Parent Directory
|
Revision Log
Added plot support in Integrator output tabs. Some other minor debugging for pylab integration and idaanalyse output.
1 | /* ASCEND modelling environment |
2 | Copyright (C) 1997, 2006 Carnegie Mellon University |
3 | Copyright (C) 1993, 1994 Joseph James Zaher, Benjamin Andrew Allan |
4 | Copyright (C) 1993 Joseph James Zaher |
5 | Copyright (C) 1990 Thomas Guthrie Epperly, Karl Michael Westerberg |
6 | |
7 | This program is free software; you can redistribute it and/or modify |
8 | it under the terms of the GNU General Public License as published by |
9 | the Free Software Foundation; either version 2, or (at your option) |
10 | any later version. |
11 | |
12 | This program is distributed in the hope that it will be useful, |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
15 | GNU General Public License for more details. |
16 | |
17 | You should have received a copy of the GNU General Public License |
18 | along with this program; if not, write to the Free Software |
19 | Foundation, Inc., 59 Temple Place - Suite 330, |
20 | Boston, MA 02111-1307, USA. |
21 | *//** |
22 | @file |
23 | Relation utility functions for Ascend |
24 | |
25 | This module defines the dimensionality checking and some other |
26 | relation auxillaries for ASCEND. |
27 | *//* |
28 | Last in CVS: $Revision: 1.44 $ $Date: 1998/04/23 23:51:09 $ $Author: ballan $ |
29 | */ |
30 | |
31 | #include <math.h> |
32 | #include <errno.h> |
33 | #include <stdarg.h> |
34 | |
35 | #include "relation_util.h" |
36 | |
37 | #include <utilities/ascMalloc.h> |
38 | #include <utilities/ascPanic.h> |
39 | #include <general/mathmacros.h> |
40 | #include <general/list.h> |
41 | #include <general/dstring.h> |
42 | #include "symtab.h" |
43 | #include "vlist.h" |
44 | #include "dimen_io.h" |
45 | #include "instance_enum.h" |
46 | #include "bintoken.h" |
47 | #include "find.h" |
48 | #include "atomvalue.h" |
49 | #include "instance_name.h" |
50 | #include "rel_blackbox.h" |
51 | #include "relation.h" |
52 | #include "instance_io.h" |
53 | #include "instquery.h" |
54 | #include "visitinst.h" |
55 | #include "mathinst.h" |
56 | #include "rootfind.h" |
57 | #include "func.h" |
58 | #include "parentchild.h" |
59 | |
60 | #ifndef NDEBUG |
61 | #include "relation_io.h" |
62 | #endif |
63 | |
64 | /*------------------------------------------------------------------------------ |
65 | DATA TYPES AND GLOBAL VARS |
66 | */ |
67 | |
68 | int g_check_dimensions_noisy = 1; |
69 | #define GCDN g_check_dimensions_noisy |
70 | |
71 | /** global relation pointer to avoid passing a relation recursively */ |
72 | static struct relation *glob_rel; |
73 | |
74 | /** |
75 | The following global variables are used thoughout the |
76 | functions called by RelationFindroot. |
77 | |
78 | These should probably be located at the top of this |
79 | file alonge with glob_rel. [OK, let it be so then. -- JP] |
80 | */ |
81 | static unsigned long glob_varnum; |
82 | static int glob_done; |
83 | |
84 | /* some data structurs...*/ |
85 | |
86 | struct dimnode { |
87 | dim_type d; |
88 | enum Expr_enum type; |
89 | short int_const; |
90 | double real_const; |
91 | struct fraction power; |
92 | }; |
93 | |
94 | struct ds_soln_list { |
95 | int length,capacity; |
96 | double *soln; |
97 | }; |
98 | |
99 | /* |
100 | Define the following if you want ASCEND to panic when it hits a |
101 | relation error in this file. This will help with debugging (GDB). |
102 | |
103 | Comment it out for ERROR_REPORTER to be used instead. |
104 | */ |
105 | #define RELUTIL_CHECK_ABORT |
106 | |
107 | /*------------------------------------------------------------------------------ |
108 | forward declarations |
109 | */ |
110 | |
111 | static struct fraction real_to_frac(double real); |
112 | int ArgsForRealToken(enum Expr_enum type); |
113 | static int IsZero(struct dimnode *node); |
114 | |
115 | /* bunch of support functions for RelationFindRoots */ |
116 | static double RootFind(struct relation *rel, double *lower_bound, double *upper_bound, |
117 | double *nominal,double *tolerance,unsigned long varnum,int *status); |
118 | static int CalcResidGivenValue(int *mode, int *m, unsigned long *varnum,double *val, double *u, double *f, double *g); |
119 | int RelationInvertTokenTop(struct ds_soln_list *soln_list); |
120 | int RelationInvertToken(struct relation_term **term,struct ds_soln_list *soln_list,enum safe_err *not_safe); |
121 | static void SetUpInvertTokenTop(struct relation_term **invert_side,double *value); |
122 | static int SetUpInvertToken(struct relation_term *term,struct relation_term **invert_side,double *value); |
123 | static int SearchEval_Branch(struct relation_term *term); |
124 | static void InsertBranchResult(struct relation_term *term, double value); |
125 | static void remove_soln( struct ds_soln_list *sl, int ndx); |
126 | static void append_soln( struct ds_soln_list *sl, double soln); |
127 | static struct relation *RelationTmpTokenCopy(CONST struct relation *src); |
128 | static int RelationTmpCopySide(union RelationTermUnion *old,unsigned long len,union RelationTermUnion *arr); |
129 | static struct relation *RelationCreateTmp(unsigned long lhslen, unsigned long rhslen, enum Expr_enum relop); |
130 | |
131 | /* the following appear only to be used locally, so I've made them static -- JP */ |
132 | |
133 | static int RelationCalcDerivative(struct Instance *i, unsigned long vindex, double *grad); |
134 | /**< |
135 | * This calculates the derivative of the relation df/dx (f = lhs-rhs) |
136 | * where x is the VINDEX-th entry in the relation's var list. |
137 | * The var list is a gl_list_t indexed from 1 to length. |
138 | * Non-zero return value implies a problem.<br><br> |
139 | * |
140 | * Notes: This function is a possible source of floating point |
141 | * exceptions and should not be used during compilation. |
142 | */ |
143 | |
144 | static enum safe_err |
145 | RelationCalcDerivativeSafe(struct Instance *i, unsigned long vindex, double *grad); |
146 | /**< |
147 | * Calculates the derivative safely. |
148 | * Non-zero return value implies a problem. |
149 | */ |
150 | |
151 | #ifndef NDEBUG |
152 | static int relutil_check_inst_and_res(struct Instance *i, double *res); |
153 | #endif |
154 | |
155 | #ifndef NDEBUG |
156 | # define CHECK_INST_RES(i,res,retval) if(!relutil_check_inst_and_res(i,res)){return retval;} |
157 | #else |
158 | # define CHECK_INST_RES(i,res,retval) ((void)0) |
159 | #endif |
160 | |
161 | /*------------------------------------------------------------------------------ |
162 | SOME STUFF TO DO WITH DIMENSIONS |
163 | */ |
164 | |
165 | /* |
166 | @TODO what this does needs to be documented here |
167 | */ |
168 | static void apply_term_dimensions(CONST struct relation *rel, |
169 | struct relation_term *rt, |
170 | struct dimnode *first, |
171 | struct dimnode *second, |
172 | int *con, |
173 | int *wild |
174 | ){ |
175 | enum Expr_enum type; |
176 | |
177 | switch(type=RelationTermType(rt)) { |
178 | case e_zero: |
179 | CopyDimensions(WildDimension(),&(first->d)); |
180 | first->real_const = 0.0; |
181 | first->type = type; |
182 | break; |
183 | |
184 | case e_int: |
185 | CopyDimensions(Dimensionless(),&(first->d)); |
186 | first->int_const = (short)TermInteger(rt); |
187 | first->type = type; |
188 | break; |
189 | |
190 | case e_real: |
191 | CopyDimensions(TermDimensions(rt),&(first->d)); |
192 | first->real_const = TermReal(rt); |
193 | first->type = type; |
194 | break; |
195 | |
196 | case e_var: { |
197 | struct Instance *var = RelationVariable(rel,TermVarNumber(rt)); |
198 | CopyDimensions(RealAtomDims(var),&(first->d)); |
199 | first->type = type; |
200 | break; |
201 | } |
202 | case e_func: { |
203 | enum Func_enum id = FuncId(TermFunc(rt)); |
204 | switch( id ) { |
205 | case F_ABS: |
206 | case F_HOLD: |
207 | /* no checking or scaling */ |
208 | break; |
209 | |
210 | case F_SQR: |
211 | /* no checking, just simple scaling */ |
212 | first->d = ScaleDimensions(&(first->d),CreateFraction(2,1)); |
213 | break; |
214 | |
215 | case F_CUBE: |
216 | /* no checking, just simple scaling */ |
217 | first->d = ScaleDimensions(&(first->d),CreateFraction(3,1)); |
218 | break; |
219 | |
220 | case F_SQRT: |
221 | /* no checking, just simple scaling */ |
222 | first->d = ScaleDimensions(&(first->d),CreateFraction(1,2)); |
223 | break; |
224 | |
225 | case F_CBRT: |
226 | /* no checking, just simple scaling */ |
227 | first->d = ScaleDimensions(&(first->d),CreateFraction(1,3)); |
228 | break; |
229 | |
230 | case F_EXP: |
231 | case F_LN: |
232 | case F_LNM: |
233 | case F_LOG10: |
234 | #ifdef HAVE_ERF |
235 | case F_ERF: |
236 | #endif /* HAVE_ERF */ |
237 | case F_SINH: |
238 | case F_COSH: |
239 | case F_TANH: |
240 | case F_ARCSINH: |
241 | case F_ARCCOSH: |
242 | case F_ARCTANH: |
243 | /** |
244 | *** first must now be dimensionless. It will |
245 | *** end up dimensionless as well. |
246 | **/ |
247 | if( IsWild(&(first->d)) && !IsZero(first) ) { |
248 | if( !*wild ) *wild = TRUE; |
249 | if (GCDN) { |
250 | FPRINTF(ASCERR,"ERROR: Relation has wild dimensions\n"); |
251 | FPRINTF(ASCERR," in function %s.\n", |
252 | FuncName(TermFunc(rt))); |
253 | } |
254 | } else if( !IsWild(&(first->d)) && |
255 | CmpDimen(&(first->d),Dimensionless()) ) { |
256 | if( *con ) *con = FALSE; |
257 | if (GCDN) { |
258 | FPRINTF(ASCERR,"ERROR: Function %s called with\n", |
259 | FuncName(TermFunc(rt))); |
260 | FPRINTF(ASCERR," dimensions "); |
261 | WriteDimensions(ASCERR,&(first->d)); |
262 | FPRINTF(ASCERR,".\n"); |
263 | } |
264 | } |
265 | CopyDimensions(Dimensionless(),&(first->d)); |
266 | break; |
267 | |
268 | case F_SIN: |
269 | case F_COS: |
270 | case F_TAN: { |
271 | /** |
272 | *** first must now be of dimension D_PLANE_ANGLE. |
273 | *** It will then be made dimensionless. |
274 | **/ |
275 | if( IsWild(&(first->d)) && !IsZero(first) ) { |
276 | if( !*wild ) *wild = TRUE; |
277 | if (GCDN) { |
278 | FPRINTF(ASCERR,"ERROR: Relation has wild dimensions\n"); |
279 | FPRINTF(ASCERR," in function %s.\n", |
280 | FuncName(TermFunc(rt)) ); |
281 | } |
282 | }else{ |
283 | if( !IsWild(&(first->d)) && |
284 | CmpDimen(&(first->d),TrigDimension()) ) { |
285 | if( *con ) *con = FALSE; |
286 | if (GCDN) { |
287 | FPRINTF(ASCERR,"ERROR: Function %s called with\n", |
288 | FuncName(TermFunc(rt))); |
289 | FPRINTF(ASCERR," dimensions "); |
290 | WriteDimensions(ASCERR,&(first->d)); |
291 | FPRINTF(ASCERR,".\n"); |
292 | } |
293 | } |
294 | } |
295 | CopyDimensions(Dimensionless(),&(first->d)); |
296 | break; |
297 | } |
298 | |
299 | case F_ARCSIN: |
300 | case F_ARCCOS: |
301 | case F_ARCTAN: |
302 | /** |
303 | *** first must now be dimensionless. It will |
304 | *** end up with dimension D_PLANE_ANGLE |
305 | **/ |
306 | if( IsWild(&(first->d)) && !IsZero(first) ) { |
307 | if( !*wild ) *wild = TRUE; |
308 | if (GCDN) { |
309 | FPRINTF(ASCERR,"ERROR: Relation has wild dimensions\n"); |
310 | FPRINTF(ASCERR," in function %s.\n", |
311 | FuncName(TermFunc(rt))); |
312 | } |
313 | } else if( !IsWild(&(first->d)) && |
314 | CmpDimen(&(first->d),Dimensionless()) ) { |
315 | if( *con ) *con = FALSE; |
316 | if (GCDN) { |
317 | FPRINTF(ASCERR,"ERROR: Function %s called with\n", |
318 | FuncName(TermFunc(rt))); |
319 | FPRINTF(ASCERR," dimensions "); |
320 | WriteDimensions(ASCERR,&(first->d)); |
321 | FPRINTF(ASCERR,".\n"); |
322 | } |
323 | } |
324 | CopyDimensions(TrigDimension(),&(first->d)); |
325 | break; |
326 | } |
327 | first->type = type; |
328 | break; |
329 | } |
330 | |
331 | case e_uminus: |
332 | first->type = type; |
333 | break; |
334 | |
335 | case e_times: |
336 | first->d = AddDimensions(&(first->d),&(second->d)); |
337 | first->type = type; |
338 | break; |
339 | |
340 | case e_divide: |
341 | first->d = SubDimensions(&(first->d),&(second->d)); |
342 | first->type = type; |
343 | break; |
344 | |
345 | case e_power: /* fix me and add ipower */ |
346 | if( IsWild(&(second->d)) && !IsZero(second) ) { |
347 | if( !*wild ) *wild = TRUE; |
348 | if (GCDN) { |
349 | FPRINTF(ASCERR,"ERROR: Relation has wild dimensions\n"); |
350 | FPRINTF(ASCERR," in exponent.\n"); |
351 | } |
352 | } else if( !IsWild(&(second->d)) && |
353 | CmpDimen(&(second->d),Dimensionless()) ) { |
354 | if( *con ) *con = FALSE; |
355 | if (GCDN) { |
356 | FPRINTF(ASCERR,"ERROR: Exponent has dimensions "); |
357 | WriteDimensions(ASCERR,&(second->d)); |
358 | FPRINTF(ASCERR,".\n"); |
359 | } |
360 | } |
361 | CopyDimensions(Dimensionless(),&(second->d)); |
362 | switch( second->type ) { |
363 | case e_int: |
364 | if( !IsWild(&(first->d)) && |
365 | CmpDimen(&(first->d),Dimensionless()) ) { |
366 | struct fraction power; |
367 | power = CreateFraction(second->int_const,1); |
368 | first->d = ScaleDimensions(&(first->d),power); |
369 | } |
370 | break; |
371 | |
372 | case e_real: |
373 | if( !IsWild(&(first->d)) && |
374 | CmpDimen(&(first->d),Dimensionless()) ) { |
375 | struct fraction power; |
376 | power = real_to_frac(second->real_const); |
377 | first->d = ScaleDimensions(&(first->d),power); |
378 | } |
379 | break; |
380 | |
381 | /* what about e_zero? */ |
382 | default: |
383 | if( IsWild(&(first->d)) && !IsZero(first) ) { |
384 | if( !*wild ) *wild = TRUE; |
385 | if (GCDN) { |
386 | FPRINTF(ASCERR,"ERROR: Relation has wild dimensions\n"); |
387 | FPRINTF(ASCERR," raised to a non-constant power.\n"); |
388 | } |
389 | } else if( !IsWild(&(first->d)) && |
390 | CmpDimen(&(first->d),Dimensionless()) ) { |
391 | if( *con ) *con = FALSE; |
392 | if (GCDN) { |
393 | FPRINTF(ASCERR,"ERROR: Dimensions "); |
394 | WriteDimensions(ASCERR,&(first->d)); |
395 | FPRINTF(ASCERR," are\n"); |
