration_limit; /**< Max number of iterations. @todo kill */
599 int32 factor_option; /**< Suggests a number for linear factorization. @todo kill */
600
601 } slv_parameters_t;
602
603
604 /* slv_destroy_parms() is defined in slv.c */
605 ASC_DLLSPEC(void ) slv_destroy_parms(slv_parameters_t *p);
606 /**<
607 Deallocates any allocated memory held by a parameter structure.
608
609 * All the 'meta' strings are freed, as they are allocated using ascstrdup.
610 * String values and option arrays are
611
612 Only the held memory is freed, not p itself. Further, if
613 (p->dynamic_parms != 0), the strings in p->parms are freed
614 but not p->parms itself. Does nothing if p is NULL.
615
616 @NOTE the above description does not appear to be correct! check the code!
617
618 @param p The parameter structure to destroy.
619 */
620
621 /* slv_define_parm() is defined in slv.c */
622 extern int32 slv_define_parm(slv_parameters_t *p,
623 enum parm_type type,
624 char *interface_name,
625 char *interface_label,
626 char *description,
627 union parm_arg value,
628 union parm_arg lower_bound,
629 union parm_arg upper_bound,
630 int32 page);
631 /**<
632 Adds (defines) a new parameter in a parameter structure.
633 Use this function to add & define new parameters for a solver.
634
635 @param p Parameter structure to receive the new parameter.
636 @param type Parameter type: int_parm, bool_parm, real_parm, or char_parm.
637 @param interface_name A very short but descriptive name that the interface
638 can use to identify the parameter.
639 @param interface_label A short text string to be displayed on the interface.
640 @param description A slightly more detailed string to be displayed
641 upon request a la balloon help.
642 @param value The value for the parameter, set using one of
643 the U_p_int() style macros defined above.
644 @param lower_bound The lower bound for the parameter, set using one of
645 the U_p_int() style macros defined above.
646 @param upper_bound The upper bound for the parameter, set using one of
647 the U_p_int() style macros defined above.
648 @param page The page of the interface options dialog on which
649 to display this parameter. Ranges from 1..max_page_no.
650 Set to -1 if this parameter is not to be displayed in
651 the interface.
652 @return Returns -1 if p is NULL or called with unsupported type;
653 otherwise returns the number of registered parameters in p.
654 */
655
656 /* slv_set_char_parameter() is defined in slv.c */
657 ASC_DLLSPEC(void) slv_set_char_parameter(char **cptr, CONST char *newvalue);
658 /**<
659 Sets a char parameter value to a new string.
660 Resetting the value of a parameter can be done directly except
661 for string parameters which must be set with this function. The
662 string newvalue is not kept by the function.<br><br>
663
664 Example: slv_set_char_parameter(&(p.parms[i].info.c.value),argv[j]);
665
666 @param cptr Pointer to the char array to set.
667 @param newvalue New value for *cptr.
668 */
669
670 /*------------------------------------------------------------------------------
671 OVERALL SOLVER STATUS and INDIVIDUAL BLOCK STATUS
672 */
673 /** Solver block status record. */
674 struct slv__block_status_structure {
675 int32 number_of; /**< Number of blocks in system. */
676 int32 current_block; /**< Block number of the current block that the
677 solver is working on. It is assumed that all
678 previous blocks have already converged. */
679 int32 current_reordered_block; /**< Number of the block most recently reordered. */
680 int32 current_size; /**< Number of variables/relations in the current block. */
681 int32 previous_total_size; /**< Total size of previous blocks (= number of
682 variables/relations already converged). */
683 int32 previous_total_size_vars; /**< Not currently implemented. */
684 int32 iteration; /**< Number of iterations so far in the current block. */
685 int32 funcs; /**< Number of residuals calculated in the current block. */
686 int32 jacs; /**< Number of jacobians evaluated in the current block. */
687 double cpu_elapsed; /**< Number of cpu seconds elapsed in the current block. */
688 double functime; /**< Number of cpu seconds elapsed getting residuals. */
689 double jactime; /**< Number of cpu seconds elapsed getting jacobians. */
690 real64 residual; /**< Current residual (RMS value) for the current block. */
691 };
692
693 /**
694 * Solver status flags.
695 * <pre>
696 * The following is a list of statuses and their meanings. Statuses
697 * cannot be written to, and thus there is no notion of default value.