396 | FPRINTF(ASCERR," raised to a non-constant power.\n"); |
397 | } |
398 | } |
399 | CopyDimensions(Dimensionless(),&(first->d)); |
400 | break; |
401 | |
402 | } |
403 | first->type = type; |
404 | break; |
405 | |
406 | case e_plus: |
407 | case e_minus: |
408 | if( IsWild(&(first->d)) && IsZero(first) ) { |
409 | /* first wild zero */ |
410 | CopyDimensions(&(second->d),&(first->d)); |
411 | first->type = second->type; |
412 | if( second->type==e_int ) |
413 | first->int_const = second->int_const; |
414 | if( second->type==e_real ) |
415 | first->real_const = second->real_const; |
416 | } else if( IsWild(&(first->d)) && !IsZero(first) ) { |
417 | /* first wild non-zero */ |
418 | if( IsWild(&(second->d)) && !IsZero(second) ) { |
419 | /* second wild non-zero */ |
420 | if( !*wild ) *wild = TRUE; |
421 | if (GCDN) { |
422 | FPRINTF(ASCERR,"ERROR: %s has wild dimensions on\n", |
423 | type==e_plus ? "Addition":"Subtraction"); |
424 | FPRINTF(ASCERR," left and right hand sides.\n"); |
425 | } |
426 | first->type = type; |
427 | } else if( !IsWild(&(second->d)) ) { |
428 | /* second not wild */ |
429 | if( !*wild ) *wild = TRUE; |
430 | if (GCDN) { |
431 | FPRINTF(ASCERR,"ERROR: %s has wild dimensions on\n", |
432 | type==e_plus ? "Addition":"Subtraction"); |
433 | FPRINTF(ASCERR," left hand side.\n"); |
434 | } |
435 | CopyDimensions(&(second->d),&(first->d)); |
436 | first->type = type; |
437 | } |
438 | } else if( !IsWild(&(first->d)) ) { |
439 | /* first not wild */ |
440 | if( IsWild(&(second->d)) && !IsZero(second) ) { |
441 | /* second wild non-zero */ |
442 | if( !*wild ) *wild = TRUE; |
443 | if (GCDN) { |
444 | FPRINTF(ASCERR,"ERROR: %s has wild dimensions on\n", |
445 | type==e_plus ? "Addition":"Subtraction"); |
446 | FPRINTF(ASCERR," right hand side.\n"); |
447 | } |
448 | first->type = type; |
449 | } else if ( !IsWild(&(second->d)) ) { |
450 | /* second not wild */ |
451 | if( CmpDimen(&(first->d),&(second->d)) ) { |
452 | if( *con ) *con = FALSE; |
453 | if (GCDN) { |
454 | FPRINTF(ASCERR,"ERROR: %s has dimensions ", |
455 | type==e_plus ? "Addition":"Subtraction"); |
456 | WriteDimensions(ASCERR,&(first->d)); |
457 | FPRINTF(ASCERR," on left\n"); |
458 | FPRINTF(ASCERR," and dimensions "); |
459 | WriteDimensions(ASCERR,&(second->d)); |
460 | FPRINTF(ASCERR," on right.\n"); |
461 | } |
462 | } |
463 | first->type = type; |
464 | } |
465 | } |
466 | break; |
467 | |
468 | default: |
469 | FPRINTF(ASCERR,"ERROR: Unknown relation term type.\n"); |
470 | if( *con ) *con = FALSE; |
471 | first->type = type; |
472 | break; |
473 | } |
474 | } |
475 | |
476 | /** |
477 | @TODO what this does needs to be documented here |
478 | */ |
479 | int RelationCheckDimensions(struct Instance *relinst, dim_type *dimens) |
480 | { |
481 | CONST struct relation *rel; |
482 | enum Expr_enum reltype= 0; |
483 | struct dimnode *stack, *sp; |
484 | CONST dim_type* lhsdim; |
485 | struct Instance * lhs; |
486 | int consistent = TRUE; |
487 | int wild = FALSE; |
488 | unsigned long c, len; |
489 | |
490 | rel = GetInstanceRelation(relinst, &reltype); |
491 | if ( !IsWild(RelationDim(rel)) ) { /* don't do this twice */ |
492 | CopyDimensions(RelationDim(rel),dimens); |
493 | return 2; |
494 | } |
495 | if (reltype == e_glassbox || reltype == e_opcode) { |
496 | return 0; |
497 | } |
498 | if (reltype == e_blackbox) { |
499 | lhs = BlackBoxGetOutputVar(rel); |
500 | lhsdim = RealAtomDims(lhs); |
501 | CopyDimensions(lhsdim,dimens); |
502 | return( !IsWild(dimens) ); |
503 | } |
504 | /* else token relation */ |
505 | sp = stack = (struct dimnode *) |
506 | ascmalloc(RelationDepth(rel)*sizeof(struct dimnode)); |
507 | switch( RelationRelop(rel) ) { |
508 | case e_less: |
509 | case e_lesseq: |
510 | case e_greater: |
511 | case e_greatereq: |
512 | case e_equal: |
513 | case e_notequal: |
514 | /* Working on the left-hand-side */ |
515 | len = RelationLength(rel,TRUE); |
516 | for( c = 1; c <= len; c++ ) { |
517 | struct relation_term *rt; |
518 | rt = (struct relation_term *)RelationTerm(rel,c,TRUE); |
519 | sp += 1-ArgsForRealToken(RelationTermType(rt)); |
520 | apply_term_dimensions(rel,rt,sp-1,sp,&consistent,&wild); |
521 | } /* stack[0].d contains the dimensions of the lhs expression */ |
522 | |
523 | /* Now working on the right-hand_side */ |
524 | len = RelationLength(rel,FALSE); |
525 | for( c = 1; c <= len; c++ ) { |
526 | struct relation_term *rt; |
527 | rt = (struct relation_term *) RelationTerm(rel,c,FALSE); |
528 | sp += 1-ArgsForRealToken(RelationTermType(rt)); |
529 | apply_term_dimensions(rel,rt,sp-1,sp,&consistent,&wild); |
530 | } /* stack[1].d contains the dimensions of the rhs expression */ |
531 | |
532 | if( IsWild(&(stack[0].d)) || IsWild(&(stack[1].d)) ) { |
533 | if( IsWild(&(stack[0].d)) && !IsZero(&(stack[0])) ) { |
534 | if( !wild ) wild = TRUE; |
535 | if (GCDN) { |
536 | FPRINTF(ASCERR,"ERROR: Relation has wild dimensions\n"); |
537 | FPRINTF(ASCERR," on left hand side.\n"); |
538 | } |
539 | } |
540 | if( IsWild(&(stack[1].d)) && !IsZero(&(stack[1])) ) { |
541 | if( !wild ) wild = TRUE; |
542 | if (GCDN) { |
543 | FPRINTF(ASCERR,"ERROR: Relation has wild dimensions\n"); |
544 | FPRINTF(ASCERR," on right hand side.\n"); |
545 | } |
546 | } |
547 | }else{ |
548 | if( CmpDimen(&(stack[0].d),&(stack[1].d)) ) { |
549 | if( consistent ) consistent = FALSE; |
550 | if (GCDN) { |
551 | FPRINTF(ASCERR,"ERROR: Relation has dimensions "); |
552 | WriteDimensions(ASCERR,&(stack[0].d)); |
553 | FPRINTF(ASCERR," on left\n"); |
554 | FPRINTF(ASCERR," and dimensions "); |
555 | WriteDimensions(ASCERR,&(stack[1].d)); |
556 | FPRINTF(ASCERR," on right.\n"); |
557 | } |
558 | } |
559 | } |
560 | break; |
561 | case e_maximize: |
562 | case e_minimize: |
563 | /* Working on the left-hand-side */ |
564 | len = RelationLength(rel,TRUE); |
565 | for( c = 1; c <= len; c++ ) { |
566 | struct relation_term *rt; |
567 | rt = (struct relation_term *) RelationTerm(rel,c,TRUE); |
568 | sp += 1-ArgsForRealToken(RelationTermType(rt)); |
569 | apply_term_dimensions(rel,rt,sp-1,sp,&consistent,&wild); |
570 | } /* stack[0].d contains the dimensions of the lhs expression */ |
571 | |
572 | if( IsWild(&(stack[0].d)) && !IsZero(&(stack[0])) ) { |
573 | if( !wild ) wild = TRUE; |
574 | if (GCDN) { |
575 | FPRINTF(ASCERR,"ERROR: Objective has wild dimensions.\n"); |
576 | } |
577 | } |
578 | break; |
579 | |
580 | default: |
581 | FPRINTF(ASCERR,"ERROR: Unknown relation type.\n"); |
582 | if( consistent ) consistent = FALSE; |
583 | break; |
584 | } |
585 | CopyDimensions(&(stack[0].d),dimens); |
586 | ascfree(stack); |
587 | return( consistent && !wild ); |
588 | } |
589 | |
590 | /*------------------------------------------------------------------------------ |
591 | CALCULATION FUNCTIONS |
592 | */ |
593 | |
594 | /** @NOTE ANY function calling RelationBranchEvaluator should set |
595 | glob_rel to point at the relation being evaluated. The calling |
596 | function should also set glob_rel = NULL when it is done. |
597 | */ |
598 | static double RelationBranchEvaluator(struct relation_term *term) |
599 | { |
600 | assert(term != NULL); |
601 | switch(RelationTermType(term)) { |
602 | case e_func: |
603 | /* CONSOLE_DEBUG("Evaluating term using FuncEval..."); */ |
604 | return FuncEval(TermFunc(term), |
605 | RelationBranchEvaluator(TermFuncLeft(term)) ); |
606 | case e_var: |
607 | return TermVariable(glob_rel , term); |
608 | case e_int: |
609 | return (double)TermInteger(term); |
610 | case e_real: |
611 | return TermReal(term); |
612 | case e_zero: |
613 | return 0.0; |
614 | case e_plus: |
615 | return (RelationBranchEvaluator(TermBinLeft(term)) + |
616 | RelationBranchEvaluator(TermBinRight(term))); |
617 | case e_minus: |
618 | return (RelationBranchEvaluator(TermBinLeft(term)) - |
619 | RelationBranchEvaluator(TermBinRight(term))); |
620 | case e_times: |
621 | return (RelationBranchEvaluator(TermBinLeft(term)) * |
622 | RelationBranchEvaluator(TermBinRight(term))); |
623 | case e_divide: |
624 | return (RelationBranchEvaluator(TermBinLeft(term)) / |
625 | RelationBranchEvaluator(TermBinRight(term))); |
626 | case e_power: |
627 | case e_ipower: |
628 | return pow( RelationBranchEvaluator(TermBinLeft(term)) , |
629 | RelationBranchEvaluator(TermBinRight(term)) ); |
630 | case e_uminus: |
631 | return - RelationBranchEvaluator(TermBinLeft(term)); |
632 | default: |
633 | FPRINTF(ASCERR, "error in RelationBranchEvaluator routine\n"); |
634 | FPRINTF(ASCERR, "relation term type not recognized\n"); |
635 | return 0.0; |
636 | } |
637 | } |
638 | |
639 | /** |
640 | This function is passed a relation pointer, r, a pointer, pos, to a |
641 | position in the postfix version of the relation (0<=pos<length), and |
642 | a flag, lhs, telling whether we are interested in the left(=1) or |
643 | right(=0) side of the relation. This function will tranverse and |
644 | evaluate the subtree rooted at pos and will return the value as a |
645 | double. To do its evaluation, this function goes backwards through |
646 | the postfix representation of relation and calls itself at each |
647 | node--creating a stack of function calls. |
648 | |
649 | @NOTE: This function changes the value of pos---to the position of |
650 | the deepest leaf visited |
651 | */ |
652 | static double |
653 | RelationEvaluatePostfixBranch(CONST struct relation *r, |
654 | unsigned long *pos, |
655 | int lhs) |
656 | { |
657 | CONST struct relation_term *term; /* the current term */ |
658 | CONST struct Func *funcptr; /* a pointer to a function */ |
659 | double x, y; /* temporary values */ |
660 | |
661 | term = NewRelationTerm(r, *pos, lhs); |
662 | assert(term != NULL); |
663 | switch( RelationTermType(term) ) { |
664 | case e_zero: |
665 | case e_real: |
666 | return TermReal(term); |
667 | case e_int: |
668 | return TermInteger(term); |
669 | case e_var: |
670 | return TermVariable(r, term); |
671 | case e_plus: |
672 | (*pos)--; |
673 | y = RelationEvaluatePostfixBranch(r, pos, lhs); /* y==right-side of '+' */ |
674 | (*pos)--; |
675 | return RelationEvaluatePostfixBranch(r, pos, lhs) + y; |
676 | case e_minus: |
677 | (*pos)--; |
678 | y = RelationEvaluatePostfixBranch(r, pos, lhs); /* y==right-side of '-' */ |
679 | (*pos)--; |
680 | return RelationEvaluatePostfixBranch(r, pos, lhs) - y; |
681 | case e_times: |
682 | (*pos)--; |
683 | y = RelationEvaluatePostfixBranch(r, pos, lhs); /* y==right-side of '*' */ |
684 | (*pos)--; |
685 | return RelationEvaluatePostfixBranch(r, pos, lhs) * y; |
686 | case e_divide: |
687 | (*pos)--; |
688 | y = RelationEvaluatePostfixBranch(r, pos, lhs); /* y is the divisor */ |
689 | (*pos)--; |
690 | return RelationEvaluatePostfixBranch(r, pos, lhs) / y; |
691 | case e_power: |
692 | (*pos)--; |
693 | y = RelationEvaluatePostfixBranch(r, pos, lhs); /* y is the power */ |
694 | (*pos)--; |
695 | x = RelationEvaluatePostfixBranch(r, pos, lhs); /* x is the base */ |
696 | return pow(x, y); |
697 | case e_ipower: |
698 | (*pos)--; |
699 | y = RelationEvaluatePostfixBranch(r, pos, lhs); /* y is the power */ |
700 | (*pos)--; |
701 | x = RelationEvaluatePostfixBranch(r, pos, lhs); /* x is the base */ |
702 | return asc_ipow(x, (int)y); |
703 | case e_uminus: |
704 | (*pos)--; |
705 | return -1.0 * RelationEvaluatePostfixBranch(r, pos, lhs); |
706 | case e_func: |
707 | funcptr = TermFunc(term); |
708 | (*pos)--; |
709 | return FuncEval(funcptr, RelationEvaluatePostfixBranch(r, pos, lhs)); |
710 | default: |
711 | ASC_PANIC("unrecognised relation type"); |
712 | break; |
713 | } |
714 | } |
715 | |
716 | #define RECURSE RelationEvaluatePostfixBranchSafe |
717 | static double |
718 | RelationEvaluatePostfixBranchSafe(CONST struct relation *r, |
719 | unsigned long *pos, |
720 | int lhs, |
721 | enum safe_err *serr |
722 | ){ |
723 | CONST struct relation_term *term; /* the current term */ |
724 | double x, y; /* temporary values */ |
725 | |
726 | term = NewRelationTerm(r, *pos, lhs); |
727 | assert(term != NULL); |
728 | switch( RelationTermType(term) ) { |
729 | case e_zero: |
730 | case e_real: |
731 | return TermReal(term); |
732 | case e_int: |
733 | return TermInteger(term); |
734 | case e_var: |
735 | return TermVariable(r, term); |
736 | case e_plus: |
737 | (*pos)--; y = RECURSE(r, pos, lhs, serr); /* = RHS of '+' */ |
738 | (*pos)--; return safe_add_D0(RECURSE(r,pos,lhs,serr), y, serr); |
739 | case e_minus: |
740 | (*pos)--; y = RECURSE(r, pos, lhs, serr); /* = RHS of '-' */ |
741 | (*pos)--; return safe_sub_D0(RECURSE(r,pos,lhs,serr), y, serr); |
742 | case e_times: |
743 | (*pos)--; y = RECURSE(r, pos, lhs, serr); /* = RHS of '*' */ |
744 | (*pos)--; return safe_mul_D0(RECURSE(r,pos,lhs,serr), y, serr); |
745 | case e_divide: |
746 | (*pos)--; y = RECURSE(r, pos, lhs, serr); /* = the divisor (RHS of '/') */ |
747 | (*pos)--; return safe_div_D0(RECURSE(r,pos,lhs,serr), y, serr); |
748 | case e_power: |
749 | (*pos)--; y = RECURSE(r, pos, lhs, serr); /* = the power (RHS of '^') */ |
750 | (*pos)--; x = RECURSE(r, pos, lhs, serr); /* = the base */ |
751 | return safe_pow_D0(x, y, serr); |
752 | case e_ipower: |
753 | (*pos)--; y = RECURSE(r, pos, lhs, serr); /* y is the power (RHS of '^') */ |
754 | (*pos)--; x = RECURSE(r, pos, lhs, serr); /* x is the base */ |
755 | return safe_ipow_D0(x, (int)y, serr); |
756 | case e_uminus: |
757 | (*pos)--; return -1.0 * RECURSE(r, pos, lhs, serr); |
758 | case e_func: |
759 | (*pos)--; return FuncEvalSafe(TermFunc(term),RECURSE(r,pos,lhs,serr),serr); |
760 | default: |
761 | ASC_PANIC("Unknown relation term type"); |
762 | } |
763 | } |
764 | #undef RECURSE |
765 | |
766 | /** |
767 | Yet another function for calculating the residual of a relation. |
768 | This function also uses the postfix version of the relations, but it |
769 | manages a stack(array) of doubles and calculates the residual in this |
770 | stack; therefore the function is not recursive. If the funtion |
771 | cannot allocate memory for its stack, it returns 0.0, so there is |
772 | currently no way of knowing if this function failed. |
773 | */ |
774 | static double |
775 | RelationEvaluateResidualPostfix(CONST struct relation *r) |
776 | { |
777 | unsigned long t; /* the current term in the relation r */ |
778 | int lhs; /* looking at left(=1) or right(=0) hand side */ |
779 | double *res_stack; /* the stack we use for evaluating the residual */ |
780 | long s = -1; /* the top position in the stacks */ |
781 | unsigned long length_lhs, length_rhs; |
782 | CONST struct relation_term *term; |
783 | CONST struct Func *funcptr; |
784 | |
785 | |
786 | length_lhs = RelationLength(r, 1); |
787 | length_rhs = RelationLength(r, 0); |
788 | if( (length_lhs+length_rhs) == 0 ) return 0.0; |
789 | |
790 | /* create the stacks */ |
791 | res_stack = tmpalloc_array((1+MAX(length_lhs,length_rhs)),double); |
792 | if( res_stack == NULL ) return 0.0; |
793 | |
794 | lhs = 1; |
795 | t = 0; |
796 | while (1) { |
797 | if( lhs && (t >= length_lhs) ) { |
798 | /* finished processing left hand side, switch to right if it exists */ |
799 | if( length_rhs ) { |
800 | lhs = t = 0; |
801 | } |
802 | else { |
803 | /* do not need to check for s>=0, since we know that |
804 | * (length_lhs+length_rhs>0) and that (length_rhs==0), the |
805 | * length_lhs must be > 0, thus s>=0 |
806 | */ |
807 | return (res_stack[s]); |
808 | } |
809 | } |
810 | else if( (!lhs) && (t >= length_rhs) ) { |
811 | /* finished processing right hand side */ |
812 | if( length_lhs ) { |
813 | /* we know length_lhs and length_rhs are both > 0, since if |
814 | * length_rhs == 0, we would have exited above. |
815 | */ |
816 | return (res_stack[s-1] - res_stack[s]); |
817 | } |
818 | else { |
819 | /* do not need to check for s>=0, since we know that |
820 | * (length_lhs+length_rhs>0) and that (length_lhs==0), the |
821 | * length_rhs must be > 0, thus s>=0 |
822 | */ |
823 | return (-1.0 * res_stack[s]); |
824 | } |
825 | } |
826 | |
827 | term = NewRelationTerm(r, t++, lhs); |
828 | switch( RelationTermType(term) ) { |
829 | case e_zero: |
830 | s++; res_stack[s] = 0.0; break; |
831 | case e_real: |
832 | s++; res_stack[s] = TermReal(term); break; |
833 | case e_int: |
834 | s++; res_stack[s] = TermInteger(term); break; |
835 | case e_var: |
836 | s++; res_stack[s] = TermVariable(r, term); break; |
837 | case e_plus: |
838 | res_stack[s-1] += res_stack[s]; s--; break; |
839 | case e_minus: |
840 | res_stack[s-1] -= res_stack[s]; s--; break; |
841 | case e_times: |
842 | res_stack[s-1] *= res_stack[s]; s--; break; |
843 | case e_divide: |
844 | res_stack[s-1] /= res_stack[s]; s--; break; |
845 | case e_uminus: |
846 | res_stack[s] *= -1.0; break; |
847 | case e_power: |
848 | case e_ipower: |
849 | res_stack[s-1] = pow(res_stack[s-1], res_stack[s]); s--; break; |
850 | case e_func: |
851 | funcptr = TermFunc(term); |
852 | res_stack[s] = FuncEval(funcptr, res_stack[s]); |
853 | break; |
854 | default: |
855 | ASC_PANIC("Unknown relation term type"); |
856 | } |
857 | } |
858 | } |
859 | |
860 | /*------------------------------------------------------------------------------ |
861 | GRADIENT AND DERIVATIVE CALCULATIONS |
862 | */ |
863 | |
864 | /** |
865 | Compute residuals and gradients for a relation (compiler-side routine) |
866 | |
867 | @param r relation for which residual and gradients are to be calculated. |
868 | @param residual pointer to a double in which the residual shall be stored (must have already been allocated) |
869 | @param gradient pointer to an array of doubles where the gradients can be stored (must already have been allocated) |
870 | |
871 | @return 0 on success, 1 on out-of-memeory. |
872 | |
873 | Computes the gradients by maintaining n stacks, where |
874 | n = (number-of-variables-in-r + 1) |
875 | The +1 is for the residual. The stacks come from a single array which |
876 | this function gets by calling tmpalloc_array. Two macros are defined |
877 | to make referencing this array easier. |
878 | */ |
879 | static int |
880 | RelationEvaluateResidualGradient(CONST struct relation *r, |
881 | double *residual, |
882 | double *gradient) |
883 | { |
884 | unsigned long t; /* the current term in the relation r */ |
885 | unsigned long num_var; /* the number of variables in the relation r */ |
886 | unsigned long v; /* the index of the variable we are looking at */ |
887 | int lhs; /* looking at left(=1) or right(=0) hand side of r */ |
888 | double *stacks; /* the memory for the stacks */ |
889 | unsigned long stack_height; /* height of each stack */ |
890 | long s = -1; /* the top position in the stacks */ |
891 | double temp, temp2; /* temporary variables to speed gradient calculatns */ |
892 | unsigned long length_lhs, length_rhs; |
893 | CONST struct relation_term *term; |
894 | CONST struct Func *fxnptr; |
895 | |
896 | num_var = NumberVariables(r); |
897 | length_lhs = RelationLength(r, 1); |
898 | length_rhs = RelationLength(r, 0); |
899 | if( (length_lhs + length_rhs) == 0 ) { |
900 | for( v = 0; v < num_var; v++ ) gradient[v] = 0.0; |
901 | ERROR_REPORTER_HERE(ASC_PROG_WARNING,"Relation with no LHS and no RHS: returning residual 0"); |
902 | *residual = 0.0; |
903 | return 0; |
904 | } |
905 | else { |
906 | stack_height = 1 + MAX(length_lhs,length_rhs); |
907 | } |
908 | |
909 | /* create the stacks */ |
910 | stacks = tmpalloc_array(((num_var+1)*stack_height),double); |
911 | if( stacks == NULL ) return 1; |
912 | |
913 | #define res_stack(s) stacks[(s)] |
914 | #define grad_stack(v,s) stacks[((v)*stack_height)+(s)] |
915 | |
916 | lhs = 1; |
917 | t = 0; |
918 | while(1) { |
919 | if( lhs && (t >= length_lhs) ) { |
920 | /* need to switch to the right hand side--if it exists */ |
921 | if( length_rhs ) { |
922 | lhs = t = 0; |
923 | } |
924 | else { |
925 | /* Set the pointers we were passed to the tops of the stacks. |
926 | * We do not need to check for s>=0, since we know that |
927 | * (length_lhs+length_rhs>0) and that (length_rhs==0), the |
928 | * length_lhs must be > 0, thus s>=0 |
929 | */ |
930 | for( v = 1; v <= num_var; v++ ) gradient[v-1] = grad_stack(v,s); |
931 | *residual = res_stack(s); |
932 | return 0; |
933 | } |
934 | } |
935 | else if( (!lhs) && (t >= length_rhs) ) { |
936 | /* we have processed both sides, quit */ |
937 | if( length_lhs ) { |
938 | /* Set the pointers we were passed to lhs - rhs |
939 | * We know length_lhs and length_rhs are both > 0, since if |
940 | * length_rhs == 0, we would have exited above. |
941 | */ |
942 | for( v = 1; v <= num_var; v++ ) { |
943 | gradient[v-1] = grad_stack(v,s-1) - grad_stack(v,s); |
944 | } |
945 | *residual = res_stack(s-1) - res_stack(s); |
946 | return 0; |
947 | } |
948 | else { |
949 | /* Set the pointers we were passed to -1.0 * top of stacks. |
950 | * We do not need to check for s>=0, since we know that |
951 | * (length_lhs+length_rhs>0) and that (length_lhs==0), the |
952 | * length_rhs must be > 0, thus s>=0 |
953 | */ |
954 | for( v = 1; v <= num_var; v++ ) { |
955 | gradient[v-1] = -grad_stack(v,s); |
956 | } |
957 | *residual = -res_stack(s); |
958 | return 0; |
959 | } |
960 | } |
961 | |
962 | term = NewRelationTerm(r, t++, lhs); |
963 | switch( RelationTermType(term) ) { |
964 | case e_zero: |
965 | s++; |
966 | for( v = 1; v <= num_var; v++ ) grad_stack(v,s) = 0.0; |
967 | res_stack(s) = 0.0; |
968 | break; |
969 | case e_real: |
970 | s++; |
971 | for( v = 1; v <= num_var; v++ ) grad_stack(v,s) = 0.0; |
972 | res_stack(s) = TermReal(term); |
973 | break; |
974 | case e_int: |
975 | s++; |
976 | for( v = 1; v <= num_var; v++ ) grad_stack(v,s) = 0.0; |
977 | res_stack(s) = TermInteger(term); |
978 | break; |
979 | case e_var: |
980 | s++; |
981 | for( v = 1; v <= num_var; v++ ) grad_stack(v,s) = 0.0; |
982 | grad_stack(TermVarNumber(term),s) = 1.0; |
983 | res_stack(s) = TermVariable(r, term); |
984 | break; |
985 | case e_plus: |
986 | /* d(u+v) = du + dv */ |
987 | for( v = 1; v <= num_var; v++ ) grad_stack(v,s-1) += grad_stack(v,s); |
988 | res_stack(s-1) += res_stack(s); |
989 | s--; |
990 | break; |
991 | case e_minus: |
992 | /* d(u-v) = du - dv */ |
993 | for( v = 1; v <= num_var; v++ ) grad_stack(v,s-1) -= grad_stack(v,s); |
994 | res_stack(s-1) -= res_stack(s); |
995 | s--; |
996 | break; |
997 | case e_times: |
998 | /* d(u*v) = u*dv + v*du */ |
999 | for( v = 1; v <= num_var; v++ ) { |
1000 | grad_stack(v,s-1) = ((res_stack(s-1) * grad_stack(v,s)) + |
1001 | (res_stack(s) * grad_stack(v,s-1))); |
1002 | } |
1003 | res_stack(s-1) *= res_stack(s); |
1004 | s--; |
1005 | break; |
1006 | case e_divide: |
1007 | /* d(u/v) = du/v - u*dv/(v^2) = (1/v) * [du - (u/v)*dv] */ |
1008 | res_stack(s) = 1.0 / res_stack(s); /* 1/v */ |
1009 | res_stack(s-1) *= res_stack(s); /* u/v */ |
1010 | for( v = 1; v <= num_var; v++ ) { |
1011 | grad_stack(v,s-1) = (res_stack(s) * |
1012 | (grad_stack(v,s-1) - |
1013 | (res_stack(s-1) * grad_stack(v,s)))); |
1014 | } |
1015 | s--; |
1016 | break; |
1017 | case e_uminus: |
1018 | for( v = 1; v <= num_var; v++ ) grad_stack(v,s) = -grad_stack(v,s); |
1019 | res_stack(s) = -res_stack(s); |
1020 | break; |
1021 | case e_power: |
1022 | /* d(u^v) = v * u^(v-1) * du + ln(u) * u^v * dv */ |
1023 | /* First compute: v*u^(v-1) */ |
1024 | temp = res_stack(s) * pow( res_stack(s-1), (res_stack(s) - 1.0) ); |
1025 | /* Now compute: ln(u) */ |
1026 | temp2 = FuncEval( LookupFuncById(F_LN), res_stack(s-1) ); |
1027 | /* Next compute: u^v */ |
1028 | res_stack(s-1) = pow(res_stack(s-1), res_stack(s)); |
1029 | /* Compute: [ln(u)] * [u^v] */ |
1030 | temp2 *= res_stack(s-1); |
1031 | /* Finally, compute: [v*u^(v-1)] * [du] + [ln(u)*u^v] * [dv] */ |
1032 | for( v = 1; v <= num_var; v++ ) { |
1033 | grad_stack(v,s-1) = ((temp * grad_stack(v,s-1)) + |
1034 | (temp2 * grad_stack(v,s))); |
1035 | } |
1036 | s--; |
1037 | break; |
1038 | case e_ipower: |
1039 | /* d(u^v) = v * u^(v-1) * du + ln(u) * u^v * dv */ |
1040 | /* First compute: v*u^(v-1) */ |
1041 | temp = asc_d1ipow( res_stack(s-1), ((int)res_stack(s)) ); |
1042 | /* Now compute: ln(u) */ |
1043 | temp2 = FuncEval( LookupFuncById(F_LN), res_stack(s-1) ); |
1044 | /* Next compute: u^v */ |
1045 | res_stack(s-1) = asc_ipow( res_stack(s-1), ((int)res_stack(s)) ); |
1046 | /* Compute: [ln(u)] * [u^v] */ |
1047 | temp2 *= res_stack(s-1); |
1048 | /* Finally, compute: [v*u^(v-1)] * [du] + [ln(u)*u^v] * [dv] */ |
1049 | for( v = 1; v <= num_var; v++ ) { |
1050 | grad_stack(v,s-1) = ((temp * grad_stack(v,s-1)) + |
1051 | (temp2 * grad_stack(v,s))); |
1052 | } |
1053 | s--; |
1054 | break; |
1055 | case e_func: |
1056 | /* |
1057 | funcptr = TermFunc(term); |
1058 | for (v = 0; v < num_var; v++) { |
1059 | grad_stack(v,s) = FuncDeriv(funcptr, grad_stack(v,s)); |
1060 | } |
1061 | res_stack(s) = FuncEval(funcptr, res_stack(s)); */ |
1062 | fxnptr = TermFunc(term); |
1063 | temp = FuncDeriv( fxnptr, res_stack(s) ); |
1064 | for( v = 1; v <= num_var; v++ ) grad_stack(v,s) *= temp; |
1065 | res_stack(s) = FuncEval( fxnptr, res_stack(s) ); |
1066 | break; |
1067 | default: |
1068 | ASC_PANIC("Unknown relation term type"); |
1069 | break; |
1070 | } |
1071 | } |
1072 | #undef grad_stack |
1073 | #undef res_stack |
1074 | } |
1075 | |
1076 | static int |
1077 | RelationEvaluateResidualGradientSafe(CONST struct relation *r, |
1078 | double *residual, |
1079 | double *gradient, |
1080 | enum safe_err *serr) |
1081 | { |
1082 | unsigned long t; /* the current term in the relation r */ |
1083 | unsigned long num_var; /* the number of variables in the relation r */ |
1084 | unsigned long v; /* the index of the variable we are looking at */ |
1085 | int lhs; /* looking at left(=1) or right(=0) hand side of r */ |
1086 | double *stacks; /* the memory for the stacks */ |
1087 | unsigned long stack_height; /* height of each stack */ |
1088 | long s = -1; /* the top position in the stacks */ |
1089 | double temp, temp2; /* temporary variables to speed gradient calculatns */ |
1090 | unsigned long length_lhs, length_rhs; |
1091 | CONST struct relation_term *term; |
1092 | CONST struct Func *fxnptr; |
1093 | |
1094 | num_var = NumberVariables(r); |
1095 | length_lhs = RelationLength(r, 1); |
1096 | length_rhs = RelationLength(r, 0); |
1097 | if( (length_lhs + length_rhs) == 0 ) { |
1098 | for( v = 0; v < num_var; v++ ) gradient[v] = 0.0; |
1099 | *residual = 0.0; |
1100 | return 0; |
1101 | } |
1102 | else { |
1103 | stack_height = 1 + MAX(length_lhs,length_rhs); |
1104 | } |
1105 | |
1106 | /* create the stacks */ |
1107 | stacks = tmpalloc_array(((num_var+1)*stack_height),double); |
1108 | if( stacks == NULL ) return 1; |
1109 | |
1110 | #define res_stack(s) stacks[(s)] |
1111 | #define grad_stack(v,s) stacks[((v)*stack_height)+(s)] |
1112 | |
1113 | lhs = 1; |
1114 | t = 0; |
1115 | while(1) { |
1116 | if( lhs && (t >= length_lhs) ) { |
1117 | /* need to switch to the right hand side--if it exists */ |
1118 | if( length_rhs ) { |
1119 | lhs = t = 0; |
1120 | } |
1121 | else { |
1122 | /* Set the pointers we were passed to the tops of the stacks. |
1123 | * We do not need to check for s>=0, since we know that |
1124 | * (length_lhs+length_rhs>0) and that (length_rhs==0), the |
1125 | * length_lhs must be > 0, thus s>=0 |
1126 | */ |
1127 | for( v = 1; v <= num_var; v++ ) gradient[v-1] = grad_stack(v,s); |
1128 | *residual = res_stack(s); |
1129 | return 0; |
1130 | } |
1131 | } |
1132 | else if( (!lhs) && (t >= length_rhs) ) { |