698 *
699 * ok:
700 * Specifies whether or not everything is "ok". It is a shorthand for
701 * testing all of the other flags.
702 *
703 * over_defined:
704 * under_defined:
705 * struct_singular:
706 * Specifies whether the system is over-defined, under-defined, or
707 * structurally singular. These fields are set by slv_presolve where
708 * the structural analysis is performed. It should be noted that
709 * over_defined and under_defined are mutually exclusive and both
710 * imply struct_singular, although a system can be structurally
711 * singular without being over-defined or under-defined.
712 *
713 * ready_to_solve:
714 * Specifies whether the system is ready to solve. In other words, is
715 * slv_iterate or slv_solve legal? This flag is FALSE before
716 * slv_presolve or after the system has converged or the solver has
717 * given up for whatever reason.
718 *
719 * converged:
720 * This flag is set whenever the entire system has converged. The
721 * convergence will be genuine (all relations satisfied within
722 * tolerance, all bounds satisfied, all calculations defined, etc.).
723 *
724 * diverged:
725 * This flag is set whenever the solver has truly given up (i.e. given
726 * up for any reason not covered below).
727 *
728 * inconsistent:
729 * The solver has concluded unambiguously (e.g. by symbolic
730 * manipulation) that the system is inconsistent.
731 *
732 * calc_ok:
733 * Specifies whether or not there were any calculation errors in
734 * computing the residuals at the current point.
735 *
736 * iteration_limit_exceeded:
737 * Specifies whether or not the iteration count was exceeded or not.
738 *
739 * time_limit_exceeded:
740 * Specifies whether or not the cpu time limit was exceeded.
741 *
742 * panic:
743 * Specifies whether or not the user called a halt interactively;
744 *
745 * iteration:
746 * Total number of iterations so far. Total iteration count is reset to
747 * zero whenever slv_presolve or slv_resolve is called.
748 *
749 * cpu_elapsed:
750 * Total number of cpu seconds elapsed. Total cpu time elapsed is reset
751 * to zero whenever slv_presolve or slv_resolve is called.
752 *
753 * block.number_of:
754 * Number of blocks in system.
755 *
756 * block.current_block:
757 * Block number of the current block that the solver is working on.
758 * It is assumed that all previous blocks have already converged.
759 *
760 * block.current_size:
761 * Number of variables/relations in the current block.
762 *
763 * block.previous_total_size:
764 * Total size of previous blocks (= number of variables/relations
765 * already converged).
766 *
767 * block.iteration:
768 * Number of iterations so far in the current block.
769 *
770 * block.functime:
771 * Number of cpu seconds elapsed getting residuals from whereever.
772 *
773 * block.jactime:
774 * Number of cpu seconds elapsed getting jacobians from whereever.
775 *
776 * block.cpu_elapsed:
777 * Number of cpu seconds elapsed so far in the current block.
778 *
779 * block.residual:
780 * Current residual (RMS value) for the current block.
781 *
782 * cost (READ ONLY)
783 * This is a pointer to first of an array which is costsize long of
784 * slv_block_cost structures. This is to collect data for the
785 * comparison of algorithms. All solvers should have at least
786 * one of these, though the interface will check for null before
787 * reading the data. The block_cost structure contains:
788 * size (how big is the block, in terms of variables)
789 * iterations (how many iterations to convergence/divergence)
790 * funcs (how many function evaluations were made?)
791 * jacs (how many jacobian evaluations were made?)
792 * time (how much cpu total time elapsed while in the block?)
793 * functime (time spent in function evaluations)
794 * jactime (time spent in jacobian evaluations, stuffing)
795 * (for those codes where a function evaluation is
796 * a byproduct of gradient evaluation, the func cost
797 * will be billed here.)
798 * The interpretation of these data is somewhat up to the coder.
799 *
800 * costsize
801 * This is how big the cost array is. It should in general be the
802 * number of blocks in the system plus 1 so that all the unincluded
803 * relations can be billed to the blocks+1th cost if they are
804 * evaluated.
805 * </pre>
806 */
807 typedef struct slv_status_structure {
808 uint32 ok : 1; /**< If TRUE, everything is ok. */
809 uint32 over_defined : 1; /**< Is system over-defined? */
810 uint32 under_defined : 1; /**< Is system under-defined? */
811 uint32 struct_singular : 1; /**< Is system structurally singular? */
812 uint32 ready_to_solve : 1; /**< Is system ready to solve? */
813 uint32 converged : 1; /**< Has system fully convergeded? */
814 uint32 diverged : 1; /**< Has system diverged? */
815 uint32 inconsistent : 1; /**< Was system was found to be inconsistent? */
816 uint32 calc_ok : 1; /**< Were any errors encounted calculating residuals? */
817 uint32 iteration_limit_exceeded : 1; /**< Was the iteraction limit exceeded? */
818 uint32 time_limit_exceeded : 1; /**< Was the time limit exceeded? */
819 uint32 panic :1; /**< Did the user stop the solver interactively? */
820 int32 iteration; /**< Total number of iterations so far. */
821 int32 costsize; /**< Number of elements in the cost array. */
822 double cpu_elapsed; /**< Total elapsed cpu seconds. */
823 struct slv_block_cost *cost; /**< Array of slv_block_cost records. */
824 struct slv__block_status_structure block; /**< Block status information. */
825 } slv_status_t;
826
827 /*------------------------------------------------------------------------------
828 vector_data class & operations
829
830 If we get brave, we will consider replacing the cores of these routines with
831 BLAS calls. We aren't overeager to go mixed language call nuts just yet,
832 however.
833
834 Comment: the NVector implementation provided with SUNDIALS might be an
835 easier-to-integrate solution for this. It's also MPI-friendly. -- John Pye
836 */
837
838 /**
839 * A dense vector class of some utility and the functions for it.
840 * The vector consists of an array of real64 (vec) and a mtx_range_t
841 * (rng) which refers to subsets of the range of indexes of vec.
842 * When calling the various vector functions, the range indexes in
843 * rng are used to calculate offsets in the vec array. Therefore,
844 * it is important that your rng->(low,high) refer to valid indexes
845 * of vec[]. In particular
846 * - neither rng->low nor rng->high may be negative
847 * - low <= high
848 * - high < length of vec
849 * This means that whatever your maximum high is, you should allocate
850 * (high+1) values in vec.
851 * @todo solver/slv_common:vector_data & operations should be
852 * moved to a module in general or utilities.
853 */
854 struct vector_data {
855 real64 norm2; /**< 2-norm of vector squared. */
856 mtx_range_t *rng; /**< Pointer to range of vector (low..high). */
857 real64 *vec; /**< Data array (NULL => uninitialized). */
858 boolean accurate; /**< Is vector currently accurate? User-manipulated. */
859 };
860
861 ASC_DLLSPEC(struct vector_data *) slv_create_vector(int32 low, int32 high);
862 /**<
863 * Returns a new vector_data initialized to the specified range.
864 * This function creates, initializes, and returns a new vector_data
865 * structure. The vector is initialized using init_vector() and
866 * a pointer to the new struct is returned. If the specified range
867 * is improper (see slv_init_vector()) then a valid vector cannot be
868 * created and NULL is returned.<br><br>
869 *
870 * Destruction of the returned vector_data is the responsibility of
871 * the caller. slv_destroy_vector() may be used for this purpose.
872 *
873 * @param low The lower bound of the vector's range.
874 * @param high The upper bound of the vector's range.
875 * @return A new initialized vector_data, or NULL if one could
876 * not be created.
877 */
878
879 ASC_DLLSPEC(int) slv_init_vector(struct vector_data *vec, int32 low, int32 high);
880 /**<
881 * Initializes a vector_data structure.
882 * The new range (low..high) is considered proper if both low and
883 * high are zero or positive, and (low <= high). If the new range is
884 * not proper (or if vec itself is NULL), then no modifications are
885 * made to vec.<br><br>
886 *
887 * If the range is proper then vec->rng is allocated if NULL and then
888 * set using low and high. Then vec->vec is allocated (if NULL) or
889 * reallocated to size (high+1). The data in vec->vec is not
890 * initialized or changed. The member vec->accurate is set to FALSE.
891 *
892 * @param vec Pointer to the vector_data to initialize.
893 * @param low The lower bound of the vector's range.
894 * @param high The upper bound of the vector's range.
895 * @return Returns 0 if the vector is initialized successfully,
896 * 1 if an improper range was specified, 2 if vec is NULL,
897 * and 3 if memory cannot be allocated.
898 */
899
900 ASC_DLLSPEC(void) slv_destroy_vector(struct vector_data *vec);
901 /**<
902 * Destroys a vector and its assocated data.