1133 | /* we have processed both sides, quit */ |
1134 | if( length_lhs ) { |
1135 | /* Set the pointers we were passed to lhs - rhs |
1136 | * We know length_lhs and length_rhs are both > 0, since if |
1137 | * length_rhs == 0, we would have exited above. |
1138 | */ |
1139 | for( v = 1; v <= num_var; v++ ) { |
1140 | gradient[v-1] = safe_sub_D0(grad_stack(v,s-1),grad_stack(v,s),serr); |
1141 | } |
1142 | *residual = safe_sub_D0(res_stack(s-1), res_stack(s), serr); |
1143 | return 0; |
1144 | } |
1145 | else { |
1146 | /* Set the pointers we were passed to -1.0 * top of stacks. |
1147 | * We do not need to check for s>=0, since we know that |
1148 | * (length_lhs+length_rhs>0) and that (length_lhs==0), the |
1149 | * length_rhs must be > 0, thus s>=0 |
1150 | */ |
1151 | for( v = 1; v <= num_var; v++ ) { |
1152 | gradient[v-1] = -grad_stack(v,s); |
1153 | } |
1154 | *residual = -res_stack(s); |
1155 | return 0; |
1156 | } |
1157 | } |
1158 | |
1159 | term = NewRelationTerm(r, t++, lhs); |
1160 | switch( RelationTermType(term) ) { |
1161 | case e_zero: |
1162 | s++; |
1163 | for( v = 1; v <= num_var; v++ ) grad_stack(v,s) = 0.0; |
1164 | res_stack(s) = 0.0; |
1165 | break; |
1166 | case e_real: |
1167 | s++; |
1168 | for( v = 1; v <= num_var; v++ ) grad_stack(v,s) = 0.0; |
1169 | res_stack(s) = TermReal(term); |
1170 | break; |
1171 | case e_int: |
1172 | s++; |
1173 | for( v = 1; v <= num_var; v++ ) grad_stack(v,s) = 0.0; |
1174 | res_stack(s) = TermInteger(term); |
1175 | break; |
1176 | case e_var: |
1177 | s++; |
1178 | for( v = 1; v <= num_var; v++ ) grad_stack(v,s) = 0.0; |
1179 | grad_stack(TermVarNumber(term),s) = 1.0; |
1180 | res_stack(s) = TermVariable(r, term); |
1181 | break; |
1182 | case e_plus: |
1183 | /* d(u+v) = du + dv */ |
1184 | for( v = 1; v <= num_var; v++ ) { |
1185 | grad_stack(v,s-1)=safe_add_D0(grad_stack(v,s-1),grad_stack(v,s),serr); |
1186 | } |
1187 | res_stack(s-1) = safe_add_D0(res_stack(s-1),res_stack(s),serr); |
1188 | s--; |
1189 | break; |
1190 | case e_minus: |
1191 | /* d(u-v) = du - dv */ |
1192 | for( v = 1; v <= num_var; v++ ) { |
1193 | grad_stack(v,s-1)=safe_sub_D0(grad_stack(v,s-1),grad_stack(v,s),serr); |
1194 | } |
1195 | res_stack(s-1) = safe_sub_D0(res_stack(s-1),res_stack(s),serr); |
1196 | s--; |
1197 | break; |
1198 | case e_times: |
1199 | /* d(u*v) = u*dv + v*du */ |
1200 | for( v = 1; v <= num_var; v++ ) { |
1201 | grad_stack(v,s-1) = |
1202 | safe_add_D0(safe_mul_D0(res_stack(s-1),grad_stack(v,s),serr), |
1203 | safe_mul_D0(res_stack(s),grad_stack(v,s-1),serr), |
1204 | serr); |
1205 | } |
1206 | res_stack(s-1) = safe_mul_D0(res_stack(s-1),res_stack(s),serr); |
1207 | s--; |
1208 | break; |
1209 | case e_divide: |
1210 | /* d(u/v) = du/v - u*dv/(v^2) = (1/v) * [du - (u/v)*dv] */ |
1211 | res_stack(s) = safe_rec(res_stack(s),serr); /* 1/v */ |
1212 | res_stack(s-1) = safe_mul_D0(res_stack(s-1),res_stack(s),serr); /* u/v */ |
1213 | for( v = 1; v <= num_var; v++ ) { |
1214 | grad_stack(v,s-1) = |
1215 | safe_mul_D0(res_stack(s), |
1216 | safe_sub_D0(grad_stack(v,s-1), |
1217 | safe_mul_D0(res_stack(s-1), |
1218 | grad_stack(v,s), |
1219 | serr),serr),serr); |
1220 | } |
1221 | s--; |
1222 | break; |
1223 | case e_uminus: |
1224 | for( v = 1; v <= num_var; v++ ) grad_stack(v,s) = -grad_stack(v,s); |
1225 | res_stack(s) = -res_stack(s); |
1226 | break; |
1227 | case e_power: |
1228 | /* d(u^v) = v * u^(v-1) * du + ln(u) * u^v * dv */ |
1229 | /* v*u^(v-1) */ |
1230 | temp = safe_pow_D1( res_stack(s-1), res_stack(s), 0, serr ); |
1231 | /* ln(u)*u^v */ |
1232 | temp2 = safe_pow_D1( res_stack(s-1), res_stack(s), 1, serr ); |
1233 | /* Compute: [v*u^(v-1)] * [du] + [ln(u)*u^v] * [dv] */ |
1234 | for( v = 1; v <= num_var; v++ ) { |
1235 | grad_stack(v,s-1) = |
1236 | safe_add_D0(safe_mul_D0(temp, grad_stack(v,s-1), serr), |
1237 | safe_mul_D0(temp2, grad_stack(v,s), serr), serr); |
1238 | } |
1239 | /* u^v */ |
1240 | res_stack(s-1) = safe_pow_D0( res_stack(s-1), res_stack(s), serr ); |
1241 | s--; |
1242 | break; |
1243 | case e_ipower: |
1244 | /* d(u^v) = v * u^(v-1) * du + ln(u) * u^v * dv */ |
1245 | /* v*u^(v-1) */ |
1246 | temp = safe_ipow_D1( res_stack(s-1), res_stack(s), 0, serr ); |
1247 | /* ln(u)*u^v */ |
1248 | temp2 = safe_ipow_D1( res_stack(s-1), res_stack(s), 1, serr ); |
1249 | /* Compute: [v*u^(v-1)] * [du] + [ln(u)*u^v] * [dv] */ |
1250 | for( v = 1; v <= num_var; v++ ) { |
1251 | grad_stack(v,s-1) = |
1252 | safe_add_D0(safe_mul_D0(temp, grad_stack(v,s-1), serr), |
1253 | safe_mul_D0(temp2, grad_stack(v,s), serr), serr); |
1254 | } |
1255 | /* Next compute: u^v */ |
1256 | res_stack(s-1) = safe_ipow_D0( res_stack(s-1), res_stack(s), serr ); |
1257 | s--; |
1258 | break; |
1259 | case e_func: |
1260 | fxnptr = TermFunc(term); |
1261 | temp = FuncDerivSafe( fxnptr, res_stack(s), serr); |
1262 | for( v = 1; v <= num_var; v++ ) { |
1263 | grad_stack(v,s) = safe_mul_D0( grad_stack(v,s), temp, serr ); |
1264 | } |
1265 | res_stack(s) = FuncEvalSafe( fxnptr, res_stack(s), serr); |
1266 | break; |
1267 | default: |
1268 | ASC_PANIC("Unknown relation term type"); |
1269 | } |
1270 | } |
1271 | #undef grad_stack |
1272 | #undef res_stack |
1273 | } |
1274 | |
1275 | /** |
1276 | This function evaluates and returns the derivative of the |
1277 | relation r with respect to the variable whose index is pos. |
1278 | This function assumes r exists and that pos is within the proper range. |
1279 | The function computes the gradients by maintaining 2 stacks, one for |
1280 | the residual and one for the derivative. The stacks come from a |
1281 | single array which this gets by calling tmpalloc_array. Two macros |
1282 | are defined to make referencing this array easier. Of the malloc fails, |
1283 | this function returns 0.0, so there is currently no way to know if |
1284 | the function failed. |
1285 | */ |
1286 | static double |
1287 | RelationEvaluateDerivative(CONST struct relation *r, |
1288 | unsigned long pos) |
1289 | { |
1290 | unsigned long t; /* the current term in the relation r */ |
1291 | int lhs; /* looking at left(=1) or right(=0) hand side of r */ |
1292 | double *stacks; /* the memory for the stacks */ |
1293 | unsigned long stack_height; /* height of each stack */ |
1294 | long s = -1; /* the top position in the stacks */ |
1295 | unsigned long length_lhs, length_rhs; |
1296 | CONST struct relation_term *term; |
1297 | CONST struct Func *fxnptr; |
1298 | |
1299 | length_lhs = RelationLength(r, 1); |
1300 | length_rhs = RelationLength(r, 0); |
1301 | if( (length_lhs + length_rhs) == 0 ) { |
1302 | return 0.0; |
1303 | } |
1304 | else { |
1305 | stack_height = 1 + MAX(length_lhs,length_rhs); |
1306 | } |
1307 | |
1308 | /* create the stacks */ |
1309 | stacks = tmpalloc_array((2*stack_height),double); |
1310 | if( stacks == NULL ) return 0.0; |
1311 | |
1312 | #define res_stack(s) stacks[(s)] |
1313 | #define grad_stack(s) stacks[stack_height+(s)] |
1314 | |
1315 | lhs = 1; |
1316 | t = 0; |
1317 | while(1) { |
1318 | if( lhs && (t >= length_lhs) ) { |
1319 | /* need to switch to the right hand side--if it exists */ |
1320 | if( length_rhs ) { |
1321 | lhs = t = 0; |
1322 | } |
1323 | else { |
1324 | /* do not need to check for s>=0, since we know that |
1325 | * (length_lhs+length_rhs>0) and that (length_rhs==0), the |
1326 | * length_lhs must be > 0, thus s>=0 |
1327 | */ |
1328 | return grad_stack(s); |
1329 | } |
1330 | } |
1331 | else if( (!lhs) && (t >= length_rhs) ) { |
1332 | /* we have processed both sides, quit */ |
1333 | if( length_lhs ) { |
1334 | /* we know length_lhs and length_rhs are both > 0, since if |
1335 | * length_rhs == 0, we would have exited above. |
1336 | */ |
1337 | return (grad_stack(s-1) - grad_stack(s)); |
1338 | } |
1339 | else { |
1340 | /* do not need to check for s>=0, since we know that |
1341 | * (length_lhs+length_rhs>0) and that (length_lhs==0), the |
1342 | * length_rhs must be > 0, thus s>=0 |
1343 | */ |
1344 | return (-1.0 * grad_stack(s)); |
1345 | } |
1346 | } |
1347 | |
1348 | term = NewRelationTerm(r, t++, lhs); |
1349 | switch( RelationTermType(term) ) { |
1350 | case e_zero: |
1351 | s++; |
1352 | grad_stack(s) = res_stack(s) = 0.0; |
1353 | break; |
1354 | case e_real: |
1355 | s++; |
1356 | grad_stack(s) = 0.0; |
1357 | res_stack(s) = TermReal(term); |
1358 | break; |
1359 | case e_int: |
1360 | s++; |
1361 | grad_stack(s) = 0.0; |
1362 | res_stack(s) = TermInteger(term); |
1363 | break; |
1364 | case e_var: |
1365 | s++; |
1366 | grad_stack(s) = ( (pos == TermVarNumber(term)) ? 1.0 : 0.0 ); |
1367 | res_stack(s) = TermVariable(r, term); |
1368 | break; |
1369 | case e_plus: |
1370 | /* d(u+v) = du + dv */ |
1371 | grad_stack(s-1) += grad_stack(s); |
1372 | res_stack(s-1) += res_stack(s); |
1373 | s--; |
1374 | break; |
1375 | case e_minus: |
1376 | /* d(u-v) = du - dv */ |
1377 | grad_stack(s-1) -= grad_stack(s); |
1378 | res_stack(s-1) -= res_stack(s); |
1379 | s--; |
1380 | break; |
1381 | case e_times: |
1382 | /* d(u*v) = u*dv + v*du */ |
1383 | grad_stack(s-1) = ((res_stack(s-1) * grad_stack(s)) + |
1384 | (res_stack(s) * grad_stack(s-1))); |
1385 | res_stack(s-1) *= res_stack(s); |
1386 | s--; |
1387 | break; |
1388 | case e_divide: |
1389 | /* d(u/v) = du/v - u*dv/(v^2) = [du - (u/v)*dv]/v */ |
1390 | res_stack(s-1) = res_stack(s-1) / res_stack(s); |
1391 | grad_stack(s-1) = ((grad_stack(s-1) - (res_stack(s-1) * grad_stack(s))) / |
1392 | res_stack(s)); |
1393 | s--; |
1394 | break; |
1395 | case e_uminus: |
1396 | grad_stack(s) = -grad_stack(s); |
1397 | res_stack(s) = -res_stack(s); |
1398 | break; |
1399 | case e_power: |
1400 | /* d(u^v) = v * u^(v-1) * du + ln(u) * u^v * dv */ |
1401 | /* First we compute: v*u^(v-1)*du */ |
1402 | grad_stack(s-1) *= (pow(res_stack(s-1), (res_stack(s) - 1.0)) * |
1403 | res_stack(s)); |
1404 | /* Now compute: ln(u)*dv */ |
1405 | grad_stack(s) *= FuncEval( LookupFuncById(F_LN), res_stack(s-1) ); |
1406 | /* Next compute: u^v */ |
1407 | res_stack(s-1) = pow( res_stack(s-1), res_stack(s) ); |
1408 | /* Finally, compute: [v*u^(v-1)*du] + [u^v] * [ln(u)*dv] */ |
1409 | grad_stack(s-1) += (res_stack(s-1) * grad_stack(s)); |
1410 | s--; |
1411 | break; |
1412 | case e_ipower: |
1413 | /* d(x^y) = y * dx * x^(y-1) + ln(x) * dy * x^y */ |
1414 | /* First we compute: v*u^(v-1)*du */ |
1415 | grad_stack(s-1) *= asc_d1ipow( res_stack(s-1), ((int)res_stack(s)) ); |
1416 | /* Now compute: ln(u)*dv */ |
1417 | grad_stack(s) *= FuncEval( LookupFuncById(F_LN), res_stack(s-1) ); |
1418 | /* Next compute: u^v */ |
1419 | res_stack(s-1) = asc_ipow( res_stack(s-1), ((int)res_stack(s)) ); |
1420 | /* Finally, compute: [v*u^(v-1)*du] + [u^v] * [ln(u)*dv] */ |
1421 | grad_stack(s-1) += (res_stack(s-1) * grad_stack(s)); |
1422 | s--; |
1423 | break; |
1424 | case e_func: |
1425 | fxnptr = TermFunc(term); |
1426 | grad_stack(s) *= FuncDeriv( fxnptr, res_stack(s) ); |
1427 | res_stack(s) = FuncEval( fxnptr, res_stack(s) ); |
1428 | break; |
1429 | default: |
1430 | ASC_PANIC("Unknown relation term type"); |
1431 | break; |
1432 | } |
1433 | } |
1434 | #undef grad_stack |
1435 | #undef res_stack |
1436 | } |
1437 | |
1438 | static double |
1439 | RelationEvaluateDerivativeSafe(CONST struct relation *r, |
1440 | unsigned long pos, |
1441 | enum safe_err *serr) |
1442 | { |
1443 | unsigned long t; /* the current term in the relation r */ |
1444 | int lhs; /* looking at left(=1) or right(=0) hand side of r */ |
1445 | double *stacks; /* the memory for the stacks */ |
1446 | unsigned long stack_height; /* height of each stack */ |
1447 | long s = -1; /* the top position in the stacks */ |
1448 | unsigned long length_lhs, length_rhs; |
1449 | CONST struct relation_term *term; |
1450 | CONST struct Func *fxnptr; |
1451 | |
1452 | length_lhs = RelationLength(r, 1); |
1453 | length_rhs = RelationLength(r, 0); |
1454 | if( (length_lhs + length_rhs) == 0 ) { |
1455 | return 0.0; |
1456 | } |
1457 | else { |
1458 | stack_height = 1 + MAX(length_lhs,length_rhs); |
1459 | } |
1460 | |
1461 | /* create the stacks */ |
1462 | stacks = tmpalloc_array((2*stack_height),double); |
1463 | if( stacks == NULL ) return 0.0; |
1464 | |
1465 | #define res_stack(s) stacks[(s)] |
1466 | #define grad_stack(s) stacks[stack_height+(s)] |
1467 | |
1468 | lhs = 1; |
1469 | t = 0; |
1470 | while(1) { |
1471 | if( lhs && (t >= length_lhs) ) { |
1472 | /* need to switch to the right hand side--if it exists */ |
1473 | if( length_rhs ) { |
1474 | lhs = t = 0; |
1475 | } |
1476 | else { |
1477 | /* do not need to check for s>=0, since we know that |
1478 | * (length_lhs+length_rhs>0) and that (length_rhs==0), the |
1479 | * length_lhs must be > 0, thus s>=0 |
1480 | */ |
1481 | return grad_stack(s); |
1482 | } |
1483 | } |
1484 | else if( (!lhs) && (t >= length_rhs) ) { |
1485 | /* we have processed both sides, quit */ |
1486 | if( length_lhs ) { |
1487 | /* we know length_lhs and length_rhs are both > 0, since if |
1488 | * length_rhs == 0, we would have exited above. |
1489 | */ |
1490 | return safe_sub_D0(grad_stack(s-1), grad_stack(s), serr); |
1491 | } |
1492 | else { |
1493 | /* do not need to check for s>=0, since we know that |
1494 | * (length_lhs+length_rhs>0) and that (length_lhs==0), the |
1495 | * length_rhs must be > 0, thus s>=0 |
1496 | */ |
1497 | return (-grad_stack(s)); |
1498 | } |
1499 | } |
1500 | |
1501 | term = NewRelationTerm(r, t++, lhs); |
1502 | switch( RelationTermType(term) ) { |
1503 | case e_zero: |
1504 | s++; |
1505 | grad_stack(s) = res_stack(s) = 0.0; |
1506 | break; |
1507 | case e_real: |
1508 | s++; |
1509 | grad_stack(s) = 0.0; |
1510 | res_stack(s) = TermReal(term); |
1511 | break; |
1512 | case e_int: |
1513 | s++; |
1514 | grad_stack(s) = 0.0; |
1515 | res_stack(s) = TermInteger(term); |
1516 | break; |
1517 | case e_var: |
1518 | s++; |
1519 | grad_stack(s) = ( (pos == TermVarNumber(term)) ? 1.0 : 0.0 ); |
1520 | res_stack(s) = TermVariable(r, term); |
1521 | break; |
1522 | case e_plus: |
1523 | /* d(u+v) = du + dv */ |
1524 | grad_stack(s-1) = safe_add_D0( grad_stack(s-1), grad_stack(s), serr ); |
1525 | res_stack(s-1) = safe_add_D0( res_stack(s-1), res_stack(s), serr ); |
1526 | s--; |
1527 | break; |
1528 | case e_minus: |
1529 | /* d(u-v) = du - dv */ |
1530 | grad_stack(s-1) = safe_sub_D0( grad_stack(s-1), grad_stack(s), serr ); |
1531 | res_stack(s-1) = safe_sub_D0( res_stack(s-1), res_stack(s), serr ); |
1532 | s--; |
1533 | break; |
1534 | case e_times: |
1535 | /* d(u*v) = u*dv + v*du */ |
1536 | grad_stack(s-1) = |
1537 | safe_add_D0(safe_mul_D0( res_stack(s-1), grad_stack(s), serr), |
1538 | safe_mul_D0( res_stack(s), grad_stack(s-1), serr), serr); |
1539 | res_stack(s-1) = safe_mul_D0( res_stack(s-1), res_stack(s), serr ); |
1540 | s--; |
1541 | break; |
1542 | case e_divide: |
1543 | /* d(u/v) = du/v - u*dv/(v^2) = [du - (u/v)*dv]/v */ |
1544 | res_stack(s-1) = safe_div_D0( res_stack(s-1), res_stack(s), serr); |
1545 | grad_stack(s-1) = |
1546 | safe_div_D0(safe_sub_D0(grad_stack(s-1), |
1547 | safe_mul_D0(res_stack(s-1),grad_stack(s),serr), |
1548 | serr), |
1549 | res_stack(s),serr); |
1550 | s--; |
1551 | break; |
1552 | case e_uminus: |
1553 | grad_stack(s) = -grad_stack(s); |
1554 | res_stack(s) = -res_stack(s); |
1555 | break; |
1556 | case e_power: |
1557 | /* d(u^v) = v * u^(v-1) * du + ln(u) * u^v * dv */ |
1558 | grad_stack(s-1) = |
1559 | safe_add_D0(safe_mul_D0(safe_pow_D1(res_stack(s-1), |
1560 | res_stack(s),0,serr), |
1561 | grad_stack(s-1), serr), |
1562 | safe_mul_D0(safe_pow_D1(res_stack(s-1), |
1563 | res_stack(s),1,serr), |
1564 | grad_stack(s),serr), serr); |
1565 | /* u^v */ |
1566 | res_stack(s-1) = safe_pow_D0( res_stack(s-1), res_stack(s), serr); |
1567 | s--; |
1568 | break; |
1569 | case e_ipower: |
1570 | /* d(x^y) = y * dx * x^(y-1) + ln(x) * dy * x^y */ |
1571 | grad_stack(s-1) = |
1572 | safe_add_D0(safe_mul_D0(safe_ipow_D1(res_stack(s-1), |
1573 | res_stack(s),0,serr), |
1574 | grad_stack(s-1), serr), |
1575 | safe_mul_D0(safe_ipow_D1(res_stack(s-1), |
1576 | res_stack(s),1,serr), |
1577 | grad_stack(s),serr), serr); |
1578 | /* u^v */ |
1579 | res_stack(s-1) = safe_ipow_D0( res_stack(s-1), res_stack(s), serr); |
1580 | s--; |
1581 | break; |
1582 | case e_func: |
1583 | fxnptr = TermFunc(term); |
1584 | grad_stack(s) = safe_mul_D0(FuncDerivSafe( fxnptr, res_stack(s), serr ), |
1585 | grad_stack(s), serr); |
1586 | res_stack(s) = FuncEvalSafe( fxnptr, res_stack(s), serr); |
1587 | break; |
1588 | default: |
1589 | ASC_PANIC("Unknown relation term type"); |
1590 | } |
1591 | } |
1592 | #undef grad_stack |
1593 | #undef res_stack |
1594 | } |
1595 | |
1596 | /*------------------------------------------------------------------------------ |
1597 | RELATION & RELATION TERM QUERIES FUNCTIONS (FOR USE BY EXTERNAL CODE) |
1598 | */ |
1599 | |
1600 | /** |
1601 | @return =, <, >, etc, etc. not e_token, e_glassbox, etc |
1602 | */ |
1603 | enum Expr_enum RelationRelop(CONST struct relation *rel) |
1604 | { |
1605 | AssertAllocatedMemory(rel,sizeof(struct relation)); |
1606 | return rel->share->s.relop; |
1607 | } |
1608 | |
1609 | /** |
1610 | This query only applies to TokenRelations and OpcodeRelations. |
1611 | */ |
1612 | unsigned long RelationLength(CONST struct relation *rel, int lhs){ |
1613 | assert(rel!=NULL); |
1614 | AssertAllocatedMemory(rel,sizeof(struct relation)); |
1615 | if(lhs){ |
1616 | if(RTOKEN(rel).lhs){ |
1617 | asc_assert(RTOKEN(rel).lhs_len >= 0); |
1618 | return RTOKEN(rel).lhs_len; |
1619 | } |
1620 | return 0; |
1621 | } |
1622 | if(RTOKEN(rel).rhs){ |
1623 | asc_assert(RTOKEN(rel).rhs_len >= 0); |
1624 | return RTOKEN(rel).rhs_len; |
1625 | } |
1626 | return 0; |
1627 | } |
1628 | |
1629 | struct gl_list_t *RelationBlackBoxArgNames(CONST struct relation *rel) |
1630 | { |
1631 | assert(rel!=NULL); |
1632 | return RelationBlackBoxCache(rel)->argListNames; |
1633 | } |
1634 | |
1635 | struct Name *RelationBlackBoxDataName(CONST struct relation *rel) |
1636 | { |
1637 | assert(rel!=NULL); |
1638 | return RelationBlackBoxCache(rel)->dataName; |
1639 | } |
1640 | |
1641 | struct BlackBoxCache * RelationBlackBoxCache(CONST struct relation *rel) |
1642 | { |
1643 | assert(rel!=NULL); |
1644 | AssertAllocatedMemory(rel,sizeof(struct relation)); |
1645 | return ((struct BlackBoxData *) (rel->externalData))->common; |
1646 | } |
1647 | |
1648 | struct BlackBoxData * RelationBlackBoxData(CONST struct relation *rel) |
1649 | { |
1650 | assert(rel!=NULL); |
1651 | AssertAllocatedMemory(rel,sizeof(struct relation)); |
1652 | return (struct BlackBoxData *) rel->externalData; |
1653 | } |
1654 | |
1655 | /* |
1656 | This query only applies to TokenRelations. It assumes the |
1657 | user still thinks tokens number from [1..len]. |
1658 | */ |
1659 | CONST struct relation_term *RelationTerm(CONST struct relation *rel, |
1660 | unsigned long int pos, int lhs) |
1661 | { |
1662 | assert(rel!=NULL); |
1663 | AssertAllocatedMemory(rel,sizeof(struct relation)); |
1664 | if (lhs){ |
1665 | if (RTOKEN(rel).lhs) |
1666 | return A_TERM(&(RTOKEN(rel).lhs[pos-1])); |
1667 | else return NULL; |
1668 | } |
1669 | else{ |
1670 | if (RTOKEN(rel).rhs) |
1671 | return A_TERM(&(RTOKEN(rel).rhs[pos-1])); |
1672 | else return NULL; |
1673 | } |
1674 | } |
1675 | |
1676 | /** |
1677 | This query only applies to TokenRelations. It assumes the |
1678 | clued user thinks tokens number from [0..len-1], which they do. |
1679 | */ |
1680 | CONST struct relation_term |
1681 | *NewRelationTermF(CONST struct relation *rel, unsigned long pos, int lhs) |
1682 | { |
1683 | assert(rel!=NULL); |
1684 | AssertAllocatedMemory(rel,sizeof(struct relation)); |
1685 | if (lhs){ |
1686 | if (RTOKEN(rel).lhs != NULL) |
1687 | return A_TERM(&(RTOKEN(rel).lhs[pos])); |
1688 | else return NULL; |
1689 | }else{ |
1690 | if (RTOKEN(rel).rhs != NULL) |
1691 | return A_TERM(&(RTOKEN(rel).rhs[pos])); |
1692 | else return NULL; |
1693 | } |
1694 | } |
1695 | |
1696 | /** |
1697 | This query only applies to sides from TokenRelations. It assumes the |
1698 | clued user thinks tokens number from [0..len-1], which they do, |
1699 | and that the side came from a token relation instance. |
1700 | */ |
1701 | CONST struct relation_term |
1702 | *RelationSideTermF(CONST union RelationTermUnion *side, unsigned long pos) |
1703 | { |
1704 | assert(side!=NULL); |
1705 | return A_TERM(&(side[pos])); |
1706 | } |
1707 | |
1708 | /** |
1709 | This query only applies to TokenRelations. It assumes the |
1710 | clued user thinks tokens number from [0..len-1], which they do. |
1711 | */ |
1712 | enum Expr_enum RelationTermTypeF(CONST struct relation_term *term) |
1713 | { |
1714 | AssertMemory(term); |
1715 | return term->t; |
1716 | } |
1717 | |
1718 | unsigned long TermVarNumber(CONST struct relation_term *term) |
1719 | { |
1720 | assert(term&&term->t == e_var); |
1721 | AssertMemory(term); |
1722 | return V_TERM(term)->varnum; |
1723 | } |
1724 | |
1725 | long TermInteger(CONST struct relation_term *term){ |
1726 | assert(term&&(term->t==e_int)); |
1727 | AssertMemory(term); |
1728 | return I_TERM(term)->ivalue; |
1729 | } |
1730 | |
1731 | double TermReal(CONST struct relation_term *term){ |
1732 | assert(term&&( term->t==e_real || term->t==e_zero)); |
1733 | AssertMemory(term); |
1734 | return R_TERM(term)->value; |
1735 | } |
1736 | |
1737 | double |
1738 | TermVariable(CONST struct relation *rel, CONST struct relation_term *term){ |
1739 | return |
1740 | RealAtomValue((struct Instance*)RelationVariable(rel,TermVarNumber(term))); |
1741 | } |
1742 | |
1743 | CONST dim_type *TermDimensions(CONST struct relation_term *term){ |
1744 | assert( term && (term->t==e_real || term->t == e_int || term->t == e_zero) ); |
1745 | AssertMemory(term); |
1746 | if (term->t==e_real) return R_TERM(term)->dimensions; |
1747 | if (term->t==e_int) return Dimensionless(); |
1748 | if (term->t==e_zero) return WildDimension(); |
1749 | return NULL; |
1750 | } |
1751 | |
1752 | CONST struct Func *TermFunc(CONST struct relation_term *term){ |
1753 | assert(term&&(term->t == e_func)); |
1754 | AssertMemory(term); |
1755 | return F_TERM(term)->fptr; |
1756 | } |
1757 | |
1758 | struct relation_term *RelationINF_Lhs(CONST struct relation *rel){ |
1759 | return RTOKEN(rel).lhs_term; |
1760 | } |
1761 | |
1762 | struct relation_term *RelationINF_Rhs(CONST struct relation *rel){ |
1763 | return RTOKEN(rel).rhs_term; |
1764 | } |
1765 | |
1766 | struct ExternalFunc *RelationBlackBoxExtFunc(CONST struct relation *rel) |
1767 | { |
1768 | assert(rel!=NULL); |
1769 | return RelationBlackBoxCache(rel)->efunc; |
1770 | } |
1771 | |
1772 | /*------------------------------------------------------------------------------ |
1773 | GLASSBOX RELATION QUERIES |
1774 | |
1775 | For picking apart a GlassBox relation. |
1776 | */ |
1777 | |
1778 | struct ExternalFunc *RelationGlassBoxExtFunc(CONST struct relation *rel){ |
1779 | assert(rel!=NULL); |
1780 | return RGBOX(rel).efunc; |
1781 | } |
1782 | |
1783 | int GlassBoxRelIndex(CONST struct relation *rel){ |
1784 | assert(rel!=NULL); |
1785 | return RGBOX(rel).index; |
1786 | } |
1787 | |
1788 | int *GlassBoxArgs(CONST struct relation *rel){ |
1789 | assert(rel!=NULL); |
1790 | return RGBOX(rel).args; |
1791 | } |
1792 | |
1793 | |
1794 | /*------------------------------------------------------------------------------ |
1795 | GENERAL RELATION QUERIES |
1796 | |
1797 | Not all of these queries may be applied to all relation types. |
1798 | Those that cannot be are so marked. |
1799 | */ |
1800 | |
1801 | CONST struct gl_list_t *RelationVarList(CONST struct relation *rel){ |
1802 | return (CONST struct gl_list_t *)rel->vars; |
1803 | } |
1804 | |
1805 | dim_type *RelationDim(CONST struct relation *rel){ |
1806 | assert(rel!=NULL); |
1807 | return rel->d; |
1808 | } |
1809 | |
1810 | int SetRelationDim(struct relation *rel, CONST dim_type *d) |
1811 | { |
1812 | if (!rel) return 1; |
1813 | rel->d = (dim_type*)d; |
1814 | return 0; |
1815 | } |
1816 | |
1817 | double RelationResidual(CONST struct relation *rel){ |
1818 | assert(rel!=NULL); |
1819 | return rel->residual; |
1820 | } |
1821 | |
1822 | void SetRelationResidual(struct relation *rel, double value){ |
1823 | assert(rel!=NULL); |
1824 | rel->residual = value; |
1825 | } |
1826 | |
1827 | double RelationMultiplier(CONST struct relation *rel){ |
1828 | assert(rel!=NULL); |
1829 | return rel->multiplier; |
1830 | } |
1831 | |
1832 | void SetRelationMultiplier(struct relation *rel, double value){ |
1833 | assert(rel!=NULL); |
1834 | rel->multiplier = value; |
1835 | } |
1836 | |
1837 | double RelationNominal(CONST struct relation *rel){ |
1838 | assert(rel!=NULL); |
1839 | return rel->nominal; |
1840 | } |
1841 | |
1842 | void SetRelationNominal(struct relation *rel, double value){ |
1843 | assert(rel!=NULL); |
1844 | rel->nominal = (fabs(value) > 0.0) ? fabs(value) : rel->nominal; |
1845 | } |
1846 | |
1847 | |
1848 | int RelationIsCond(CONST struct relation *rel){ |
1849 | if ( rel != NULL) { |
1850 | return rel->iscond; |
1851 | } |
1852 | return 0; |
1853 | } |
1854 | |
1855 | void SetRelationIsCond(struct relation *rel){ |
1856 | if ( rel != NULL) { |
1857 | rel->iscond = 1; |
1858 | }else{ |
1859 | ERROR_REPORTER_HERE(ASC_PROG_ERR,"NULL relation"); |
1860 | } |
1861 | } |
1862 | |
1863 | unsigned long NumberVariables(CONST struct relation *rel) |
1864 | { |
1865 | unsigned long n; |
1866 | assert(rel!=NULL); |
1867 | n = (rel->vars!=NULL) ? gl_length(rel->vars) : 0; |
1868 | return n; |
1869 | } |
1870 | |
1871 | struct Instance *RelationVariable(CONST struct relation *rel, |
1872 | unsigned long int varnum |
1873 | ){ |
1874 | assert(rel!=NULL); |
1875 | return (struct Instance *)gl_fetch(rel->vars,varnum); |
1876 | } |
1877 | |
1878 | static void CalcDepth(CONST struct relation *rel, |
1879 | int lhs, |
1880 | unsigned long int *depth, |
1881 | unsigned long int *maxdepth |
1882 | ){ |
1883 | unsigned long c,length; |
1884 | CONST struct relation_term *term; |
1885 | length = RelationLength(rel,lhs); |
1886 | for(c=0;c<length;c++){ |
1887 | term = NewRelationTerm(rel,c,lhs); |
1888 | switch(RelationTermType(term)){ |
1889 | case e_zero: |
1890 | case e_int: |
1891 | case e_real: |
1892 | case e_var: |
1893 | if (++(*depth) > *maxdepth) *maxdepth = *depth; |
1894 | break; |
1895 | case e_func: |
1896 | case e_uminus: |
1897 | break; |
1898 | case e_plus: |
1899 | case e_minus: |
1900 | case e_times: |
1901 | case e_divide: |
1902 | case e_power: |
1903 | case e_ipower: |
1904 | (*depth)--; |
1905 | break; |
1906 | default: |
1907 | ASC_PANIC("Unknown relation term type"); |
1908 | } |
1909 | } |
1910 | } |
1911 | |
1912 | unsigned long RelationDepth(CONST struct relation *rel){ |
1913 | unsigned long depth=0,maxdepth=0; |
1914 | switch(RelationRelop(rel)){ |
1915 | case e_equal: |
1916 | case e_notequal: |
1917 | case e_less: |
1918 | case e_greater: |
1919 | case e_lesseq: |
1920 | case e_greatereq: |
1921 | CalcDepth(rel,1,&depth,&maxdepth); |
1922 | CalcDepth(rel,0,&depth,&maxdepth); |
1923 | assert(depth == 2); |
1924 | break; |
1925 | case e_maximize: |
1926 | case e_minimize: |
1927 | CalcDepth(rel,1,&depth,&maxdepth); |
1928 | assert(depth == 1); |
1929 | break; |
1930 | default: |
1931 | ASC_PANIC("Unknown relation term type"); |
1932 | } |
1933 | return maxdepth; |
1934 | } |
1935 | |
1936 | /*------------------------------------------------------------------------------ |