903 * Deallocates any memory held in vec->rng and vec->vec,
904 * and then deallocates the vector itself. NULL is tolerated
905 * for vec, vec->rng, or vec->vec.
906 *
907 * @param vec Pointer to the vector_data to destroy.
908 */
909
910 ASC_DLLSPEC(void) slv_zero_vector(struct vector_data *vec);
911 /**<
912 * Zeroes a vector.
913 * The vector entries between vec->rng.low and vec->rng.high will
914 * be set to 0.0.
915 * The following are not allowed and are checked by assertion:
916 * - NULL vec
917 * - NULL vec->rng
918 * - NULL vec->vec
919 * - vec->rng->low < 0
920 * - vec->rng->low > vec->rng->high
921 *
922 * @param vec The vector to zero.
923 */
924
925 ASC_DLLSPEC(void) slv_copy_vector(struct vector_data *srcvec,
926 struct vector_data *destvec);
927 /**<
928 * Copies the data from srcvec to destvec.
929 * The data in the range [srcvec->rng.low .. srcvec->rng.high]
930 * is copied to destvec starting at position destvec->rng.low.
931 * destvec must have at least as many elements in vec as srcvec.
932 * The following are not allowed and are checked by assertion:
933 * - NULL srcvec
934 * - NULL srcvec->rng
935 * - NULL srcvec->vec
936 * - srcvec->rng->low < 0
937 * - srcvec->rng->low > srcvec->rng->high
938 * - NULL destvec
939 * - NULL destvec->rng
940 * - NULL destvec->vec
941 * - destvec->rng->low < 0
942 *
943 * @param srcvec The vector to copy.
944 * @param destvec The vector to receive the copied data.
945 */
946
947 ASC_DLLSPEC(real64) slv_inner_product(struct vector_data *vec1,
948 struct vector_data *vec2);
949 /**<
950 * Calculates the dot product of 2 vectors.
951 * Dot [vec1->rng.low .. vec1->rng.high] with vec2 starting at
952 * position vec2->rng.low.
953 * The following are not allowed and are checked by assertion:
954 * - NULL vec1
955 * - NULL vec1->rng
956 * - NULL vec1->vec
957 * - vec1->rng->low < 0
958 * - vec1->rng->low > vec1->rng->high
959 * - NULL vec2
960 * - NULL vec2->rng
961 * - NULL vec2->vec
962 * - vec2->rng->low < 0
963 *
964 * @param vec1 The 1st vector for the dot product.
965 * @param vec2 The 2nd vector for the dot product.
966 * @todo solver/slv_common:slv_inner_product() could stand to be optimized.
967 */
968
969 ASC_DLLSPEC(real64) slv_square_norm(struct vector_data *vec);
970 /**<
971 * Calculates the dot product of a vector with itself.
972 * Dot [vec->rng.low .. vec->rng.high] with itself and store the
973 * result in vec->norm2.
974 * The following are not allowed and are checked by assertion:
975 * - NULL vec
976 * - NULL vec->rng
977 * - NULL vec->vec
978 * - vec->rng->low < 0
979 * - vec->rng->low > vec->rng->high
980 *
981 * @param vec The vector for the dot product.
982 * @todo solver/slv_common:slv_square_norm() could stand to be optimized.
983 */
984
985 ASC_DLLSPEC(void) slv_matrix_product(mtx_matrix_t mtx,
986 struct vector_data *vec,
987 struct vector_data *prod,
988 real64 scale,
989 boolean transpose);
990 /**<
991 * Calculates the product of a vector, matrix, and scale factor.
992 * Stores prod := (scale)*(mtx)*(vec) if transpose = FALSE,
993 * or prod := (scale)*(mtx-transpose)(vec) if transpose = TRUE.
994 * vec and prod must be completely different.
995 * If (!transpose) vec->vec is assumed indexed by current col and
996 * prod->vec is indexed by current row of mtx.
997 * If (transpose) vec->vec is assumed indexed by current row and
998 * prod->vec is indexed by current col of mtx.
999 * The following are not allowed and are checked by assertion:
1000 * - NULL mtx
1001 * - NULL vec
1002 * - NULL vec->rng
1003 * - NULL vec->vec
1004 * - vec->rng->low < 0
1005 * - vec->rng->low > vec->rng->high
1006 * - NULL prod
1007 * - NULL prod->rng
1008 * - NULL prod->vec
1009 * - prod->rng->low < 0
1010 * - prod->rng->low > prod->rng->high
1011 *
1012 * @param mtx The matrix for the product.