1937 | EQUATION SCALING |
1938 | |
1939 | "Documentation will be added at a later date" -- someone last century |
1940 | */ |
1941 | |
1942 | static double FindMaxAdditiveTerm(struct relation_term *s){ |
1943 | enum safe_err serr; |
1944 | double lhs, rhs; |
1945 | |
1946 | switch (RelationTermType(s)) { |
1947 | case e_plus: |
1948 | case e_minus: |
1949 | /** note these used to be inlined with max, but a bug in gcc323 caused it to be split out. */ |
1950 | lhs = FindMaxAdditiveTerm(TermBinLeft(s)); |
1951 | rhs = FindMaxAdditiveTerm(TermBinRight(s)); |
1952 | return MAX(fabs(lhs), fabs(rhs)); |
1953 | case e_uminus: |
1954 | return (FindMaxAdditiveTerm(TermUniLeft(s))); |
1955 | case e_times: |
1956 | return (FindMaxAdditiveTerm(TermBinLeft(s))* |
1957 | FindMaxAdditiveTerm(TermBinRight(s))); |
1958 | case e_divide: |
1959 | /* bug patch / 0 */ |
1960 | return safe_div_D0(FindMaxAdditiveTerm(TermBinLeft(s)) , |
1961 | RelationBranchEvaluator(TermBinRight(s)),&serr); |
1962 | default: |
1963 | return RelationBranchEvaluator(s); |
1964 | } |
1965 | } |
1966 | |
1967 | static double FindMaxFromTop(struct relation *s){ |
1968 | double lhs; |
1969 | double rhs; |
1970 | if (s == NULL) { |
1971 | return 0; |
1972 | } |
1973 | /** note these used to be inlined with max, but a bug in gcc323 caused it to be split out. */ |
1974 | lhs = FindMaxAdditiveTerm(Infix_LhsSide(s)); |
1975 | rhs = FindMaxAdditiveTerm(Infix_RhsSide(s)); |
1976 | return MAX(fabs(lhs), fabs(rhs)); |
1977 | } |
1978 | |
1979 | /* send in relation */ |
1980 | double CalcRelationNominal(struct Instance *i){ |
1981 | enum Expr_enum reltype; |
1982 | struct Instance *c , *p; |
1983 | symchar *nomname; |
1984 | |
1985 | char *iname; |
1986 | iname = WriteInstanceNameString(i,NULL); |
1987 | ascfree(iname); |
1988 | |
1989 | glob_rel = NULL; |
1990 | if (i == NULL){ |
1991 | FPRINTF(ASCERR, "error in CalcRelationNominal routine\n"); |
1992 | return (double)0; |
1993 | } |
1994 | if (InstanceKind(i) != REL_INST) { |
1995 | FPRINTF(ASCERR, "error in CalcRelationNominal routine\n"); |
1996 | return (double)0; |
1997 | } |
1998 | glob_rel = (struct relation *)GetInstanceRelation(i,&reltype); |
1999 | if (glob_rel == NULL) { |
2000 | FPRINTF(ASCERR, "error in CalcRelationNominal routine\n"); |
2001 | return (double)0; |
2002 | } |
2003 | |
2004 | if (reltype == e_token) { |
2005 | double temp; |
2006 | temp = FindMaxFromTop(glob_rel); |
2007 | if (asc_isnan(temp) || !asc_finite(temp)) { |
2008 | glob_rel = NULL; |
2009 | return (double)1; |
2010 | } |
2011 | if ( temp > 0) { /* this could return some really small numbers */ |
2012 | glob_rel = NULL; |
2013 | return temp; |
2014 | } |
2015 | } |
2016 | if (reltype == e_blackbox){ |
2017 | p = BlackBoxGetOutputVar(glob_rel); |
2018 | nomname = AddSymbolL("nominal",7); |
2019 | glob_rel = NULL; |
2020 | c = ChildByChar(p,nomname); |
2021 | if (c == NULL) { |
2022 | ERROR_REPORTER_HERE(ASC_PROG_ERR,"nominal missing from standard var definition (assuming 1.0) (%s)",__FUNCTION__); |
2023 | return 1.0; |
2024 | } else { |
2025 | return( RealAtomValue(c) ); |
2026 | } |
2027 | } |
2028 | if (reltype == e_glassbox){ |
2029 | p = BlackBoxGetOutputVar(glob_rel); |
2030 | nomname = AddSymbolL("nominal",7); |
2031 | glob_rel = NULL; |
2032 | c = ChildByChar(p,nomname); |
2033 | if (c == NULL) { |
2034 | ERROR_REPORTER_HERE(ASC_PROG_ERR,"nominal missing from standard var definition (assuming 1.0) (%s)",__FUNCTION__); |
2035 | return 1.0; |
2036 | } else { |
2037 | return( RealAtomValue(c) ); |
2038 | } |
2039 | } |
2040 | if (reltype == e_opcode){ |
2041 | ERROR_REPORTER_HERE(ASC_PROG_ERR,"opcode not supported (%s)",__FUNCTION__); |
2042 | } |
2043 | glob_rel = NULL; |
2044 | return (double)1; |
2045 | } |
2046 | |
2047 | void PrintScale(struct Instance *i){ |
2048 | if (InstanceKind(i) == REL_INST) { |
2049 | double j; |
2050 | j = CalcRelationNominal(i); |
2051 | PRINTF(" scale constant = %g\n", j); |
2052 | } |
2053 | } |
2054 | |
2055 | void PrintRelationNominals(struct Instance *i){ |
2056 | VisitInstanceTree(i,PrintScale, 0, 0); |
2057 | } |
2058 | |
2059 | /*------------------------------------------------------------------------------ |
2060 | CALCULATION ROUTINES |
2061 | */ |
2062 | |
2063 | /** |
2064 | * Load ATOM values into an array of doubles. |
2065 | * The array of doubles is indexed from 0 while the |
2066 | * var list is indexed from 1. The ultimate client of |
2067 | * the array calling this function thinks vars index from 0. |
2068 | */ |
2069 | static |
2070 | void RelationLoadDoubles(struct gl_list_t *varlist, double *vars){ |
2071 | unsigned long c; |
2072 | vars--; /* back up the pointer so indexing from 1 puts data right */ |
2073 | for (c= gl_length(varlist); c > 0; c--) { |
2074 | vars[c] = RealAtomValue((struct Instance *)gl_fetch(varlist,c)); |
2075 | } |
2076 | } |
2077 | |
2078 | /** |
2079 | only called on token relations. |
2080 | */ |
2081 | int RelationCalcResidualBinary(CONST struct relation *r, double *res){ |
2082 | double *vars; |
2083 | double tres; |
2084 | int old_errno; |
2085 | |
2086 | if (r == NULL || res == NULL) { |
2087 | return 1; |
2088 | } |
2089 | vars = tmpalloc_array(gl_length(r->vars),double); |
2090 | if (vars == NULL) { |
2091 | return 1; |
2092 | } |
2093 | RelationLoadDoubles(r->vars,vars); |
2094 | old_errno = errno; /* push C global errno */ |
2095 | errno = 0; |
2096 | if (BinTokenCalcResidual(RTOKEN(r).btable,RTOKEN(r).bindex,vars,&tres)) { |
2097 | if (errno == 0) { /* pop if unchanged */ |
2098 | errno = old_errno; |
2099 | } |
2100 | return 1; |
2101 | } |
2102 | if (!asc_finite(tres) || errno == EDOM || errno == ERANGE ) { |
2103 | if (errno == 0) { /* pop if unchanged */ |
2104 | errno = old_errno; |
2105 | } |
2106 | return 1; |
2107 | } |
2108 | if (errno == 0) { /* pop if unchanged */ |
2109 | errno = old_errno; |
2110 | } |
2111 | *res = tres; |
2112 | return 0; |
2113 | } |
2114 | |
2115 | enum safe_err |
2116 | RelationCalcResidualPostfixSafe(struct Instance *i, double *res){ |
2117 | struct relation *r; |
2118 | enum Expr_enum reltype; |
2119 | enum safe_err status = safe_ok; |
2120 | unsigned long length_lhs, length_rhs; |
2121 | |
2122 | CHECK_INST_RES(i,res,1); |
2123 | |
2124 | r = (struct relation *)GetInstanceRelation(i, &reltype); |
2125 | |
2126 | if( r == NULL ) { |
2127 | ERROR_REPORTER_HERE(ASC_PROG_ERR,"null relation"); |
2128 | return safe_problem; |
2129 | } |
2130 | |
2131 | switch(reltype){ |
2132 | case e_token: |
2133 | length_lhs = RelationLength(r, 1); |
2134 | length_rhs = RelationLength(r, 0); |
2135 | |
2136 | if(length_lhs){ |
2137 | length_lhs--; |
2138 | *res = RelationEvaluatePostfixBranchSafe(r, &length_lhs, 1,&status); |
2139 | }else{ |
2140 | *res = 0.0; |
2141 | } |
2142 | |
2143 | if(length_rhs){ |
2144 | length_rhs--; |
2145 | *res -= RelationEvaluatePostfixBranchSafe(r, &length_rhs, 0,&status); |
2146 | } |
2147 | |
2148 | safe_error_to_stderr(&status); |
2149 | break; |
2150 | case e_blackbox: |
2151 | if ( RelationCalcResidualPostfix(i,res) != 0) { |
2152 | CONSOLE_DEBUG("Problem evalutating Blackbox residual"); |
2153 | status = safe_problem; |
2154 | safe_error_to_stderr(&status); |
2155 | } |
2156 | break; |
2157 | case e_glassbox: |
2158 | ERROR_REPORTER_HERE(ASC_PROG_ERR,"'e_glassbox' relation not supported"); |
2159 | status = safe_problem; |
2160 | break; |
2161 | case e_opcode: |
2162 | ERROR_REPORTER_HERE(ASC_PROG_ERR,"'e_opcode' relation not supported"); |
2163 | status = safe_problem; |
2164 | break; |
2165 | default: |
2166 | if(reltype >= TOK_REL_TYPE_LOW && reltype <= TOK_REL_TYPE_HIGH){ |
2167 | status = safe_problem; |
2168 | }else{ |
2169 | ASC_PANIC("Reached end of routine!"); |
2170 | } |
2171 | } |
2172 | return status; |
2173 | } |
2174 | |
2175 | /* return 0 on success */ |
2176 | int |
2177 | RelationCalcResidualPostfix(struct Instance *i, double *res){ |
2178 | struct relation *r; |
2179 | enum Expr_enum reltype; |
2180 | unsigned long length_lhs, length_rhs; |
2181 | |
2182 | CHECK_INST_RES(i,res,1); |
2183 | |
2184 | r = (struct relation *)GetInstanceRelation(i, &reltype); |
2185 | if(r == NULL){ |
2186 | ERROR_REPORTER_HERE(ASC_PROG_ERR,"null relation\n"); |
2187 | return 1; |
2188 | } |
2189 | |
2190 | /* |
2191 | struct Instance *p; |
2192 | p = InstanceParent(i,1); |
2193 | char *tmp; |
2194 | tmp = WriteRelationString(i,p,NULL,NULL,relio_ascend,NULL); |
2195 | CONSOLE_DEBUG("Evaluating residual for '%s'",tmp); |
2196 | ASC_FREE(tmp); |
2197 | */ |
2198 | |
2199 | switch(reltype){ |
2200 | case e_token: |
2201 | length_lhs = RelationLength(r, 1); |
2202 | length_rhs = RelationLength(r, 0); |
2203 | if(length_lhs > 0){ |
2204 | length_lhs--; |
2205 | *res = RelationEvaluatePostfixBranch(r, &length_lhs, 1); |
2206 | }else{ |
2207 | *res = 0.0; |
2208 | } |
2209 | if(length_rhs > 0){ |
2210 | length_rhs--; |
2211 | *res -= RelationEvaluatePostfixBranch(r, &length_rhs, 0); |
2212 | } |
2213 | return 0; |
2214 | |
2215 | case e_blackbox: |
2216 | return BlackBoxCalcResidual(i, res, r); |
2217 | |
2218 | case e_glassbox: |
2219 | case e_opcode: |
2220 | ERROR_REPORTER_HERE(ASC_PROG_ERR,"opcode/glassbox not supported"); |
2221 | return 1; |
2222 | |
2223 | default: break; |
2224 | } |
2225 | |
2226 | ERROR_REPORTER_HERE(ASC_PROG_ERR,"invalid relation type"); |
2227 | return 1; |
2228 | } |
2229 | |
2230 | int RelationCalcExceptionsInfix(struct Instance *i){ |
2231 | enum Expr_enum reltype; |
2232 | double res; |
2233 | int result = 0; |
2234 | int old_errno; |
2235 | |
2236 | glob_rel = NULL; |
2237 | |
2238 | CHECK_INST_RES(i,&res,-1); |
2239 | |
2240 | glob_rel = (struct relation *)GetInstanceRelation(i, &reltype); |
2241 | if( glob_rel == NULL ) { |
2242 | ERROR_REPORTER_HERE(ASC_PROG_ERR,"NULL relation"); |
2243 | return -1; |
2244 | } |
2245 | if( reltype == e_token ) { |
2246 | if (Infix_LhsSide(glob_rel) != NULL) { |
2247 | old_errno = errno; |
2248 | errno = 0; /* save the last errno, because we don't know why */ |
2249 | res = RelationBranchEvaluator(Infix_LhsSide(glob_rel)); |
2250 | if (!asc_finite(res) || errno == EDOM || errno == ERANGE) { |
2251 | result |= RCE_ERR_LHS; |
2252 | if (asc_isnan(res)) { |
2253 | result |= RCE_ERR_LHSNAN; |
2254 | }else{ |
2255 | if (!asc_finite(res)) { |
2256 | result |= RCE_ERR_LHSINF; |
2257 | } |
2258 | } |
2259 | } |
2260 | if (errno == 0) { |
2261 | errno = old_errno; |
2262 | } /* else something odd happened in evaluation */ |
2263 | } |
2264 | if(Infix_RhsSide(glob_rel) != NULL) { |
2265 | res = RelationBranchEvaluator(Infix_RhsSide(glob_rel)); |
2266 | if (!asc_finite(res)) { |
2267 | result |= RCE_ERR_RHS; |
2268 | if (asc_isnan(res)) { |
2269 | result |= RCE_ERR_RHSNAN; |
2270 | }else{ |
2271 | if (!asc_finite(res)) { |
2272 | result |= RCE_ERR_LHSINF; |
2273 | } |
2274 | } |
2275 | } |
2276 | } |
2277 | glob_rel = NULL; |
2278 | return result; |
2279 | }else if (reltype >= TOK_REL_TYPE_LOW && reltype <= TOK_REL_TYPE_HIGH) { |
2280 | ERROR_REPORTER_HERE(ASC_PROG_ERR,"relation type not implemented (%s)",__FUNCTION__); |
2281 | glob_rel = NULL; |
2282 | return -1; |
2283 | } |
2284 | |
2285 | ASC_PANIC("reached end of routine"); |
2286 | } |
2287 | |
2288 | |
2289 | int RelationCalcResidualInfix(struct Instance *i, double *res){ |
2290 | enum Expr_enum reltype; |
2291 | glob_rel = NULL; |
2292 | |
2293 | CHECK_INST_RES(i,res,1); |
2294 | |
2295 | glob_rel = (struct relation *)GetInstanceRelation(i, &reltype); |
2296 | if( glob_rel == NULL ) { |
2297 | ERROR_REPORTER_HERE(ASC_PROG_ERR,"NULL relation\n"); |
2298 | return 1; |
2299 | } |
2300 | if( reltype == e_token ) { |
2301 | if(Infix_LhsSide(glob_rel) != NULL) { |
2302 | *res = RelationBranchEvaluator(Infix_LhsSide(glob_rel)); |
2303 | }else{ |
2304 | *res = 0.0; |
2305 | } |
2306 | if(Infix_RhsSide(glob_rel) != NULL) { |
2307 | *res -= RelationBranchEvaluator(Infix_RhsSide(glob_rel)); |
2308 | } |
2309 | glob_rel = NULL; |
2310 | return 0; |
2311 | }else if (reltype >= TOK_REL_TYPE_LOW && reltype <= TOK_REL_TYPE_HIGH) { |
2312 | ERROR_REPORTER_HERE(ASC_PROG_ERR,"reltype not implemented (%s)",__FUNCTION__); |
2313 | glob_rel = NULL; |
2314 | return 1; |
2315 | } |
2316 | |
2317 | ASC_PANIC("reached end of routine"); |
2318 | } |
2319 | |
2320 | |
2321 | /* |
2322 | There used to be a stoopid comment here so I removed it. |
2323 | */ |
2324 | int |
2325 | RelationCalcResidualPostfix2(struct Instance *i, double *res){ |
2326 | struct relation *r; |
2327 | enum Expr_enum reltype; |
2328 | |
2329 | CHECK_INST_RES(i,res,1); |
2330 | |
2331 | r = (struct relation *)GetInstanceRelation(i, &reltype); |
2332 | if( r == NULL ) { |
2333 | ERROR_REPORTER_HERE(ASC_PROG_ERR,"null relation\n"); |
2334 | return 1; |
2335 | } |
2336 | |
2337 | if( reltype == e_token ){ |
2338 | *res = RelationEvaluateResidualPostfix(r); |
2339 | return 0; |
2340 | }else if (reltype >= TOK_REL_TYPE_LOW && reltype <= TOK_REL_TYPE_HIGH){ |
2341 | ERROR_REPORTER_HERE(ASC_PROG_ERR,"reltype not implemented (%s)",__FUNCTION__); |
2342 | return 1; |
2343 | } |
2344 | |
2345 | ASC_PANIC("reached end of routine"); |
2346 | } |
2347 | |
2348 | |
2349 | /* |
2350 | simply call the version that calculates the gradient and the residual, |
2351 | then ignore the residual |
2352 | */ |
2353 | int |
2354 | RelationCalcGradient(struct Instance *r, double *grad){ |
2355 | double residual; |
2356 | return RelationCalcResidGrad(r, &residual, grad); |
2357 | } |
2358 | |
2359 | /* |
2360 | simply call the version that calculates the gradient and the residual, |
2361 | then ignore the residual |
2362 | |
2363 | return 0 on success (as 'safe_ok' enum) |
2364 | */ |
2365 | enum safe_err |
2366 | RelationCalcGradientSafe(struct Instance *r, double *grad){ |
2367 | double residual; |
2368 | |
2369 | return RelationCalcResidGradSafe(r, &residual, grad); |
2370 | } |
2371 | |
2372 | /* return 0 on success, 1 on error */ |
2373 | int |
2374 | RelationCalcResidGrad(struct Instance *i, double *residual, double *gradient){ |
2375 | struct relation *r; |
2376 | enum Expr_enum reltype; |
2377 | |
2378 | CHECK_INST_RES(i,residual,1); |
2379 | CHECK_INST_RES(i,residual,1); |
2380 | |
2381 | r = (struct relation *)GetInstanceRelation(i, &reltype); |
2382 | if( r == NULL ) { |
2383 | ERROR_REPORTER_HERE(ASC_PROG_ERR,"null relation"); |
2384 | return 1; |
2385 | } |
2386 | |
2387 | if(reltype == e_token ){ |
2388 | return RelationEvaluateResidualGradient(r, residual, gradient); |
2389 | } |
2390 | |
2391 | if(reltype == e_blackbox){ |
2392 | return BlackBoxCalcResidGrad(i, residual, gradient, r); |
2393 | } |
2394 | |
2395 | assert(reltype >= TOK_REL_TYPE_LOW && reltype <= TOK_REL_TYPE_HIGH); |
2396 | ERROR_REPORTER_HERE(ASC_PROG_ERR,"reltype %d not implemented",reltype); |
2397 | return 1; |
2398 | } |
2399 | |
2400 | enum safe_err |
2401 | RelationCalcResidGradSafe(struct Instance *i |
2402 | , double *residual, double *gradient |
2403 | ){ |
2404 | struct relation *r; |
2405 | enum Expr_enum reltype; |
2406 | enum safe_err not_safe = safe_ok; |
2407 | int dummy_int; |
2408 | |
2409 | #ifndef NDEBUG |
2410 | if( i == NULL ) { |
2411 | ERROR_REPORTER_HERE(ASC_PROG_ERR,"null instance\n"); |
2412 | not_safe = safe_problem; |
2413 | return not_safe; |
2414 | } |
2415 | if( residual == NULL || gradient == NULL ) { |
2416 | ERROR_REPORTER_HERE(ASC_PROG_ERR,"null pointer\n"); |
2417 | not_safe = safe_problem; |
2418 | return not_safe; |
2419 | } |
2420 | if( InstanceKind(i) != REL_INST ) { |
2421 | ERROR_REPORTER_HERE(ASC_PROG_ERR,"not relation\n"); |
2422 | not_safe = safe_problem; |
2423 | return not_safe; |
2424 | } |
2425 | #endif |
2426 | r = (struct relation *)GetInstanceRelation(i, &reltype); |
2427 | if( r == NULL ) { |
2428 | ERROR_REPORTER_HERE(ASC_PROG_ERR,"null relation\n"); |
2429 | not_safe = safe_problem; |
2430 | return not_safe; |
2431 | } |
2432 | |
2433 | if( reltype == e_token ) { |
2434 | dummy_int = |
2435 | RelationEvaluateResidualGradientSafe(r, residual, gradient, ¬_safe); |
2436 | return not_safe; |
2437 | } |
2438 | if (reltype == e_blackbox){ |
2439 | if (BlackBoxCalcResidGrad(i, residual, gradient, r) ) { |
2440 | not_safe = safe_problem; |
2441 | } |
2442 | return not_safe; |
2443 | } |
2444 | if (reltype >= TOK_REL_TYPE_LOW && reltype <= TOK_REL_TYPE_HIGH) { |
2445 | if (reltype == e_glassbox){ |
2446 | ERROR_REPORTER_HERE(ASC_PROG_ERR,"glassbox not implemented yet (%s)",__FUNCTION__); |
2447 | } |
2448 | if (reltype == e_opcode){ |
2449 | ERROR_REPORTER_HERE(ASC_PROG_ERR,"opcode not supported (%s)",__FUNCTION__); |
2450 | } |
2451 | not_safe = safe_problem; |
2452 | return not_safe; |
2453 | } |
2454 | |
2455 | ASC_PANIC( "reached end of routine"); |
2456 | } |
2457 | |
2458 | |
2459 | /* |
2460 | calculate the derivative with respect to a single variable |
2461 | whose index is index, where 1<=index<=NumberVariables(r) |
2462 | |
2463 | @TODO this appears only to be used in PrintGradients |
2464 | */ |
2465 | int |
2466 | RelationCalcDerivative(struct Instance *i, |
2467 | unsigned long vindex, |
2468 | double *gradient) |
2469 | { |
2470 | struct relation *r; |
2471 | enum Expr_enum reltype; |
2472 | |
2473 | CHECK_INST_RES(i,gradient,1); |
2474 | |
2475 | r = (struct relation *)GetInstanceRelation(i, &reltype); |
2476 | if( r == NULL ) { |
2477 | ERROR_REPORTER_HERE(ASC_PROG_ERR,"null relation\n"); |
2478 | return 1; |
2479 | } |
2480 | if( (vindex < 1) || (vindex > NumberVariables(r)) ) { |
2481 | ERROR_REPORTER_HERE(ASC_PROG_ERR,"index out of bounds\n"); |
2482 | return 1; |
2483 | } |
2484 | |
2485 | if( reltype == e_token ) { |
2486 | *gradient = RelationEvaluateDerivative(r, vindex); |
2487 | return 0; |
2488 | } |
2489 | else if (reltype >= TOK_REL_TYPE_LOW && reltype <= TOK_REL_TYPE_HIGH) { |
2490 | ERROR_REPORTER_HERE(ASC_PROG_ERR,"reltype not supported (%s)",__FUNCTION__); |
2491 | return 1; |
2492 | } |
2493 | ASC_PANIC( "reached end of routine"); |
2494 | } |
2495 | |
2496 | enum safe_err |
2497 | RelationCalcDerivativeSafe(struct Instance *i, |
2498 | unsigned long vindex, |
2499 | double *gradient) |
2500 | { |
2501 | struct relation *r; |
2502 | enum Expr_enum reltype; |
2503 | enum safe_err not_safe = safe_ok; |
2504 | |
2505 | #ifndef NDEBUG |
2506 | if(!relutil_check_inst_and_res(i,gradient)){ |
2507 | not_safe = safe_problem; |
2508 | return not_safe; |
2509 | } |
2510 | #endif |
2511 | r = (struct relation *)GetInstanceRelation(i, &reltype); |
2512 | if( r == NULL ) { |
2513 | ERROR_REPORTER_HERE(ASC_PROG_ERR,"null relation\n"); |
2514 | not_safe = safe_problem; |
2515 | return not_safe; |
2516 | } |
2517 | if( (vindex < 1) || (vindex > NumberVariables(r)) ) { |
2518 | ERROR_REPORTER_HERE(ASC_PROG_ERR,"index out of bounds\n"); |
2519 | not_safe = safe_problem; |
2520 | return not_safe; |
2521 | } |
2522 | |
2523 | if( reltype == e_token ) { |
2524 | *gradient = RelationEvaluateDerivativeSafe(r, vindex, ¬_safe); |
2525 | return not_safe; |
2526 | } |
2527 | else if (reltype >= TOK_REL_TYPE_LOW && reltype <= TOK_REL_TYPE_HIGH) { |
2528 | ERROR_REPORTER_HERE(ASC_PROG_ERR,"reltype not supported (%s)",__FUNCTION__); |
2529 | not_safe = safe_problem; |
2530 | return not_safe; |
2531 | } |
2532 | |
2533 | ASC_PANIC( "reached end of routine"); |
2534 | } |
2535 | |
2536 | /** |
2537 | Function for testing residual and gradient calulations |
2538 | */ |
2539 | void PrintGradients(struct Instance *i){ |
2540 | if (InstanceKind(i) == REL_INST) { |
2541 | double res, grads[1000]; |
2542 | unsigned long vars, v; |
2543 | enum Expr_enum type; |
2544 | enum safe_err safe; |
2545 | |
2546 | vars = NumberVariables((struct relation *)GetInstanceRelation(i,&type)); |
2547 | |
2548 | /***** use the non safe versions *****/ |
2549 | for( v = 0; v < vars; v++ ) { |
2550 | if( ! RelationCalcDerivative(i, v+1, &res) ) { |
2551 | PRINTF("derivative in%5ld =\t%g\n", v+1, res); |
2552 | } |
2553 | else { |
2554 | PRINTF("**** RelationCalcDerivative returned nonzero status\n"); |
2555 | } |
2556 | } |
2557 | |
2558 | if( ! RelationCalcResidGrad(i,&res,grads) ) { |
2559 | for (v = 0; v < vars; v++) { |
2560 | PRINTF("gradient in %6ld =\t%g\n", v+1, grads[v]); |
2561 | } |
2562 | PRINTF("residual from grad =\t%g\n", res); |
2563 | } |
2564 | else { |
2565 | PRINTF("**** RelationCalcResidGrad returned nonzero status\n"); |
2566 | } |
2567 | |
2568 | if( !RelationCalcResidualInfix(i,&res) ) { |
2569 | PRINTF(" infix residual =\t%g\n", res); |
2570 | } |
2571 | else { |
2572 | PRINTF("**** RelationCalcResidualInfix returned nonzero status\n"); |
2573 | } |
2574 | |
2575 | if( !RelationCalcResidualPostfix(i,&res) ) { |
2576 | PRINTF(" postfix residual =\t%g\n", res); |
2577 | } |
2578 | else { |
2579 | PRINTF("**** RelationCalcResidualPostfix returned nonzero status\n"); |
2580 | } |
2581 | |
2582 | if( !RelationCalcResidualPostfix2(i,&res) ) { |
2583 | PRINTF(" postfix2 residual =\t%g\n", res); |
2584 | } |
2585 | else { |
2586 | PRINTF("**** RelationCalcResidualPostfix2 returned nonzero status\n"); |
2587 | } |
2588 | |
2589 | /***** use the safe versions *****/ |
2590 | for( v = 0; v < vars; v++ ) { |
2591 | if(safe_ok == (safe = RelationCalcDerivativeSafe(i, v+1, &res)) ) { |
2592 | PRINTF("safe deriv in%5ld =\t%g\n", v+1, res); |
2593 | } |
2594 | else { |
2595 | PRINTF("**** RelationCalcDerivativeSafe returned nonzero: %d\n", safe); |
2596 | } |
2597 | } |
2598 | |
2599 | if(safe_ok == (safe = RelationCalcResidGradSafe(i,&res,grads)) ) { |
2600 | for (v = 0; v < vars; v++) { |
2601 | PRINTF("safe grad in%6ld =\t%g\n", v+1, grads[v]); |
2602 | } |
2603 | PRINTF("safe resid ala grad=\t%g\n", res); |
2604 | } |
2605 | else { |
2606 | PRINTF("**** RelationCalcResidGradSafe returned nonzero: %d\n", safe); |
2607 | } |
2608 | |
2609 | /***** not implemented |
2610 | if( ! (safe = RelationCalcResidualInfixSafe(i,&res)) ) { |
2611 | PRINTF("safe infix residual=\t%g\n", res); |
2612 | } |
2613 | else { |
2614 | PRINTF("**** RelationCalcResidualInfixSafe returned nonzero: %d\n", |
2615 | safe); |
2616 | } |
2617 | *****/ |
2618 | |
2619 | if(safe_ok == (safe = RelationCalcResidualPostfixSafe(i,&res)) ) { |
2620 | PRINTF("safe postfix resid =\t%g\n", res); |
2621 | } |
2622 | else { |
2623 | PRINTF("**** RelationCalcResidualPostfixSafe returned nonzero: %d\n", |
2624 | safe); |
2625 | } |
2626 | |
2627 | /***** not implemented |
2628 | if( ! (safe = RelationCalcResidualPostfix2Safe(i,&res)) ) { |
2629 | PRINTF("safe postfix2 resd =\t%g\n", res); |
2630 | } |
2631 | else { |
2632 | PRINTF("**** RelationCalcResidualPostfix2Safe returned nonzero: %d\n", |
2633 | safe); |
2634 | } |
2635 | *****/ |
2636 | |
2637 | PRINTF("\n"); |
2638 | } |
2639 | } |
2640 | void PrintRelationGradients(struct Instance *i) |
2641 | { |
2642 | VisitInstanceTree(i,PrintGradients, 0, 0); |
2643 | } |
2644 | |
2645 | /* this function may make an fpe for method 2 or 3. |
2646 | * list must be of nonnull struct relation * for |
2647 | * meth = m_BIN and struct Instance * for 1-3. |
2648 | */ |
2649 | #define m_BIN 0 |
2650 | #define m_PFS 1 |
2651 | #define m_PF 2 |
2652 | #define m_IF 3 |
2653 | void TimeCalcResidual(struct gl_list_t *rlist,int method){ |
2654 | unsigned long c,len; |
2655 | double res; |
2656 | |
2657 | if (rlist==NULL) return; |
2658 | switch (method) { |
2659 | case m_BIN: |
2660 | for (c=1,len=gl_length(rlist); c <= len; c++) { |
2661 | RelationCalcResidualBinary(gl_fetch(rlist,c),&res); |
2662 | } |
2663 | break; |
2664 | case m_PFS: |
2665 | for (c=1,len=gl_length(rlist); c <= len; c++) { |
2666 | RelationCalcResidualPostfixSafe(gl_fetch(rlist,c),&res); |
2667 | } |
2668 | break; |
2669 | case m_PF: |
2670 | for (c=1,len=gl_length(rlist); c <= len; c++) { |
2671 | RelationCalcResidualPostfix(gl_fetch(rlist,c),&res); |
2672 | } |
2673 | break; |
2674 | case m_IF: |
2675 | for (c=1,len=gl_length(rlist); c <= len; c++) { |
2676 | RelationCalcResidualInfix(gl_fetch(rlist,c),&res); |
2677 | } |
2678 | break; |
2679 | default: |
2680 | break; |
2681 | } |
2682 | return; |
2683 | } |
2684 | |
2685 | void PrintResidual(struct Instance *i){ |
2686 | enum safe_err se; |
2687 | struct relation *rel; |
2688 | enum Expr_enum reltype; |
2689 | int errb; |
2690 | #ifndef M_PI |
2691 | #define M_PIE 3.141590271828 |
2692 | #else |
2693 | #define M_PIE M_PI |
2694 | #endif |
2695 | double post=M_PIE,in=M_PIE,postsafe=M_PIE,binary=M_PIE; |
2696 | |
2697 | if (InstanceKind(i) == REL_INST) { |
2698 | rel = (struct relation *)GetInstanceRelation(i,&reltype); |
2699 | if (reltype == e_token) { |
2700 | errb = RelationCalcResidualBinary(rel,&(binary)); |
2701 | }else{ |
2702 | errb = 1; |
2703 | } |
2704 | se = RelationCalcResidualPostfixSafe(i,&(postsafe)); |
2705 | if (errb || se != safe_ok) { |
2706 | FPRINTF(ASCERR,"Skipping Postfix,Infix\n"); |
2707 | }else{ |
2708 | RelationCalcResidualPostfix(i,&(post)); |
2709 | RelationCalcResidualInfix(i,&(in)); |
2710 | } |
2711 | PRINTF("binary residual = %.18g\n",binary); |
2712 | PRINTF("postfix safe res = %.18g\n",postsafe); |
2713 | if (errb||se!= safe_ok) { |
2714 | PRINTF("postfix residual = %.18g\n",post); |
2715 | PRINTF(" infix residual = %.18g\n",in); |
2716 | } |
2717 | if(binary != postsafe) { |
2718 | PRINTF("!!!!!!!ERROR!!!!!!! %g \n", binary-post); |
2719 | } |
2720 | PRINTF("(Unchanged residuals = %.18g\n\n",M_PIE); |
2721 | } |
2722 | } |
2723 | |
2724 | void PrintRelationResiduals(struct Instance *i){ |
2725 | VisitInstanceTree(i,PrintResidual, 0, 0); |
2726 | } |
2727 | |
2728 | /*============================================================================== |
2729 | 'RELATIONFINDROOTS' AND SUPPORT FUNCTIONS |
2730 | |
2731 | The following functions support RelationFindRoots which |
2732 | is the compiler-side implementation of our old solver-side DirectSolve |
2733 | function. |
2734 | */ |
2735 | |
2736 | double *RelationFindRoots(struct Instance *i, |
2737 | double lower_bound, double upper_bound, |
2738 | double nominal, |
2739 | double tolerance, |
2740 | unsigned long *varnum, |
2741 | int *able, |
2742 | int *nsolns |
2743 | ){ |
2744 | struct relation *rel; |
2745 | double sideval; |
2746 | enum Expr_enum reltype; |
2747 | static struct ds_soln_list soln_list = {0,0,NULL}; |
2748 | CONST struct gl_list_t *list; |
2749 | |
2750 | /* check for recycle shutdown */ |
2751 | if (i==NULL && varnum == NULL && able == NULL && nsolns == NULL) { |
2752 | if (soln_list.soln != NULL) { |
2753 | ascfree(soln_list.soln); |
2754 | soln_list.soln = NULL; |
2755 | soln_list.length = soln_list.capacity = 0; |
2756 | } |
2757 | RootFind(NULL,NULL,NULL,NULL,NULL,0L,NULL); /*clear brent recycle */ |
2758 | RelationCreateTmp(0,0,e_nop); /* clear tmprelation recycle */ |
2759 | return NULL; |
2760 | } |
2761 | /* check assertions */ |
2762 | #ifndef NDEBUG |
2763 | if( i == NULL ) { |
2764 | FPRINTF(ASCERR, "error in RelationFindRoot: NULL instance\n"); |
2765 | glob_rel = NULL; |
2766 | return NULL; |
2767 | } |
2768 | if (able == NULL){ |
2769 | FPRINTF(ASCERR,"error in RelationFindRoot: NULL able ptr\n"); |
2770 | glob_rel = NULL; |
2771 | return NULL; |
2772 | } |
2773 | if (varnum == NULL){ |
2774 | FPRINTF(ASCERR,"error in RelationFindRoot: NULL varnum\n"); |
2775 | glob_rel = NULL; |
2776 | return NULL; |
2777 | } |
2778 | if( InstanceKind(i) != REL_INST ) { |