1013 * @param vec The vector for the product.
1014 * @param prod The vector to receive the matrix product.
1015 * @param scale The scale factor by which to multiply the matrix product.
1016 * @param transpose Flag for whether to use mtx or its transpose.
1017 *
1018 * @todo solver/slv_common:slv_mtx_product needs attention -
1019 * does it go into mtx?
1020 */
1021
1022 ASC_DLLSPEC(void ) slv_write_vector(FILE *fp, struct vector_data *vec);
1023 /**<
1024 * Write vector information to a file stream.
1025 * Prints general information about the vector followed by the
1026 * values in the range of the vector to file fp.
1027 *
1028 * @param fp The file stream to receive the report.
1029 * @param vec The vector on which to report.
1030 */
1031
1032 /*------------------------------------------------------------------------------
1033 BLAS-LIKE FUNCTIONS
1034 */
1035
1036 ASC_DLLSPEC(real64) slv_dot(int32 len, const real64 *a1, const real64 *a2);
1037 /**<
1038 * Calculates the dot product of 2 arrays of real64.
1039 * This is an optimized routine (loop unrolled). It takes
1040 * advantage of identical vectors. The 2 arrays must have
1041 * at least len elements.
1042 * The following are not allowed and are checked by assertion:
1043 * - NULL a1
1044 * - NULL a2
1045 * - len < 0
1046 *
1047 * The same algorithm is used inside slv_inner_product(), so there
1048 * is no need to use this function directly if you are using the
1049 * vector_data type.
1050 *
1051 * @param len The length of the 2 arrays.
1052 * @param a1 The 1st array for the dot product.
1053 * @param a2 The 2nd array for the dot product.
1054 */
1055
1056 /*------------------------------------------------------------------------------
1057 GENERAL INPUT/OUTPUT ROUTINES
1058 */
1059
1060 ASC_DLLSPEC(FILE *)slv_get_output_file(FILE *fp);
1061 /**<
1062 * Checks a file pointer, and if NULL returns a pointer to the nul device.
1063 * If you are in environment that doesn't have something like
1064 * /dev/null (nul on Windows), you'd better be damn sure your
1065 * sys->p.output.*_important are not NULL.
1066 *
1067 * @param fp The file stream to check.
1068 * @return fp if it is not NULL, a pointer to the nul device otherwise.
1069 */
1070
1071 /*
1072 * FILE pointer macros.
1073 * fp = MIF(sys)
1074 * fp = LIF(sys)
1075 * fp = PMIF(sys)
1076 * fp = PLIF(sys)
1077 * or fprintf(MIF(sys),"stuff",data...);
1078 * Use of these is requested on grounds of readability but not required.
1079 * All of these are macros, which means any specific solver interface
1080 * to ASCEND can use them, since all interfaces are supposed to
1081 * support a parameters structure p somewhere in a larger system
1082 * structure (sys) they keep privately.
1083 * Use the PMIF or PLIF flavors if the parameters sys->p is a pointer
1084 * rather than a in-struct member.
1085 */
1086 #define MIF(sys) slv_get_output_file( (sys)->p.output.more_important )
1087 /**<
1088 * Retrieve the "more important" output file for a system.
1089 * sys must exist and contain an element p of type slv_parameters_t.
1090 *
1091 * @param sys The slv_system_t to query.
1092 * @return A FILE * to the "more important" output file for sys.
1093 */
1094 #define LIF(sys) slv_get_output_file( (sys)->p.output.less_important )
1095 /**<
1096 * Retrieve the "less important" output file for a system.
1097 * sys must exist and contain an element p of type slv_parameters_t.
1098 *
1099 * @param sys The slv_system_t to query.
1100 * @return A FILE * to the "less important" output file for sys.
1101 */
1102 #define PMIF(sys) slv_get_output_file( (sys)->p->output.more_important )
1103 /**<
1104 * Retrieve the "more important" output file for a system.
1105 * sys must exist and contain an element p of type slv_parameters_t*.
1106 *
1107 * @param sys The slv_system_t to query.
1108 * @return A FILE * to the "more important" output file for sys.
1109 */
1110 #define PLIF(sys) slv_get_output_file( (sys)->p->output.less_important )
1111 /**<
1112 * Retrieve the "less important" output file for a system.
1113 * sys must exist and contain an element p of type slv_parameters_t*.
1114 *
1115 * @param sys The slv_system_t to query.
1116 * @return A FILE * to the "less important" output file for sys.
1117 */
1118
1119 /*===============================================================================
1120 COMPILER-DEPENDENT FUNCTIONS
1121
1122 The following functions reach into the data structures in the <compiler>
1123 section of ASCEND. That means that these functions can't be present in a
1124 fully split-out and general-purpose SLV engine.
1125
1126 If you're trying to use SLV to solve systems other that ASCEND models
1127 therefore, these functions need to be re-implemented for your case.
1128 */
1129
1130 #if SLV_INSTANCES
1131
1132 #ifdef NEWSTUFF
1133 extern void slv_print_obj_name(FILE *outfile, obj_objective_t obj);
1134 /**<
1135 * Not implemented.
1136 * Prints the name of obj to outfile. If obj_make_name() can't
1137 * generate a name, the global index is printed instead.
1138 * @todo Implement solver/slv_common:slv_print_obj_name() or remove prototype.
1139 */
1140 #endif
1141 extern void slv_print_rel_name(FILE *outfile,
1142 slv_system_t sys,
1143 struct rel_relation *rel);
1144 /**<
1145 * Prints the name of rel to outfile. If rel_make_name() can't
1146 * generate a name, the global index is printed instead.
1147 *
1148 * @param outfile The stream to receive the output.
1149 * @param sys The solver system.
1150 * @param rel The relation whose name should be printed.
1151 * @todo Move solver/slv_common:slv_print_rel_name() to solver/rel.
1152 */
1153
1154 extern void slv_print_var_name(FILE *outfile,
1155 slv_system_t sys,
1156 struct var_variable *var);
1157 /**<
1158 * Prints the name of var to outfile. If var_make_name() can't
1159 * generate a name, the global index is printed instead.
1160 *
1161 * @param outfile The stream to receive the output.
1162 * @param sys The solver system.
1163 * @param var The variable whose name should be printed.
1164 * @todo Move solver/slv_common:slv_print_var_name() to solver/var.
1165 */
1166
1167 extern void slv_print_logrel_name(FILE *outfile,
1168 slv_system_t sys,
1169 struct logrel_relation *lrel);
1170 /**<
1171 * Prints the name of lrel to outfile. If logrel_make_name() can't
1172 * generate a name, the global index is printed instead.
1173 *
1174 * @param outfile The stream to receive the output.
1175 * @param sys The solver system.
1176 * @param lrel The logical relation whose name should be printed.
1177 * @todo Move solver/slv_common:slv_print_logrel_name() to solver/logrel.
1178 */
1179
1180 extern void slv_print_dis_name(FILE *outfile,
1181 slv_system_t sys,
1182 struct dis_discrete *dvar);
1183 /**<
1184 * Prints the name of dvar to outfile. If dis_make_name() can't
1185 * generate a name, the global index is printed instead.
1186 *
1187 * @param outfile The stream to receive the output.
1188 * @param sys The solver system.
1189 * @param dvar The discrete variable whose name should be printed.
1190 * @todo Move solver/slv_common:slv_print_dis_name() to solver/discrete.
1191 */
1192
1193 #ifdef NEWSTUFF
1194 extern void slv_print_obj_index(FILE *outfile, obj_objective_t obj);
1195 /**<
1196 * Not implemented.
1197 * Prints the index of obj to outfile.
1198 * @todo Implement solver/slv_common:slv_print_obj_index() or remove prototype.
1199 */
1200 #endif
1201 extern void slv_print_rel_sindex(FILE *outfile, struct rel_relation *rel);
1202 /**<
1203 * Prints the index of rel to outfile.
1204 *
1205 * @param outfile The stream to receive the output.
1206 * @param rel The relation whose index should be printed.
1207 * @todo Move solver/slv_common:slv_print_rel_name() to solver/rel.
1208 */
1209
1210 extern void slv_print_var_sindex(FILE *outfile, struct var_variable *var);
1211 /**<
1212 * Prints the index of var to outfile.
1213 *
1214 * @param outfile The stream to receive the output.
1215 * @param var The variable whose index should be printed.
1216 * @todo Move solver/slv_common:slv_print_var_name() to solver/var.