2779 | FPRINTF(ASCERR, "error in RelationFindRoot: not relation\n"); |
2780 | glob_rel = NULL; |
2781 | return NULL; |
2782 | } |
2783 | #endif |
2784 | |
2785 | *able = FALSE; |
2786 | *nsolns = -1; /* nsolns will be -1 for a very unhappy root-finder */ |
2787 | glob_rel = NULL; |
2788 | glob_done = 0; |
2789 | soln_list.length = 0; /* reset len to 0. if NULL to start, append mallocs */ |
2790 | append_soln(&soln_list,0.0); |
2791 | rel = (struct relation *)GetInstanceRelation(i, &reltype); |
2792 | if( rel == NULL ) { |
2793 | FPRINTF(ASCERR, "error in RelationFindRoot: NULL relation\n"); |
2794 | glob_rel = NULL; return NULL; |
2795 | } |
2796 | /* here we should switch and handle all types. at present we don't |
2797 | * handle anything except e_token |
2798 | */ |
2799 | if( reltype != e_token ) { |
2800 | FPRINTF(ASCERR, "error in RelationFindRoot: non-token relation\n"); |
2801 | glob_rel = NULL; |
2802 | return NULL; |
2803 | } |
2804 | |
2805 | if (RelationRelop(rel) == e_equal){ |
2806 | glob_rel = RelationTmpTokenCopy(rel); |
2807 | assert(glob_rel!=NULL); |
2808 | glob_done = 0; |
2809 | list = RelationVarList(glob_rel); |
2810 | if( *varnum >= 1 && *varnum <= gl_length(list)){ |
2811 | glob_done = 1; |
2812 | } |
2813 | if (!glob_done) { |
2814 | FPRINTF(ASCERR, "error in FindRoot: var not found\n"); |
2815 | glob_rel = NULL; |
2816 | return NULL; |
2817 | } |
2818 | |
2819 | glob_varnum = *varnum; |
2820 | glob_done = 0; |
2821 | assert(Infix_LhsSide(glob_rel) != NULL); |
2822 | /* In the following if statements we look for the target variable |
2823 | * to the left and right, evaluating all branches without the |
2824 | * target. |
2825 | */ |
2826 | if (SearchEval_Branch(Infix_LhsSide(glob_rel)) < 1) { |
2827 | /* CONSOLE_DEBUG("SearchEval_Branch(Infix_LhsSide(glob_rel)) gave < 1..."); */ |
2828 | sideval = RelationBranchEvaluator(Infix_LhsSide(glob_rel)); |
2829 | if (asc_finite(sideval)) { |
2830 | /* CONSOLE_DEBUG("LHS is finite"); */ |
2831 | InsertBranchResult(Infix_LhsSide(glob_rel),sideval); |
2832 | }else{ |
2833 | /* CONSOLE_DEBUG("LHS is INFINITE"); */ |
2834 | FPRINTF(ASCERR,"Inequality in RelationFindRoots. Infinite RHS.\n"); |
2835 | glob_rel = NULL; |
2836 | return NULL; |
2837 | } |
2838 | } |
2839 | assert(Infix_RhsSide(glob_rel) != NULL); |
2840 | if (SearchEval_Branch(Infix_RhsSide(glob_rel)) < 1) { |
2841 | /* CONSOLE_DEBUG("SearchEval_Branch(Infix_RhsSide(glob_rel)) gave < 1..."); */ |
2842 | sideval = RelationBranchEvaluator(Infix_RhsSide(glob_rel)); |
2843 | if (asc_finite(sideval)) { |
2844 | /* CONSOLE_DEBUG("RHS is finite"); */ |
2845 | InsertBranchResult(Infix_RhsSide(glob_rel),sideval); |
2846 | }else{ |
2847 | /* CONSOLE_DEBUG("RHS is INFINITE"); */ |
2848 | FPRINTF(ASCERR,"Inequality in RelationFindRoots. Infinite LHS.\n"); |
2849 | glob_rel = NULL; |
2850 | return NULL; |
2851 | } |
2852 | } |
2853 | if (glob_done < 1) { |
2854 | /* CONSOLE_DEBUG("RelationInvertToken never found variable"); */ |
2855 | /* RelationInvertToken never found variable */ |
2856 | glob_done = 0; |
2857 | *able = FALSE; |
2858 | return soln_list.soln; |
2859 | } |
2860 | if (glob_done == 1) { |
2861 | /* set to 0 so while loop in RelationInvertToken will work */ |
2862 | glob_done = 0; |
2863 | /* CONSOLE_DEBUG("Calling 'RelationInvertToken'..."); */ |
2864 | glob_done = RelationInvertTokenTop(&(soln_list)); |
2865 | } |
2866 | if (glob_done == 1) { /* if still one, token inversions successful */ |
2867 | /* CONSOLE_DEBUG("INVERSION was successful"); */ |
2868 | glob_done = 0; |
2869 | *nsolns= soln_list.length; |
2870 | *able = TRUE; |
2871 | return soln_list.soln; |
2872 | } |
2873 | /* CALL ITERATIVE SOLVER */ |
2874 | *soln_list.soln = RootFind(glob_rel,&(lower_bound), |
2875 | &(upper_bound),&(nominal), |
2876 | &(tolerance), |
2877 | glob_varnum,able); |
2878 | |
2879 | glob_done = 0; |
2880 | if(*able == 0) { /* Root-Find returns 0 for success*/ |
2881 | *nsolns = 1; |
2882 | *able = TRUE; |
2883 | }else{ |
2884 | CONSOLE_DEBUG("Single-equation iterative solver was unable to find a solution."); |
2885 | *able = FALSE; |
2886 | } |
2887 | return soln_list.soln; |
2888 | |
2889 | } |
2890 | ERROR_REPORTER_HERE(ASC_PROG_ERR,"Inequality: can't find roots."); |
2891 | *able = FALSE; |
2892 | return soln_list.soln; |
2893 | } |
2894 | |
2895 | /*------------------------------------------------------------------------------ |
2896 | MEMORY MANAGEMENT AND COPYING FUNCTIONS |
2897 | to support the RelationFindRoots function. |
2898 | */ |
2899 | |
2900 | /** |
2901 | @see RelationFindRoots |
2902 | |
2903 | Create a struct relation of type e_token |
2904 | and passes back a pointer to the relation. |
2905 | |
2906 | The lengths of |
2907 | the right and left sides (lhslen and rhslen) of the relation |
2908 | are supplied by the calling function. |
2909 | |
2910 | User is responsible for setting RTOKEN(return).*_len. |
2911 | |
2912 | Basically, all this does is manage memory nicely. |
2913 | |
2914 | IF called with all 0/NULL, frees internal recycles. |
2915 | */ |
2916 | static struct relation *RelationCreateTmp( |
2917 | unsigned long lhslen, unsigned long rhslen, |
2918 | enum Expr_enum relop |
2919 | ){ |
2920 | static struct relation *rel=NULL; |
2921 | static unsigned long lhscap=0, rhscap=0; |
2922 | |
2923 | /* check for recycle clear and free things if needed. */ |
2924 | if (lhslen==0 && rhslen == 0 && relop == e_nop) { |
2925 | if (rel != NULL) { |
2926 | if (rel->share != NULL) { |
2927 | if (RTOKEN(rel).lhs!=NULL) { |
2928 | ascfree(RTOKEN(rel).lhs); |
2929 | } |
2930 | if (RTOKEN(rel).rhs!=NULL) { |
2931 | ascfree(RTOKEN(rel).rhs); |
2932 | } |
2933 | ascfree(rel->share); |
2934 | } |
2935 | ascfree(rel); |
2936 | rel = NULL; |
2937 | } |
2938 | lhscap = rhscap = 0; |
2939 | return NULL; |
2940 | } |
2941 | if (rel == NULL) { |
2942 | rel = CreateRelationStructure(relop,crs_NEWUNION); |
2943 | } |
2944 | if (lhscap < lhslen) { |
2945 | lhscap = lhslen; |
2946 | if ( RTOKEN(rel).lhs != NULL) { |
2947 | ascfree(RTOKEN(rel).lhs); |
2948 | } |
2949 | RTOKEN(rel).lhs = ASC_NEW_ARRAY(union RelationTermUnion,lhscap); |
2950 | } |
2951 | if (rhscap < rhslen) { |
2952 | rhscap = rhslen; |
2953 | if ( RTOKEN(rel).rhs != NULL) { |
2954 | ascfree(RTOKEN(rel).rhs); |
2955 | } |
2956 | RTOKEN(rel).rhs = ASC_NEW_ARRAY(union RelationTermUnion,rhscap); |
2957 | } |
2958 | return rel; |
2959 | } |
2960 | |
2961 | /** |
2962 | @see RelationFindRoots |
2963 | |
2964 | Full-blown relation copy (not copy by reference) |
2965 | |
2966 | We can now just do a memcopy and the infix pointers |
2967 | all adjust by the difference between the token |
2968 | arrays that the gl_lists are hiding. Cool, eh? |
2969 | |
2970 | @NOTE if any turkey ever tries to delete an individual |
2971 | token from these gl_lists AND deallocate it, |
2972 | they will get a severe headache. Ooo scary. |
2973 | |
2974 | This is a full blown copy and not copy by reference. |
2975 | You do not need to remake the infix pointers after |
2976 | calling this function. return 0 if ok, 1 if error. |
2977 | |
2978 | @NOTE RelationTmpCopySide and RelationTmpCopyToken are reimplimentations |
2979 | of functions from the v. old 'exprman' file. |
2980 | */ |
2981 | static int RelationTmpCopySide(union RelationTermUnion *old, |
2982 | unsigned long len, |
2983 | union RelationTermUnion *arr |
2984 | ){ |
2985 | struct relation_term *term; |
2986 | unsigned long c; |
2987 | long int delta; |
2988 | |
2989 | if (old==NULL || !len) return 1; |
2990 | if (arr==NULL) { |
2991 | FPRINTF(ASCERR,"RelationTmpCopySide: null RelationTermUnion :-(.\n"); |
2992 | return 1; |
2993 | } |
2994 | memcpy( (VOIDPTR)arr, (VOIDPTR)old, len*sizeof(union RelationTermUnion)); |
2995 | /* |
2996 | * Difference in chars between old and arr ptrs. It should me a multiple |
2997 | * of sizeof(double) but may not be a multiple of sizeof(union RTU). |
2998 | * Delta may easily be negative. |
2999 | * Normally, though arr > old. |
3000 | */ |
3001 | delta = (char *)arr - (char *)old; |
3002 | #ifdef ADJPTR |
3003 | #undef ADJPTR |
3004 | #endif |
3005 | #define ADJPTR(p) ( (p) = A_TERM((char *)(p)+delta) ) |
3006 | for (c=0;c<len;c++) { |
3007 | term = A_TERM(&(arr[c])); |
3008 | switch (term->t) { |
3009 | /* unary terms */ |
3010 | case e_uminus: |
3011 | ADJPTR(U_TERM(term)->left); |
3012 | break; |
3013 | /* binary terms */ |
3014 | case e_plus: |
3015 | case e_minus: case e_times: |
3016 | case e_divide: case e_power: case e_ipower: |
3017 | ADJPTR(B_TERM(term)->left); |
3018 | ADJPTR(B_TERM(term)->right); |
3019 | break; |
3020 | case e_zero: |
3021 | case e_var: /* the var number will be correct */ |
3022 | case e_int: |
3023 | case e_real: |
3024 | break; |
3025 | case e_func: |
3026 | ADJPTR(F_TERM(term)->left); |
3027 | break; |
3028 | /* don't know how to deal with the following relation operators. |
3029 | they may be binary or unary, but InfixArr_MakeSide never set them. */ |
3030 | case e_maximize: case e_minimize: |
3031 | case e_equal: case e_notequal: case e_less: |
3032 | case e_greater: case e_lesseq: case e_greatereq: |
3033 | default: |
3034 | ASC_PANIC("Unknown term type"); |
3035 | break; |
3036 | } |
3037 | } |
3038 | #undef ADJPTR |
3039 | |
3040 | return 0; |
3041 | } |
3042 | |
3043 | /** |
3044 | @see RelationFindRoots |
3045 | |
3046 | Copy tmp token for a relation (guess -- JP) |
3047 | |
3048 | The relation returned by this function should have |
3049 | NO persistent pointers made to it, as it is still |
3050 | our property. The vars in the relation do not |
3051 | know about these references to them, as this is |
3052 | a tmp rel. |
3053 | |
3054 | @NOTE RelationTmpCopySide and RelationTmpCopyToken are reimplimentations |
3055 | of functions from the v. old 'exprman' file. |
3056 | */ |
3057 | static struct relation *RelationTmpTokenCopy(CONST struct relation *src){ |
3058 | struct relation *result; |
3059 | long int delta; |
3060 | assert(src!=NULL); |
3061 | |
3062 | result = RelationCreateTmp(RTOKEN(src).lhs_len,RTOKEN(src).rhs_len, |
3063 | RelationRelop(src)); |
3064 | |
3065 | if(RelationTmpCopySide(RTOKEN(src).lhs,RTOKEN(src).lhs_len, |
3066 | RTOKEN(result).lhs) == 0) { |
3067 | delta = UNION_TERM(RTOKEN(src).lhs_term) - RTOKEN(src).lhs; |
3068 | RTOKEN(result).lhs_term = A_TERM(RTOKEN(result).lhs+delta); |
3069 | RTOKEN(result).lhs_len = RTOKEN(src).lhs_len; |
3070 | }else{ |
3071 | RTOKEN(result).lhs_term = NULL; |
3072 | RTOKEN(result).lhs_len = 0; |
3073 | } |
3074 | |
3075 | if( RelationTmpCopySide(RTOKEN(src).rhs,RTOKEN(src).rhs_len, |
3076 | RTOKEN(result).rhs) == 0) { |
3077 | delta = UNION_TERM(RTOKEN(src).rhs_term) - RTOKEN(src).rhs; |
3078 | RTOKEN(result).rhs_term = A_TERM(RTOKEN(result).rhs+delta); |
3079 | RTOKEN(result).rhs_len = RTOKEN(src).rhs_len; |
3080 | }else{ |
3081 | RTOKEN(result).rhs_term = NULL; |
3082 | RTOKEN(result).rhs_len = 0; |
3083 | } |
3084 | result->vars = src->vars; |
3085 | result->d = src->d; |
3086 | result->residual = src->residual; |
3087 | result->multiplier = src->multiplier; |
3088 | result->nominal = src->nominal; |
3089 | result->iscond = src->iscond; |
3090 | return result; |
3091 | } |
3092 | |
3093 | #define alloc_array(nelts,type) ((nelts) > 0 ? ASC_NEW_ARRAY(type,nelts) : NULL) |
3094 | #define copy_nums(from,too,nnums) \ |
3095 | asc_memcpy((from),(too),(nnums)*sizeof(double)) |
3096 | |
3097 | /** |
3098 | @see RelationFindRoots |
3099 | |
3100 | Appends the solution onto the solution list |
3101 | */ |
3102 | static void append_soln( struct ds_soln_list *sl, double soln){ |
3103 | if( sl->length == sl->capacity ) { |
3104 | int newcap; |
3105 | double *newlist; |
3106 | |
3107 | newcap = sl->capacity + 10; |
3108 | newlist = alloc_array(newcap,double); |
3109 | copy_nums((char *)sl->soln,(char *)newlist,sl->length); |
3110 | if( sl->soln != NULL ) { |
3111 | ascfree(sl->soln); |
3112 | } |
3113 | sl->soln = newlist; |
3114 | sl->capacity = newcap; |
3115 | } |
3116 | |
3117 | sl->soln[sl->length++] = soln; |
3118 | } |
3119 | |
3120 | /** |
3121 | @see RelationFindRoots |
3122 | |
3123 | Removes solution at given index from solution list. |
3124 | */ |
3125 | static void remove_soln( struct ds_soln_list *sl, int ndx){ |
3126 | copy_nums((char *)(sl->soln+ndx+1), |
3127 | (char *)(sl->soln+ndx), --(sl->length) - ndx); |
3128 | } |
3129 | |
3130 | /*------------------------------------------------------------------------------ |
3131 | DIRECT SOLVE FUNCTIONS |
3132 | to support the RelationFindRoots function. |
3133 | */ |
3134 | |
3135 | /** |
3136 | @see RelationFindRoots |
3137 | |
3138 | Change a relation term type to e_real and fill the value field of this term. |
3139 | |
3140 | In subsequent passes of the RelationBranchEvaluator the term will be |
3141 | considered to be a leaf. |
3142 | */ |
3143 | static void InsertBranchResult(struct relation_term *term, double value){ |
3144 | assert(term!=NULL); |
3145 | term->t = e_real; |
3146 | R_TERM(term)->value = value; |
3147 | } |
3148 | |
3149 | /** |
3150 | @see RelationFindRoots |
3151 | |
3152 | Simplify branches of a relation (the relation pointed to by glob_rel). |
3153 | |
3154 | Only terms of type e_real, e_int, e_zero, and e_var are left |
3155 | hanging off the operators on the path to the |
3156 | variable (with varnum = glob_varnum) being direct |
3157 | solved for. |
3158 | |
3159 | @TODO This may need to be changed to only leave e_reals |
3160 | so that the inversion routine can make faster decisions??? |
3161 | Probably not. |
3162 | |
3163 | @return >= 1 if glob_varnum spotted, else 0 (or at least <1). |
3164 | */ |
3165 | static int SearchEval_Branch(struct relation_term *term){ |
3166 | int result = 0; |