1217 */
1218
1219 extern void slv_print_logrel_sindex(FILE *outfile, struct logrel_relation *lrel);
1220 /**<
1221 * Prints the index of lrel to outfile.
1222 *
1223 * @param outfile The stream to receive the output.
1224 * @param lrel The logical relation whose index should be printed.
1225 * @todo Move solver/slv_common:slv_print_logrel_name() to solver/logrel.
1226 */
1227
1228 extern void slv_print_dis_sindex(FILE *outfile, struct dis_discrete *dvar);
1229 /**<
1230 * Prints the index of dvar to outfile.
1231 *
1232 * @param outfile The stream to receive the output.
1233 * @param dvar The discrete variable whose index should be printed.
1234 * @todo Move solver/slv_common:slv_print_dis_name() to solver/discrete.
1235 */
1236
1237 extern int slv_direct_solve(slv_system_t server,
1238 struct rel_relation *rel,
1239 struct var_variable *var,
1240 FILE *file,
1241 real64 epsilon,
1242 int ignore_bounds,
1243 int scaled);
1244 /**<
1245 * Attempts to directly solve the given relation (equality constraint) for
1246 * the given variable, leaving the others fixed. Returns an integer
1247 * signifying the status as one of the following three:
1248 * <pre>
1249 * 0 ==> Unable to determine anything.
1250 * Not symbolically invertible.
1251 * 1 ==> Solution(s) found.
1252 * Variable value set to first found if more than one.
1253 * -1 ==> No solution found.
1254 * Function invertible, but no solution exists satisfying
1255 * var bounds (if active) and the epsilon given.
1256 * </pre>
1257 * The variable bounds will be upheld, unless ignore_bounds=FALSE.
1258 * Residual testing will be against epsilon and either scaled or
1259 * unscaled residual according to scaled (no scale -> 0).
1260 * If file != NULL and there are leftover possible solutions, we
1261 * will write about them to file.
1262 *
1263 * @param server The slv_system_t (mostly ignored).
1264 * @param rel The relation to attempt to solve.
1265 * @param var The variable for which to solve.
1266 * @param file File stream to receive other possible solutions.
1267 * @param epsilon Tolerance for testing convergence.
1268 * @param ignore_bounds If TRUE, ignore bounds on variable.
1269 * @param scaled If TRUE, test scaled residuals against epsilon.
1270 * @todo solver/slv_common:slv_direct_solve() should be in solver/relman
1271 * or solver/slv3.
1272 */
1273
1274 extern int slv_direct_log_solve(slv_system_t sys,
1275 struct logrel_relation *lrel,
1276 struct dis_discrete *dvar,
1277 FILE *file,
1278 int perturb,
1279 struct gl_list_t *instances);
1280 /**<
1281 * Attempt to directly solve the given logrelation for the given
1282 * discrete variable, leaving the others fixed. Returns an integer
1283 * signifying the status as one of the following three:
1284 * <pre>
1285 * 0 ==> Unable to determine anything. Bad logrelation or dvar
1286 * 1 ==> Solution found.
1287 * 2 ==> More than one solution found. It does not modify the value
1288 * of dvar. Conflicting.
1289 * -1 ==> No solution found. Inconsistency
1290 * </pre>
1291 * If file != NULL and there are leftover possible solutions, we
1292 * will write about them to file.
1293 * The flag perturb and the gl_list are used to change the truth
1294 * value of some boundaries. This is sometimes useful in
1295 * conditional modeling.
1296 *
1297 * @param sys The slv_system_t (mostly ignored).
1298 * @param lrel The logical relation to attempt to solve.
1299 * @param dvar The discrete variable for which to solve.
1300 * @param file File stream to receive other possible solutions.
1301 * @param perturb If TRUE, perturbs the truth values if necessary to find the solution.
1302 * @param instances List of instances.
1303 * @todo solver/slv_common:slv_direct_log_solve() should be in solver/logrel
1304 * or solver/slv9.
1305 */
1306
1307 #endif
1308 /* === END compiler dependent functions === */
1309
1310 /*------------------------------------------------------------------------------
1311 LINK-MAP FUNCTIONS
1312 */
1313 /**
1314 @TODO what are these all abount? Something about linking permuted rows
1315 and columns back to the original data? -- JP
1316 */
1317
1318 ASC_DLLSPEC(int32 **) slv_create_lnkmap(int32 m, int32 n, int32 hl, int32 *hi, int32 *hj);
1319 /**<
1320 * Builds a row-biased mapping array from the hi,hj lists given.
1321 * The map returned has the following format:
1322 * - map[i] is a vector describing the incidence in row i of the matrix.
1323 * - Let vars=map[i], where vars is int32 *.
1324 * - vars[0]=number of incidences in the relation.
1325 * - For all 0<=k<vars[0]
1326 * - vars[2*k+1] = original column index of some var in the eqn.
1327 * - vars[2*k+2] = the lnk list index of element(i,vars[2*k+1])
1328 *
1329 * The ordering of column data (i.e. vars[2*k+1]) is implementation-defined
1330 * and should not be counted on. Similarly, the lnk list index (i.e.
1331 * vars[2*k+2]) will be a unique number in the range (0..hl-1), but the
1332 * exact ordering is implementation-defined. The map should only be
1333 * deallocated by destroy_lnkmap(). The memory allocation for a lnkmap
1334 * is done efficiently.<br><br>
1335 *
1336 * These create an odd compressed row mapping, given the hi and hj
1337 * subscript vectors. The primary utility of the lnkmap is that
1338 * it can be traversed rapidly when one wants to conditionally map a row of
1339 * a Harwell style (arbitrarily ordered) link representation
1340 * back into another representation where adding elements to a row
1341 * is easily done.<br><br>
1342 *
1343 * hi and hj should specify a unique incidence pattern. That is, duplicate
1344 * (hi, hj) coordinates are not allowed and only 1 of the occurrences will
1345 * end up in the map. hi should contain row indexes all less than m.
1346 * hj should contain column indexes all less than n. If an invalid row/col
1347 * index is encountered, NULL is returned.
1348 *
1349 * @param m The number of rows expected (> highest index in hi).
1350 * The map returned will be this long.
1351 * @param n The number of columns expected (> highest index in hj).
1352 * @param hl The length of hi and hj.
1353 * @param hi The eqn indices of a C numbered sparse matrix list.
1354 * @param hj The var indices of a C numbered sparse matrix list.
1355 * @return Pointer to the new lnkmap array, or NULL if an error occurred.
1356 */
1357
1358 ASC_DLLSPEC(int32 **) slv_lnkmap_from_mtx(mtx_matrix_t mtx, mtx_region_t *region);
1359 /**<
1360 * Generates a lnkmap from a region of a matrix.
1361 * The length of the map returned will be the order of mtx. Empty rows
1362 * and columns are allowed in the matrix. Map entries for rows outside
1363 * the specified region will be 0 even if the row contains non-zero
1364 * elements. If mtx is NULL, or if the region is invalid for mtx, then
1365 * NULL is returned.<br><br>
1366 *
1367 * The map returned has the following format:
1368 * - map[i] is a vector describing the incidence in row i of the matrix.
1369 * - Let vars=map[i], where vars is int32 *.
1370 * - vars[0]=number of non-zeros in the row.
1371 * - For all 0<=k<vars[0]
1372 * - vars[2*k+1] = original column index of some a non-zero element in the row.
1373 * - vars[2*k+2] = the value of the element (i,vars[2*k+1]), cast to int32.
1374 *
1375 * @param mtx The matrix to map (non-NULL).
1376 * @param region The region of the matrix to map (non-NULL).
1377 * @return Pointer to the new lnkmap array, or NULL if an error occurred.
1378 * @see slv_create_lnkmap() for a more details about lnkmaps.
1379 */
1380
1381 ASC_DLLSPEC(void) slv_destroy_lnkmap(int32 **map);
1382 /**<
1383 * Deallocate a map created by slv_create_lnkmap() or slv_destroy_lnkmap().
1384 * destroy_lnkmap() will tolerate a NULL map as input.
1385 *
1386 * @param map The lnkmap to destroy.
1387 */
1388
1389 ASC_DLLSPEC(void) slv_write_lnkmap(FILE *fp, int m, int32 **map);
1390 /**<
1391 * Prints a link map to a file.
1392 * write_lnkmap() will tolerate a NULL map as input.
1393 *
1394 * @param fp The file stream to receive the report.
1395 * @param m The number of rows in map to print.
1396 * @param map The lnkmap to print.
1397 */
1398
1399 #endif /* ASC_SLV_COMMON_H */
1400

john.pye@anu.edu.au
ViewVC Help
Powered by ViewVC 1.1.22